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Abstract 1 
Reducing food loss and waste (FLW) could lessen food systems’ environmental impacts 2 
and improve food security. However, rebound effects—whereby efficiency improvements 3 
cause price decreases and consumption increases—may offset some avoided food FLW. 4 
Here, we model rebounds in food consumption under a scenario of costless FLW 5 
reduction. We project that consumption rebound could offset 53-71% of avoided FLW. 6 
Such rebounds would imply similar percentage reductions in environmental benefits 7 
(carbon emissions, land use, water use), and improvements to food security benefits 8 
(increased Calorie availability), highlighting a tension between these two objectives. 9 
Evidence from energy systems suggests that indirect effects not included in our analysis 10 
could further increase rebounds. However, costs for reducing FLW would reduce 11 
rebounds. Rebound effects are therefore important to consider in efforts aimed at 12 
reducing FLW. 13 
Main 14 

Recent estimates suggest that 14% of food produced for human consumption globally 15 
is lost (i.e. damaged or spoiled before reaching retailers or consumers) and 17% is wasted 16 
(i.e. spoiled or thrown away by retailers or consumers)1,2. Food loss occurs on the supply 17 
side; food waste occurs on the demand side (Fig. 1). Altogether, food loss and waste 18 
(FLW) amounts to an average of 527 Calories per person per day3 and 24% of global 19 
food system GHG emissions—6% of total emissions4. Although these may be 20 
overestimates of the value and extent of FLW5, and there are also regional and crop-21 
specific differences in FLW6,7, FLW is still a consistent and substantial inefficiency across 22 
food systems. 23 

Consequently, reducing FLW is widely considered a key opportunity to improve 24 
environmental sustainability8 and food security7,9–11 by increasing food system efficiency. 25 
Indeed, Goal 12.3.1 of the United Nations’ Sustainable Development Goals (SDGs) aims 26 
to “halve per capita food waste at the retail and consumer levels and reduce food losses 27 
along production and supply chains, including post-harvest losses”12. Many 28 
governments13–15, non-governmental environmental groups16,17, international 29 
organizations18, industry alliances19, and private firms20,21 have begun initiatives to reduce 30 
FLW, though the world is still not on track to meet SDG 1222.   31 

The implied rationale of such initiatives is that less waste or loss would result in less 32 
food production, and consequently lessened environmental impacts. However, here we 33 
consider the possibility that some avoided FLW might be offset by increased consumption 34 
due to lower prices—the ‘rebound effect’. Rebound effects (or ‘feedback’) have been 35 
widely studied in energy systems23–27 and in the context of irrigation28–30. Food demand 36 
may saturate more quickly than energy demand at high incomes31, which could dampen 37 
rebound effects from avoided FLW in high-income regions. Previous studies have 38 
considered rebound effects from avoided FLW32–38, but they have not been quantified at 39 
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the global scale. Nonetheless, sensitivities (‘elasticities’) of food demand to prices have 40 
been measured, as we describe below.  41 

The magnitude of the rebound effect is measured as the fraction of reduced FLW offset 42 
by increased consumption39,40. Similar to previous theoretical models32, we assume that 43 
reducing food loss increases supply (because previously lost food now goes to market), 44 
and reducing food waste reduces demand (Fig. 1). If food loss decreases by ∆L, and 45 
waste decreases by ∆W, the total savings are ∆W + ∆L. Without a rebound effect, 46 
consumption decreases by ∆W (i.e., the market quantity traded, ∆T = –∆W), because 47 
reducing demand lowers consumption, but increasing supply without a rebound effect 48 
lowers prices and does not change consumption (Fig. 1a,b). The total savings lost to 49 
rebounds are thus ∆W + ∆T, which is equivalent to the overall change in consumption, 50 
∆C. We measure the rebound effect as the ratio, R (Fig. 1c; see also ref. 25 and 51 
Supplementary Note 1): 52 ܴ =   100% ∗ ቀ∆୛ା ∆୘∆୛ା  ∆୐ቁ     (1) 53 
With a 100% rebound effect (R = 100%), ∆T = ∆L; i.e., consumption increases by an 54 
amount that not only offsets the demand shift, it also uses up the supply shift.  55 

In the context of energy savings from energy efficiency improvements, a review by 56 
Gillingham et al.41 estimated that 5-10% was a typical rebound directly caused by 57 
decreased prices and consequent increased demand—the ‘direct’ rebound effect 58 
illustrated in Fig. 1, though others have found direct rebound effects of energy savings to 59 
be substantially greater42. Gillingham et al.41 also noted three potential indirect rebound 60 
effects in the energy context that can further increase the overall rebound. First, 61 
consumers saving money due to efficiency improvements might spend some of those 62 
savings on other goods and services that use energy, thereby increasing overall energy 63 
consumption. Second, lessened consumption in the place of experiencing the energy 64 
efficiency gain could drive down fuel prices (e.g., oil) globally, causing increased 65 
consumption. Third, higher energy efficiency could stimulate pockets of industrial growth 66 
and innovation, which would consume energy. Gillingham et al.41 noted macroeconomic 67 
models suggesting the combined rebound effect from all four sources (the direct rebound 68 
plus the three forms of indirect rebound) was in the range of 20-60%43,44. Some studies 69 
suggest economy-wide energy rebound effects might be closer to 100%45 and sometimes 70 
exceeding this46–49 with a condition known as ‘backfire’. However, other studies suggest 71 
that energy backfire effects are rare36,37,38,39. Energy rebound effects appear to increase 72 
in magnitude with the level of aggregation45,46 and with the number of stages in the supply 73 
chain51. In general, the greater the flexibility of the economy to adjust production (and 74 
consumption) to accommodate energy efficiency gains, the larger the rebound 75 
magnitude46,52. Magnitudes of rebound effects can also vary substantially according to 76 
the type of goods or services involved, the economic and policy context39,40,53, and the 77 
stage of economic development54. 78 
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A small, but growing literature estimates a wide range of rebound effects from avoided 79 
FLW35,36,38, depending on the economic and political context. For example, Chitnis et al.35 80 
find rebound effects from avoided food waste ranging from 66% to 106% in United 81 
Kingdom (UK) households. Also in the UK, Meshulam et al.36 find that rebounds offset 82 
80%-95% of GHG emissions, water depletion benefits, and land use benefits from 83 
avoided FLW. Our analysis estimates rebound effects from avoided FLW and quantifies 84 
their food security benefits at the global level.   85 

Here, we use published income-group- and food-type-specific price elasticities of 86 
supply55 and demand56 (see sources in Supplementary Tables 1-4) to estimate the direct 87 
rebound effects from large reductions in food loss and waste of six different types of food 88 
(cereals, fruits & vegetables, meat, milk, oilcrops & pulses, roots & tubers). We use a 89 
simple microeconomic model that assumes these elasticities are constant over the 90 
relevant quantity domain. In alignment with SDG 12, our model assumes one half of all 91 
food loss and waste is avoided globally. Our model represents avoided food loss and 92 
waste as horizontal shifts in the supply and demand curves, respectively, whose 93 
magnitudes equal the quantities of loss and waste avoided (∆L and ∆W, respectively; 94 
Figs. 1, 2; see Methods for full model description). This approach implicitly assumes that 95 
avoiding FLW is costless and equivalent across various regions as well as within the food 96 
supply chain (we relax this assumption in a sensitivity analysis, below). Similar 97 
microeconomic models have been used to assess market dynamics and rebound in the 98 
energy sector57–59, and in theoretical studies of the food sector32.  99 

Our model (see Supplementary Software 1) calculates the new market equilibrium 100 
caused by the horizontal shifts in supply and demand—where the new supply curve 101 
meets the new demand curve. The difference between the original and new equilibrium 102 
quantities is ∆T (Figs. 1, 2). With linear supply and demand curves, the rebound effect 103 
(defined by equation (1)) would depend only on their slopes60. With constant elasticities 104 
(non-linear supply and demand), the elasticities still almost entirely determine the rebound 105 
effect over the ranges of elasticities used in our analysis. Doubling or halving waste-106 
avoided or initial prices in our analysis changes the projected rebound on the order of 107 
only 1-2%; and changing initial quantities has almost no effect (see Supplementary Data 108 
5 and Supplementary Software 2. To capture some of the uncertainties, we repeatedly 109 
model changes in price and consumption for each food type and region, assessing the 110 
full range and combinations of price elasticities, assuming they are drawn from 111 
independent distributions approximated from the literature (see Methods and 112 
Supplementary Tables 1-4).  113 
 114 
Results 115 

Fig. 2 shows our modeled supply and demand curves, before and after FLW avoidance, 116 
for cereals, fruits and vegetables, and meat, in four SDG-defined regions (Eastern and 117 
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South-Eastern Asia, Latin America and the Caribbean, Northern America and Europe, 118 
and sub-Saharan Africa). Empirical results for the additional four regions can be found in 119 
Supplementary Table 8a-d. Fig. 3 shows the distribution of projections of waste and loss 120 
avoided as well as change in the quantity traded (in units of mass: Mt per year), by SDG-121 
defined region, for cereals, fruits and vegetables, and meat (Supplementary Table 8b-d 122 
shows these results for all food types). Fig. 4a shows the distribution of projected rebound 123 
effects—expressed as a percentage of waste avoided—by food type and World Bank 124 
income group. We use income groups instead of SDG-defined regions here because the 125 
input data on elasticities—which determine the rebound percentage—exist at this level 126 
(Supplementary Tables 1-4). Fig. 4b shows the approximate rebound percentage as 127 
function of supply and demand elasticities (colors; assuming stylized initial conditions and 128 
∆L and ∆W values), with the raw published estimates of these elasticities used in our 129 
analysis (Supplementary Tables 1-4) shown as points.  130 

We project direct rebound effects ranging from 53-71% (Figs. 2-4). Lower price 131 
elasticities of supply and higher (in absolute value) price elasticities of demand translate 132 
to larger rebound effects, with slightly more sensitivity to demand elasticity, over the range 133 
published elasticities (Fig. 4b). Our projected rebound effects are largest for fruits and 134 
vegetables (64-71%; center column in Fig. 2), somewhat less for cereals (58-68%; left 135 
column in Fig. 2; Fig. 4a) and meat and dairy (53-61%; right column in Fig. 2; Figs. 4a). 136 
Fruits and vegetables have relatively low supply elasticities and high demand elasticities, 137 
compared to other food types (Fig. 4b). We project slightly smaller rebound effects in 138 
higher-income groups (Fig. 4a), due to relatively high supply elasticities and low demand 139 
elasticities (Fig. 4b). 140 

We project the global amount of food loss and waste offset by rebound effects by 141 
summing ∆W, ∆L, and our projected ∆T across all regions and food types, and applying 142 
equation (1) to these sums. We project that rebound effects offset ~65% of global avoided 143 
FLW, resulting in only ~180 Mt saved out of a possible ~516 Mt without rebound effects.  144 

We project that loss avoided—in mass units—is highest in Central and Southern Asia, 145 
Eastern and South-Eastern Asia, and Latin America and the Caribbean1 (Fig. 3). Waste 146 
avoided—in mass units—is highest Central and Southern Asia, Eastern and South-147 
Eastern Asia, and sub-Saharan Africa2. This does not account for the differences in 148 
perishability among food types, particularly fruits and vegetables, which constitute a 149 
relatively high fraction of waste in high- and middle-income countries61. In contrast, 150 
cereals and roots and tubers make up the largest share of waste in low-income 151 
countries61. We note that the highest waste values being found in low- and middle-income 152 
countries reflects the most recent FAO reports1,2, which updated previous, contrasting 153 
findings61–63 in the food loss and waste literature. Our model assumes a uniform reduction 154 
in FLW across all food types by half, to assess the impacts of meeting SDG 12 (but not 155 
assessing the SDG’s feasibility per se).  156 
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We also calculate the environmental and food-security impacts of our projected 157 
rebounds (Fig. 5a). Using carbon, land, and water impact factors from the 2019 FAO 158 
SOFA report1 (impact / tonne of FLW), we calculate environmental impacts of avoiding 159 
FLW, with and without rebound effects (see Methods). We project that rebound effects 160 
offset 63%, 59%, and 65% of carbon emissions, land use, and water use, respectively. 161 
For carbon emissions, this finding is equivalent to reducing FLW-related emissions by 162 
only ~0.3 Gt CO2 eq per year rather than ~0.8 Gt CO2 eq per year without rebound effects. 163 
Supplementary Table 11 provides a detailed comparison of projected environmental 164 
impact avoided with and without rebound effects.  165 

We estimate regional changes in calorie, protein, and fat supply from reducing FLW (Fig. 166 
5b) with rebound effects by using the food composition tables. We calculate the fraction 167 
of each individual food within a given food type group based on quantity supplied (e.g. 168 
the quantity of wheat as a fraction of cereals) and use these fractions to convert the 169 
rebound effect quantity into food security impacts. We project that rebound effects of 170 
avoided FLW would substantially improve calorie, protein, and fat consumption in most 171 
low and middle-income regions, such as sub-Saharan Africa, Oceania (excluding 172 
Australia and New Zealand), and Western Asia and Northern Africa. Gains in calorie 173 
availability is highest in sub-Saharan Africa (~320 Calories/capita/day) and lowest for 174 
Australia, New Zealand, North America, and Europe (~120 Calories/capita/day) (see 175 
Supplementary Data 2).  176 
Discussion 177 

Rebound effects of avoided FLW can be direct—avoiding waste lowers prices causing 178 
consumption to increase—or indirect, including effects of efficiency on consumer incomes, 179 
prices in other markets, and local industry and innovation41,53. In the context of energy, 180 
studies have typically found direct rebound effects offsetting 5-10% of the energy savings 181 
caused by efficiency gains41 though others are higher42. In contrast, we project—based 182 
on published supply and demand elasticities—that direct rebound effects could offset half-183 
to-two-thirds of avoided food loss and waste across regions and food types. Our analysis 184 
quantifies potential rebound effects of avoided FLW at the global scale, adding to a 185 
literature of analyses examined at the national36,64 and regional34,65 level. For instance, 186 
Salemdeeb et al.64 found a ~60% rebound effect from UK food waste reduction, 187 
consistent with our projections. 188 

Rebound effects of avoided FLW could have large environmental costs. For instance, 189 
we project that—in a scenario where half of all current FLW is avoided, meeting UN SDG 190 
Goal 12.312,  rebound effects could offset 0.51 Gt CO2-eq per year (63%) of emissions 191 
otherwise saved, equivalent to ~3% of current total food system emissions66 (Fig 5a). 192 
Current official data from FAOSTAT may not encompass the entirety of food losses, thus 193 
this may be an underestimate of environmental impacts. However, this finding aligns with 194 
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recent estimates by Albizzati et al (2022)34 of the offset environmental benefits from 195 
rebound effects due to avoided FLW in the European Union.  196 

Conversely, rebound effects of avoiding FLW—i.e., greater food consumption at lower 197 
prices—would constitute a benefit to food security. For example, we project that rebound 198 
effects from meeting SDG 12.3 would increase calorie availability by more than 300 199 
kcal/person/day in sub-Saharan Africa, which amounts to ~16% of a recommended 200 
minimum 2100 Calories per day67. Thus, any efforts to suppress rebound effects to 201 
improve environmental outcomes could have detrimental effects on food security65. This 202 
echoes a similar tradeoff with energy rebound, whereby rebound-suppressing policies 203 
can harm consumers, especially those experiencing energy poverty68. Consequently, the 204 
IPCC Special Report on 1.569 cautions against rebound-suppressing policies. In contrast, 205 
in some rich regions, food overconsumption already contributes to obesity and other 206 
public health problems70. Rebound in such contexts might not be welfare improving. 207 

Our study only models direct rebound effects. Studies of energy systems have found 208 
that indirect rebound effects make total rebound larger than direct rebound (20-60%, 209 
compared to 5-10%, according to Gillingham et al.41). If analogous indirect rebound 210 
effects exist in food systems, actual rebounds could be larger than those we project—211 
thus, potentially larger than two-thirds of avoided waste and loss. One study35 on direct 212 
and indirect rebound effects from avoided FLW in the UK found rebounds greater than 213 
100% (i.e. backfire). Larger rebound effects in food systems, could be due to either lower 214 
supply or higher demand elasticities, compared to energy systems. Theory from energy 215 
systems suggesting that backfire effects should be rare but whether this also applies to 216 
FLW merits further study 40,41,50,53.  217 

Nonetheless, the comparison between food and energy rebound effects is imperfect. 218 
For instance, energy is used in all economic activities, and thus it makes sense that 219 
energy savings in one sector could increase energy use in other sectors. In contrast, 220 
avoiding FLW cannot cause food consumption outside of the food system although it 221 
could theoretically cause an increase the alternative uses of agricultural products, such 222 
as livestock feed, bioenergy, or feedstocks to bio-based materials. Similarly, reducing 223 
FLW seems less likely than energy savings to catalyze innovation hubs in other sectors. 224 
It does seem plausible, however, that avoided FLW in one region or food type could cause 225 
increases in consumption in other regions (via decreased global prices) and/or via 226 
substitution of other food types (via increased demand caused by greater disposable 227 
incomes). This may suggest that indirect effects add less to overall rebounds in food 228 
systems than energy systems, but this merits further study.  229 

Our analysis makes several important simplifying assumptions. First, we assume that 230 
price elasticities are constant (over the relevant quantity domain) and are a reasonable 231 
basis for calculating direct rebound effects (via supply and demand models). Although 232 
studies of energy rebound frequently make these assumptions71, scholars have noted 233 
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that they could neglect other important factors, besides prices, influencing consumer 234 
behavior, and are difficult to estimate40. We use price elasticities of demand from a meta-235 
analysis study including 3495 estimates from 162 countries56. The published price 236 
elasticity of supply estimates we use55 are sparse and may be out of date. We were not 237 
able to find newer estimates. Supply elasticities may have shifted over time, but we 238 
hypothesize that they have not changed substantially, given that food is a staple product. 239 
Such a hypothesis warrants a separate future study. Further, as Fig. 4b shows, our 240 
projected rebound effects are relatively insensitive over the observed range of elasticities. 241 
We also show, in Fig. 6a, that rebound effects with elasticities switching between two 242 
values are intermediate to rebound effects produced by constant elasticities at each value. 243 
This suggests that non-constant elasticities fluctuating within our observed range might 244 
have little effect on our overall findings.  245 

Second, food demand saturation could result in rebounds smaller than we project, 246 
though only if demand saturation patterns are not captured in the demand elasticity 247 
estimates we use. Demand for food increases less than proportionally as incomes 248 
increase31, and thus is most likely to affect our results in high-income regions. However, 249 
an econometric analysis of UK rebound effects from avoided food waste estimated a 250 
~60% rebound effect64, which is consistent with our results.  251 

Third, we do not consider market interactions across food types. Lower prices of one 252 
food type could alter prices of other food types, affecting the dietary choices of consumers. 253 
For example, if avoiding FLW decreases cereal prices, producers may divert the more 254 
affordable cereals to livestock feed, ultimately influencing consumers to substitute meat 255 
for cereals in their shopping baskets. Diversion of crops to feed to make higher-valued 256 
(but more resource- and pollution-intensive) meat and dairy products could lead to larger 257 
increases in both consumption and the environmental impacts of food production.  258 

Fourth, we do not consider regional and sub-regional differences in how FLW might be 259 
avoided or in the nature of market responses (besides those captured in different elasticity 260 
estimates). Previous estimates72 reported that low-income countries struggled more with 261 
food loss while high-income countries struggled more with food waste73. However, more 262 
recent estimates2 suggest that food waste per capita is remarkably similar across regional 263 
income groups. Thus, avoiding FLW in both low- and high-income regions will entail 264 
improving supply chain infrastructure as well as changing consumer behavior. It is unclear 265 
if or how these differences might affect our modeled rebound. For instance, if avoided 266 
waste implies a successful intervention in consumers’ behaviors, what effect might that 267 
behavioral change have on price elasticities of demand? Even within a single country, 268 
differences in consumers’ income can be expected to mediate their responses to changes 269 
in food prices. Such income elasticities of demand are neglected by our analysis, but have 270 
been seen to cause meaningful differences in rebound effects of energy efficiency74,75. 271 
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Finally, we assume that avoiding FLW is costless, but policy and business efforts likely 272 
have capital and transactional costs in practice. In that case, rebound effects not only limit 273 
the efficacy of such efforts, but increase the costs per unit FLW avoided by those efforts. 274 
For example, “pay-as-you-throw” programs charge consumers a fine for food found in 275 
their household waste76. However, administration of such programs may be costly and 276 
difficult, and if fines are set too high, consumers will be incentivized to dispose of waste 277 
illegally76. In Fig. 6b and 6c, we show that making waste and loss reductions costly 278 
lessens rebound effects. Over the range of elasticities we observe, rebound effects reach 279 
zero when costs of avoiding waste and loss are approximately one-third to one-half of the 280 
initial market price of food. 281 

Food loss and waste comes at high environmental costs globally1, justifying comparably 282 
substantial efforts to avoid FLW and thereby increase the efficiency of food systems. Our 283 
results suggest that reducing FLW could face large rebound effects, lessening the 284 
environmental benefits of reducing FLW. Policies mitigating rebound effects would have 285 
to prevent food prices from decreasing in response to waste-and-loss avoidance. 286 
However, artificially increasing food prices could pose a risk to food access and equity 287 
concerns particularly in low-income regions. Policy makers interested in reducing 288 
environmental impacts of food systems and food security may find our results useful, as 289 
they highlight an important tension between these objectives, in the context of reducing 290 
FLW. Policies incorporating environmental externalities into food prices could be 291 
promising77, as they theoretically remove economic inefficiencies caused by rebound 292 
because any rebound would only occur if it improved social well-being. Developing more 293 
holistic approaches to food systems management that consider the complex tradeoffs 294 
between addressing the environmental impacts of avoiding FLW and other issues such 295 
as food insecurity and obesity will likely be critical. 296 
Methods 297 
Data. We use a variety of published data including: (i) 2019 officially reported production, import, 298 
export, stock variation, feed, seed, tourist consumption, loss, processed, other uses (non-food), 299 
and residual quantities (tonnes/ year) for six food types (cereals, fruits and vegetables, meat, milk, 300 
oilcrops and pulses, and roots and tubers) in eight Sustainable Development Goal (SDG) regions 301 
(Australia and New Zealand, Central and Southern Asia, Eastern and South-Eastern Asia, Latin 302 
America and the Caribbean, Northern America and Europe, Oceania (excluding Australia and 303 
New Zealand), sub-Saharan Africa, and Western Asia and Northern Africa) from the FAOSTAT 304 
supply utilization accounts (see Supplementary Data 1). Note that food types are aggregated by 305 
using the official FAOSTAT FBS and SUA List, which groups individual foods into food type 306 
groups (e.g. wheat flour in cereals). We use 2019 values because these are the most recent 307 
official data provided by FAOSTAT (iii) 2019 consumer price food indices in the eight SDG regions 308 
from FAOSTAT; (iv) population data for each SDG region from FAOSTAT; (v) most recent 309 
aggregate food waste values (kg/capita/year) across SDG regions calculated from the United 310 
Nations Environment Program (UNEP) 2021 Food Waste Index (FWI) report. (vi) ranges (low, 311 
average, high) of price elasticities of demand from a published meta-analysis by Green et al.56 at 312 
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the resolution of food types and income groups (high, medium, low) (Supplementary Tables 1-3); 313 
(vii) point estimates of price elasticity of supply at the SDG regional level (Supplementary Table 314 
4), and (viii) nutritional composition data from FAOSTAT (see Supplementary Data 2).  315 
Model. We aggregate (see Supplementary Data 1) the above data to calculate supply values for 316 
each SDG region and food-type combination (see Supplementary Data 3). Domestic supply 317 
quantity (ܵݕ݈݌݌ݑ௙௥) for a food type (f) in a given SDG region (r) is conventionally calculated using 318 
equation (2)78,  319 ܵݕ݈݌݌ݑ௙௥ = ௙௥݊݋݅ݐܿݑ݀݋ݎܲ + ௙௥ݏݐݎ݋݌݉ܫ − ௙௥ݏݐݎ݋݌ݔܧ −  ௙௥  (2), 320݊݋݅ݐܽݎܸܽ ݇ܿ݋ݐܵ∆
Where ܲ݊݋݅ݐܿݑ݀݋ݎ௙௥ is the quantity in megatonnes (Mt) produced, ݏݐݎ݋݌݉ܫ௙௥ the quantity (Mt) of 321 
food imported, ݏݐݎ݋݌ݔܧ௙௥ is the quantity of food exported, and ∆ܵ݊݋݅ݐܽݎܸܽ ݇ܿ݋ݐ௙௥is the changes 322 
in stocks during a particular reference period (e.g. 2019) at all levels between production and 323 
retail79.  324 
Note that domestic supply encompasses all possible uses for a given food type, including feed, 325 
seed, tourist consumption, other uses, losses, etc. Thus, to determine the total amount of each 326 
food type produced exclusively for human consumption (that is, food supply) in each region, the 327 
supply equation must be updated accordingly. We do this by beginning with the assumption 328 
underlying the FAOSTAT supply utilization accounts, which is,  329 ܵݕ݈݌݌ݑ =  330 ,(3a)     ݊݋݅ݐܽݖ݈݅݅ݐܷ 
Which can then be transformed into equation (3b) by applying equation (2) and accounting for 331 
different types of utilization, as follows, 332 ܲ݊݋݅ݐܿݑ݀݋ݎ௙௥ + ௙௥ݏݐݎ݋݌݉ܫ − ௙௥ݏݐݎ݋݌ݔܧ − ௙௥݊݋݅ݐܽݎܸܽ ݇ܿ݋ݐܵ∆ = ௙௥݀݋݋݂ + ݂݁݁݀௙௥ + ௙௥݀݁݁ݏ ௙௥ݏݏ݋݈ 333+ + ௙௥݀݁ݏݏ݁ܿ݋ݎ݌ + ௙௥ݏ݁ݏݑ ݎℎ݁ݐ݋ + ௙௥݊݋݅ݐ݌݉ݑݏ݊݋ܿ ݐݏ݅ݎݑ݋ݐ  +  ௙௥ (3b), 334ݏ݈ܽݑ݀݅ݏ݁ݎ
Where ݂݀݋݋௙௥ is food supply for human consumption, ݂݁݁݀௙௥ is food used for animal feed, ݀݁݁ݏ௙௥ 335 
is food used for seed,  ݈ݏݏ݋௙௥ is food losses along the supply chain up to (but not including) retail, 336 ݀݁ݏݏ݁ܿ݋ݎ݌௙௥ accounts for whole foods process for food and non-food uses, ݐ݋ℎ݁ݏ݁ݏݑ ݎ௙௥ is food 337 
use for non-food purposes (e.g essential oils), ݊݋݅ݐ݌݉ݑݏ݊݋ܿ ݐݏ݅ݎݑ݋ݐ௙௥  is food consumed by 338 
tourists, and ݏ݈ܽݑ݀݅ݏ݁ݎ௙௥  is a variable used to account for discrepancies between supply and 339 
utilization. Solving equation (3b) for ݂݀݋݋௙௥ provides the quantity of supply. For more details on 340 
this equation, readers are referred to FAOSTAT’s supply utilization accounts.  341 
As mentioned in our  Main text, food losses and food waste are distinctly and separately defined 342 
by the FAO. Food losses occur along the food supply chain including harvest losses to distribution 343 
losses. Thus, changes in food loss result in a supply shift. In contrast, food waste consists of food 344 
wasted at the retail, food service, and household level, which we assume is not accounted on 345 
food supply for human consumption (݂݀݋݋௙௥ from equation (3b)). Thus, changes in food waste 346 
cause a demand shift.  347 
To demonstrate the effect of supply and demand shifts as a result of reduced food loss and waste, 348 
we first generate supply and demand curves for each food type-region combination using the 349 
values for supply (݂݀݋݋௙௥) calculated using equation (3b) and assuming constant price elasticities 350 
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(of supply and demand), derived from the following supply and demand equations.  351 ܳ௦ = ௦ܥ ௦ܲఌೞ      (4a), 352 ܳௗ = ௗܥ ௗܲఌ೏      (4b). 353 
Here, Q (QS for supply, Qd for demand) is the quantity of food in Mt; P (PS for supply, Pd for 354 
demand) is price (measured as an index); Cs and Cd are constants; and ߝ௦ and ߝௗ are the supply 355 
and demand elasticities, respectively. We select elasticity values from our generated distributions 356 
based on published values (see Methods on Approximating uncertainty in rebound effects and 357 
Supplementary Tables 1-4). We calculate the constants by plugging the initial equilibrium quantity 358 (݂݀݋݋௙௥) and price values from FAOSTAT (Supplementary Tables 5-6) into equations (4a) and 359 
(4b) as P and Q, along with the elasticities. 360 
We then shift both the supply and demand curve. First, we multiply our percent loss avoided 361 
(50%) by the total losses (in Mt) of a given food type in a particular region (see Results) and apply 362 
this as a horizontal shift in (i.e. add this quantity to) the supply curve. Note that the ݈ݏ݁ݏݏ݋௙௥ value 363 
in equation (3b) does not distinguish between losses of food originally destined for human 364 
consumption or other uses. Thus, we assume that the fraction of losses destined for human 365 
consumption is equivalent to the fraction of food supply over total domestic supply (see 366 
Supplementary Data 1). Next, we multiply our percent waste avoided (50%) by the total waste (in 367 
Mt) of a given food type in a particular region (see Results) and apply this as a horizonal shift in 368 
(i.e. subtract this quantity from) the demand curve. Note that waste quantities are only available 369 
by region and thus, we assume that the fraction of waste is equivalent in a given region across all 370 
food types. We subtract out quantities of food types not included in this analysis (e.g. vegetable 371 
oils, stimulants) from total FLW values in each region before inputting final FLW values into our 372 
model.   373 
We then use the polyxpoly function in MATLAB (see Supplementary Software 1) to calculate the 374 
intersection of the new shifted supply and demand curves to find the new equilibrium price and 375 
quantity. The difference between the two equilibrium quantities is the projected change in the 376 
market quantity traded (∆T) caused by the rebound. The rebound effect, as a percentage of FLW 377 
avoided, R, is calculated by equation (1). 378 
Approximating uncertainty in rebound effects. To model uncertainty in elasticities, we 379 
construct a triangle distribution for demand elasticities in each food type-income group 380 
combination—with the min and max set to the ‘low’ and ‘high’ values, and the medium set to the 381 
‘average’ value, from Green et al.’s meta-analysis56—and we construct a uniform distribution for 382 
supply elasticities of each food type, assumed to be a uniform between the range of estimates55 383 
across regions. This gives us a unique joint distribution of supply and demand elasticities at the 384 
resolution of income groups and food types, applied to initial equilibria and waste-avoided 385 
scenarios at the resolution of SDG region and food type.  386 
We sample 1000 values from each elasticity distribution for all food- and region-type combinations. 387 
We then calculate consumption increase (Mt), waste avoided (Mt), and rebound effects (%) for 388 
each combination using an equally-spaced range of percentiles. We model independence of 389 
supply and demand elasticities by testing all possible percentile combinations to create a 390 
representative sample of the distribution of rebound effects.  391 
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Estimating environmental impacts from rebound effects.  We use environmental impact 392 
factors from the 2019 State of Food and Agriculture report1 to determine how rebound effects 393 
from avoided food loss and waste impact carbon emissions as well as water and land use.  Impact 394 
factors estimate the relative environmental impact of a single tonne of FLW for different food types 395 
and regions. Note that the food categories for impact factors and our six food categories analyzed 396 
do not perfectly match. As a result, we include a key for impact factors in Supplementary Table 9. 397 
Note, we also create a fifth column of impact factors for Oilcrops and Pulses with the production-398 
weighted average of impact factors of Cereals and Pulses with Roots, Tubers, and Oilbearing 399 
Crops. Impact factors can be found in Supplementary Table 10. 400 
We multiply the impact factors for carbon emissions (MT CO2 eq/tonne of FLW), land use 401 
(ha/tonne of FLW), and water use (m3/FLW) by the average amount in tonnes of total possible 402 
FLW avoided and total actual FLW avoided due to rebound effects for each region- and food-type 403 
combination. We sum these values across all regions and food types to calculate global estimates 404 
(see Supplementary Table 11).  405 
Estimating food security impacts from rebound effects. We use FAOSTAT’s food 406 
composition tables combined with our data on food supply to calculate regional changes in calorie, 407 
protein, and fat consumption as proxy measures of food insecurity. Note that each food type is 408 
made of a variety of foods, each with varying nutritional compositions. For example, our cereals 409 
category contains more than 50 unique food sub-types, such as wheat, rice, millet, and others. 410 
Using our FAOSTAT data, we first calculate the fraction of each food within each food type group 411 
based on quantity supplied (e.g. the fraction of the supply in the cereals category that is wheat 412 
flour). Next, we multiply those fractions by our projected ∆C for that food type (the  change in 413 
consumption) and the corresponding nutritional measurement (e.g. kcal/100g) to convert the 414 
rebound effect quantity in each SDG region into Calories, protein, and fat availability change. We 415 
then divide these values by the regional population and days/year to calculate the change in 416 
Calories, protein, and fat availability per person per day in each SDG region for each food type 417 
(see Supplementary Data 2).  418 
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Data Availability 419 
We used public data from FAOSTAT (https://www.fao.org/faostat/en/), the UNEP Food Waste 420 
Index Report database (https://www.unep.org/resources/report/unep-food-waste-index-report-421 
2021),  and the 2019 State of Food and Agriculture Report 422 
(https://www.fao.org/documents/card/en?details=ca6030en). We also used data from relevant 423 
literature as cited in our study (see refs. 55 and 56). All data used in this study are included as 424 
supplementary information and are also publicly available at 425 
https://github.com/mhegwood/foodwaste. 426 
Code Availability 427 
Data analysis was conducted in Matlab (Version 9.11.0.1809720 (R2021b) Update 1) and 428 
Mathematica (Version 11.3). All code used in this study are included as supplementary 429 
information and are also publicly available at https://github.com/mhegwood/foodwaste. 430 
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Figure Legend/Captions 453 
Figure 1. Conceptual model of rebound effects from shifts in supply and demand. We 454 
assume a reduction in food loss results in a supply curve shift (a) and a reduction in food waste 455 
results in a demand curve shift (b) based on the definitions provided by the FAO. (c) represents 456 
shifts in both supply and demand. The flow chart above provides the intuition for how different 457 
quantities move through the food supply chain and impact the rebound effects. See 458 
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Supplementary Note 1 for a more detailed derivation and key properties. 459 
Figure 2. Modeled shifts in food price and consumption when waste and loss is avoided. 460 
Food type- and region-specific price elasticities of demand and supply correspond to differences 461 
in the slopes of demand and supply curves (percentile gradients). When substantial food loss is 462 
avoided, food supplies increase, and supply curves shift right. When substantial food waste is 463 
avoided, food demand decreases, and demand curves shift left. In turn, the market clearing prices 464 
decrease and the horizontal displacement (black arrows) reflects the change in the market 465 
quantity traded. Change in production (∆P) and consumption (∆C) (at the bottom of each panel) 466 
reflect these shifts based on the relationships outlined in Supplementary Note 1.  This increase 467 
can then be compared to the horizontal distance between the original supply, the “waste avoided”, 468 
and “loss avoided” curves to find the rebound effect (percentages in the top center of each panel) 469 
as seen in Figure 1c. 470 
Figure 3. Regional differences in change in waste avoided, change in loss avoided, and 471 
change in the market quantity traded for three food types. Differences in the quantity of food 472 
loss avoided (a, d, g) reflect which regions have the highest absolute loss for the selected food 473 
types. Differences in the quantity of food waste avoided (b, e, h) reflect which regions have the 474 
highest absolute waste for the selected food types. Differences in the market quantity traded (c, 475 
f, i) compound according to relevant price elasticities.   476 
Figure 4. Rebound effects and sensitivity to price elasticities. (a) Estimates of rebound 477 
effects, by food type and income group. (b) Colors indicate the magnitude of rebound as a function 478 
of supply and demand elasticities (modeled assuming an initial price of 150, quantity of 100, and 479 
waste avoided of 50). Food type- and income-group-specific elasticities from the literature used 480 
in our analysis are shown (points) (see Supplementary Tables 2 and 3). Note here that we plot 481 
cereals with roots & tubers as a single group for ease of interpretation.   482 
Figure 5. Environmental and food security impacts of rebound effects from avoided food 483 
loss and waste. (a) Possible emissions avoided without rebounded effects and actual emissions 484 
avoided with rebound effects in megatonnes (Mt) of CO2 equivalents per year on the left-hand y-485 
axis. On the right-hand y axis, the fraction of possible and actual avoided CO2 equivalents per 486 
year as a percentage of total emissions from agriculture. Total emissions from the food system is 487 
from Crippa et al (2021) as 18 Gt CO2 equivalents. We do not include Oceania or Australia and 488 
New Zealand due to such small value changes in emissions. (b) Total increase in Calories per 489 
person per day by food type and SDG region due to rebound effects on the left-hand y axis. On 490 
the right-hand y-axis, the fraction of Calories due to rebound effects as a fraction of a 491 
recommended minimum of 2100 Calories per person per day from the USDA ERS International 492 
Food Security Assessment. 493 
Figure 6. Additional robustness checks regarding cost of avoided FLW and non-constant 494 
elasticities. (a) Our model assumes constant elasticities. However, we know that elasticities may 495 
not be constant and here provide the theory for how non-constant elasticities may affect the 496 
resulting rebounds from avoided FLW. (b) The model in our main analysis assumes that avoiding 497 
food loss and waste is costless. This may not be realistic, especially for supply side shifts. Here 498 
we model the projected rebound effect  for a range of elasticities where the cost to avoid food 499 
losses is an increasing percent of the initial price.  (c) The same as graph (b) except here we 500 
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graph change in consumption versus cost of avoided loss as a percent of initial price. 501 
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