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BACKGROUND: Sodium–glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with 
heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism 
of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was 
proposed that SGLT2i may improve energy production. The authors aimed to investigate whether treatment with empagliflozin 
leads to changes in myocardial energetics, serum metabolomics, and cardiorespiratory fitness.

METHODS: EMPA-VISION (Assessment of Cardiac Energy Metabolism, Function and Physiology in Patients With Heart Failure 
Taking Empagliflozin) is a prospective, randomized, double-blind, placebo-controlled, mechanistic trial that enrolled 72 symptomatic 
patients with chronic HF with reduced ejection fraction (HFrEF; n=36; left ventricular ejection fraction ≤40%; New York Heart 
Association class ≥II; NT-proBNP [N-terminal pro-B-type natriuretic peptide] ≥125 pg/mL) and HF with preserved ejection 
fraction (HFpEF; n=36; left ventricular ejection fraction ≥50%; New York Heart Association class ≥II; NT-proBNP ≥125 pg/mL). 
Patients were stratified into respective cohorts (HFrEF versus HFpEF) and randomly assigned to empagliflozin (10 mg; n=35: 
17 HFrEF and 18 HFpEF) or placebo (n=37: 19 HFrEF and 18 HFpEF) once daily for 12 weeks. The primary end point was 
a change in the cardiac phosphocreatine:ATP ratio (PCr/ATP) from baseline to week 12, determined by phosphorus magnetic 
resonance spectroscopy at rest and during peak dobutamine stress (65% of age-maximum heart rate). Mass spectrometry on 
a targeted set of 19 metabolites was performed at baseline and after treatment. Other exploratory end points were investigated.

RESULTS: Empagliflozin treatment did not change cardiac energetics (ie, PCr/ATP) at rest in HFrEF (adjusted mean treatment 
difference [empagliflozin – placebo], –0.25 [95% CI, –0.58 to 0.09]; P=0.14) or HFpEF (adjusted mean treatment difference, 
–0.16 [95% CI, –0.60 to 0.29]; P=0.47]. Likewise, there were no changes in PCr/ATP during dobutamine stress in HFrEF 
(adjusted mean treatment difference, –0.13 [95% CI, –0.35 to 0.09]; P=0.23) or HFpEF (adjusted mean treatment difference, 
–0.22 [95% CI, –0.66 to 0.23]; P=0.32). No changes in serum metabolomics or levels of circulating ketone bodies were observed.

CONCLUSIONS: In patients with either HFrEF or HFpEF, treatment with 10 mg of empagliflozin once daily for 12 weeks did not improve 
cardiac energetics or change circulating serum metabolites associated with energy metabolism when compared with placebo. 
Based on our results, it is unlikely that enhancing cardiac energy metabolism mediates the beneficial effects of SGLT2i in HF.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03332212.
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Heart failure (HF), a clinically complex multiorgan 
syndrome, has a plethora of possible causes, and 
despite multiple treatment innovations, overall 

prognosis remains poor.1 Improvements in survival after 
acute ischemic events have led to a constantly rising HF 
prevalence, particularly in an aging population.1 Conse-
quentially, recurrent HF hospitalizations in combination 
with increasing morbidity and high prevalence of comor-
bidities add to the heavy burden for patients and health 
care systems. With projections of HF prevalence affect-
ing up to 9% of all Americans ≥65 years of age within 
the next few years, innovative treatments addressing this 
ongoing epidemic are urgently required.2,3

After their serendipitous discovery as novel heart fail-
ure drugs,4–7 sodium–glucose co-transporter 2 inhibitors 
(SGLT2i) have emerged as a cornerstone of treatment 
for both HF with reduced ejection fraction (HFrEF) and 
HF with preserved ejection fraction (HFpEF), as well 
as other cardiac conditions.8–10 Nevertheless, it remains 
unclear how a drug that inhibits transport proteins not 
expressed on cardiomyocytes11 may lead to substantially 

reduced risk of hospitalization for HF or cardiovascular 
death shortly after treatment onset.

SGLT2i induce glucosuria and, thus, lead to a caloric 
deficit of approximately 250 calories per day.12 As a com-
pensatory measure, this increases free fatty acid oxida-
tion, and, depending on the underlying condition, levels of 
beta-hydroxybutyrate (β-OHB), an energy source used 
by cardiomyocytes.13 As a result, the “thrifty substrate 
hypothesis”14 was put forward connecting the salutary 
effects in HF subgroups of EMPA-REG OUTCOME to 
a shift in cardiac energy substrates. Subsequently, possi-
ble energetic effects were explored using preclinical HF 
models with limited generalizability (in vitro experiments 
or animal models)15–17; inconsistent results of efficacy 
are noted across these studies.18,19

Irrespective of the underlying etiology, HF displays 
a reduction in myocardial energy provision, affecting all 
components of the energetic system.20 Phosphocreatine 
levels, the main energetic buffer in the heart, decline 
substantially earlier and comparatively more than ATP, 
making the ratio of PCr and ATP (PCr/ATP) a sensitive 
marker of the overall energetic state of the heart.21–23 In 
HFrEF, PCr/ATP correlates with New York Heart Asso-
ciation class and ejection fraction, and in HFpEF, PCr/
ATP correlates with severity of diastolic impairment.24–27

No previous study has investigated the metabolic 
effects of SGLT2i in patients with HFrEF or HFpEF in 
vivo. Accordingly, EMPA-VISION (Assessment of Cardiac 
Energy Metabolism, Function and Physiology in Patients 

Clinical Perspective

What Is New?
 • Based on preclinical results, it has been suggested 

that sodium–glucose co-transporter 2 inhibitor 
(SGLT2i) treatment may lead to a myocardial sub-
strate switch and thus, improve cardiac energy 
reserve.

 • This mechanistic cardiac magnetic resonance spec-
troscopy and imaging trial investigated 72 patients 
with symptomatic, nonischemic heart failure (36 
with heart failure with reduced ejection fraction 36 
with heart failure with preserved ejection fraction) 
and assessed measures of cardiac energy metabo-
lism, myocardial function, and structure.

 • Compared with placebo, treatment with the SGLT2i 
empagliflozin for 12 weeks did not enhance myo-
cardial energy metabolism or serum metabolites 
associated with energy metabolism.

What Are the Clinical Implications?
 • SGLT2 inhibition with empagliflozin (10 mg once daily) 

for 3 months did not improve cardiac energetics in 
patients with heart failure with reduced ejection frac-
tion or heart failure with preserved ejection fraction.

 • Thus, the proposed “thrifty fuel hypothesis,” sug-
gesting improved energy provision to be a central 
mechanism underlying the SGLT2i beneficial clini-
cal effects observed in patients with heart failure, 
could not be confirmed.

 • Our study suggests that effects other than 
enhanced energy metabolism may explain the favor-
able effects of empagliflozin observed in patients 
with heart failure.

Nonstandard Abbreviations and Acronyms

β-OHB  beta-hydroxybutyrate
CMR  cardiovascular magnetic resonance
CPET  cardiopulmonary exercise testing
eGFR  estimated glomerular filtration rate
HF  heart failure
HFpEF   heart failure with preserved  

ejection fraction
HFrEF   heart failure with reduced ejection 

fraction
LVEF  left ventricular ejection fraction
MRS  magnetic resonance spectroscopy
MTG  myocardial triglyceride content
NT-proBNP  N-terminal pro-B-type natriuretic 

peptide
PCr/ATP  phosphocreatine/ATP ratio
PPS  per protocol set
SGLT2i   sodium–glucose co-transporter 2 

inhibitor
ShMOLLI   shortened modified look-locker 

inversion recovery
V ˙  o2  peak oxygen consumption
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With Heart Failure Taking Empagliflozin) is the first pro-
spective, randomized, double-blind, placebo-controlled 
trial assessing the effects of empagliflozin treatment on 
cardiac energetics and physiology.

METHODS
The trial design and methods of EMPA-VISION (URL: https://
www.clinicaltrials.gov; Unique identifier: NCT03332212; 
EudraCT-Number: 2017-000376-28) have been published 
separately.28 The trial, its protocol, and further amendments to it 
were approved by the South Central–Oxford C Research Ethics 
Committee Health Research Authority and the Medicines 
Healthcare Regulatory Agency. All patients, whether enrolled 
or not, provided written informed consent, and investigations 
were undertaken in accordance with institutional policies of the 
Declaration of Helsinki. Applications to provide the data sup-
porting the findings of this article will be available from the cor-
responding author upon reasonable request.

Patients
EMPA-VISION comprised 2 separate cohorts with HFrEF (left 
ventricular ejection fraction [LVEF] ≤40%) and HFpEF (LVEF 
≥50%). Trial patients were considered eligible with an estab-
lished diagnosis of nonischemic, chronic HF with typical signs 
(NT-proBNP [N-terminal pro-B-type natriuretic peptide] >125 
pg/mL in sinus rhythm or >600 pg/mL in atrial fibrillation) 
and symptoms (New York Heart Association classes II–IV) and 
appropriate doses of guideline-directed HF medical therapy. 
In addition, patients with HFpEF were required to display sig-
nificant signs of adverse structural remodeling (left atrial vol-
ume index >34 mL/m2; left ventricular mass index >95 g/m2 
[women] and >115 g/m2 [men]). All patients underwent com-
puted tomography coronary angiography to exclude significant, 
flow-limiting coronary artery disease (luminal stenosis >60%) 
or an ischemic HF etiology. Patients with significant coronary 
artery disease , ischemia, implanted devices, recent (within 1 
week before screening visit) decompensated HF, or severely 
impaired renal function (creatinine clearance <30 mL/min by 
Cockcroft–Gault formula) were excluded. A comprehensive list 
of inclusion and exclusion criteria are provided in Table S1. To 
standardize metabolic investigations as much as possible, all 
patients were assessed in a fasting state (>6 hours before the 
visit), and visits at baseline and week 12 were conducted at the 
same time of day with an identical order of assessments.

Randomization Process
During their baseline visit (visit 2), eligible patients were ran-
domly assigned to receive either 10 mg of empagliflozin or 
matching placebo once daily in a 1:1 fashion (Figure 1). The 
drug assignment was carried out using an interactive web 
response system, and the randomization list involved a pseu-
dorandom number generator ensuring the resulting treatment 
was both reproducible and nonpredictable with a block size of 4.

Study Visit Schedule
Patients invited to participate attended for a total of 4 vis-
its (Table S2): (1) screening (visit 1: days −21 to 0); (2) 

randomization (visit 2: day 1); (3) safety (visit 3: day 15±1); and 
(4) end of treatment (visit 4: day 84±4). A follow-up phone call 
(visit 5: days 7–14 after visit 4) was conducted for safety pur-
poses. Table S2 details a full study flowchart including investi-
gations on each respective visit.

Study Treatment
The study drug (empagliflozin [10 mg]) and matching placebo 
(one tablet) were commenced on site once daily in the inves-
tigator’s presence on the day of the randomization visit (visit 
2). Treatment compliance was assessed by staff during all 
follow-up visits, and safety monitoring of blood pressure and 
urine assessment for urinary tract or genital infections were 
performed. All patients and staff involved in the conduct of the 
trial were blinded to the assigned treatments.

Primary End Point
The primary end point defined in this trial was the change in 
cardiac PCr/ATP from baseline to week 12, measured by phos-
phorus-31 (31P) magnetic resonance spectroscopy (MRS).

Secondary End Points
No secondary end points were defined for this trial.

Exploratory End Points
A variety of exploratory end points were defined in the trial 
protocol as well as the trial statistical analysis plan. These 
included measures of energy metabolism at rest and during 
dobutamine stress, assessment of myocardial triglyceride con-
tent (MTG) by proton MRS, cardiac function and volumes at 
rest and during dobutamine stress, measures of cardiac fibro-
sis (late gadolinium enhancement, extracellular volume, and 
shortened modified look-locker inversion recovery [ShMOLLI]) 
T1, as well as blood biomarkers relating to drug effects on 
metabolism or neurohormonal activation. A full list of explor-
atory outcomes is provided in the trial statistical analysis plan 
in the Supplemental Material.

Safety Evaluation
Safety parameters included adverse events, predefined adverse 
events of special interest (eg, hepatic injury, decreased renal 
function, and diabetic ketoacidosis), and specific adverse events 
defined for this study (eg, hypoglycemic events, genital infec-
tions, acute pyelonephritis, sepsis, urinary tract infections, bone 
fractures, hepatic injury, ketoacidosis, and acute kidney injury), 
clinical safety laboratory assessments, vital signs, 12-lead ECG, 
and New York Heart Association class. Details on collection of 
adverse events and overall safety of empagliflozin in patients 
with HFrEF and HFpEF can be found in Table S3.

Cardiovascular Magnetic Resonance 
All cardiovascular magnetic resonance (CMR) assess-
ments took place in the Oxford Centre for Clinical Magnetic 
Resonance Research (OCMR, University of Oxford). ECG-
gated magnetic resonance imaging was performed at baseline 
(visit 2) and after 12 weeks of treatment using a 3-T scan-
ner (MAGNETOM Prisma; Siemens Healthineers, Erlangen, 
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Germany). Imaging sequences included steady-state free pre-
cession cine imaging, ShMOLLI T1–mapping, resting perfusion 
and late gadolinium enhancement imaging. A detailed descrip-
tion of the entire scanning protocol is provided in our published 
design manuscript.28 All image analyses were provided by our 
in-house imaging core laboratory with analysts blinded to treat-
ment status. Before all analyses, each individual data set was 
assessed for quality (from 0 [indicating OK] to 3 [indicating 
data missing or not analyzable]) and cross-checked by 2 inde-
pendent analysts. All outputs were reanalyzed before finaliza-
tion of the output with monitoring and cross-checking of results 
provided by the head of the Corelab.

Binuclear (31P and 1H) MRS was performed at rest using a 
3-T magnetic resonance scanner (MAGNETOM Trio; Siemens 
Healthineers). Participants were positioned prone over the 
center of a 3-element dual-tuned 1H/31P surface coil in the 
isocenter of the magnetic resonance scanner. A nongated, 
3D acquisition–weighted, ultra-short echo-time chemical shift 
imaging sequence was used with saturation bands placed over 
liver diaphragm and skeletal muscle, as previously described.29 
All analyses were performed by an experienced investiga-
tor (M.J.H.; >5 years of CMR experience) and consisted of a 

semiautomated data-quantification pipeline using the OXSA 
toolbox within a MATLAB (Matrix Laboratory) implementation 
of the advanced method for accurate, robust, and efficient 
spectral fitting MRS spectral fitting algorithm.30 This process 
recombined and quantified the raw data before correction of 
the acquired PCr and ATP signals for partial saturation by using 
literature values of T1 and then calculated the PCr/ATP ratio, 
which was expressed as average PCr/ATP. For consistency 
reasons, the reported PCr/ATP was taken from the interven-
tricular septum of the third basal cardiac short axis slice below 
the left ventricular outflow tract. All analyses were repeated by 
a blinded expert (L.V.; 9 years of CMR experience).

MTG of the heart was assessed via proton MRS using an 
18-channel surface coil supine in end-diastole and expiration. 
This enabled acquisition of water-suppressed, and non–water-
suppressed lipid spectra, allowing the calculation of MTG.

Cardiorespiratory Fitness
Assessment of cardiorespiratory fitness was performed via car-
diopulmonary exercise testing (CPET). Patients were seated on 
a stationary exercise bike (Ergoline GmbH, Bitz, Germany) for 

Figure 1. Patient flow diagram for the EMPA-VISION double-blind, phase-III randomized controlled trial.
Patients (n=1008) were assessed for eligibility; 101 patients were consented and underwent a screening visit. Of those, 72 were eventually eligible 
and randomly allocated to either 10 mg of empagliflozin (n=35) or matching placebo (n=37) once daily, stratified in their respective cohorts (HFrEF 
and HFpEF). One participant with HFrEF in the placebo group withdrew from further participation before the individual end of treatment (visit 4). In 
the HFpEF cohort, 5 patients in the empagliflozin arm and 5 in the placebo arm were excluded due to missing data because of COVID-19 lockdown 
restrictions. Two patients in the placebo group withdrew from treatment due to serious adverse events. CMR indicates cardiovascular magnetic 
resonance; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; and SAE, serious adverse event.
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resting spirometry followed by CPET using breath-by-breath 
respiratory gas analysis (Metalyzer 3B, Cortex Biophysik, 
Leipzig, Germany). A standardized incremental exercise proto-
col was used, and patients were encouraged to exercise until 
at least a respiratory exchange ratio ≥1.1 was reached. Oxygen 
saturation, capillary lactate, and subjective exertion (Borg 
Scale) were assessed every 2 minutes, and peak oxygen con-
sumption (V ˙ o2) was measured at maximal exhaustion.

Bloods and Biomarkers
Patients were fasting for at least 6 hours before venous blood 
samples were drawn. These were processed in-house, snap-
frozen (−20º or −80ºC), and then shipped to a central labora-
tory (Labcorp, Geneva, Switzerland) for biomarker analysis or 
to an academic collaborator (Julian Griffin, professor, Imperial 
College London, UK) for a targeted metabolomic analysis 19 
serum metabolites relating to energy metabolism.31

Statistical Analysis
Statistical analyses of efficacy data were conducted using 
SAS 9.4 (SAS Institute, Cary, NC) at the Diabetes Trials Unit 
(Oxford Centre for Diabetes, Endocrinology and Metabolism, 
University of Oxford, UK) after a prespecified statistical analy-
sis plan (Supplemental Material). Due to the lack of specific 
data describing the impact of SGLT2i on measures of energy 
metabolism in patients with HF, the sample size was esti-
mated using results of a previous trial investigating a metabolic 
modulator that increased PCr/ATP in a cohort of 25 nonisch-
emic HFrEF patients with a treatment difference of 0.37.32 
Consequently, detecting a treatment difference of 0.3 (SD, 
0.28) with β=0.8, and a 2-sided significance level of 0.05, the 
sample size required was determined to be n=30 participants 
per cohort. Allowing for a maximum dropout rate of 30%, we 
anticipated recruitment of a maximum possible number of 43 
patients per cohort (86 patients total).

The primary end point analysis was performed on the per 
protocol set (PPS) of patients with valid PCr/ATP measure-
ments available at baseline and week 12. The formal analysis 
employed an analysis of variance model for the primary end 
point hypothesis testing. Response (ie, outcome) was defined 
as the change (PCr/ATP absolute change) from baseline to 
week 12 calculated for each patient by subtracting the base-
line PCr/ATP measurement from the 12-week measurement 
and was adjusted for treatment (empagliflozin versus placebo), 
history of type 2 diabetes (yes or no), and history of atrial fibril-
lation (yes or no). A sensitivity analysis of the primary end point 
was introduced that included baseline PCr/ATP value as a 
covariate in an analysis of covariance model. Furthermore, the 
same ANCOVA model was employed on the randomized set (in 
line with the intention-to-treat principle) of patients to check for 
an unbiased estimation of the primary end point result.

Subgroup analyses were performed to assess the homo-
geneity of treatment effects on changes in the PCr/ATP ratio 
in different subgroups (eGFR [<60 versus >60 mL/(min1.73 
m2)], diabetes mellitus [yes or no], and atrial fibrillation [yes or 
no] subgroups). The same ANOVA model as used for the pri-
mary end point was employed with the addition of subgroup 
term (if not already fitted) and the treatment by subgroup inter-
action term.

The analysis of exploratory end points was performed with 
available data using descriptive statistics or ANCOVA with no 
adjustment for multiple testing. All summaries were produced 
for both cohorts using all available data.

For analysis of the metabolomic data, a Wilcoxon rank-sum 
test was applied. The metabolites were then sorted by the 
signed significance of each respective test. Signed significance 
is defined as the negative of the logarithm (base 10) of the 
test probability value and multiplied by the sign of the median 
(the difference in medians between the 2 samples). A conven-
tional principal component analysis (ie, using singular value 
decomposition) was computed by the pcaMethods R package33 
(version 1.84) with mean centering and scaling. There were no 
missing data, and 5 components were computed.

Data Sharing Statement
To ensure independent interpretation of clinical study results 
and enable authors to fulfill their role and obligations under 
the International Committee of Medical Journal Editors crite-
ria, Boehringer Ingelheim grants all external authors access to 
clinical study data pertinent to the development of the publi-
cation. In adherence with the Boehringer Ingelheim Policy on 
Transparency and Publication of Clinical Study Data, scientific 
and medical researchers can request access to clinical study 
data after publication of the primary article in a peer-reviewed 
journal, regulatory activities are complete, and other criteria 
are met. Researchers should use the link to request access 
to study data and visit https://www.mystudywindow.com/msw/
datasharing for further information.

RESULTS
Patient recruitment took place at a single center (OCMR, 
Oxford, UK) from March 2018 to May 2020. A total of 
101 patients performed a screening visit, and 72 patients 
were eventually enrolled and randomly assigned treat-
ment. Of those, 36 patients were in the HFrEF cohort 
(19 placebo and 17 empagliflozin) and 36 in the HFpEF 
cohort (18 placebo and 18 empagliflozin). One patient 
who was randomized into the placebo arm of the study 
was excluded from data analysis of the PPS due to pre-
mature end of follow-up. The HFrEF cohort of patients 
was recruited and followed up in full before recruitment in 
the HFpEF cohort finished. Thus, because of the unprec-
edented global COVID-19 pandemic and far-reaching 
effects of national lockdowns, all face-to-face research 
activities were suspended from March 24, 2020, onward. 
This inability to conduct end-of-treatment visits after 12 
weeks of treatment led to an exclusion of 13 (36.1%) pa-
tients from the randomized set and a subsequent numeric 
reduction of the PPS to 24 patients (13 on empagliflozin 
and 11 on placebo) in the HFpEF cohort.

Baseline Characteristics
A summary of the baseline characteristics of patients 
randomized to treatment is presented in Table 1.
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The mean duration of exposure to treatment was 85.3 
days (SD, 2.4) for the empagliflozin group (n=35) and 
84.55 days (SD, 3.11) for the placebo group (n=36).

Overall, 58.3% of patients were men, nearly all were 
White (97.2%), 1.4% were Black, 1.4% were of Asian 
ancestry, and the mean age was 68.33 years (SD, 
11.51). In the HFrEF cohort, all patients had an LVEF 
≤40% before treatment. The mean eGFR was 73.6 mL/

(min/1.73 m2) (SD, 19.7) for the empagliflozin group 
and 69.1 mL/(min/1.73 m2) (SD, 28.2) for the placebo 
group, and the geometric mean NT-proBNP was 801.1 
pg/mL (gSD, 3.30) and 626.7 pg/mL (gSD, 2.90) for the 
empagliflozin and placebo group, respectively.

In the HFpEF cohort, all patients had an LVEF of 
≥50%. Mean eGFR was 72.0 mL/(min/1.73 m2) (SD, 
19.1) for the empagliflozin group and 64.1 mL/(min/1.73 

Table 1. Baseline Characteristics of the Randomized Participants

Treatment 

HFrEF HFpEF

Empagliflozin (n=17) Placebo (n=19) Empagliflozin (n=18) Placebo (n=18) 

Age, mean±SD, y 67.5±12.7 64.7±14.1 69.1±10.9 72.1±7.0

Sex

  Male 10 (58.8) 13 (68.4) 10 (55.6) 9 (50.0)

  Female 7 (41.2) 6 (31.6) 8 (44.4) 9 (50.0)

Race/ethnicity

  White 17 (100) 19 (100) 16 (88.9) 18 (100)

  Black 0 (0) 0 (0) 1 (5.6) 0 (0)

  Asian 0 (0) 0 (0) 1 (5.6) 0 (0)

Body mass index, mean±SD, kg/m2 30.8±9.1 29.4±4.5 30.6±5.8 30.8±5.8

SBP, mean±SD, mm Hg 123.4±24.8 120.1±16.1 135.4±21.8 132.5±19.9

DBP, mean±SD, mm Hg 70.5±15.4 69.3±8.7 74.2±11.9 74.2±10.7

eGFR, mean±SD, mL/(min/1.73 m2) 73.6±19.7 69.1±28.2 72.0±19.1 64.1±18.7

NT-proBNP, gMean±gSD, pg/mL 801.1±3.3 626.7±2.9 800.9±2.5 643.6±2.5

  Minimum, maximum, pg/mL 156.3, 4631.1 126.0, 8922.1 158.1, 6186.3 164.2, 2565.0

ECG parameters

  Heart rate, mean±SD, bpm 69.1±10.1 70.4±12.0 72.6±16.2 72.4±10.7

  Sinus rhythm 12 (70.6) 13 (68.4) 10 (55.6) 10 (55.6)

  Atrial fibrillation 5 (29.4) 6 (31.6) 8 (44.4) 8 (44.4)

New York Heart Association class

  II 12 (70.6) 18 (94.7) 15 (83.3) 14 (77.8)

  III 5 (29.4) 1 (5.3) 3 (16.7) 3 (16.7)

  IV 0 (0) 0 (0) 0 (0) 1 (5.6)

Medical history

  Type 2 diabetes 2 (11.8) 3 (15.8) 2 (11.1) 2 (11.1)

  Hypertension 4 (23.5) 4 (21.1) 7 (38.9) 5 (27.8)

  Stroke 1 (5.9) 1 (5.3) 1 (5,6) 0 (0)

Medications

  Beta-blockers 14 (82.3) 19 (100) 14 (77.8) 6 (33.3)

  Ivabradine 2 (11.8) 0 (0) 0 (0) 0 (0)

  ACE-I/ARB 12 (70.6) 16 (84.2) 9 (50.0) 5 (27.8)

  Sacubitril/valsartan 4 (23.5) 3 (15.8) 0 (0) 0 (0)

  Mineralocorticoid receptor antagonist 14 (82.3) 12 (63.2) 3 (16.7) 5 (27.8)

  Diuretics 9 (52.9) 9 (47.4) 11 (61.1) 12 (66.7)

  Anticoagulants 5 (29.4) 6 (31.6) 13 (72.2) 9 (50.0)

  Metformin 2 (11.8) 3 (15.8) 0 (0) 2 (11.1)

All values shown are n (%) unless otherwise indicated. ACE-I indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin II re-
ceptor blocker; bpm, beats per minute; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; gMean, geometric mean; 
gSD, geometric SD; NT-proBNP, N-terminal pro-B-type natriuretic peptide; and SBP, systolic blood pressure.
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m2) (SD, 18.7) for the placebo group, with a geometric 
mean NT-proBNP of 800.90 pg/mL (gSD, 2.48) and 
643.60 (gSD, 2.50) in the empagliflozin and placebo 
groups, respectively.

It was anticipated that patients with type 2 diabetes 
would account for 30% to 40% of those randomized; 
however, only 12.55% of all patients enrolled eventually 
had concomitant type 2 diabetes.

Primary End Point: Cardiac Energetics  
(PCr/ATP Ratio)
After 12 weeks of treatment with 10 mg of empa-
gliflozin, there was no significant difference regarding 
the change in the resting PCr/ATP compared with pla-
cebo (Table 2). In the HFrEF cohort, the mean change 
was −0.18 (SE, 0.12) for empagliflozin versus 0.07 (SE, 
0.11) for placebo, with an adjusted mean treatment dif-
ference of −0.25 (SE, 0.16 [95% CI, −0.60 to 0.10]; 
P=0.14). In the HFpEF cohort, there was no significant 
difference between empagliflozin and placebo regarding 
the change in resting PCr/ATP from baseline to week 
12, with an adjusted mean change of 0.10 (SE, 0.14) for 
empagliflozin versus 0.26 (SE, 0.16) for placebo. The 
adjusted mean treatment difference was −0.16 (SE, 
0.21 [95% CI, −0.60 to 0.29]; P=0.47). These results 
were consistent with sensitivity analyses repeating the 
ANOVA on the intention-to-treat population of patients, 
as well as including baseline PCr/ATP as a covariate 
using an ANCOVA for the PPS of patients. Subgroup 
analyses considering kidney disease (eGFR <60 mL/
[min/1.73 m2] versus >60 mL/[min/1.73 m2]), diabetes 
status (type 2 diabetes: yes or no), and presence of atri-
al fibrillation (yes or no) were consistent with the primary 
analysis in both cohorts (Figure 2C and 2D).

Exploratory End Points
Dobutamine Stress PCr/ATP Ratio
As expected, PCr/ATP during dobutamine stress (65% 
age-maximum heart rate) was reduced compared with 
resting conditions (Table 2 A and B). However, empa-
gliflozin treatment did not result in an improvement of 
energetics under dobutamine infusion (treatment differ-
ence for the stress PCr/ATP [empagliflozin – placebo, 
baseline to week 12] for patients with HFrEF, −0.13 (SE, 
0.11 [95% CI, −0.40 to 0.10]; P=0.23); HFpEF, −0.22 
(SE, 0.21 [95% CI, −0.66 to 0.23]); P=0.32). Likewise, 
no change was observed in the difference from rest to 
stress (ΔPCr/ATP), after 12 weeks of treatment, in ei-
ther HFrEF (adjusted mean treatment difference, −0.15 
[SE, 0.12 (95% CI, −0.40 to 0.11)]; P=0.25) or HFpEF 
(adjusted mean treatment difference, −0.07 [SE, 0.28 
(95% CI, −0.51 to 0.66)]; P=0.80)]. Absolute changes 
(week 12 – baseline) in resting and dobutamine stress 
PCr/ATP are provided in Figure S1.

Serum Metabolomics
The effects of empagliflozin and placebo treatment on 
a set of 19 targeted metabolites were investigated with 
a principal component analysis of serum metabolomic 
samples (Figure 3A). No change induced by treatment 
with empagliflozin versus placebo could be observed in 
HFrEF and HFpEF (Figure 3B for statistical significance 
versus magnitude of change).

CMR Imaging
In the HFrEF cohort, changes regarding left ventricular 
mass and mass index after empagliflozin treatment were 
observed: left ventricular mass reduction (adjusted mean 
treatment difference) was −9.65 g (SE, 3.83 [95% CI, 
−17.49 to −1.81]; P=0.02), which was consistent when 
mass was indexed to body surface area (left ventricular 
mass index, −4.46 g/m2 [SE, 1.94 (95% CI, −8.42 to 
−0.50)]; P=0.03).

The changes in ShMOLLI T1–derived measures of 
myocardial tissue characterization (native, lesions, and 
threshold) were numerically greater in the empagliflozin 
group with the threshold T1 reaching nominal statistical 
significance (Table 2). Although there was no change 
in extracellular volume when deriving left ventricular 
cellular and matrix volumes separately, as previously 
described,34 the change in cellular volume in the empa-
gliflozin group (−8.6 mL ;SE, 2.00) compared with pla-
cebo (−1.1 mL [SE, 2.47]; Table 2) reached significance, 
whereas the reduction in left ventricular matrix volume 
did not (P=0.10).

For patients with HFpEF (Table 3), there were no 
nominally significant changes from baseline to week 12 
(empagliflozin – placebo) regarding left ventricular mass, 
volumes, or function.

We observed a trend for an improvement in peak sys-
tolic longitudinal strain with empagliflozin (adjusted mean 
treatment difference, 2.18% [SE, 1.16 (95% CI, −0.28 
to 4.64)]; P=0.08) and torsion (adjusted mean treatment 
difference, 1.60° [SE, 0.91 (95% CI, −0.32 to 3.53)]; 
P=0.10).

Myocardial Triglyceride Content
Empagliflozin treatment led to a trend in decrease of 
MTG, measured via proton MRS, comparable in pa-
tients with HFrEF (adjusted mean treatment difference, 
−0.44% [95% CI, −0.97 to 0.08]; P=0.10) and HFpEF 
(adjusted mean treatment difference, −0.43% [95% CI, 
−1.39 to 0.54]; P=0.60)], although this did not meet 
nominal statistical significance.

Serum Biomarkers
For most serum-derived biomarkers, there were no sig-
nificant differences from baseline to week 12 between 
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Table 2. Changes in Primary and Exploratory Outcomes With Empagliflozin or Placebo (Baseline to Week 12):  
Heart Failure With Reduced Ejection Fraction (Per Protocol Set)

 

 

Empagliflozin (n=17) Placebo (n=18)
Adjusted mean  
(95% CI) P value Baseline Week 12 Baseline Week 12 

Cardiovascular magnetic resonance

Primary outcome

PCr/ATP ratio at rest, mean±SE 1.89±0.10 1.71±0.10 1.93±0.09 2.0±0.10 −0.25 (−0.58 to 0.09) 0.14

Exploratory outcomes

PCr/ATP ratio of dobutamine 
stress, mean±SE

1.77±0.07 1.69±0.12 1.69±0.09 1.79±0.14 −0.13 (−0.35 to 0.09) 0.23

ΔPCr/ATP, rest − stress, 
mean±SE 

0.11±0.08 0.02±0.04 0.24±0.10 0.21±0.10 −0.15 (−0.40 to 0.11) 0.25

Myocardial triglycerides,  
mean±SE, %

1.69±0.96 1.48±0.17 1.72±0.25 1.96±0.19 −0.44 (−1.0 to 0.10) 0.10

LVEF, mean±SE, % 36.8±9.20 40.5±9.60 39.3±9.80 41.3±8.80 1.87 (−1.60 to 5.40) 0.29

Peak systolic left ventricular strain, 
mean±SE, %

      

  Circumferential −10.41±1.50 −9.31±1.18 −10.0±0.71 −11.3±0.90 2.12 (−0.60 to 4.90) 0.12

  Longitudinal −6.76±1.40 −6.63±0.89 −8.29±1.12 −8.71±0.80 1.95 (−0.60 to 4.50) 0.12

  Radial 16.14±3.10 14.63±2.37 16.45±1.35 17.72±1.50 −2.80 (−8.10 to 2.50) 0.28

Peak diastolic left ventricular strain rate, mean±SE, %/s

  Circumferential 35.90±10.70 40.70±4.09 45.23±3.31 43.11±3.70 2.04 (−7.65 to 11.80) 0.67

  Longitudinal 25.44±2.70 23.10±2.48 27.30±3.28 28.68±3.70 −5.33 (−13.49 to 2.91) 0.19

Left ventricular torsion, mean±SD, 
degrees

4.50±0.90 4.36±0.80 5.21±0.51 4.64±0.63 0.29 (−0.90 to 1.51) 0.63

LVEDV, mean±SE, mL 241.98±78.49 220.43±68.37 225.11±79.00 209.74±72.20 −7.00 (−21.98 to 8.85) 0.39

Stroke volume, mean±SE, mL 85.32±6.28 84.96±5.21 86.22±6.00 83.86±6.06 1.63 (−7.22 to 10.48) 0.71

Left ventricular mass, mean±SE, g 146.58±8.27 135.75±7.13 142.01±9.62 140.86±11.08 −9.65 (−17.5 to −1.8) <0.05

Left ventricular mass index, 
mean±SE, g/m2

75.43±4.71 70.48±4.07 67.99±4.41 67.61±5.29 −4.46 (−8.42 to −0.50) <0.05

Native T1, mean±SE, ms       

  Average 1190.11±11.22 1174.06±10.78 1195.49±14.16 1184.82±10.98 −8.41 (−28.08 to 11.25) 0.39

  Threshold 0.33±0.06 0.20±0.06 0.43±0.08 0.38±0.06 −0.11 (−0.20 to −0.01) <0.05

  Lesions 1237.48±15.12 1223.14±20.12 1240.77±22.73 1231.46±18.23 −11.95 (−59.7 to 35.8) 0.59

Extracellular volume fraction, 
mean±SE, %

30.3±2.1 30.6±2.1 30.3±3.8 31±3.1 −0.04 (−1.81 to 1.74) 0.96

  Cell volume, mL 114.60±8.56 106.00±7.61 103.00±8.66 101.90±9.85 −7.48 (−14.08 to −0.88) <0.05

  Matrix volume, mL 42.64±3.47 39.78±3.43 42.06±3.82 42.02±4.35 −2.82 (−6.28 to 0.65) 0.11

LGE fibrosis, mean±SE, % 7.54±1.44 7.32±1.62 8.2±1.1 7.0±1 0.85 (−1.4 to 3.1) 0.43

Cardiopulmonary exercise testing

  V ˙  o2, mean±SE, mL/(kg/min) 16.56±1.25 17.81±1.65 19.39±2.03 19.61±1.75 0.69 (−1.25 to 2.63) 0.47

  V ˙  E/V ˙  co2 slope, mean±SE 41.88±2.23 40.63±2.05 40.78±2.22 40.33±1.72 −0.50 (−3.67 to 2.68) 0.75

  Ventilatory threshold, mL/(kg/min) 22.81±2.15 23.69±2.10 26.17±2.21 25.83±2.08 0.71 (−2.13 to 3.55) 0.61

  Respiratory exchange ratio, 
mean±SE

1.26±0.04 1.29±0.03 1.40±0.04 1.39±0.05 −0.04 (−0.16 to 0.09) 0.56

  Peak lactate, mean±SE, mmol/L 3.84±0.30 3.74±0.36 4.89±0.57 4.69±0.40 −0.36 (−1.23 to 0.51) 0.41

  Maximal workload, mean±SE, W 87.25±6.55 92.75±6.71 116.72±11.07 117.17±11.16 4.01 (−3.57 to 11.60) 0.29

Adjusted mean between group difference indicates the difference in the respective outcome of the empagliflozin vs placebo groups at week 12.
ΔPCr/ATP indicates Δ phosphocreatine/ATP ratio; LVEDV, left ventricular end diastolic volume; LVEF, left ventricular ejection fraction; LGE, late 

gadolinium enhancement; PCr/ATP, phosphocreatine/ATP ratio; V ˙  o2, peak oxygen consumption; and V ˙  E/V ˙  co2, minute ventilation to carbon dioxide 
production slope.
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the empagliflozin and placebo group (Figure S2). Like-
wise, concentrations of the ketone body β-OHB and the 
amount of circulating free fatty acids did not change af-
ter treatment with empagliflozin.

Cardiorespiratory Fitness and Quality of Life
Overall, we did not detect significant changes in exer-
cise-derived measures after CPET (Tables 2 and 3) in 
HFrEF or HFpEF. Quality of life, assessed by Kansas City 

Figure 2. Cardiac energetics 
(PCr/ATP).
Cardiac energetics (PCr/ATP) defined by 
phosphorus-31 (31P) magnetic resonance 
spectroscopy violin plots (including median 
and interquartile range) for the placebo 
and the empagliflozin treatment groups 
at baseline and 12 weeks after the 
respective treatment. PCr/ATP remained 
unchanged in both HFrEF (A) and HFpEF 
(B) after 12 weeks of empagliflozin 
treatment at rest (top row) and during 
dobutamine stress (middle row), with 
65% of age-maximum heart rate (ie, 
220-age). Furthermore, the difference of 
PCr/ATP at rest minus dobutamine stress 
(ΔPCr/ATP) from baseline to week 12 
was equally unchanged (bottom row). 
Subgroup analyses in HFrEF (C) and 
HFpEF (D), including the overall presence 
or absence of T2D, AF, and eGFR, were 
consistent with the overall neutral results. 
AF indicates atrial fibrillation; eGFR, 
estimated glomerular filtration rate; Empa, 
empagliflozin; HFpEF, heart failure with 
preserved ejection fraction; HFrEF, heart 
failure with reduced ejection fraction; PBO, 
placebo; and PCr/ATP, phosphocreatine/
ATP ratio. (Continued)
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Cardiomyopathy Questionnaire, showed a trend toward 
greater improvements with empagliflozin (mean change 
in overall summary score, 9.81±1.27) compared with 
placebo (4.24±1.39).

Safety
Details on adverse events stratified by treatment group 
can be found in Table S3. Overall, treatment with empa-
gliflozin was safe and well tolerated, with more adverse 
events in the placebo group (n=19) than the empa-
gliflozin group (n=17). Adverse events severity was 
equally distributed between mild (50%) and moderate 
(50%) in both trial arms. A total of 8 serious adverse 
events (placebo group, n=7; empagliflozin group, n=1) 
were recorded.

DISCUSSION
The impact of SGLT2i treatment on myocardial energy 
metabolism in patients with HF remains hotly debated 
but continues to be poorly understood. EMPA-VISION 
is the first trial to investigate effects of empagliflozin 
treatment in patients with HFrEF and HFpEF on car-
diac energetics and metabolism. The principal findings 
of our trial are: (1) after 12 weeks of empagliflozin (10 
mg once daily) versus placebo, there was no difference 

in the primary end point (myocardial energetics in vivo 
via 31P MRS [PCr/ATP at rest]), in patients with HFrEF 
nor with HFpEF (likewise, no treatment effects could be 
demonstrated during dobutamine stress assessment of 
PCr/ATP); and (2) in keeping with the neutral effects 
on cardiac energetics, we did not observe significant 
changes in a targeted metabolomic assay investigating 
19 serum metabolites related to energy metabolism in 
either cohort.

Thrifty Substrate Hypothesis of SGLT2i
SGLT2i induce renal glucosuria, which, in turn, lowers the 
insulin-to-glucagon ratio and stimulates lipolysis, prompt-
ing a mild increase in hepatic production of ketone bod-
ies.35 It has been described that the failing heart uses 
ketone bodies for energy production linearly to their 
availability.13 Ketones have been touted as myocardial 
superfuels and are assumed to improve myocardial en-
ergy efficiency with short-term β-OHB infusion show-
ing to increase cardiac function and output in patients 
with HFrEF.13,14,36 As such, it was hypothesized that the 
beneficial clinical effects of SGLT2i might (partially) be 
attributed to enhanced myocardial energetics.14 Overall, 
data on changes in substrate utilization and energy me-
tabolism in HF after SGLT2i treatment are scarce, and 
results are conflicting.15,17,19,37 Human data are limited to 
small studies in diabetic patients without HF, with a ran-
domized controlled trial (n=56) showing no difference in 

Figure 2 Continued.
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Figure 3. Targeted serum metabolomics.
A, Principal component analysis showed no significant differences in clustering Euclidean distance by either condition (HFpEF or HFrEF; P=0.23) 
or group (empagliflozin vs placebo; P=0.38). Top (right and left), empagliflozin. Bottom (right and left), placebo. Red indicates HFpEF; blue 
indicates HFrEF. B, Volcano plot visualizing the degree of statistical significance (Wilcoxon rank-sum test) on the y axis vs the magnitude of 
change (fold change of medians) on the x axis, with a P value <0.05 considered statistically significant. Data points represent the difference of 
treatment from baseline to week 12 (between empagliflozin and placebo) in the HFpEF and HFrEF groups, respectively. HFpEF indicates heart 
failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; GABA, γ-aminobutyric acid; and SAH, S-adenosyl-L-
homocysteine.
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Table 3. Changes in Primary and Exploratory Outcomes With Empagliflozin or Placebo (Baseline to Week 12): Heart  
Failure With Preserved Ejection Fraction (Per Protocol Set)

 

Empagliflozin (n=13) Placebo (n=11)

Adjusted mean (95% CI) P value Baseline Week 12 Baseline Week 12 

Cardiovascular magnetic resonance       

  Primary outcome       

  PCr/ATP ratio at rest, mean±SE 1.84±0.13 1.93±0.10 1.75±0.10 2.0±0.19 −0.16 (−0.60 to 0.29) 0.47

  Exploratory outcomes

  PCr/ATP ratio of dobutamine 
stress, mean±SE

1.62±0.10 1.56±0.10 1.63±0.10 1.74±0.28 −0.22 (−0.66 to 0.23) 0.32

  ΔPCr/ATP, rest − stress, 
mean±SE

0.22±0.11 0.37±0.10 0.12±0.10 0.26±0.30 −0.10 (−0.51 to 0.66) 0.80

  Myocardial triglycerides, 
mean±SE, %

2.64±0.72 2.01±0.29 1.82±0.43 2.15±0.43 −0.43 (−1.4 to 0.54) 0.36

  LVEF, mean±SE, % 52.55±2.19 53.03±2.79 59.07±2.96 58.14±3.25 1.47 (−2.89 to 5.83) 0.49

  Peak systolic left ventricular 
strain, mean±SE, %

      

   Circumferential −16.42±1.09 −15.98±0.92 −17.21±0.83 −16.84±1.33 0.42 (−2.04 to 2.88) 0.72

    Longitudinal −14.16±0.95 −12.31±1.02 −13.53±0.59 −13.84±0.63 2.18 (−0.28 to 4.64) 0.08

    Radial 22.94±2.19 21.22±1.71 28.27±3.39 22.69±1.78 −0.88 (−6.89 to 5.13) 0.76

  Peak diastolic left ventricular 
strain rate, mean±SE, %/s 

      

   Circumferential 60.93±5.52 68.22±9.60 76.32±11.58 73.86±8.10 7.96 (−10.39 to 26.31) 0.37

   Longitudinal 33.28±3.66 35.46±3.54 45.17±7.03 49.30±8.31 −6.28 (−22.59 to 10.03) 0.43

  Left ventricular torsion, 
mean±SE, degrees

9.03±0.87 9.16±0.90 9.48±1.07 7.91±1.14 1.60 (−0.32 to 3.53) 0.10

  LVEDV, mean±SE, mL 174.20±18.56 171.60±20.80 121.80±8.28 121.9±8.27 −2.74 (−20.44 to 14.95) 0.75

  Stroke volume, mean±SE, mL 88.82±7.43 85.83±8.03 70.84±4.29 69.04±3.30 0.58 (−7.67 to 8.83) 0.88

  Left ventricular mass, mean±SE, 
g

127.72±14.50 125.92±15.72 94.40±7.23 92.95±5.45 −0.41 (−10.86 to 10.04) 0.94

  Left ventricular mass index, 
mean±SE, g/m2

62.24±5.86 60.96±6.42 48.74±2.82 49.19±1.87 −1.18 (−7.06 to 4.71) 0.68

  Native T1, mean±SE, ms       

   Average 1177.90±11.27 1173.78±13.42 1156.42±18.61 1168.10±17.02 −20.03 (−55.83 to 15.77) 0.25

   Threshold 0.33±0.10 0.31±0.10 0.18±0.10 0.23±0.11 −0.04 (−0.33 to 0.25) 0.77

   Lesions 1223.86±15.89 1206.49±26.80 1208.87±22.42 1192.07±30.21 −5.94 (−90.32 to 78.43) 0.86

  Extracellular volume fraction, 
mean±SE, %

29.72±1.02 29.42±1.35 29.48±1.83 32.50±1.04) 3.35 (−0.09 to 6.79) 0.26

   Cell volume, mL 90.67±10.69 89.19±14.04 75.26±11.23 63.98±4.00 18.28 (−23.00 to 59.56) 0.34

   Matrix volume, mL 34.97±4.16 37.67±5.56 28.06±2.60 28.62±2.52 2.13 (−11.33 to 15.60) 0.73

  LGE fibrosis, mean±SE, % 4.71±1.22 5.06±0.96 6.36±1.56 5.66±1.34 0.95 (−2.35 to 4.24) 0.53

Cardiopulmonary exercise testing

  Peak V ˙  o2, mean±SE, mL/(kg/min) 19.38±2.09 18.85±1.83 15.08±1.47 15.50±1.13 0.08 (−2.14 to 2.31) 0.98

  V ˙  E/V ˙  co2 slope, mean±SE 40.46±1.96 45.38±4.54 44.83±3.15 44.17±2.43 2.96 (−7.96 to 13.88) 0.58

  Ventilatory threshold, mL/(kg/min) 25.15±2.27 25.23±2.31 19.92±1.99 19.42±1.70 1.19 (−1.29 to 3.67) 0.33

  Respiratory exchange ratio, 
mean±SE

1.38±0.04 1.35±0.04 1.27±0.05 1.27±0.04 0.02 (−0.09 to 0.14) 0.67

  Peak lactate, mean±SE, mmol/L 4.56±0.34 4.78±0.79 4.34±0.32 4.11±0.41 0.66 (−0.71 to 2.03) 0.33

  Maximal workload, mean±SE, W 16.38±1.25 16.54±1.31 13.50±1.16 13.50±1.22 0.22 (−0.80 to 1.24) 0.65

ANOVA model is adjusted for treatment (empagliflozin or placebo), atrial fibrillation (yes or no), and type 2 diabetes (yes or no) as fixed effects. Adjusted mean 
between group difference indicates the difference in the respective outcome of the empagliflozin vs placebo groups at week 12.

ΔPCr/ATP indicates Δ phosphocreatine/ATP ratio; LGE, late gadolinium enhancement; LVEDV, left ventricular end diastolic volume; LVEF, left ventricular 
ejection fraction; PCr/ATP, phosphocreatine/ATP ratio; V ˙  o2, peak oxygen consumption; and V ˙  E/V ˙  co2, minute ventilation to carbon dioxide production slope.
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energetics (secondary end point), whereas a longitudinal 
study (n=28) did find an improvement.38,39

Myocardial Energetics and SGLT2i in HF
The presented results do not indicate changes in cardiac 
energetics (PCr/ATP) after treatment with empagliflozin in 
nonischemic, mostly nondiabetic patients with HFrEF and 
with HFpEF. In HFrEF, the failing heart shows an overall 
decrease in fatty acid oxidation and an increase of glycoly-
sis.22 The negative consequences of these derangements 
are worsened by a significant (≈30%) reduction of ATP 
content in cardiomyocytes.40 In this energetic environment, 
although ketone bodies may provide a potential carbon-
based substrate, the amount of ATP generated per oxygen 
molecule is considerably less compared with glucose,41 
which is supported by findings showing that promoting 
glucose oxidation leads to functional improvements in a 
preclinical HF model.42 Furthermore, uptake of β-OHB is 
directly proportional to its serum concentrations;43 how-
ever, despite higher levels of circulating β-OHB levels with 
25 mg versus 10 mg of empagliflozin,44 there was no mea-
surable difference in subgroup analyses for HF outcomes 
in EMPA-REG OUTCOME between the 2 doses.45 Thus, 
SGLT2i-induced mild hepatic ketogenesis in response to 
glucosuria is unlikely to facilitate a change in PCr/ATP.

Little is known about cardiac energetics and sub-
strate metabolism in HFpEF. It was previously estab-
lished that HFpEF hearts are energy deprived.26 
Furthermore, our group recently reported that the 
severity of diastolic dysfunction mirrors the reduction 
of PCr/ATP in these patients.27 Myocardial substrate 
use appears to differ in patients with preserved ver-
sus reduced ejection fraction, and ketones seem to 
contribute less to ATP generation in the former.43 In 
keeping with these findings, a recent murine HFpEF 
model showed that β-OHB is not used as an energetic 
substrate but rather functions as a second messenger, 
modifying protein hyperacetylation and inflammation.46 
Consequently, the thrifty substrate hypothesis, ascrib-
ing ketones to optimize myocardial energy metabolism 
by using them as substrates, would not be sufficient to 
explain treatment effects in HFpEF.

Serum Metabolites
Recently, a substudy of DEFINE-HF47 analyzed serum 
metabolites to show that treatment with dapagliflozin 
in patients with HFrEF (n=121) increased metabolite 
clusters correlated to ketone and long-chain acylcar-
nitine use.48 The authors argue that this underpins the 
possibility that ketones can restore metabolic balance 
in the heart and may thus have valuable effects on mi-
tochondrial function in HFrEF. In our study, we did not 
detect alterations in metabolites relating to overall en-
ergy metabolism and likewise no changes in circulating 
levels of ketone bodies (β-OHB) after empagliflozin. Cir-
culating levels of free fatty acids remained unchanged 

after treatment. One important distinction regarding our 
results is that ischemic HF etiology implies limited oxy-
gen supply, which, in itself, even before the onset of HF, 
alters substrate use and circulating metabolites.49 Impor-
tantly, meaningful measurements of PCr/ATP (primary 
end point) require viable myocardium; therefore, all our 
patients underwent coronary computed tomography an-
giography before enrollment to exclude significant coro-
nary artery disease. As a result, our cohorts exclusively 
comprised patients with nonischemic HFrEF, whereas 
>50% of patients in DEFINE-HF presented with isch-
emic HFrEF.47 In addition, serum metabolomic profiling 
can only provide a momentary image of circulating me-
tabolites but does not allow inferences of myocardial in-
flux or metabolite use. A significant problem in HF is the 
uncoupling of circulating substrate availability (high) and 
their actual use for energy generation (low).50 In keep-
ing with this, results from a randomized controlled trial 
investigating the metabolic modulator perhexiline in pa-
tients with nonischemic HFrEF (n=50) demonstrated a 
significant increase in PCr/ATP (by 30%) but unaltered 
metabolite extraction in invasively measured (arterial and 
coronary sinus) samples, emphasizing the limitations of 
inferring energetic changes based on changes in cir-
culating metabolites alone.32 Interestingly, a very recent 
study investigating plasma and cardiac tissues from pa-
tients with HFrEF and HFpEF supports this argument51: 
Cardiac metabolite patterns, but not plasma metabolites, 
were able to separate HFpEF from HFrEF patients. Fur-
thermore, circulating metabolites of fatty acid metabo-
lism were elevated in plasma samples, but were markedly 
reduced in myocardial biopsies, suggesting a mismatch 
between availability and usage. In another study, patient 
factors for HFpEF showed improved global longitudinal 
strain measurements on CMR but no changes in fatty 
acid uptake in the heart after 6 weeks of dapagliflozin 
treatment.52

Myocardial Triglycerides and SGLT2i
In both patients with HFrEF and HFpEF, we found a trend 
for a decrease in MTG. Interestingly, MTG correlates with 
left ventricular hypertrophy in HFrEF, which supports our 
exploratory findings of reductions in left ventricular (in-
dexed) mass, cell volume, and ShMOLLi T1 in the HFrEF 
cohort.53 Although the degree of diastolic function was 
reported to correlate to the amount of MTG in HFpEF,53 
we did not observe significant reductions in diastolic func-
tion parameters, which may be a reflection of the reduced 
sample size due to the COVID-19 pandemic.

Myocardial Structure, Function, and Quality of Life
Although exploratory and not sufficiently powered, we 
observed changes indicating reduced hypertrophy and 
regression of cell volume in the HFrEF cohort. These 
findings are in keeping with a recent meta-analysis of 
imaging trials assessing empagliflozin or dapagliflozin in 
patients with type 2 diabetes and/or HFrEF.54 We did 

D
ow

nloaded from
 http://ahajournals.org by on June 13, 2023



ORIGINAL RESEARCH 
ARTICLE

Circulation. 2023;147:1654–1669. DOI: 10.1161/CIRCULATIONAHA.122.062021 May 30, 2023 1667

Hundertmark et al Using CMR to Assess Effects of Empagliflozin in HF

not find any meaningful changes in LVEF, which is cor-
roborated by the majority of other CMR trials investigat-
ing SGLT2i.54 Left ventricular function is closely coupled 
to myocardial energy metabolism, thus, the lack of func-
tional improvement would not precipitate improvements 
in PCr/ATP.

Finally, patients in both treatment groups (empa-
gliflozin and placebo) and both cohorts (HFrEF and 
HFpEF) showed a trend toward improvements in qual-
ity of life (Kansas City Cardiomyopathy Questionnaire), 
although these were numerically greater in the empa-
gliflozin arm (Figure 4). This is in keeping with previously 
published results in which an improvement in quality of 
life has been shown for dapagliflozin and empagliflozin 
alike.47,55 However, this was not paralleled by changes in 
exercise ability (CPET), which might require longer treat-
ment exposure to empagliflozin (frequently 6 months in 
other trials) to manifest.56

Limitations
Despite using gold-standard CMR techniques and as-
sessing cardiac as well as whole-body metabolism, our 
study has several possible limitations. As this is a mecha-
nistic trial, the relatively small sample size, lower-than-
anticipated number of patients with type 2 diabetes, and 
limited ethnic variety in our study may limit the generaliz-
ability and comparability of our findings. Patients were 
only recruited from a single center and investigated twice 
(before and after treatment). Due to the technical char-
acteristics of our investigation for the primary end point 
(ie, PCr/ATP), our study is limited to a nonischemic etiol-
ogy of HF.

We assessed a limited treatment interval of 3 months 
using a single SGLT2i with one strength (10 mg of 
empagliflozin); it is unknown whether longer treatment 
periods, a different SGLT2i, or a higher dose may have 
led to dissimilar results. Finally, 13 patients (18.1 %) in 
our HFpEF cohort were excluded from the PPS because 

of COVID-19 lockdown restrictions. which may have lim-
ited the efficacy findings in this cohort.

Conclusions
EMPA-VISION is the first trial to assess energetics and 
metabolism after treatment with empagliflozin in patients 
with HFrEF and HFpEF, respectively. Treatment with em-
pagliflozin (10 mg once daily for a period of 3 months) 
did not lead to measurable improvements in cardiac 
energetics (ie, PCr/ATP) at rest or during dobutamine 
stress. Equally, no changes in a targeted serum metabo-
lomic assay or levels of ketone bodies were observed in 
either cohort. Thus, our findings could not confirm the 
thrifty fuel hypothesis presumed to be responsible for the 
salutary effects observed with SGLT2i in HF. Further re-
search in larger HF cohorts with distinct cardiometabolic 
phenotypes (eg, those with obesity and diabetes) may be 
required to assess potentially promising targets possibly 
affected by treatment with SGLT2i.
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Figure 4. Changes in Kansas City 
Cardiomyopathy Questionnaire 
(baseline to week 12).
Boxplot showing unadjusted mean 
change from baseline to week 12 in the 
overall summary score (OSS) and clinical 
summary score (CSS) of the Kansas City 
Cardiomyopathy Questionnaire for the 
placebo (blue) and empagliflozin (red) 
groups in patients with heart failure with 
reduced ejection fraction (HFrEF) and 
heart failure with preserved ejection 
fraction (HFpEF). Whiskers indicate SD.
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