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A B S T R A C T   

Electrochemical impedance spectroscopy (EIS) is a powerful tool in characterisation of processes in electro
chemical systems, allowing us to elucidate the resistance and characteristic frequency of physical properties such 
as reaction and transport rates. The essence of EIS is the relationship between current and potential at a given 
frequency. However, it is often the case that we do not understand the electrochemical system well enough to fit 
a meaningful physical model to EIS data. The distribution of relaxation times (DRT) calculation assumes an 
infinite series of relaxation processes distributed over a characteristic timescale. The DRT calculation may 
identify the number of processes occurring, as well as their respective resistivity and characteristic timescale, and 
may resolve processes which have relatively similar timescales. Using a nonparametric tool known as Gaussian 
process (GP) regression, we showcase a method of finding a unique solution to the ill-posed DRT problem by 
optimising kernel hyperparameters as opposed to ad-hoc regularisation. In this work, we use finite GP regression 
under inequality constraints (fGP) to analysed EIS data generated by a (Ni/CGO|CGO|YSZ|Reference Cathode) 
solid-oxide fuel cell in a gas mixture of 0.5 bar H2/0.5 bar H2O and at a temperature of 600 ◦C. By varying the 
current density, we can characterise the current-voltage relationship of the electrode and shed light on the re
action mechanism governing charge transfer at the solid-gas interface. Our findings also show that even at 
relatively high current densities (±600 mA cm− 2) the electrode process is limited by charge transfer.   

1. Introduction 

Amongst many looming environmental disasters, the concentration 
of CO2 in our atmosphere is widely recognised to be driving the most 
catastrophic climate devastation. The need for a sustainable, reliable, 
and affordable energy economy has never been more urgent. The solid 
oxide fuel cell (SOFC) is a highly efficient chemical-to-electrical and 
electrical-to-chemical energy conversion technology compatible with 
both existing fuel (i.e. natural gas) and future fuel (i.e. renewably 
sourced hydrogen) infrastructures [1–4]. Electrochemical devices, such 
as solid-oxide fuel cells (SOFCs), allow for reversible chemical to elec
trical energy conversion, with efficiency surpassing that of the com
bustion engine [5]. The Faradaic reactions at the fuel (i.e. H2(g), or CO(g)) 
and air electrodes of an SOFC can be given simply as [6,7] 

Fuel electrode : H2(g) + O2− →H2O(g) + 2e− , (1)  

and 

Air electrode :
1
2
O2(g) + 2e− →O2− , (2)  

respectively, where O2− and e− represent oxide ions in the electrolyte 
and electrons in the electrode, respectively. At the electrodes, electrons 
are not directly transferred between the molecules, but are instead 
passed through a circuit whereby the chemical energy is used to drive 
external work. The open circuit voltage (V0) of the SOFC at operational 
temperatures is approximately 1V. As current is drawn, resistances act 
by changing the cell voltage (V), this change in voltage is described as 
the overpotential (η) [8–12]. 

Gadolinium doped ceria (CGO) displays considerably faster oxygen 
transport kinetics and high electronic conductivity under reducing 
conditions. To enhance the overall electronic conductivity of the 
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electrode and to increase the density of reactive triple phase boundaries 
(TPB), it is beneficial to mix a metallic phase with the MIEC to create a 
cermet electrode i.e. nickel/gadolinium doped ceria (Ni/CGO) 
[1,13–16]. The operation of the Ni/CGO electrode under electrical bias 
has been studied for decades, however a unifying model for hydrogen 
electro-oxidation or water electrolysis has not yet been agreed upon 
[14,17–27]. 

A convenient way to characterise the reaction mechanisms at elec
trodes is to derive its current-voltage relationship using electrochemical 
impedance spectroscopy (EIS) [28–33]. However, the complex rela
tionship between charge transfer and transport means that to model the 
porous electrode, we often use the transmission-line-type (TL) model 
which encompasses many assumptions regarding the homogeneity of 
the electrode [13,34]. In such a case, it is likely that the constraints 
derived from the equivalent circuit fitting will not be representative of 
the electrode. Therefore, it is often the case that we do not understand 
the electrochemical system well enough to fit a meaningful physical 
model to EIS data. The distribution of relaxation times (DRT) calculation 
assumes an infinite series of relaxation processes distributed over a 
characteristic timescale [35]. The DRT calculation may identify the 
number of processes occurring, as well as their respective resistivity and 
characteristic timescale. A key utility of DRT is that it may resolve 
processes which have relatively similar timescales, and would otherwise 
appear to be overlapping after EIS analysis [7,36]. 

The optimisation problem in general is ill-posed, meaning there are 
an infinite number of solutions which satisfy the calculated DRT [37]. 
Consequently, regularisation is frequently implemented to make the 
solution physically meaningful [35]. Ciucci et al. have investigated a 
variety of machine learning tools to deconvolute the DRT and to predict 
the EIS values at unmeasured frequencies [38,36,39–42]. One such 
method is known as Gaussian process (GP) regression, which is a 
computationally cheap, nonparametric Bayesian framework for model
ling stochastic processes [43,44]. However, GP regression of the DRT 
has two drawbacks, i) only the imaginary part of the impedance can be 
predicted, and ii) positivity of the DRT is not obeyed [41]. Moreover, 
they provide less realistic uncertainties when physical systems satisfy 
inequality constraints such as linear inequalities, gradient inequalities or 
convex inequalities [45,46]. To overcome these issues, we follow the 
works of Maradesa et al. by implementing Gaussian processes with 
inequality constraints, otherwise known as finite Gaussian process (fGP) 
regression [42]. 

2. Theory 

2.1. Distribution of Relaxation Times 

EIS describes polarisation behaviour as a complex transfer function 
Z(ω) = Z′(ω) + iZ′′(ω) [47,48,7]. The DRT problem looks at taking a 
Fourier transform of the linear Fredholm integral of the first kind, to 
analyse at the same data in the time domain (Derivation in SI)[49] 

ZDRT(γ,ω) = R∞ +

∫ ∞

− ∞

γ(lnτ)
1 + iωτ dlnτ, (3)  

where γ(lnτ) represents the non-negative distribution function, and 
∫

(1 + iωτ)− 1dlnτ represents the functional-space kernel [35]. γ(lnτ) is 
approximated as a sum of radial basis functions (RBF), ψk(lnτ), centred 
around the timescale τk and can be given in the weight-space view [50] 

γ(lnτ) =
∑K

k=1
xkψk(lnτ), (4)  

where xk are unknown scalars to be computed numerically, and ψk(lnτ)
is often a radial basis function kernel [51]. Note that Eq. 4 is the Fred
holm integral of the second kind if R∞ is allowed to vary. By combining 
Eq. 3 and 4 the DRT is computed numerically, as such, the DRT integral 

must be discretised yielding the finite sum, and separated into real and 
imaginary parts and can be given in the functional-space view 
[36,39,50] 

ZDRT(γ,ωn) = R∞ +
∑K

k=1
xk

(∫ ∞

− ∞

ψk(lnτ)
1 + (ωnτ)2 dlnτ − i

∫ ∞

− ∞

ωnτψk(lnτ)
1 + (ωnτ)2 dlnτ

)

,

(5)  

where 1⩽n⩽N is the total number of experimental measurements. The 
optimisation problem in general is ill-posed, meaning there are an 
infinite number of solutions which satisfy Eq. 5 [37]. Consequently, 
regularisation is required to make the solution physically meaningful 
[35]. The most popular method is Tikhonov regularisation, where the 
optimisation problem forces the distribution to smooth [52–55,48,36]. 
The problem ZDRT(ω) = R∞1 + A′ x + iA′ ′x can be solved with respect to 
x by minimising the loss function, S(x), by means of regularisation 

S(x) = ||Ω′

(Z′

exp − R∞1 − A′x)||22+||Ω′ ′

(Z′ ′

exp − A′ ′ x)||22− λP(x), (6)  

where Zexp is the experimental impedance data, ‖ζ‖p
q :=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑I

i=1(ζ)
q
i

p
√

,Ω′

and Ω′ ′ are weighted factors (kept at unity for this study), λ is the reg
ularisation parameter and ||Lmx||22 is the regularisation term with Lm a 
suitable differentiation matrix [40,39,36,37,41]. 

2.2. Bayesian Inference 

In Bayesian statistics, the probability represents the degree of belief 
in an event, rather than the relative frequency with which the event 
occurs [37,56–58]. Before data are introduced to the model we express 
our belief about the coefficients through a prior probability distribution, 
known as the prior, π(γ|ξ). The prior beliefs are then updated based on 
the data obtained to yield the posterior distribution, π(γ|Zexp, ξ), where 
we have used the notation given by Ciucci et al. such that ξ = logf =

− logτ, and where the full data-set is ξ = [ξ1,…, ξK]
T [59]. Updating the 

probability of a hypothesis as more evidence becomes available using 
Bayes’ Theorem is the essence of Bayesian inference. In the context of 
the DRT problem, Bayes’ Theorem states [37] 

π(γ|Zexp, ξ) =
π(Zexp|γ, ξ)π(γ|ξ)

π(Zexp|ξ)
, (7)  

where the likelihood, π(Zexp|γ,ξ), quantifies how well the model fits the 
data and the evidence (or marginal likelihood), π(Zexp|ξ), is a normal
izing constant that is independent of the coefficients x. It is possible to 
interpret optimisation problems from the Bayesian perspective as an 
expression of a prior belief about the inverse function. In order to derive 
the ordinary least squares loss function S(x) = ||Ω(Zexp − ZDRT(x))||22we 
assume that the measured impedance is the sum of the model impedance 
and the error term 

Zexp = ZDRT + ε, (8)  

where ε ∼ N (0, σ2
nI) is a normal distribution. As such, the magnitude of 

the regularization may be taken to correspond to the ”expected error” of 
the fit [50]. 

2.3. Finite Gaussian Processes Distribution of Relaxation Times 

Gaussian processes (GPs) are a nonparametric Bayesian framework 
for modelling stochastic processes [43,44]. To maintain positivity of the 
DRT solution, we follow the works of Maradesa et al. by implementing 
Gaussian processes with inequality constraints [42]. Note that in this 
derivation we neglect contributions from inductive effects where 
Z′ ′ > 0. To handle the conditional distribution incorporating both 
interpolation conditions and inequality constraints, Maatouk et al. pro
posed using a finite-dimensional approximation of Gaussian processes 
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[45,42] 

γK(ξ) =
∑K

k=1
γ(ξk)Ψk(ξ), (9)  

where Ψ = (Ψ0,…,ΨK)
T is a vector of piecewise (or hat) basis functions 

[60] 

Ψk(ξ) =

⎧
⎨

⎩

1 −
|ξ − ξk|

Δ
if |ξ − ξk| < Δ

0 otherwise.
(10)  

Using the model proposed by Maatouk et al. means that the conditional 
GP is reduced to simulating the Gaussian vector γ(ξ) within the the space 
of bounded functions described by a convex set [45]. The coefficients xk 
are drawn from an independent, identically distributed Gaussian prob
ability distributions, giving the Gaussian prior, π(γ|ξ) ∼ N (0,K), where 
K is defined in the SI and depends on σ2

f , the variance of weights, xk. 
This leads to a distribution of DRT estimators, known as a Gaussian 
process (GP) 

γ(ξ) ∼ GP (m(ξ), k(ξ, ξ′)), (11)  

where m(ξ) is the mean and k(ξ, ξ′) is the kernel (full derivation in SI) 
[61]. The smoothest kernel is the Radial Basis Function kernel (RBF), 
also known as a square exponential kernel [62,63,61] 

k(ξ, ξ′) = σ2
f exp

(

−
1

2l2‖ξ − ξ′‖2
)

, (12)  

where σf determines the average distance between your function and the 
mean, and l determines the length of the ”wiggles” of the function, both 
are hyperparameters [57]. If we now take a vector of function values 
such that [γ(ξ1), γ(ξ2),…, γ(ξK))] =: γ(ξ) we arrive at normal distribution 
function 

γ(ξ) ∼ N (0,K), (13)  

where K is shorthand for the Gram matrix k(ξ, ξ) of dimension K × K 
with ijth entry k(ξj, ξj) (otherwise known as the kernel matrix) 
[62,63,61,43]. The DRT is an inversion of the real data, and therefore it 
is not possible to condition the GP to the ”true” DRT, as in the nature of 
the ill-posed problem. GPs are closed under linear transformations, 
therefore ZDRT is also a GP [64] 

ZDRT(ξ) = L
′

γ(ξ) + iL
′ ′

γ(ξ), (14)  

where L
′

and L
′ ′

are the real and imaginary operators, respectively 
(defined in SI) [42]. Eq. 8 can be modified to account for random errors 
for both real and imaginary impedance [42] 

Zexp =

(
Z’exp
Z’’exp

)

=

(
1 L

’

0 L
’’

)(
R∞
γk

)

+ ε = L x + ε, (15)  

where x ∼ N (0,Γ) and Γ = diag(σ2
R,K) and K is the kernel Gram matrix. 

We now have all hyperparamaters defined Θ = [σn, σR, σf , l]T. A key 
utility of using GPs to model stochastic processes is the ability to make 
predictions on an unconditioned location, or a test set of K discrete 
points, using the joint distribution (covariance terms are derived in SI) 
[42] 

π

⎛

⎝Zexp, x

⎞

⎠ ∼ N

⎛

⎝ 0,

⎛

⎝L ΓL
T
+ σ2

nI ΓL

ΓL
T Γ

⎞

⎠

⎞

⎠. (16)  

Regression to determine the unmeasured output variables requires a 
conditional distribution. We can now condition x on Zexp with positivity 
constaintans [0,∞] we get a truncated multi-normal distribution 
[65,66,56,57] 

π
(

x|ξ, ξ,Zexp

)
= TN

(
μx|Zexp

,Σx|Zexp
, 0,∞

)
, (17)  

where the mean and covariance for the test function are [61,67] 

μx|Zexp
= ΓL

T(
L ΓL

T
+ σ2

nI
)− 1Zexp (18)  

and 

Σx|Zexp
= Γ − ΓL

T(
L ΓL

T
+ σ2

nI
)− 1

L Γ. (19)  

Empirical Bayesian approaches such as maximising the marginal like
lihood allow us to use continuous optimisation [56]. The marginal 
likelihood π(Zexp|ξ,Θ), or evidence, implicitly integrates over all possible 
function values at unconditioned locations, and is calculated as the in
tegral over the likelihood and prior [67]. This integration can be 
computationally expensive and therefore avoided in other Bayesian 
methods such as maximum likelihood estimation and maximum a pos
teriori estimation [44]. However, the advantage of using GPs is that the 
marginal likelihood can be integrated relatively easily [68,57,45]. The 
marginal likelihood allows us to compute models by balancing between 
the fit with the data and the complexity of the model [56]. The negative 
marginal log likelihood (NMLL) is illustrated in Fig. 1 [69,56,57,40,37]. 
The hyperparameters are then learned by minimising the NMLL via 
Hamiltonian Monte Carlo (HMC) sampling [70]. HMC is used rather 
than the standard Gibbs sampler[71] since it has shown to be more 
efficient in higher dimensions, whilst also reducing mixing time for the 
Markov chain Monte Carlo (MCMC) algorithm. [58,65]. Thus, making 
hyperparameter selection more robust. With the optimised hyper
parameters it is then possible to calculate the mean and covariance of 
the inversion. 

3. Results and Discussion 

By conditioning the fGP model onto experimental data we observe an 
excellent fit to both the real and imaginary data, illustrated in Fig. 2a 
and b, respectively. Experimental EIS data was collected from a (Ni/ 
CGO—CGO—YSZ—Reference Cathode) solid-oxide fuel cell in a gas 
mixture of 0.5 bar H2:0.5 bar H2O and at a temperature of 600 ◦C. By 
varying the current density, the impedance of the low-frequency process 
was modulated. We note that due to commercial sensitivity the ticks 
labels for the impedance have been censored. Since the fGP model al
lows us to use both parts of the complex transfer function, we can also 
illustrate the inversion results in the form of a Nyquist plot in Fig. 2c. 
Here we see that the convoluted high-frequency process is symmetric 
and appears consistent with the experimental data. The DRT in Fig. 2d 
shows four distinct peaks, combined with a 95% credibility interval. The 
convoluted peak in 2d has a slight asymmetry which is unexpected given 
the RC character of the convoluted transfer function in Fig. 2c. The DRT 
peak centred at 10− 5s represents the medium-frequency process in 
Fig. 2c. Characterising the processes responsible for these DRT features 
is outside the scope of this study. We believe that the relatively small 
peak escorting the large low-frequency process is caused by charge 
transport in the electrode, and is analogous to the asymmetry of the low- 
frequency arc displayed in the Nyquist plot. Finally, we have assigned 
the large low-frequency DRT peak centered around 10− 2Hz to the gen
eral charge transfer reaction at the electrode-gas interface. Importantly, 
the non-negativity constraint has been satisfied making the DRT physi
cally meaningful. 

When a net current is drawn/applied an overpotential is generated. 
In this work the fuel cell has been driven to current densities between 
+600 mA (fuel cell mode) and -600 mA (electrolysis mode), as illus
trated in Fig. 2e and f, respectively. Additionally, the low frequency 
process of the calculated DRT at negative and positive current densities 
is displayed in Fig. 2g and h, respectively. For both positive and negative 
current densities, all other DRT peaks are invariant as a function of 
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overpotential. However, the large low-frequency process appears to be 
significantly dependent on the magnitude of the overpotential. We 
assign this process to the collection of electrode processes generally 
described by the transmission-line-type model [13]. We note in the 
transmission-line-type model, the lowest frequency process becomes 
more pronounced from the distribution of escorting peaks when the 
charge transfer resistance is significantly higher than the transport re
sistances [13]. This is observed in the Nyquist plot, where for increasing 
negative current densities, the charge transfer resistance is increased 
(Fig. 2e), where the transmission-line-type model appears to resemble 
an RC (or RQ) element. By integrating the area under the DRT peak 
using a Gaussian curve, we determined the resistance of the process. 

Using Ohm’s law, V = IR, we calculated the overpotential as a function 
of current density, displayed as a Tafel plot in Fig. 2i. Tafel plots are key 
to understanding the physics governing charge transfer reactions for 
electrochemical systems [11,8]. At high current densities the Ohmic 
resistance of the electrolyte phase often becomes limiting. However, the 
electrolyte layers in these commercial SOFC cells are very thin and 
therefore we do not observe significant transport limitations. 

The characteristic relaxation time is calculated as the resistance 
multiplied by the capacitance, τ = R⋅C. For the low frequency electrode 
process, the chemical capacitance of the bulk phase is dependant on the 
relationship between defect concentration and the oxygen partial pres
sure (derived in SI), where the gradient ∂logCchem/∂logpO2 = − 0.25 has 

Fig. 1. Visualisation of the Gaussian process distribution of relaxation times optimisation using EIS data (N data points). a, Marginal log likelihood with the 
covariance matrix Γ is a K + 1 × K + 1 matrix (plus one accounts for the additional hyperparameter σ2

R). b, hyperparameter optimisation procedure via Hamlitonian 
Monte Carlo. c, solution to the GP mean. 

Fig. 2. Experimental EIS data and fGP model for the (a) Real and (b) imaginary impedance as a function of measurement frequency, and (c) Nyquist plot where the 
red dots and solid black line represent the experimental observation and the model fitting, respectively. d, DRT calculated from the posterior, where the solid black 
line and the grey filled region represent the mean of the posterior and the 95% confidence interval, respectively. e-f, illustrate the EIS at negative and positive current 
densities, respectively, where the arrow represents the increasing absolute current density going from top to bottom. g-h, illustrate the DRT of the low frequency 
process for negative and positive current densities, respectively. i, Tafel plot illustrating the absolute current density as a function of overpotential for the low 
frequency process. j, capacitance of the Ni/CGO electrode in a full cell with varying polarisation to control the pO2,eff where black and red circles represent the 
observed and corrected capacitance, respectively. All measurements on the Ni/CGO electrode in full cell configuration are 0.5 bar H2, 0.5 bar H2O, 600 ◦C. 
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been reported for CGO electrodes using electrochemical and thermog
ravimetric methods [72,13,73,74]. The capacitance as a function of 
overpotential is displayed in Fig. 2j, where the relationship between the 
”effective oxygen partial pressure” and overpotential is pO2,eff =

pO2 exp(4eη/kBT) [72]. The black circles in Fig. 2j represent the total 
capacitance extracted directly from the DRT calculation, which is the 
sum of the chemical capacitance (Cchem) of the CGO bulk and interfacial 
capacitance (Cint) of the double layer at the CGO-gas interface, Ctotal =

Cchem + Cint. The interfacial capacitance is a manifestation of the high 
defect concentration stored in the first few atomic layers from the CGO 
surface [75–77]. Following the derivation of the interfacial capacitance 
given in the SI, it is possible to correct the total capacitance to yield the 
chemical capacitance of the bulk of the CGO phase shown, illustrated by 
the red circles in Fig. 2j. The apparent gradient ∂logCchem/∂logpO2 = −

0.25 was determined to be equal to the expected theoretical value 
[75,72]. This demonstrates that over the full range of current densities, 
the process responsible for the low frequency DRT peak is consistent, as 
mass transport limitation would constrain the timescale and would not 
give the characteristic ∂logCchem/∂logpO2 = − 0.25 relationship. 

Overall, the application of the finite Gasussian process algorithm to 
find the solution to the DRT problem for SOFC test cell data appears to 
be satisfactory. The signature for bulk chemical capacitance (∂logCchem/

∂logpO2 = − 0.25) was realised, and the truncated data set was able to 
undergo the mathematical inversion by learning the distribution func
tion, something which is not possible using maximum a posteriori esti
mation. It must be noted that the low-frequency arc displayed in Fig. 2c 
is tilted, and it is therefore not ideal to use a series of parallel RC ele
ments to carry out the inversion. A more appropriate model would 
include Warburg or Gerischer elements to better capture the physical 
processes as shown by Fu et al., where the low-frequency arc corre
sponding to oxygen electrocatalysis at SOFC cathodes was conclusively 
shown to be a Gerischer type element[78]. Effendy et al. has demon
strated the use of different circuits with random parameter distributions 
in a meta-optimisation study known as gEIS [35]. Future development of 
DRT problem solving should therefore endeavour to unify the robust 
advantages of Gaussian process regression with more physically mean
ingful models as introduced by Effendy et al.. 

The fGP-DRT model developed by Maradesa et al. is an improvement 
on the maximum a posteriori estimation (Tikhonov regularization) 
method which is frequently used for carrying out mathematical trans
formation of electrochemcial data [42] The key advantages of using the 
fGP-DRT formalism is the ability to condition the model to truncated 
data-sets, automatic and unbiased optimisation, and the absence of a 
prior which penalizes sharp gradients in the DRT, meaning that peaks are 
not broadened by regularisation and instead display the inherent dis
tribution of time-sales related to the process of origin. These features 
novel to the fGP-DRT model mean that mathematical transformations 
carried out on electrochemical systems (batteries, fuel cells) with pro
cesses of similar timescales can be separated and characterised, without 
prior speculation of the system, with a higher level of precision than 
equivalent circuit modelling or DRT using Tikhonov regularization. 

4. Conclusion 

Gaussian process regression under inequality constraints was used to 
calculate the DRT of Ni/CGO electrodes as part of a full SOFC stack. This 
method of mathematical inversion allowed us to avoid using ad-hoc 
regularisation methods by optimising the kernel hyperparameters 
through maximising the evidence. By learning the constrained DRT 
function we successfully convoluted the truncated experimental EIS data 
and separated four electrochemical processes according to their time
scales. The largest of the resistances we assigned to the low-frequency 
charge transfer process at the electrode-gas interface. When a net cur
rent was drawn/applied, the low-frequency DRT peak changed in 
timescales and resistance, while all other processes remained invariant. 

The change in resistance was reported in the Tafel plot which displayed 
asymmetry between positive and negative overpotentials, and can be 
utilised to characterise the physics of charge transfer at the electrode-gas 
interface. The total capacitance was reported as a function of effective 
oxygen partial pressure. The bulk chemical capacitance was determined 
by removing the interfacial capacitance from the total capacitance, 
yielding a relationship ∂logCchem/∂logpO2 = − 0.25 which was found to 
agree with previous experimental reports. 
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8. Symbols used 

(see Table 1) 

Table 1 
Symbols used  

j Current density [A/cm− 2] 
kB Boltzmann constant [eV/K] 
pj Normalised gas partial pressure of species j [bar] 
Z Impedance vector [Ω] 
V Voltage [V] 
R Resistance [Ω] 
N Normal distribution 
D Finite data set 
k Gaussian kernel 
K Kernel matrix 
l Length scale of the squared-exponential kernel 
I Identity matrix 
X Random variable 
τ Relaxation time [s] 

γ(logτ) Distribution of relaxation times [Ω] 
x Distribution of relaxation times vector 

Δ(⋅) Perturbation relative to the equilibrium 
π Probability distribution 
η Overpotential [V] 
φ Phase lag 
λ Regularisation parameter 
Σ Covariance matrix 
Θ Hyperparameters 
σn Standard deviation of the random error 
σf Variance of the squared-exponential kernel 
σR Standard deviation of the resistance Relaxation 
μ Mean vector 

Ψk(logτ) Hat basis function 
γk(logτ) Finite approximation of the DRT [Ω] 

L Linear operator matrix 
GP (GP ) Gaussian process 

fGP Gaussian process under inequality constraints 
DRT Distribution of relaxation times 
Pdf Probability distribution function 
RBF Radial basis function 
K Covariance matrix  
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A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig, Journal of Physical Chemistry 
C 120 (2016) 1461–1471. 

[17] K. Yamaji, N. Sakai, M. Ishikawa, H. Yokokawa, M. Dokiya, Ionics 3 (1997) 67–74. 
[18] H. Yokokawaa, T. Kawadab, Solid State Ionics 2738 (1996) 1259–1266. 
[19] N. Sakai, K. Yamaji, T. Horita, H. Kishimoto, Y.P. Xiong, H. Yokokawa, Solid State 

Ionics 175 (2004) 387–391. 
[20] M. Brown, S. Primdahl, M. Mogensen, Journal of The Electrochemical Society 147 

(2000) 475. 
[21] S.P. Jiang, S.P.S. Badwal, Journal of The Electrochemical Society 144 (1997) 3777. 
[22] H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M.E. Brito, Y.P. Xiong, H. Kishimoto, 

Solid State Ionics 174 (2004) 205–221. 
[23] A. Bieberle, L.J. Gauckler, Solid State Ionics 135 (2000) 337–345. 
[24] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, 

Solid State Ionics 177 (2006) 1941–1948. 
[25] W.G. Bessler, S. Gewies, M. Vogler, Electrochimica Acta 53 (2007) 1782–1800. 
[26] S. Primdahl, M. Mogensen, Journal of The Electrochemical Society 144 (1997) 

3409–3419. 
[27] J.H. Nam, D.H. Jeon, Electrochimica Acta 51 (2006) 3446–3460. 
[28] A. Schmid, J. Fleig, Journal of The Electrochemical Society 166 (2019) 831–846. 
[29] R. Schmitt, J. Spring, R. Korobko, J.L.M. Rupp, ACS Nano 11 (2017) 8881–8891. 

[30] J. Fleig, Physical Chemistry Chemical Physics 7 (2005) 2027–2037. 
[31] D. Fraggedakis, M.Z. Bazant, Journal of Chemical Physics (2020) 152. 
[32] P. Bai, M.Z. Bazant, Nature Communications 5 (2014) 1–7. 
[33] R.B. Smith, M.Z. Bazant, Journal of The Electrochemical Society 164 (2017) 

3291–3310. 
[34] M. Riegraf, R. Costa, G. Schiller, K.A. Friedrich, S. Dierickx, A. Weber, Journal of 

The Electrochemical Society 166 (2019) 865. 
[35] S. Effendy, J. Song, M.Z. Bazant, Journal of The Electrochemical Society 167 

(2020) 106508. 
[36] F. Ciucci, C. Chen, Electrochimica Acta 167 (2015) 439–454. 
[37] J. Huang, M. Papac, R. O’Hayre, Electrochimica Acta 367 (2021) 137493. 
[38] F. Ciucci, W.C. Chueh, D.G. Goodwin, S.M. Haile, Physical Chemistry Chemical 

Physics 13 (2011) 2121–2135. 
[39] F. Ciucci, Current Opinion in Electrochemistry 13 (2019) 132–139. 
[40] F. Ciucci, Journal of The Electrochemical Society 167 (2020) 126503. 
[41] J. Liu, F. Ciucci, Electrochimica Acta 331 (2020) 135316. 
[42] A. Maradesa, B. Py, E. Quattrocchi, F. Ciucci, Electrochimica Acta 413 (2022) 

140119. 
[43] M.K. Titsias, N.D. Lawrence, Analytical Methods 8 (2016) 7762–7766. 
[44] C.E. Rasmussen, C.K. Williams, Gaussian processes for machine learning, MIT 

Press, 2006. 
[45] H. Maatouk, X. Bay, Mathematical Geosciences 49 (2017) 557–582. 
[46] Da Veiga, S.; Marrel, A. Gaussian process modeling with inequality constraints. 
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