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Abstract

Magnitude homology was introduced by Hepworth and Willerton in the case of graphs, and
was later extended by Leinster and Shulman to metric spaces and enriched categories. Here
we introduce the dual theory, magnitude cohomology. which we equip with the structure of
an associative unital graded ring. Our first main result is a ‘recovery theorem’ showing that
the magnitude cohomology ring of a finite metric space completely determines the space
itself. The magnitude cohomology ring is non-commutative in general, for example when
applied to finite metric spaces, but in some settings it is commutative, for example when
applied to ordinary categories. Our second main result explains this situation by proving that
the magnitude cohomology ring of an enriched category is graded-commutative whenever
the enriching category is cartesian. We end the paper by giving complete computations of
magnitude cohomology rings for several large classes of graphs.

Keywords Magnitude - Categorification - Enriched categories - Metric spaces

Mathematics Subject Classification Primary 55N35; Secondary 18F99 - 18D20 - 51F99

1 Introduction

1.1 Overview

In this paper we introduce and investigate magnitude cohomology of generalised metric
spaces and enriched categories. Our theory is dual, in the same sense as singular homology
and cohomology, to the theory of magnitude homology introduced by Hepworth and Willer-
ton [7] and later extended by Leinster and Shulman [13]. As in the singular case, we find that
the introduction of cohomology adds strength and structure to the whole theory. We show
that the magnitude cohomology groups form a unital associative graded ring, which is non-
commutative in many cases. We prove a recovery theorem which shows that the magnitude
cohomology of a large class of metric spaces (including finite metric spaces and arbitrary
directed graphs) completely determines the metric space in question. Moving to the context
of enriched categories, we prove that the magnitude cohomology ring of an enriched category
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3618 R. Hepworth

is graded-commutative so long as the enriching category is cartesian. Finally, specialising to
undirected graphs, we give complete computations of the magnitude cohomology ring for
diagonal graphs and for odd cyclic graphs, and we establish a connection between magnitude
cohomology and the quiver algebra of a graph.

1.2 Background and motivation

Leinster’s theory of magnitude is a mechanism that associates numerical invariants to mathe-
matical objects of various kinds. In greatest generality it is an invariant of enriched categories.
The power of this theory is that different choices of enriching category take us into different
regions of mathematics, with notions of magnitude for posets, categories, graphs, metric
spaces and more, and that the resulting invariants are meaningful and interesting in many of
these settings. In the case of finite posets the magnitude is precisely the Euler characteristic of
the order complex. For finite categories the magnitude encompasses the Euler characteristic
of the classifying space and the cardinality of groupoids, but is defined more generally. In
the case of graphs the magnitude is a formal power series with many attractive properties,
such as product and inclusion—exclusion formulas, and invariance under certain Whitney
twists. The magnitude of finite metric spaces is a cardinality-like invariant, described as the
‘effective number of points’, that first arose as a measurement of biological diversity [15].
Perhaps more importantly, the magnitude of finite metric spaces can be extended to compact
metric spaces. In this setting the magnitude is known to encode geometric information, such
as the volume and perimeter of domains in odd-dimensional Euclidean space [4], although it
remains rather mysterious and difficult to compute. We refer the reader to [10] for magnitude
of ordinary categories and posets, [11] for enriched categories and metric spaces, and [12]
for graphs.

Magnitude homology was first introduced by the author and Willerton [7] in the setting of
graphs, and it categorifies the magnitude in exactly the same sense that Khovanov homology
categorifies the Jones polynomial. Leinster and Shulman later extended magnitude homol-
ogy to categories enriched in a semicartesian category [13], they showed that it determines
the magnitude in favourable circumstances, and they specialised the definition to obtain the
magnitude homology of metric spaces. Magnitude homology has shown itself to be an impor-
tant extension and refinement of magnitude, with many characteristic features of homology
theories and categorification:

e Magnitude homology of graphs has properties (such as Kiinneth and Mayer—Vietoris
theorems) that categorify and explain properties of magnitude (such as the product rule
and inclusion—exclusion formula) [7].

e The phenomenon of alternating coefficients in the magnitude of certain graphs was
explained by the notion of diagonal graphs in [7,Section 7].

e Graphs (and therefore metric spaces) with the same magnitude can have distinct magni-
tude homology groups. The first known example of such a pair is the 4 x 4 rook’s graph
and the Shrikhande graph, and is due to Yuzhou Gu. See Appendix A of Gu’s paper [5]
and also the comments at the blogpost [17].

e Magnitude homology of graphs (and therefore metric spaces) can contain torsion, and in
particular magnitude homology is not determined by its ranks. The first example of this
was obtained by Kaneta and Yoshinaga in [9,Corollary 5.12].

e A metric space X is Menger convex if and only if its magnitude homology groups vanish
in (homological) degree 1 [13.Corollary 4.5].
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We would also like to mention recent work of Otter [14], which establishes a connection
between magnitude homology and topology. Otter introduces blurred magnitude homology
of metric spaces, a persistent version of the theory, and shows that a certain inverse limit of
the blurred magnitude homology produces the Vietoris homology. The latter is a homology
theory for metric spaces that coincides with singular homology in certain cases, for example
for compact Riemannian manifolds.

1.3 Metric spaces

Our first results are in the setting of generalised metric spaces [18, 19]. We introduce the
magnitude cohomology of a generalised metric space X, which is a bigraded abelian group
MHZ(X) consisting of groups MH’EF (X)wherek =0,1,2,...and £ € [0, 00). Itis equipped
with a product operation

MH) (X) @ MHY, (X) — MH] TS (X)

that gives it the structure of an associative unital ring. This ring structure is in general
noncommutative, as we show in Proposition 2.3. In Theorem 3.1 we give a ‘recovery theorem’
which shows that for a large class of metric spaces X, including all graphs and finite metric
spaces, the magnitude cohomology ring MH} (X)) is sufficient to determine X precisely. This
is in stark contrast to the situation for magnitude homology, or for magnitude cohomology
without the ring structure, where for example any two trees with the same number of vertices
have isomorphic magnitude homology.

1.4 Enriched categories

The next part of the paper deals with magnitude cohomology of enriched categories. For
this we fix a symmetric monoidal semicartesian category ) and a strong monoidal functor
¥ :V — Ainto aclosed symmetric monoidal abelian category .A. In this situation Leinster
and Shulman defined the magnitude homology H::(X ) of a V-category X [13]. We define
the dual theory, the magnitude cohomology H3.(X) of a V-category X, and we equip it with
a product

H{(X) ® HE(X) — BT (X)

and unit 1 4 — H):O(X) that make it into an associative unital graded ring in A. By choosing
appropriate V, A and X, we obtain magnitude cohomology rings for posets, small categories,
and generalised metric spaces, and we show that these respectively recover the cohomology
of the order complex with the cup product, the cohomology of the classifying space with the
cup product, and the magnitude cohomology ring respectively. Note that in the first two cases
the product is graded-commutative, but in the third case it is not. In Theorem 5.7 we explain
this phenomenon by showing that in general, when the enriching category V is cartesian, the
magnitude cohomology ring is graded-commutative. The enriching categories for posets and
small categories are cartesian, while the enriching category for generalised metric spaces is
not.
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3620 R. Hepworth

1.5 Graphs

Finally we specialise to finite graphs, and we give complete computations of the magnitude
cohomology ring for several classes of graphs. The magnitude cohomology rings in question
are all highly nontrivial, but nevertheless they all admit nice presentations.

In Theorem 6.2 we identify the diagonal part of the magnitude cohomology ring, given
by the groups MHﬁ(G), as a quotient of the path algebra of the quiver obtained from G by
doubling the edges. In [7,Section 7] we introduced diagonal graphs, which are graphs whose
magnitude homology (and therefore cohomology) is concentrated on this diagonal, and we
identified various large classes of diagonal graphs. Work of Gu [5] has added to the known
examples. Theorem 6.2 therefore gives a complete description of the magnitude cohomology
ring of any diagonal graph, and we make this description explicit in the case of trees, complete
graphs, and complete bipartite graphs.

In Theorem 7.1 we give an explicit presentation of the magnitude cohomology rings of
the odd cyclic graphs (which are not diagonal). This is based on Gu’s computation of the
magnitude homology of odd cyclic graphs given in Theorem 4.6 of [5].

1.6 Organisation of the paper

The paper is organised as follows. In Sect. 2 we define the magnitude cohomology of metric
spaces, together with its ring structure, and we relate it to magnitude. In Sect. 3 we state and
prove our recovery theorem. In Sect. 4 we give a brief exposition of Leinster and Shulman’s
theory of magnitude homology of enriched categories. Then in Sect. 5 we define magnitude
cohomology of enriched categories, we define its ring structure, and we prove that it is
commutative when the enriching category is cartesian. In Sect. 6 we explore the case of finite
graphs, we express the diagonal part of magnitude cohomology as a quotient of the path
algebra of the associated quiver, and we compute the magnitude cohomology ring for several
classes of diagonal graphs. In Sect. 7 we compute the magnitude cohomology ring of odd
cyclic graphs.

1.7 Acknowledgements

Thanks to Simon Willerton for some useful comments, and to Tom Leinster for explaining
the connection between dagger categories and symmetry in generalised metric spaces.

2 Magnitude cohomology of metric spaces

In this section we recall the magnitude homology of generalised metric spaces, and we then
define their magnitude cohomology and equip it with the structure of a graded associative
unital ring. We show that this ring is typically not graded commutative, and we show how to
recover the magnitude from the magnitude cohomology.

We work with generalised metric spaces in the sense of Lawvere [18, 19]. Recall that a
generalised metric space, or extended pseudo-quasi-metric space, is defined in the same way
as a metric space, except that the metric takes values in [0, 00] (extended), distances between
distinct points may be 0 (pseudo), and the distance from a to b need not equal the distance
from b to a (quasi). Generalised metric spaces are the same thing as categories enriched in
|0, o0]. The objects of the enriched category correspond to the points of the space, and the
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morphism object X(a, b) € [0, c0] corresponds to the distance from a to b. We will work
with generalised metric spaces where possible, restricting to extended quasi-metric spaces
where necessary.

Definition 2.1 (Magnitude homology) We recall the definition of magnitude homology from
sections 2 and 3 of [7] (for graphs) and section 3 of [13] (for arbitrary metric spaces).

Let X be a generalised metric space. A k-simplex or just simplex in X isatuple (xp, ..., x)
of elements of X in which consecutive entries are distinct, i.e. xo # x; # --- # x;. The
degree of the simplex (xgp, ..., x;) is k, and its length is

Exg,....xx) =d(xp, x1) 4+ - +d(xp_1, xg)-

The magnitude chain complex of X, denoted MC, . (X), is the chain complex of R-graded
abelian groups defined as follows. The k-chains in degree £, denoted MCy ¢(X), is defined
to be the free abelian group on the simplices of degree k and length £:

MCk,¢(X) =Z{(xo, cax) € X (xo, o x) =€ xo F X FE #xa-}
The differential
d: MCy 1(X) — MCy_1,1(X)
is defined by
9= =0y +dy— -+ (=D
where

3 (x X)) = (X0, -y Xiy oo k) i d(Xit, Xig1) = d(xio1, xi) + d(xi, Xig1),

e [ otherwise.

The magnitude homology MHy (X) of X is the homology of the magnitude chain complex:
MH, ¢ (X) = Hx(MCy ¢ (X)).

Note that in [13] MHy ¢(X) is denoted by Hy ¢(X). If f: X — Y is a map of generalised
metric spaces that does not increase distances, i.e. dy(f(x), f(x")) < dx(x,x") for all
x,x" € X, then the induced chain map

Je: MGy (X)) — MC, (V)

is defined by

Salxo. ...,

otherwise.

) — |(f(xo), coes JO)) I E(f(x0), ..., fxk)) = €(x0, -+, Xk)
k) = 0

The induced map in homology is the map
Jet MH, 4 (X) — MH, (YY)
obtained from fz.

We now define magnitude cohomology by dualising the above definition and equipping
it with a product structure.
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3622 R. Hepworth

Definition 2.2 (Magnitude cohomology) Let X be a generalised metric space. The magnitude
cochain complex of X is the dual to the magnitude chain complex:

MC;(X) = Hom(MC, ¢(X), Z).

The magnitude cohomology of X, denoted MH}(X), is the cohomology of the magnitude
cochains:

MH;(X) = H*(MCj(X)).

If f: X — Y is anon-increasing map of generalised metric spaces, then the dual of f gives
the induced cochain map

F#MCH(X) — MCE(Y)
and the induced map in cohomology
f*: MH(X) — MHX(Y).
Given ¢ € MC}!(X) and ¢ € MC}2(X), the product ¢ - € MCy' T2 (X) is defined on
(X0, - .-, Xk 4ky) € MCy1ky.0,4¢, (X) by
(@ - Y)(X0, -\ Xkyky) = @ (X053 Xky) W Xk - o Xk +ky)

if the lengths are compatible in the sense that £(xq, ..., xg ) = €1 and €(xg,, . .., Xp 4k) =
£7, and by

(¢ - ¥)(x0,.... Xk, 44,) =0
otherwise. The unit u < MCS(X ) is the cochain defined by the rule
u(xp) =1

for every O-simplex (xg). The reader may readily verify that the product is strictly associative
and unital, with unit «, and that it satisfies the Leibniz rule

-y =g- Y+ (=DM 0"y.
Consequently, there is an induced product on magnitude cohomology

k k ky+ks
MHE.:(X) ® MHé(X} — MHE:ifi(X)’ e@Pr—a-p
that makes MHJ(X) into a unital, associative bigraded ring with unit 1 = [u] € MHg(X}.
We refer to MH (X), equipped with the product, as the magnitude cohomology ring. The
assignment X — MH}(X). f + f* is a contravariant functor from the category of metric
spaces and non-increasing maps into the category of unital associative bigraded rings.

Our definition of the product on magnitude cohomology is similar to the definition of the
cup-product in singular cohomology. Compare Definition 2.2 with Section 3.2 of [6], say.
But in fact we know of no direct relationship between the two, and moreover we will see an
important difference in the next proposition.

Recall from [13] that elements x, y in a generalised metric space are adjacent it d(x, y) is
nonzero and finite and d(x, y) = d(x,a)+d(a,y) = a = x ora = y. Observe that any
graph with at least one edge, and any finite metric space with at least two points, contains at
least one adjacent pair.
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Proposition 2.3 Suppose that X is an extended quasi-metric space containing an adjacent
pair (x, y). Then MHL(X) is not graded-commutative.

Proof The proof of [13,Theorem 4.3] (compare with [7,Proposition 2.9]) can be dualised to
show that if (x, y) is an adjacent pair in X, then there is a cocycle gy € MC"ﬂx v)(X) defined
by )

Lif (x, ) = (x. y),

! .
Pry(x,y) = { 0 otherwise,

and that the cohomology classes ayy = [@xy] for (x, y) adjacent form a basis of MH,:‘(X).
Note that the proof of Theorem 4.3 of [13] is stated only for metric spaces, but that the proof
extends to the extended quasi-metric case without change. Given such an adjacent pair (x, v),
one may check that (x, y, x) € MC3 g4(x,y)+d(y,x)(X) is a cycle, and that

(axy - ayx, [(x, y,x)]) =1, (@yx - ayy, [(x, y,x)]) =0,
so that ayy - dyy and ayy - ayy are not equal up to any choice of sign. Here (—, —) denotes
the Kronecker pairing between homology and cohomology; see Remark 2.5 below. O

Just as magnitude homology is a categorification of the magnitude of graphs and metric
spaces (see [7, Theorem 2.8] and [13, Theorem 3.5]), the same is true of magnitude coho-
mology. To see this, we use the version of the magnitude from [13] that takes values in the
field Q((qR)) of Novikov series. For details on this we refer the reader to [13], in particular
Definition 3.1, Theorem 3.2, and the discussion that precedes them.

Theorem 2.4 Let X be a finite quasi-metric space. Then

o0
#X =Y (=DF - rank(MH (X)) - ¢,
£20 k=0
where each sum over k is finite, and the infinite sum over £ converges in the topology of

Qg®).

Proof Theorem 3.5 of [13] gives the same result but with rank(MHg ¢(X)) in place of
rank(MH’g (X)). That the two ranks are equal follows from the universal coefficient sequence
of Remark 2.5 below, together with the fact that Ext(MHg_¢(X), Z) is finite since MHy ¢ (X)
is finitely generated. O

We end this section with some remarks.

Remark 2.5 (The universal coefficient sequence) Magnitude homology and cohomology are
related by a universal coefficient sequence:

0 — Ext(MHj_; ¢(X).Z) — MHE(X) — Hom(MH; ¢(X),Z) — 0 (1)

It is natural in X, and split, but not naturally split. See Theorem 3.2 of [6]. The sec-
ond nontrivial arrow in this sequence determines a Kronecker pairing that we denote
(—. —): MHE(X) @ MH; ¢(X) — Z.

Remark 2.6 (The two gradings) Magnitude homology MH,. ..(X) and cohomology MH (X)
each have two gradings, which we usually specify as MH; ,(X) and MH’E?(X). The first
grading k € N is the homological or cohomological grading, and it comes from the grading
on the underlying chain and cochain complexes. The second grading £ € [0, 00) is the
length or distance grading, and arises because the length of simplices is not changed by the
differential.
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Remark 2.7 (Coefficients) We could have defined magnitude homology and cohomology
with coefficients in an abelian group A by the rules

MH; ¢ (X; A) = Hi(MC, ¢(X) ® A),  MH{(X: A) = H*(Hom(MC, ((X). A))

to much the same effect as the use of coefficients in singular homology. For the sake of
simplicity we have chosen not to do so.

Remark 2.8 (Involutions) The magnitude homology and cohomology of an extended pseudo-

metric space can be equipped with an involution given on simplices by (xp, ..., x¢)
(—l)k H (xg, - .., xp). This makes the magnitude cohomology into a bigraded unital asso-

ciative ring with involution. We have chosen not to investigate this structure here.

A key assumption for the involution to be defined is that the metric space must be sym-
metric. Now, a generalised metric space is symmetric if and only if it has the structure of a
dagger-[0, oo]-category. (A dagger-V-category is a V-category C equipped with an involutive
V-functor {: C°P — C that is the identity on objects.) So dagger-V-categories may be an
appropriate setting to which to extend the involution defined above.

3 The recovery theorem

In this section we prove a ‘recovery’ theorem showing that, for a large class of extended
quasi-metric spaces, the magnitude cohomology ring of the space determines the space itself
up to isometry. In particular, if two such spaces have isomorphic magnitude cohomology rings
then the spaces themselves are isometric. This holds in particular for finite metric spaces and
for directed graphs.

Theorem 3.1 (Recovery theorem) Let X be an extended quasi-metric space for which
inf{d(a.b) | a,b € X, a # b} is positive. Then X is determined up to isometry by the
magnitude cohomology ring MHZX(X). In particular, if X and X' are two such spaces, and
MHZX(X) = MHZ(X') as bigraded rings, then X and X' are isometric.

The precise method by which X is recovered from MH}(X) will be spelled out in
Remark 3.8 below. In a finite extended quasi-metric space the nonzero distances have a
nonzero minimum, and so we obtain:

Corollary 3.2 If X is a finite quasi-metric space, then X is determined up to isometry by its
magnitude cohomology ring MHZE(X).

A directed graph determines an extended quasi-metric space in which all distances are
at least 1 via the shortest path metric, and this metric in turn determines the graph up to
isomorphism. Thus Theorem 3.1 gives us:

Corollary 3.3 A directed graph G is determined up to isomorphism by its magnitude coho-
mology ring MH}(G).

The results just presented are in extreme contrast with the situation for magnitude homol-
ogy, or for magnitude cohomology without the ring structure. For example, any two trees
with the same number of vertices have isomorphic magnitude homology and cohomology
groups [7, Corollary 6.8].

The following example shows that it is impossible to extend Corollary 3.2 to arbitrary
metric spaces.
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Example 3.4 Kaneta and Yoshinaga [9, Corollary 5.3] and Jubin [8, Corollary 7.3] have
independently shown that if X is a convex subset of Euclidean space, then MHy ;(X) = 0
except when kK = £ = 0. The same conclusion therefore holds for magnitude cohomology,
so that MH}(X) is zero in all bidegrees except for MHS(X) =~ 7X. Thus the magnitude
cohomology ring of convex subsets of Euclidean space determines only the cardinality of
the underlying set X, and cannot recover the metric on X.

We now move on to the proof of Theorem 3.1. To obtain the recovery result it is in fact
enough to look in homological degrees k = 0, 1, and so we begin by determining MH(X)
in these degrees. This is based on the homological results in [13, Section 4]. Recall that a pair
x,y € X is adjacent if d(x, y) is nonzero and finite, and d(x, y) = d(x,a) + d(a,y) —
a = xora = y. We write Adj(X, £) for the set of ordered pairs (x, v) in X such that x, y
are adjacent and d(x, y) = £. Given a set A, we will write Z* for the abelian group of all
functions A — Z under pointwise addition.

Proposition 3.5 Let X be an extended quasi-metric space. Then MH?(X )=0if¢ =0, and
there are natural isomorphisms:

MH)(X) = 7Z¥ 2

MH}(X) = ZAIX.0 €)
The isomorphism (2) is an isomorphism of rings, where ZX is equipped with pointwise
multiplication. And the isomorphism (3) identifies the MHS(X )-bimodule MH é(X ) with the
ZX -bimodule ZAX-0 determined by the rule

(f-m-g)x,y) = flx)m(x, y)g(y)

for f.g € ZX and m e ZA4IGD,
Proof The isomorphisms (2) and (3) are obtained by dualising the proofs of Theorems 4.1
and 4.3 of [13]. (Those results were only stated in the metric case, but extend to the extended
quasi-metric case without change.) In addition this shows that f € ZX corresponds to the
cohomology class of the element ¢y € MCS(X) defined by ¢ (xg) = f(xo) for each 0-

simplex (xo), and that m € ZAUX.D corresponds to the cohomology class of the element
¥m € MC}(X) defined by

) m(x,y) if (x, y) adjacent,
¥m(x,y) = ! 0 otherwise.

We compute
(@ - @o)(x) = @r(x) - ge(x) = flx)g(x)
sothat ¢ s - 9, = ¢ . And we compute
(@5 - Vm - @e)(x,y) = @r(x) - Y (x,¥) - 0o (¥) = fx)m(x, y)g(x)

so that @ - Yy - ¢ = ¥ r.m-p. The induced relations on cohomology classes prove that our
isomorphisms respect the multiplicative structures as described. O

Proposition 3.6 The magnitude cohomology ring MH} (X) of an extended quasi-metric space
X determines the underlying set X up to bijection, together with the adjacent pairs in X and
the distances between them.
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Proof Given x € X, let 8, € Z* denote the function with value 1 on x and 0 on all other
elements of X. Then the primitive idempotents of Z* are precisely the elements §,. Given
x,y € X andm € ZAXD we have

_ Jmx,y)if (a.b) = (x,y),
(Ox-m -3y)(a. b) = !0 if (@, b) # (x, y).

Note that the first possibility only occurs if (x, y) € Adj(X, €). Thus &, - ZAIXD . 5. is
nonzero if and only if (x, y) € Adj(X, £).

Thus, using the isomorphisms of Proposition 3.5, we see that the magnitude cohomology
ring of X determines X up to bijection as the set of primitive idempotents of MHg(X). And
given primitive idempotents e, [ € MHS(X), we have e - MH; (X)- f # 0if and only if
e, f correspond to elements that are adjacent and a distance £ apart. O

Lemma 3.7 Let X be an extended quasi-metric space for which infld(a, b) |a,b € X, a #
b} is positive. Then for any distinct a, b € X, d(a, b) is the minimum of the set

ld(xg, x1) + -+ +d(xp—1,x¢) | a =x0, b = x¢, Xj_1, x; adjacent fori =1, ... k}
if the set is nonempty, and d(a, b) = 00 otherwise.

Proof Leta, bbedistinct elements of X, and letus write A, ; for the set given in the statement.
Ifd(a, b) = oo then A, p is empty and the result follows. If d(a, b) is finite, then any element
of A, p is greater than or equal to d(a, b) by the triangle inequality. So it remains to show
that A,  is nonempty and contains d(a, b). To do this, we iteratively construct sequences
X0, X1, - - ., Xy with the following properties.

e a=xp,b=x.
e Consecutive entries are distinct.
o d(xg,x1)+---+d(xp_1,xx) =d(a,b).

We do this by starting with the sequence xop = a, x; = b. Given such a sequence, if its
consecutive entries are not all adjacent, then there is some pair x;_1, x; which is not adjacent.
‘We may then insert a new entry between x;_| and x; to obtain a longer sequence with the same
properties. The length k& of any such sequence is bounded above by d(a, b)/ inf{d(x,y) |
x,y € X, x # y}, and so this process must end with a sequence in which consecutive pairs
are adjacent. This sequence demonstrates that Ay y is nonempty and contains d(a, b), and
this completes the proof. O

Proof of Theorem 3.1 Lemma 3.7 shows that X is determined by the data of the underlying
set, the adjacent pairs, and the distances between them. And Proposition 3.6 shows that this
data is determined by the magnitude cohomology ring MHZ (X). O

Remark 3.8 We can now specify how to recover X from MH}(X) as in Theorem 3.1. Let X
denote the set of primitive idempotents of MH} (X). Fore € X we declare cf(e, e) = 0. Next,
fore, f € X, compute e - MH; (X) - f for each £. There is at most one value of £ for which
the resulting group is nonzero. If there is indeed such an £, then we declare ¢ and f to be
adjacent and set d(e, f) = €. Next, for each pair e, f that is not adjacent, we define d(e, )
to be the minimum of the set

{&(xo,x|)+---+¢§(xk_1,xk) | a =xp, b =xg, xj—1,x; adjacent fori =1, ...k}

if the set is nonempty, and we set d (a, b) = oo otherwise. Then d is an extended quasi-metric
on X, and (X, d) is isometric to (X, d).
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4 Magnitude homology of enriched categories

In this brief section we recall Leinster and Shulman’s definition of magnitude homology
of enriched categories [13], and we spell out the details in the case of posets, categories,
and generalised metric spaces. This is intended to motivate and facilitate the introduction of
magnitude cohomology in the following section, but we also hope that it will give readers
who are not familiar with [13] a quick way into the subject. Of course, we heartily recommend
the original treatment, namely section 5 of [13].

Let V be a symmetric monoidal category, let A be a closed symmetric monoidal abelian
category, and let £: V — A be a strong symmetric monoidal functor. We assume that V is
semicartesian, meaning that the unit object 1y is terminal.

Definition 4.1 (Magnitude homology) Given a V-category X, the magnitude nerve of X is
the simplicial object B.E (X) in A defined by

BF(X)= P TX(x0,x1) @+ @ TX(xe_1, %)

X0y oo Xk

where the sum is over all tuples xp, . . ., x; of objects of X. The inner face maps dy., ..., dg_;
are defined using monoidality of ¥ and composition in X, and have the effect of replacing
two adjacent factors £ X (x;_j, x;) ® XX (x;, x;+1) with asingle factor Z X (x;_1, x;+1). The
outer face maps dp and dy are defined using terminality of 1y and monoidality of X, and
have the effect of erasing the first and last factors £ X (xgp, x1) and £ X (x4_1, xi) respectively.
The degeneracy maps s; are defined using the identity maps of X and monoidality of X, and
have the effect of inserting a factor X X (x;, x;) between X X (x;_1, x;) and L X (x;, xj41).
We leave it to the reader to write out the simplicial structure maps in detail for themselves,
or to unpack them from Remark 5.11 of [13] if they wish.

The magnitude chain complex CE (X) of X is defined to be the chain complex C,((B.E (X))
of BX(X). Thus

CFX) = @ =X(x0,x1) @~ @ TX(xp—1, Xk)

X0y-eea Xk

and
3: CF(X) — CE (X))

is defined by 8 = dyp —dy +--- + (—1)*d;. The normalized magnitude chain complex
NX(X) of X is the normalised chain complex N.(BZ (X)) of BE(X). This is the quotient
of C*(BP(X )) by the subcomplex generated by the images of the degeneracy maps. We
refer the reader to sections 8.2 and 8.3 of [16]. The magnitude homology HE (X)of X is
the homology of the magnitude chains of X, or equivalently the homology of the normalised
magnitude chains of X:

HF(X) = H (CE(X)) = Hi(NE(X)).

Remark 4.2 1In [13] the complex CE(X} is denoted by N‘Tlhéf (X), while N;E (X) is denoted
by MCZ (X).

Example 4.3 (Posets) Let V be the category 2, with objects t and £ for ‘true’ and ‘false’
respectively, with a single morphism £ — t besides the identities, and with @ given by
conjunction, i.e. logical ‘and’. Thus 1, = t. WedefineX: 2 — Abby X(t) = Z, Z(f) =0,
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with monoidal structure in which the maps 1 4p — Z(12) and £(£) ® £(t) — Z(t) are the
identity and multiplication maps Z — Z and Z ® 7Z — Z respectively. A skeletal category
X enriched in 2 is nothing other than a poset: the objects of X are the elements, and x < y if
and only if X (x, y) = t. Let X be a poset, regarded as a skeletal 2-category. We will describe
B.E (X). Observe that there is an isomorphism

EX(x0,x1) @ -+ @ LX(xp—1, Xg) = {f gtt):::)riise =

given by the product Z® — 7. Thus BE(X) = Zi{xp = --- = xi}, and one can check
that the face and degeneracy maps are given by erasing elements and inserting equalities,
respectively. Thus NE(X) = Zlxp < --- = xi}, with boundary map given by the usual
alternating sum of faces. In other words NE(X) is precisely the simplicial chain complex of
the order complex |X| of X, and

HZE(X) = H«(|X)).

Example 4.4 (Categories) Let V = Set be the category of sets. A category enriched in Set is
nothing other than a category. Let A = Ab, and let £ : Set — Ab be the free abelian group
functor with its evident monoidal structure. Thus if X is a category and x, y are objects, then
X X(x, y) is the free abelian group on the morphisms f: x — y. Consequently, there is an
isomorphism

BEX)= @ =X(0.x1)® - @ TX(xk_1, )

X0y Xk

i)Z{X@LA] £> ---ixk}:ZNk(X)

where N, (X) denotes the simplicial nerve of X. Unwinding the definition of the face and
degeneracy maps shows that BP (X)) is precisely the free abelian group on N, X. Thus CE (X)
is the simplicial chains on N,(X), or equivalently, the simplicial chains on the classifying
space BX, and so we have

HE(X) = H.(BX).

Example 4.5 Now let us take V = [0, 00], so that a category enriched in V is a generalised
metric space. (See the introduction to Sect. 2.) Let us take A = []p Ab, the category of R-
graded abelian groups, equipped with the symmetric monoidal structure given by (A® B); =
®j+k=f A j®By.Now we define X : [0, 00] — A tobe the functor whichsends £ € [0, o0]to
a copy of Z concentrated in degree £, and which necessarily sends all non-identity morphisms
in [0, 00] to the zero map. We equip X with the symmetric monoidal structure under which
Z(j) ® Z(k) — X(j + k) is given in degree j + k by the multiplication map Z ® Z — Z,
and under which 1 4 — Z(0) is given in degree 0 by the identity map Z — Z.

Now if X is a generalised metric space, then £ X (x0, x1) ®- - - @ X X (xg—1, xx) is the ten-
sor product of k copies of Z, concentrated in degrees d (xp, X1), - .., d(xg_1, X ) respectively.
This is canonically isomorphic, under the multiplication map, to a single copy of Z concen-
trated in degree £(xq, ..., xz). If we write the generator of this copy of Z as (xq, ..., xg),
then we find that

BE(X) = Z{(x0. ..., Xx) | X0..... % € X},
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where the right-hand-side is interpreted as an R-graded abelian group in the evident way.
The reader may now be able to verify that the face map d; is given by

(X04 oo Xioenoy X)) iTE(X0y .. XGy ooy X)) = £(X0, - -0 Xk)s
0 otherwise

di(xp, ..., x;) = |
and that the degeneracy map s; is given by

S;'(Xo,...,xk):(l'{] ...... X, ;,x;,...,xk).

Thus the image of s; consists of tuples whose i-th entry is repeated, and so the span of the
images of these degeneracy maps is exactly the span of the tuples which have at least one
repeated consecutive entry. Dividing out by this span, we see that the normalised magnitude
chains NE(X) are precisely the magnitude chains of X as defined in Sect. 2,

NF(X) = MC, . (X)
and consequently

HE(X) = MH,_,(X).

5 Magnitude cohomology of enriched categories

In this section we will define the magnitude cohomology ring of an enriched category, and
we will give examples showing that this recovers the cohomology ring of the order complex
of a poset, the cohomology ring of the classifying space of a category, and the magnitude
cohomology ring of a metric space. Finally we prove that when the enriching category is
cartesian, the magnitude cohomology ring is graded-commutative. This explains the commu-
tativity of the first two examples above, since the underlying categories V = 2 (for posets)
and V = Set (for categories) are both cartesian, while V = [0, c¢] (for generalised metric
spaces) is not.

Throughout this section we fix a semicartesian symmetric monoidal category V, a closed
symmetric monoidal abelian category .4, and a strong symmetric monoidal functor £: V —
A. We write 1 4 for the unit object of A, and we write [—, —] for hom-objects in A.

Definition 5.1 (Magnitude cohomology of enriched categories) Let X be a V-category. The
magnitude cochain complex C3.(X) of X is the cochain complex in .4 obtained by setting

CL(X) = [CF(X), 141,

with the induced differential 8* = [0, | 4]. The normalized magnitude cochain complex
N3.(X) of X is defined by

N$(X) = [NF(X), 141

with 3* = [8, 1 4]. The magnitude cohomology Hg.(X) is defined to be the cohomology of
the magnitude cochains, or equivalently of the normalized magnitude cochains:

HE(X) = H*(CL(X)) Z H*(NL(X)).
Definition 5.2 (The coproduct and counit) Let X be a }V-category. We define the coproduct

A: CE(X) — CE(X)® CE(X)

@ Springer



3630 R. Hepworth

to be the sum of the maps
A Cr (X)) = CH(X)®Cr(X)

that send the xp, ..., xp14 summand into the product of the xg, ..., xp and xp, ..., Xpyy
summands by the evident map from

X (X0, X1) ® -+ ® TX(Xpsg—1» Xpig)
to
(EX(x0, x1) @ -+ @ EX(xp_1,%p)) ® (EX(Xp, Xp31) ® -+ @ TX(Xpyg—1,Xp1g)) -
It is a chain map. We further define the counit map

£: CE(X) — lcny,

to be the map that is given by O in positive degrees and in degree 0 by the map Cg: (X) = 1cha.
®xo 1 4 — 1 4 thatisthe identity on each summand. Again, this is a chain map. Furthermore,
the coproduct and counit both reduce to maps on the normalized magnitude chains, that we
also call the coproduct and counit

A: NE(X) — NE(X)@ NE(X), e: NE(X) = lcn,-
These maps make CE(X ) and NE (X) into coassociative, counital differential graded coal-

gebras in A.

Definition 5.3 (The magnitude cohomology ring) The maps A and ¢ induce dual maps
i CEX) ® CE(X) — CE(X), 1t leny — CE(X)

defined by u = [A,14] and n = [, 1 4] making C5,(X) into an associative, unital dg-
algebra in the abelian category A. They induce maps of the same name in homology

p: HE(X) @ HE(X) — HE(X), n: 14— HE(X)

and these make HJ (X) into an associative unital graded algebra in A. The same definitions
can be carried out using the normalized chains, and produce the same structure on Hy (X).

Example 5.4 (Magnitude cohomology rings of posets) Following on from Example 4.3, and
using the isomorphism NE (X) = Z{xg < --- < x;} established there, one finds that NE(X)
is the Z-dual to N,:; (X), i.e. the usual simplicial cochains on the order complex | X |, together
with the product defined by the formula (£ - n)(xg < -+ < xx) = &(xp < -+ < x)(x; <

- < x;) for & € NL(X) and n € N§(X). This is again the standard definition of
the cochain-level cup-product on |X|. Thus we have an isomorphism of graded associative
algebras

Hg(X) = H*(1X]).
Note that the algebra on the right-hand-side is graded commutative.

Example 5.5 (Magnitude cohomology rings of categories) Following on from Example 4.4,
and using the identification of B.): (X)) with the free abelian group on the simplicial nerve,
ZLN,(X), we find that C. (X) is the simplicial cochain complex of N,(X), or equivalently the
simplicial cochain complex of the classifying space B X. Moreover, unwinding the definition
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of the product shows that it again coincides with the usual definition of the cochain-level cup
product, so that

Hs(X) = H*(BX)
as associative graded unital rings. Note again that the right hand side is graded commutative.

Example 5.6 (Magnitude cohomology rings of metric spaces) Following on from Exam-
ple 4.5, and using the identification N,E(X) = MC,; «(X) obtained there, one immediately
obtains Ny.(X) = MCj(X). Recall that the isomorphism NE(X} = MCy «(X) identifies the
generator | ® ---®@ 1 € X (xp, x1) ®--- ® XX (x5_1, x¢) with the simplex (xg, ..., xg).
Thus the map A of Definition 5.2, after translating it to a coproduct on N,E (X), is the map
that sends (xg, ..., x;) to Zfzo(xo, ey Xi) ® (xi, ..., xg). It now follows that the induced
product on MCJ(X) is precisely the one defined in Definition 2.2. Thus

Hy(X) = MHL(X)
is an isomorphism of rings.

Observe that in the first two examples above, the magnitude cohomology rings were
graded-commutative, but that in the third they were not. They key difference here is that
in the first two cases the enriching categories }V = 2 and V = Set are cartesian, while
V = [0, 0] is not. The remainder of this section is given to the proof of the following
theorem. Along the way, we will see an explicit connection between our product and the
Alexander-Whitney map in the cartesian case.

Theorem 5.7 Suppose that the enriching category V is cartesian, and let X be a V-category.
Then H; (X) is graded commutative.

We now work towards the proof of this theorem. Since V is cartesian, each object A of V
admits a diagonal 6,: A — A ® A, and this is natural in A. Now, for each object A of V,
we obtain a diagonal §x4: XA — XA ® X A, defined as the composite

T(A) 2 T(A®A) = TA® DA

This map dx 4 is natural and additive. Moreover, it commutes with the braiding, in the sense

that the diagram

ZA®EA— > EA®ZA

commutes, where 7 denotes the braiding of A.

We now construct a diagonal map 8 : B.E (X) — B.E (X)® B:; (X). This map sends the
summand corresponding to xp, ..., x; into the product of the summands corresponding to
the same sequence:

ZX(x0.X1)® - @ X (X1, Xg) —>
(ZX(x0,x1) @--- @ EX(xp—1, %)) R (ZX(x0,x1) @ --- @ TX(Xp—1, Xx))

It does so by using the diagonal map dxx(x; , ;) for each factor, and then reshuffling the
factors. The map ép is indeed simplicial, and it again commutes with the braiding. (The ver-
ification that § g is simplicial is a straightforward but lengthy diagram chase. The verification
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can be broken into cases, one for each tuple xp, ..., x; and each face or degeneracy map
originating in the corresponding summand of BkE (X). And in each case, the resulting square
can be shown to commute by using the definitions of the morphisms involved, together with
basic properties of V, A and Z.)

Now recall the Alexander-Whitney map. Given an abelian category .A, and simplicial
objects U and V in A, the Alexander-Whitney map AW : Cx(U ® V) — Cx(U) ® Cx(V)
is defined in degree k to be the sum of the maps

(dpy1o---odi)@(dpo---0dp): Ct(URV)=Ur @ Vik — Up @ Vg =Cp(U)® Cy(V)

for p + g = k. It is natural, and the square

CU V)N C V) @ Cu(V)

C*(r)l lr

Ca(Val) v Ci(V) @ Cu(U)

commutes up to chain homotopy, where T denotes the braiding maps. (We prove the last
claim using the classical papers [2] and [3] of Eilenberg-MacLane: The Eilenberg-Zilber
map V: Co(U) ® Cye(V) — Co(U ® V) defined in [2,(5.3)] is a chain homotopy inverse
to AW by [3,Theorem 2.1], and the Eilenberg-Zilber map V commutes with the braiding
[2,Theorem 5.2], so that AW commutes with the braiding up to chain homotopy. The proofs
in Eilenberg-MacLane are only stated in the case A = Ab. However, all maps involved
are FD-operators [2,§3], or in other words Z-linear combinations of maps induced by maps
B:1pl — lgl. and all verifications take place within the group of FD-operators, so that all
definitions and verifications can be transported directly to the setting of an arbitrary A.)

Lemma 5.8 The composite
CZ(X) =C.(BF (X))
S0 €.(BE(X) ® BE(X))
2 C(BE(X)) ® CL(BE(X))
=CE(X)® CE(X).

is the chain level coproduct A.

Proof Let us work in degree k = 0. The domain of the map is the direct sum over sequences
Xg, - - . , Xg of the objects

ZX(x0.x1) Q- @ EX (xp—1, Xk).

And the codomain of the map is the direct sum over pairs of sequences xp, ..., Xp, Vp, ..., Yk
of the objects

(ZX(x0, X)) ®---® EX(xp—ls-xp)) @ (ZXp, yp+1) @+ ® EX(_"R—I:)’A‘))-

Restricting to the xp, . .., x; summand of the domain, AW o C,dp is the sumover p+qg =k
of the maps

((dps10--0d) ®(doo---odp))odp
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which land in the xg, ..., xp, xp, ..., x; summand of the codomain. It therefore remains to
show that this composite is precisely the ‘rebracketing’ map appearing in the definition of
A. This is a tedious but routine verification that we leave to the reader. O

Corollary 5.9 IfV is cartesian then the chain level coproduct map A is cocommutative up to
chain homotopy, and the cochain level product map (. is commutative up to chain homotopy.

Proof The claim about A follows from Lemma 5.8 together with the fact that § 3 commutes
with the braiding and that AW commutes with the braiding up to chain homotopy. And the
claim about p follows from that about A. O

Theorem 5.7 now follows from the corollary by taking homology.

6 Magnitude cohomology of finite graphs

We now restrict our attention to finite (undirected) graphs, which we regard as extended metric
spaces by equipping their vertex sets with the shortest-path metric. Since all distances in a
graph are integers, the magnitude cohomology groups MH’E (G)ofagraph G are concentrated
in bidegrees where k and ¢ are both non-negative integers.

The author and Willerton in [7, Section 7] identified an important class of graphs called
diagonal graphs. These are graphs whose magnitude homology is concentrated on the diag-
onal, i.e. MH; y(G) = 0 whenever k # £. The magnitude of a diagonal graph is the power
series ;. o(—1 ). rank(MHy ¢(G)) - qf, so that its coefficients alternate in sign, and indeed
all known cases of graphs whose magnitude has alternating coefficients are in fact diagonal.
Moreover, the magnitude of a diagonal graph also determines the magnitude homology up
to isomorphism. We showed in [7] that diagonality is preserved under cartesian products
and projecting decompositions, and that any join of graphs is diagonal, so that examples of
diagonal graphs include complete graphs, discrete graphs, trees, and complete multipartite
graphs. Gu [5] has shown that the icosahedral graph is diagonal, and that all pawful graphs
(a class which includes all joins but contains more examples) are diagonal.

In this section we give a complete description of the diagonal part of the magnitude
cohomology ring of a finite graph G, by which we mean the graded subring consisting of the
groups MHﬁ (G) for k = 0, and we use it to give a complete description of the magnitude
cohomology rings of any diagonal graph, which we then make explicit in several examples.
Our results relate the magnitude cohomology of a graph to the path algebra of the associated
quiver.

Definition 6.1 (Path algebra of a graph) Let G be a graph. An edge path in G is a sequence
Xg - -~ xg of vertices of G such that each pair x;_;, x; span an edge. Sequences of length
k = 0 are allowed. The path algebra of G is the Z-algebra with basis the edge paths in G,
and multiplication is given by concatenation, where possible:

(x0---xk) - (Yo -~ 1) = {3“ eyt = o 4)
Thus the path algebra of G is the path algebra of the quiver obtained from G by doubling each
edge to give two oriented edges, one in each direction. (See [1,section 1] for the definition of
quivers and their path algebras. We have defined our path algebras over Z, but it seems that
path algebras of quivers are usually defined as k-algebras for a field £.) We make the path
algebra into a graded algebra using path-length.
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Theorem 6.2 (The diagonal part of the magnitude cohomology) Let G be a finite graph. Then
the diagonal part of MH}(G), by which we mean the graded subring consisting of the groups
MH’E (G), is isomorphic to the quotient of the path algebra of G by the relations

Z xyz=0 (5)

ViX=<y=<I

for each pair of vertices x, z with d(x, z) = 2. The symbol x < y < z indicates that the sum
is taken over all y for whichd(x,y) =d(y,z) = 1.

A diagonal graph has torsion-free magnitude homology concentrated in the groups
MH; £ (G). (See the proof of Proposition 7.2 of [7].) The universal coefficient theorem
of Remark 2.5 then guarantees that the magnitude cohomology of G is torsion-free and
concentrated in the groups MHﬁ (G). Thus we obtain the following.

Corollary 6.3 If G is a diagonal graph, then MH(G) is exactly isomorphic to the quotient
of the path algebra described in Theorem 6.2.

Example 6.4 (Trees) Let T be a finite tree with n vertices. Then T is diagonal, and its magni-
tude homology was computed in [7,Corollary 6.8]. If x, z are vertices of T with d(x, z) = 2,
then there is a unique vertex y such thatd(x, y) = d(y, z) = 1, and it follows thatxy-yz =0
in MH%(T). The only edge paths that are not rendered O by this relation are the ones of the
form

abab - - -
e e’

(k+1) terms

fork = 0 and d(a, b) = 1, and these elements form a basis of MH (7). This is dual to the
description of MH, +(7T") given in [7].

Example 6.5 (Complete graphs) In Example 2.5 of [7] it was shown that the complete graph
K, on n vertices is diagonal. We may therefore apply Corollary 6.3. Any sequence of vertices
in K, is an edge path, and there are no pairs x, y withd(x, y) = 2, so MH(K,) is precisely
the algebra with basis given by all finite sequences of vertices of K, with product given by
concatenation (4).

Example 6.6 (Complete bipartite graphs) The complete bipartite graph K on two nonempty
sets X and Y is the join of the graphs with X and ¥ as vertex sets and no edges. It is diagonal
by Theorem 7.5 of [7], and Corollary 6.3 therefore applies. The path algebra of K has basis
given by the finite sequences in X U Y alternating between elements of X and elements of
Y, and MH}(K) is the quotient of this by the relations

ZXD’X:J.ZO, Z)’IX_VIZ:O

yeY xeX

for every pair of distinct elements x;,x, € X and y;, y2 € Y.
Example 6.7 (The icosahedral graph) Let G denote the graph obtained by taking the 1-

skeleton of the icosahedron. Theorem 4.5 of [5] shows that G is diagonal, so that we may
apply Corollary 6.3. The result is that MH}(G) is the path algebra of G modulo the ideal
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generated by the ‘diamond moves’ xyz = —xy'z whenever x, y, ¥', z form a diamond whose
points are x and z:

Proof of Theorem 6.2 The magnitude chain group MCy ¢(G) has basis given by the k-
simplices (xg, ..., xx) of length £. We equip the magnitude cochain group MC’E (G) with
the dual basis, denoting the dual to (xp, ..., xx) by (xg. ..., xx)". Restricting our attention
to the following part of the magnitude cochain complex,

MCE1(G) 25 Mck(G) L5 mckH (6)

we see that MCfJrl (G) = Obecause any simplex of degree (k+ 1) has length £ = (k4 1), that
MCﬁ (G) has basis given by the (xo, . .., xx)" in which each pair xj_1, x; spans an edge, and
that MCf_1 (G) has basis given by the (xo, ..., x;_1, Xj+1, ..., xx)" whereeach x;_y, x; is
an edge and where d(x;_1, xj4+1) = 2. One can check that the boundary map is determined
by the rule

(X0, . Xi 1, Xig 1y 20) = (=1) > (x0, ..., xx)" (6)

XD X =X =Xy

where, again, the symbol x;_; < x; < x;4; indicates that d(x;_;, x;) = d(x;, xj41) = 1.
Thus MHﬁ(G) is the quotient of the Z-module with basis the dual simplices (xg, ..., x)*
in which each x;_y, x; is an edge, by the right-hand-sides of the equations (6).

Now, we let A, denote the quotient of the path algebra of G by the relations (5).
Then Ay is the Z-module with basis the edge paths xg - - - x¢, modulo, for each sequence

X0y -5 Xi—1sXi+1 - - -, Xx in which consecutive entries are edges except thatd (x;_, x;41) =
. i i k i i

2, the relation Z-"r'?x{—l'("r'*-"r'-hl Xg - - * xg. Thus, the map .Ak — MHk(G): Xg oo Xg >

[(x0, - .-, xk)*] is an isomorphism of Z-modules. It remains to show that it is a map of

graded rings, but that is evident from the formula

Syt ifxg =y

(X0, oy Xk Vs - -
ok * -
(0, -+, x)" - (yo, - - 1) {0 otherwise

which is easily verified. O

7 The magnitude cohomology of odd cyclic graphs

In this section we give an extended example: the magnitude cohomology ring of the cyclic
graph C, with an odd number of vertices n = (2m + 1) = 5. The case of C; = K and
C3 = K3 is covered in Example 6.5 above. Our computation of the magnitude cohomology
ring is based on Gu’s computation of the magnitude homology groups given in section 4.4
of [5].
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Theorem 7.1 Letn = 2m + 1 where m = 2, and let C,, denote the cyclic graph on n vertices.
Then the magnitude cohomology ring MH}(C,) is the bigraded associative ring with the
following presentation. The generators are:

e ¢, € MHg(Cn)far vertices x of Cp.
® dyy € MH! (Cp) for oriented edges xy of Cy,.
e by, € MH;, | ((Cy) for ordered pairs x, z withd(x,z) = m.

And the relations are:

e% = e, for every vertex x.

exey = 0 for distinct vertices x, y.

Ayy = €xdyy = dyy€y for every oriented edge xy.

by; = exby; = byze; forevery x, z withd(x, z) = m.

ayyay; = 0if xy and yz are oriented edges with x # z.

Ay byz = byyay; for every w, x, y, z in cyclic order with d(w, x) = 1, d(x,y) = m,

d(v,z) =1

e o o o & 0

byy

In order to prove the theorem we start by establishing notation. Fix a ‘clockwise’ direction
on the vertices of C,.

Definition 7.2 (Codes and admissible simplices)

e Given a vertex x of C, andi € {—m,...,0,....,m}, we let x 4+ i denote the vertex
obtained by moving |i| places from x, clockwise if i = 0, and anticlockwise if i < 0.
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e Given a simplex x = (xp, ..., Xx), we obtain a sequence i = (iy, ..., ix) with entries in
—m, ..., —1,1,...,m} defined by x; = x;_y + ;. We call i the code of x. Note that
the code of a O-simplex (xp) is the empty tuple ().
e A code is called admissible if, after dividing it into the maximal subsequences whose
entries all have the same sign, the subsequences all have one of the following forms for
some j = 0.

(I,m,1,m,...) (=1, —m,—1,—m...)

J entries J entries

Note that while these sequences begin with =1, they can end with £1 or £m, according
to whether j is odd or even.
e A simplex is admissible if its code is admissible.

Example 7.3 Thecodes (1,m, 1, —1,1,m)and (1, —1, 1, —1) are admissible, but (m, 1) and
(—1,—m, 1,1, m) are not.

Note7.4 Letx = (xg, ..., xx) be an admissible simplex with code i = (iy, ..., ig). Then x
has degree k and length £ = Z’j-:' lijl-

Theorem 7.5 (Gu [5]) The admissible simplices x are cycles in MC,. ..(C,), and their homol-
ogy classes | x| form a basis for MH, . (Cp).

This theorem will be crucial for our computations. It has been stated for our own purposes,
and does not appear explicitly in [5]. However, it can easily be extracted from the proof of
[5.Theorem 4.6], whose ‘unmatched simplices’ are exactly our admissible simplices, and
whose final paragraph states that these unmatched simplices form a basis for the homology.

Example 7.6 Let us explore this description in degrees 0, 1, 2.

o The 0-simplices (xg) are all admissible.

e Indegree 1 the admissible codes are (1) and (—1), so the admissible sequences are (x, y)
for x, y adjacent, or in other words the oriented edges.

e In degree 2 the admissible simplices are:

— (x, y, x), one for each oriented edge (x, y). They have length 2. The corresponding
codes are (1, —1) and (—1, 1).

— (x, v, z), one for each ordered pair (x, z) with d(x, z) = m, where y is determined
by the conditions d(x, y) = 1 and d(y, z) = m. They have length (m + 1). The
corresponding codes are (1, m) and (—1, —m).

Definition 7.7 The universal coefficient sequence of Remark 2.5 gives an isomorphism of
MHZ(C,) with the dual of MH, ..(C,), and so we obtain the basis of MH}(C,) dual to the
one of Theorem 7.5. Using this dual basis we define elements of MH}(C,,) as follows.

e For each vertex x, e, € MHS(CH) is the dual to [(x)] € MHg o(Cp).

e For each oriented edge (x, y), dyy € MH: (Cy) is the dual to [(x, y)] € MH| (Cy).

o Foreach pairx, z withd(x,z) =m, by, € MH,ZJH_I (Cp) denotes the dual to [(x, v, z)] €
MH3 jn+1(Cp). Here y is determined by the conditions d(x.y) = 1. d(y,z) = m as in

Example 7.6.

Lemma 7.8 The relations specified in Theorem 7.1 hold.
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Proof One can check that, under the isomorphism of Theorem 6.2, e, corresponds to the
path x and ayy to the path xy, and the theorem gives us the following relations:

e% = €y for every vertex x.

exey = 0 for distinct vertices x, y.
axy = exdxy = dxyey for every oriented edge xy.
ayyay; = 0if xy and yz are oriented edges with x # z.

We now prove the relation:
e by =eiby; = bye; forevery x, z withd(x, z) = m.

Let (ap, a1, az) be an admissible simplex. Then (ex - byy, [(ag, a1, a2)]) = (ex,[(ap)]) -
{(bxy, [(ao,a1,a2)]) as one sees by choosing cocycles representing ey and by;. For
(ap, aj, az) = (x, y, z) both factors evaluate to 1, and for any other choice of (ag, a;, az) the
second factor evaluates to 0, so that ey - by; = b,.. The other part of the relation is proved
similarly. Now we prove the final relation:

® ayxby; = byyay; for every w, x, y, z in cyclic order with d(w, x) = 1, d(x,y) = m,
d(v,z) =1

Let (xp, x1, x2, x3) be an admissible simplex. Then by choosing cocycles representing ay,, .
byz, byy and ay;, we see that

(@ux - bxz, [(x0, X1, X2, X3)]) = (@wx. [(x0, X1)1) - (bxz. [(xX1, X2, X3)])

and

(buy - ayz, [(x0, X1, X2, X3)]) = (Pwy. [(x0, X1, x2)]) - {@yz, [(x2, x3)])-
Notice that in each case the right hand side vanishes unless xp = w, x3 = z, and
£(xp,x1,x2,x3) = (m + 2). The only admissible 3-simplex with these properties is

(x0, X1, X2, x3) = (w, x,y, ), and so it suffices to show that the two right hand sides dis-
played coincide in this case. This follows from the fact that (ay.. [(w, x)1), {ayz, [(y, 2]},
(bwy. [(w, x, y)]) and (b, [(x, y, z)]) are all equal to 1. This is by definition in the first three
cases. In the final case, we note that (x, v, z) has code (m, 1), but that if we let y" denote the
vertex with d(x, y") = 1l and d(y', z) = m, then 3(x,y',y,2) = —(x,v,2) + (x,¥". 2) so
that [(x, ¥, 2)] = [(x, ", z)] and consequently (b, [(x, y, 2)]) = (bxz, [(x,y',2)]) = 1.So
both sides of our relation coincide when evaluated on any basis element of MH3 (5542)(Cy),
and this completes the proof. O

Definition 7.9 (Monomials from admissible tuples) Suppose given an admissible simplex x
with code (). (1), (—1). (1, m) or (—1, —m). Then we define p, € MH}(C,) to be the class
€xg» Axgx; OF Dy, dual to [x]. More generally, if x = (xp, ..., x¢) is an admissible simplex
with k = 0, then there is a unique way to decompose x into ‘pieces’

X :(-xios---sxh)s £2:(-x('|s"'sxf])s s £r:(xf,—_|s---sxf,-)s

with ip = 0 and i, = k, such that each piece has code (1), (—1), (1, m) or (—1, —m), and in
this case we define py = py -+ px, .

Example 7.10 An admissible simplex x = (xg, x1, X2, X3, X2, X3, x1) withcode (1, m, 1, —1,
1, m) breaks into pieces

(x0. x1,x2),  (x2,x3), (x3,x2), (x2,x3,x1)
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with codes

(lsm)s (])s (_l)s (]!m)

respectively, and so the corresponding monomial is py = Dyyx; Gxyxs xyxa Prax, -

Lemma 7.11 The relations of Theorem 7.1 imply that every monomial in the generators of
Theorem 7.1 is either 0, or has the form py for some admissible simplex x.

Proof Lemma 7.8 shows that the given relations among the generators hold. Using the rela-
tions involving the e,, we may ensure that our monomial is either 0, or a single ey, or that
the monomial consists entirely of @’s and b’s. Using the same relations again, we may ensure
that the second subscript of each term always coincides with the first subscript of the next
term, otherwise we obtain 0 once more. Let us say that ayy is clockwise if x, y are in clock-
wise order, and anticlockwise otherwise. And let us say that by; is clockwise if x, z are in
anticlockwise order, and anticlockwise otherwise. Now we factor our monomial p into the
maximal factors py, ..., p, where each p; has entries that are all either clockwise or anti-
clockwise. Our ‘clockwise’ conventions ensure that in each p;, any instance of an a term
preceding a b term is an instance of the left-hand-side of the final relation of Theorem 7.1.
We may therefore use that final relation to ensure that any a terms occur after any b terms. If
we find more than one a term, then p; = 0 and so p = 0. Otherwise, each p; now has form
px; for an appropriate x;, and consequently p = py where where x is obtained by combining
the x;. o

Lemma7.12 Let x and Y be admissible simplices. Then

lifx=y
Oifx#y
The py for x admissible form a basis of MH(Ch).

m@unzl

Proof Suppose x = y. Then, following the definition of the product and the construction of

Px» we find that (pl,_[ll} = H{pL., [x;1) where x,, ..., x, is the decomposition of x into
‘pieces’ as in Definition 7.9. And by definition, each (py,, [x;]) is equal to 1.
Suppose now that {pyx, [y]} # 0. We will show that x = y. Decompose x into xy, ..., x,

as in Definition 7.9, and decompose y in parallel with x, so that if the pieces for x are
X = Xigs o5 Xiy)y Xp = (Xijyev s Xig)s -on X, = (Xj,_ 5205 Xi ),

then those for y are

Y= Wigs s X)) ¥y = Oigs o5 Vig)s oo ¥, = Wiy -5 Vi )-
Each of the y, is still a cycle, and (px.[y]) = [[(px,.[y,]). so that each (Px;» IXJ-I} must
be nonzero, and in particular Xi; = Vi and Xi; = Vi If follows that Xi; = Vi for
j =0,...,r. The only way that x and y can now differ is that x and y may now have pieces

X; = (x;j_l,x,x;j) and 2}. = (xi;_| N ; xi;) with codes (1, m) and (m, 1) respectively, or
with codes (—1, —m) and (—m, —1) respectively. Let us suppose it is the positive case.
Consider the first instance of such a difference. Since y is admissible, the term preceding
(m, 1) in the code of y must be 1. The same must therefore be true of X, so that the code of
X contains a subsequence (1, 1, m). This is a contradiction, so that x and y must coincide. O
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Proof of Theorem 7.1 Let A denote the bigraded ring determined by the presentation in
Theorem 7.1. Definition 7.7 and Lemma 7.11 determine a well-defined homomorphism
h: A} — MHJ(C,). Definition 7.9 and Lemma 7.11 determine a spanning set (the p, for
x admissible) for A}, and Lemma 7.12 shows that /# sends this spanning set into a basis of
MHJ(C,). It follows that / is an isomorphism. O
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