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Abstract

Observed and projected consequences of climate change on streamflow generated in the
Pyrenees threatens the long-term sustainability of water resources systems downstream,
especially those with high irrigation demands. To tackle this challenge, the participation of
stakeholders in defining potential adaptation strategies is crucial to building awareness and
capacity for the community, providing agreed solutions, and reducing conflict. However,
there is also a need for a top-down approach to incorporate other, large-scale, or innovative
adaptation strategies. This article describes a bottom-up-meets-top-down approach to esti-
mate the optimal implementation intensity of adaptation strategies under different climate
scenarios on a complex water resources system. Future streamflow projections were used
in a water allocation model combined with a Markov Chain Monte Carlo sampling process
to obtain optimal combinations of measures to meet different sustainability objectives. The
methodology was applied to the Gillego-Cinca River system in NE Spain, which relies on
water from the Pyrenees. A stakeholder workshop identified storage development and irri-
gation modernisation as the preferred adaptation options. However, the modelling results
show that more storage in the basin, especially on-farm reservoirs, is not enough to main-
tain current sustainability levels. This will enable the adoption of demand management
measures that optimise water use despite not being among stakeholder preferences.
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1 Introduction

The importance of mountains for water resources is considerable in arid and semi-arid
regions (Viviroli et al. 2003). Being the second-largest basin in the Iberian Peninsula and
the Mediterranean Basin, the Ebro River Basin in northeast Spain has up to 70% of its
total annual streamflow generated on the mountainous Pyrenean headwater catchments.
Several studies assessed global change impacts on the Pyrenees’™ climate and hydrology,
either using observational data (Garcia-Ruiz et al. 2011; Begueria et al. 2003; Lépez-
Moreno et al. 2006; Lorenzo-Lacruz et al. 2012; Stahl et al. 2010; Giuntoli and Renard
2010; Le Treut 2013) or modelling (Lépez-Moreno et al. 2014; Quintana-Segui et al.
2016; Manzano 2009; Candela et al. 2012; Caballero et al. 2007). These studies identified
a decreasing trend of mean annual streamflow during the second half of the XX Century.
These observed changes could not be attributed only to the evolution of critical climate
variables (precipitation and temperature), as land use and land cover changes during this
period also affected streamflow generation. Besides, estimates considering future climate
change point to further streamflow reduction to c. 35% by the end of this century (Lépez-
Moreno et al. 2014; Manzano 2009; Candela et al. 2012; Caballero et al. 2007). Despite
this relative abundance of studies, the cascading impacts of these changes on the manage-
ment of the large water resources systems that depend on streamflow originated on the
Pyrenees remains largely unstudied.

Irrigated agriculture represents the largest consumption of water resources gener-
ated in the Pyrenees. In the water resources systems downstream of the Central Pyre-
nees of Spain, agriculture represents up to 98% of all water consumption, which is sup-
plied almost entirely from surface resources (CHE 2016). The transition from rainfed
to irrigated agriculture throughout the twentieth century represented a crucial economic
advance for the semi-arid regions of the middle Ebro River basin. Despite the favour-
able effects associated with modernisation (such as higher crop yields, diversification of
crops, and a general increase of the family incomes), it also resulted in the intensifica-
tion of irrigation and a reduction of return flows (Playdn and Mateos 2006; Lecina et al.
2010; Gonzalez-Cebollada 2015; Lopez-Moreno et al. 2020). The expected reduction of
water resources from the Pyrenees together with further irrigation modernisation inten-
tions can threaten the sustainability of the water resources systems downstream of the
Pyrenees and their associated irrigation systems in the long term if no additional meas-
ures are implemented.

Water managers, farmers, and policymakers acknowledge the threats of climate change and
have fostered adaptation strategies. To date, several projects are working on identifying sustain-
able practices for the agri-food industry and other economic sectors at the Pyrenees scale and
in the regions that depend on them. Some examples are Agroclima (https:/www.aragon.es/-/
proyecto-agroclima; DGA 2018a, b), OPCC-ADAPYR (https://opce-ctp.org/en/proyecto/opee-
adapyr), and PIRAGUA (https://opce-ctp.org/piragua). All these projects include a component
of citizen engagement and stakeholder participation. Fostering knowledge exchange and shared
learning through the engagement of stakeholders in the design of solutions and the decision-
making process can facilitate awareness and capacity building for the local community, contrib-
uting to effective action on climate change (Sabatier et al. 2005; Sheppard et al. 2011). Participa-
tory processes are also helpful in informing scientists, such as water resources modellers, thus
improving the decision-making processes (Newham et al. 2007; Andreu et al. 2009; Barreteau
et al. 2013; Knox et al. 2018). This is referred to as a ‘bottom-up” approach in decision-support
systems, as the modelling scenarios are built upon a portfolio of community-driven adaptation
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strategies. However, full-blown bottom-up approaches are often limited by: i) the narrow per-
spective of the local stakeholders that may downplay relevant long-term, global drivers that are
more difficult to recognise; and ii) the limited power and resources of local communities that may
hinder more ambitious and disrupting strategies (Scoones 2009; Conway and Mustelin 2014).
‘Top-down’ planning, on the other hand, implies high-level governance and technical experts
with the decision-making process being led by global drivers, i.e., awareness of the bigger pic-
ture of a problem. Although top-down approaches are more prone to implement change-driving
alternative solutions, they often overlook priorities and issues at the community level (Sherman
and Ford 2013). Finally, combined bottom-up and top-down approaches allow combining the
strengths of bottom-up and top-down approaches (Barthel et al. 2008; Wilby and Dessai 2010,
Ekstrom et al. 2013; Girard et al. 2015; Butler et al. 20135).

The objective of this research was to develop and apply a methodology to identify the
optimal implementation intensity of varying adaptation strategies for irrigated agriculture
under climate change scenarios considering the sustainability of catchment-wide water
resources management. This approach is developed for the largest irrigated system within
the Ebro River basin, so it can be later transferred and applied to other systems within the
basin, and wider in other Iberian Peninsula basins. The present article builds upon the work
initiated in Haro-Monteagudo et al. (2020), in which a modelling chain was described as
a decision-support tool for complex water resources systems under global change. In this
article, we further enhance the previous methodological approach by incorporating stake-
holders’ views, as expressed in a participatory workshop that focused on identifying the
preferred climate change adaptation strategies for irrigated agriculture. Another novelty of
this article is the application of an iterative optimisation scheme to thoroughly explore the
effects of different combinations of adaptation strategies on achieving pre-defined sustain-
ability goals.

2 Case study: the Comunidad General de Riegos del Alto Aragon (RAA)
Irrigation District

The RAA irrigation district is located between the Gallego and Cinca Rivers, two of the
main tributaries of the Ebro River rising in the Pyrenees (Fig. 1). The district includes 48
farmer communities, spanning over 2,500 km?. In addition to agriculture, 113 urban set-
tlements, ten industrial areas, and 893 livestock operations constitute the region’s water
demands.

The climate in the RAA district is dry Mediterranean, mainly characterised by scarce
and highly variable annual precipitation, averaging 579 mm with two main rainy periods
in spring and autumn for the reference period 1970-2015. For that same period, the mean
annual temperature was 13.5 C°. Irrigation supply depends on water resources generated at
the Gillego and Cinca Rivers’ headwaters. The mean annual precipitation in the headwa-
ters of the system is 1,141 mm, and the estimated maxima can surpass 1,600 mm. Water
resources generated in the headwaters area average 1,964 hm’/year, while the total water
resources generated in the whole system, including the lowlands, amount to 2,464 hm’/
year. The headwaters represent only 30% of the entire basin area, which emphasises the
importance of the Pyrenees as they produce 80% of the available water resources.

Within the assessed system, circa 135,000 ha are irrigated. The average irrigation
water demand is 838 hm’/year (averaging 6,717 + 1007 m’/ha). Irrigation represents
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Fig.1 a Location of the E14 System within the Ebro River Basin: b digital elevation model (DEM) and
river network; ¢ land use/cover map, AQUATOOL model configuration, SWAT simulation domain, and
location of Comunidad General de Riegos del Alto Aragdn irrigation district and its agricultural demand
units (RAA-ADU)

98% of all water consumption in the system, and the remaining water uses are urban and
industrial water supply (CHE 2016). Based on the basin plan for RAA, the water allow-
ance for irrigation amounts to nearly 1,140 hm*/year. Irrigation supply comes from six
main reservoirs, two of which are on the Cinca River (c. 800 hm® of maximum storage)
and the remaining four on the Gallego River (c. 280 hm?). The water circulates through
a complex network of canals (223 km), secondary conductions (c. 2,000 km), and drain-
age collectors (c. 3,000 km). There is a planned 40,000 ha extension of the area under
irrigation, subject to: (i) the establishment of additional reservoirs; and (ii) the comple-
tion of modernisation works in existing irrigated land to improve the efficiency of the
irrigation system.

The initial infrastructural development in the RAA evolved since the 1980s in a mod-
ernisation process that allowed farmers to switch from winter cereals to more productive
summer crops such as corn, lucerne, and rice, which have a higher water demand (Jlassi
et al. 2016). In the last 20 years, and due to changes in the European Union’s Common
Agricultural Policy and irrigation water availability, cropping patterns changed again to
crops with lower water requirements, such as winter wheat and barley, often combined
with a second summer crop (Sénchez-Choliz and Sarasa 2013).
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3 Methodology

This article builds upon the multi-model and multi-scenario methodology described in
Haro-Monteagudo et al. (2020). There, we developed a chain of climate—hydrology—water
allocation models that allowed us to test the effects of combinations of management and
climate change scenarios on the system’s sustainability (Fig. 2, left half). A hydrologic
model was calibrated and validated using daily climate data (C,,) and observed monthly
streamflow series (Q,,). At the same time, a water management simulation model was
calibrated and validated with Q_;, and observed basin reservoirs storage (Sto,,). Soil and
Water Assessment Tool (SWAT, Arnold et al. 2012) and SIMGES (Andreu et al. 2007)
were used to develop the hydrologic and water management models respectively, using
data from the latest national streamflow monitoring yearbook (CEDEX 2020) for calibra-
tion and validation (see Sects. S1 and S2 in the Supplementary Material). A set of climate
projections (AEMET 2017) were fed into the hydrologic model to generate an ensemble
of future streamflow outputs. The climate change signal was determined using the delta
approach by comparing the reference (ref) and future (fut) climate scenarios from the
streamflow ensemble (Hay et al. 2000; Riity et al. 2014). The observed flows, Q. was
modified by the delta change coefficients, and was used to force the water management
simulation model under future conditions. The results of this chain of models allowed eval-
uate the long-term sustainability (Sust) of the system demands supply (S) under four difter-
ent management scenarios.

In this new research work, we enhanced the previous process by adding a Markov Chain
Monte Carlo (MCMC) algorithm to find the optimal combination and intensity of adap-
tation measures (AM) by maximizing a user-provided objective function (Fig. 2, right
half). To build the set of adaptation measures, we followed a bottom-up-meets-top-down
approach that combined the results of a participatory approach and expert knowledge.
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Fig.2 Combined climate-hydrology-water allocation modelling chain and MCMC process used to find the
optimal implementation of bottom-up and top-down supported adaptation measures
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3.1 Stakeholder Platform and Participatory Engagement

A stakeholder workshop was organised in March 2019 with the Géllego-Cinca water resources
system stakeholders at the RAA headquarters in Huesca (Spain). The participants included the
major water users within the RAA system, with representation from the different farmer com-
munities (n = 16), as well as technicians from the CHE (n = 2), the regional government (n =
3), and agricultural research institutions working in the area (n = 4). The establishment of the
stakeholder platform and the participant selection process was based on a snowball sampling
approach: an open invitation to the workshop was sent to high-level representatives of each
institution that was later forwarded to their members and officers. The main objective of the
meeting was to discuss and determine the preferred climate adaptation measures. The work-
shop was designed and facilitated by a professional mediator (ARC Mediacién Ambiental)
hired ad-hoc to ensure the neutrality of the approach.

Climate projections by the Spanish meteorological agency (AEMET 2017) were presented
to the participants and their impact on water resources as assessed by the national hydro-
graphic studies centre (CEDEX 2017). These presentations intended to provide the partici-
pants with scientific background regarding climate change in the region and remind them that
these are official results being used by water policymakers and managers in Spain to design
national climate adaptation and mitigation plans (OECC 2006, 2020). Once a common back-
ground regarding climate change was established, the next steps in the participatory process
consisted of discussions and ranking of climate change adaptation measures considered suit-
able for the area (see Sect. S3 in the Supplementary Material).

3.2 Markov Chain Monte Carlo Estimation

To assess the optimal intensity of the proposed measures selected during the participatory
stakeholder activity, a Markov-chain random-walk sampling process was defined based on the
Metropolis—Hastings algorithm (Hastings 1970).

The Metropolis—Hastings algorithm draws samples from a probability distribution, if there
is a function proportional to the density of such distribution. The algorithm uses the Monte
Carlo method to generate a sequence of sample values that converges into the desired distribu-
tion. The sample values are produced iteratively, with the distribution of the following sample
(the candidate) being dependent solely on the current sample value, thus forming a Markov
chain. The candidate sample is either accepted (in which case it is used to generate a new
candidate in the next iteration) or rejected (in which case it is discarded, and the current value
is reused to generate a new candidate in the next iteration). The probability of acceptance is
determined by comparing the current and candidate sample values with the desired distribu-
tion. Further details on the process are provided in Sect. S4 of the Supplementary Material.

The performance of each combination of measures under each climate scenario was
assessed using the sustainability index (Sandoval-Solis et al. 2010), which refers to the
combination of the concepts of reliability, resilience and vulnerability (Hashimoto et al.
1982). A synthetic sustainability index was then computed as the geometric average ot
the three indicators, as initially proposed by Loucks (1997) and applied by Sandoval-Solis
et al. (2010):

Sustainability = {/Refiabifity - Resilience - (1 — Vulnerability) (1)

where Reliability is the probability that the system will fail (demand supply is below a cer-
tain threshold) during the simulation period, Resilience is the probability that the system
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recovers after a failure, and Vulnerability is the severity of the failures. The system’s sus-
tainability index for each combination of measures was compared to a set of sustainabil-
ity goals used to drive the optimisation process. The adaptation measures considered were
those preferred by the stakeholders during the workshop, as described in Sect. 3.1.

The objective is to find the parameter values (the intensity of adaptation measures in
this case) that allow reaching a particular sustainability goal under each future climate
scenario:

(6) = 100 - (Sustainability, — Sustainability,)” Q)

where Sustainability, represents the objective sustainability index and Sustainability, rep-
resents the sustainability index obtained for a combination of parameters in each step z.
The objective sustainability was determined as the sustainability of the system during the
reference period. The selection of the above objective function implies that the calibra-
tion process would favour parameter combinations that result in sustainability values like
those of the reference period instead of optimising the combinations that would improve
the sustainability over the observed values, as the latter would not be realistic. Instead, the
objective function allows exploring what could happen if the sustainability objectives were
relaxed (i.e., accepting lower sustainability levels) or tightened (targeting higher sustain-
ability levels).

4 Results
4.1 Implementation of Preferred Adaptation Measures

Considering the preferences of stakeholders and the discussions on the limitations of dif-
ferent measures (see Sect. S3.1 in Supplementary Material), the development of on-farm
reservoirs was the primary supply-side measure implemented in the simulation. This meas-
ure was chosen over the most preferred measure of increasing water storage at the system
level due to the unlikeliness of its practical implementation, as discussed by stakeholders.
The amount of internal storage (on-farm reservoirs) was modelled for each ADU indepen-
dently and not at the whole system scale, as very different conditions prevail in various sec-
tors of the RAA and because the development of on-farm reservoirs is decided at the local
level. The volume of internal storage in each ADU was represented as a percentage of the
total annual irrigation demand. It was implemented as a shift from peak demand months in
the summer to minimum demand months when water conveyance is not dedicated to irriga-
tion. The reduced peak demand was distributed evenly between December and February
to represent the filling time. The maximum possible volume for internal storage was set at
25% of the current annual demand for each ADU; this value also equals the total volume of
planned on-river reservoirs (CHE 2016).

The Markov process was run using the hydrology of current and future climate sce-
narios to test whether the development of on-farm reservoirs in the RAA would improve its
current sustainability and identify the necessary internal storage volumes in each ADU to
achieve this goal. Sustainability, was initially set to 1 (the maximum possible value), so the
Markov process searched for reservoir volumes that maximised this indicator.

Under current climate conditions, the development of internal storage does not signifi-
cantly enhance the system’s sustainability and it is even slightly lower (Fig. 3). This may be
due to the competition for water resources generated in the winter months between storage

@ Springer



2916 D. Haro-Monteagudo et al.

in the large headwater reservoirs and the on-farm reservoirs. While this may not be a prob-
lem in wet years, it can be problematic in dry years when water is delivered to on-farm res-
ervoirs in the winter, and headwater reservoirs do not fill up completely in spring. In gen-
eral, the internal storage volumes are low, with maximum a priori values well below 10%
of the annual demand for the respective ADUs. In physical terms, this would require a total
volume of 41.16 hm’. The estimated values are above the current levels of internal storage
capacity within RAA (indicated by X markers in Fig. 3), except for the “C. Cinca” ADU.

Under different climate change scenarios (Fig. 4), the optimum internal storage vol-
ume increased slightly above the values obtained for the current climate conditions. On
the other hand, sustainability values drop as the XXI century advances. For all scenarios
except one (bece-csm1-1 for RCP4.5 and the 2011-2040 period), the resulting sustainability
values are below those of the current period as climate change’s effect exceeds the system’s
capacity despite introducing new storage facilities.

4.2 Implementation of Top-down Proposed Measures to Maintain Current
Sustainability

The sole implementation of internal storage was not enough to cope with the expected
climate change stress, sustainably maximise the water demand, or even maintain the cur-
rent sustainability level. Although the bottom-up approach revealed essential insights on
stakeholders’ preferences, these are driven by personal interests that could limit the sys-
tem’s performance. To reach an equilibrium, top-down measures proposed in national
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Fig. 3 Boxplots of optimal internal reservoir volume distribution at each ADU and resulting sustainabil-
ity values obtained under current climate conditions. The volumes are expressed in % of the total annual
demand. The X markers represent current volumes of constructed on-farm reservoirs and system-wide sus-
tainability
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Fig.4 Distributions under future climate conditions of maximum a posteriori values of ADU internal res-
ervoir volume and resulting sustainability values (coloured dots) compared to the same calculated for cur-
rent climate conditions (dotted lines)

and regional climate adaptation strategies need to be considered. These propositions cur-
rently advocate for implementing demand-side water-saving measures, such as increas-
ing irrigation efficiency, adapting irrigation to real-time plot water requirements using
technology, and introducing water stress-resistant crops (DGA 2018a, b; MITECO
2020).

The implementation of potential water-saving measures was represented in the water
allocation model as a system-wide reduction in annual water allowance to ADUs. This
water allowance reduction was limited to a maximum of 50% of the current annual
demand.

The Markov process was rerun, including water-saving measures, and setting Sustainabil-
ity at 0.79, which is the current sustainability level for RAA with all the system’s reservoirs
fully operational. The results in Fig. 5 show that a combination of adaptation measures that
include additional internal storage and water-saving actions can maintain and even increase
the current sustainability level. The results also reveal that the role of internal storage is less
relevant than that of water-saving measures. For all climate scenarios, the optimum values of
internal storage reservoirs were found to be similar across the ADUs (c. 12%). At the same
time, water-saving measures will need to be applied with increasing intensities towards the
end of the XXI Century, depending on how extreme the climate scenario is. Since water-
saving measures also reduce the competition for resources during the irrigation season, it
is possible to increase water withdrawals from large reservoirs to fill larger internal storage
infrastructures during the winter months. Together, the collective volume of all on-farm res-
ervoirs would be circa 140 hnr’.
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Fig. 5 Distributions under future climate conditions of maximum a posteriori values of ADU internal res-
ervoir volume and water-saving measures and resulting sustainability values (coloured dots) compared to
the same calculated for current climate conditions (dotted lines). The X markers in the sustainability plot
represent the median sustainability calculated for the situation without water-saving measures under current
climate conditions

5 Discussion

The development of on-farm reservoirs has been used in the RAA, notably since 2000, to
improve the storage capacity and facilitate pressurised irrigation (Jlassi et al. 2016). Our
results indicate that there is room for enlarging on-farm reservoir storage in RAA under
current climate conditions up to approximately 41 hm®. According to the latest RAA’s
annual report (Riegos del Alto Aragén 2020), there are 100 on-farm reservoirs within
the region with a total volume of 27.1 hm®, which leaves room for the development of
additional on-farm reservoir storage. However, any new storage would only be possible
in ADUs that have recently received substantial economic investments for irrigation mod-
ernisation (Monegros I, 1 and 2, and Monegros II). This means that farmers within these
ADUs would have to undergo additional efforts to pay for the new infrastructure. The extra
financial burden was discussed extensively during the stakeholders” workshop.

At the same time, the study results show that on-farm reservoirs are not sufficient to
maintain current sustainability levels under climate change due to the competition gener-
ated by reduced inflows to reservoirs during the filling period. On-farm reservoirs could
still be helpful to bufter insufficient short-term supply, but they will not have a relevant role
in the long-term sustainability of the system. The long-term decrease of available water
resources in the system means that there will be years in which the storage capacity will
exceed resources availability. Also, although the availability of on-farm reservoirs could
help farmers saving energy costs as they provide water head for pressurised irrigation on
some occasions, these savings could be compensated or even surpassed by the energy cost
of other operation tasks such as filling up the reservoirs. This is in line with previous work
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from Habets et al. (2014) that showed that small farm reservoirs have impacts on the sus-
tainability of the very demands they are intended to serve. Also, Haro-Monteagudo et al.
(2020) showed that annual streamflow in both the Gallego and Cinca rivers would decrease
under all climate scenarios. However, this reduction will not be uniform, but there would
be seasonal differences, with winter months experiencing an increase while decreasing in
spring and summer. This explains the increase in the optimum size of internal storage as
they are filled during winter months, for which the climate change scenarios are projecting
higher water resource availability. Similarly, reducing water resources in the months before
the irrigation campaign will prevent filling up the large headwater reservoirs in the system,
leading to potential failures during the summer. These results indicate the necessity of con-
sidering measures that affect water demand despite these being generally less favoured by
farmers due to not being aligned with their business strategy.

The introduction of water-saving measures could allow for a larger volume of on-farm
reservoirs within the system, as reducing water use would allow filling the reservoirs more
often. However, the required water savings amount circa 20% of the total annual irrigation
demand in RAA for the most optimistic climate scenarios for the mid and end XXI century
periods and reach up to 50% in the worst-case scenario. These values translate into savings
in the range of 225-562 hm*/year for the RAA. The catalogue of good agricultural practices
elaborated by the regional government of Aragén (DGA 2018b) assumes savings of up to
70% from introducing more efficient irrigation techniques such as spray and drip irrigation.
However, some studies argue that these improvements depend very much on local condi-
tions and are case-specific (van der Kooij et al. 2013). Besides, this measure would have
a limited application in RAA as approximately 75% of the irrigated area use modernised
infrastructures as of 2014 (http:/riegosaltoaragon.es/lineas-de-trabajo/modernizacion-de-
regadios/situacion-actual/). Moreover, like the construction of on-farm reservoirs, irrigation
modernisation requires substantial economic investments by farmers.

Other adaptation measures identified and quantified in the catalogue are related to opti-
mising plot irrigation using moisture sensors and tensiometers (more than 10% savings)
and digital water management tools (between 5 and 35%). Like modernisation, RAA was
one of the first farming communities to implement management tools, adopting the ADOR
software for daily management (Playan et al. 2007; Lecina et al. 2010). Other measures
whose saving are not quantified include implementing a better water metering to identify
excessive water uses and detect leaks; adapting irrigation to real-time weather conditions;
stimulating rainwater harvesting; and using alternative water resources such as recycled
water. The latter option is currently under study by RAA concerning the reuse of irriga-
tion return flows for fertigation purposes. However, reused water is limited (RAA, personal
communication) and cannot grow substantially as return flows are reduced due to moderni-
sation. Finally, the catalogue also considers the possibility of selecting crop varieties with
lower irrigation requirements or more resistance to water stress. However, these tend to
result in reduced revenues as they require more labour to achieve objective yields, or they
have lower market demand.

In summary, the water-saving measures under consideration by the agricultural com-
munity in the region can help accomplish optimal water reductions, at least for the most
favourable climate scenarios. Although water-saving measures are preferable, especially
those that enhance the system’s efficiency, these will only work if water users understand
that saved water is not to be put for other uses such as increasing the irrigated area or
promoting higher water-demanding crops or double cropping. However, when faced with
water shortages, irrigation systems are often subject to the ‘tragedy of the commons’: there
are few incentives for farmers to reduce their use of the resource as they cannot restrict
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others from over-using it. There is a strong need for cooperation to diminish the collective
water demand to cope with climate change. Irrigation systems are common pool resources
that depend on robust governance systems and solid internal collaboration between water
users. Scholars have extensively discussed institutional solutions to improve drought man-
agement in irrigation systems. For instance, Villamayor-Tomas (2014) studied the adapta-
tion performance of irrigation associations within the RAA system during a severe drought
and explored the use of transferable quotas as a measure to improve the system’s resilience.
However, the tools for implementing long-term adaptation measures remain comparatively
understudied.

6 Conclusions

We followed a multi-scenario approach to assess the suitability of combinations of offer-
increasing and water-saving adaptation options to cope with future water scarcity in sys-
tems with large irrigation agriculture demands. The methodology was applied to the largest
irrigated system in the EU (i.e., RAA), using stakeholders’ preferred adaptation measures
in a top-down meets bottom-up approach. The results show that the stakeholder choice for
adaptation, that is increasing on-farm storage capacity, will not be enough to secure the
future sustainability of water resources in the region. This result raises some concerns over
ongoing bottom-up stakeholder-led climate adaptation initiatives, as some of the preferred
options can be seen as positive but do not really have a significant effect in the long term.
This is in line with existing regional top-down initiatives to tackle climate change in agri-
culture, e.g. the project Agroclima (DGA 2018a, b), where water-saving options appear to
be the most promising to maintaining current sustainability levels in the RAA irrigation
system. The results can be extrapolated to other irrigation districts where similar initiatives
are taking place. These applications might benefit from including a larger representation of
stakeholders like traditional upstream irrigation or downstream dependent areas. In future
works, the proposed methodology can be adjusted and applied to the whole Ebro River
Basin, as well as to other water resources systems to assess the potential implementation of
different adaptation strategies.
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