The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

Alexander Lorenz, Fekret Osman, Weili Sun, Saikat Nandi, Roland Steinacher, Matthew C. Whitby*
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

Abstract

The formation of healthy gametes depends on programmed DNA double strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favour of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to Humans suggests that this interplay may be a general feature of meiotic recombination.

*To whom correspondence should be addessed. E-mail: matthew.whitby@bioch.ox.ac.uk
Key words: Homologous recombination; Meiosis; Fml1; Mus81; Schizosaccharomyces pombe

Faithful chromosome segregation during meiosis depends on the establishment of chiasmata through recombinational repair of programmed DNA doublestrand breaks (DSBs) to produce crossovers (COs) between homologous chromosomes (homologs). However, in most cases only a minority of the DSBs are earmarked to form COs, and therefore the majority have to be repaired by using either the homolog without CO formation or the sister chromatid (1).

In order to identify helicase activities involved in non-crossover (NCO)-recombination during meiosis in the fission yeast Schizosaccharomyces pombe, we screened for helicases potentially capable of D loop unwinding during synthesis-dependent strand annealing (SDSA), which is thought to be a major pathway of NCO recombination (1). To this end, we used a genetic recombination assay consisting of a meiotic recombination hotspot at the adeb gene and two flanking
scorable markers (Fig. 1A). We hypothesized that at least one of the helicases promoting NCO recombination pathways in mitotic cells would also have a role during meiosis. From our candidate list - fbh1, srs 2 , rqh1, fml1 and $f m l 2$ - only the deletion of $f m l l$ gave the expected increase in CO formation associated with a meiotic gene conversion (GC) event at two different hotspot alleles, ade6-M26 and ade6-3083, and at a non-hotspot allele ade6-M375 (Fig. 1, B and C, and tables S1 to S3) (2-5). Increases in COs were also observed on a different chromosome (Fig. 1D and table S4) and by a physical assay at the mbsl locus (fig. S1), indicating that Fmll's role in suppressing CO formation is not restricted to a single locus.

In vitro purified Fmll, like its budding yeast ortholog Mph1, unwinds D loops and is therefore suited to promoting SDSA (Fig. 1E) (6, 7). The fmll-K99R mutant, which encodes protein that retains full DNA
binding activity but is unable to unwind D loops (Fig. 1E and fig. S2), exhibits the same hyper-CO phenotype as the null mutant indicating that Fmll's helicase function is required for NCO formation (Fig. 1C). A significant increase in CO is also observed by deleting Fmll's cofactors Mhf1 and Mhf2, whose orthologs in humans promote the DNA binding and catalytic activities of Fanconi anemia complementation group M (FANCM) (Fig. 1C and table S2) (8, 9).

In fission yeast the formation of CO products from joint DNA molecules depends on the endonuclease Mus81-Eme1 (10). The deletion of mus81 causes joint DNA molecules to remain unresolved, which prevents chromosome segregation and results in a reduction in the viability of progeny (Fig. 2, A and B, fig. S3 and table S5) (10-12). The mating efficiency of mus81s fmll Δ double mutants is very low (table S6), preventing comprehensive genetic analysis; however, visual inspection of mus810 fml1s asci showed a higher incidence of clumped DNA masses than in mus81D single mutants, indicating an aggravation of the chromosome segregation problem (Fig. 2B and table S7). These data indicate that at best, Fmll only poorly substitutes for the loss of the CO recombination pathway by feeding joint molecules into a NCO pathway. The meiosis-specific Rad51-paralogue Dmc1 has been shown to form D loops, which are more resistant to dismantling by DNA translocases than those formed by Rad51 (13); however, in fission yeast deletion of dmcl does not change the level of COs associated with GCs (table S2). The Rad51/Dmc1-mediator complex Swi5-Sfr1 (14) is required for wild-type levels of CO and its deletion ameliorates the defects seen in a mus 81Δ mutant (Fig. 2, A, B and C) (15). This rescue of mus81D by sfrls and the reduction of CO formation associated with GC in a $s f r l \Delta$ single mutant depend on the presence of fmll (Fig. 2, A, B and C). This suggests that Swi5-Sfr1 protects D loops from being unwound by Fmll and in doing so promotes Mus81-mediated CO formation. In accordance
with this, we see a reduction in Mus81 foci in sfr1D meiotic nuclei compared with wild type (fig. S4 and table S8).

Under vegetative growth conditions mus81s finll Δ strains display synthetic sickness (6), and therefore to confirm that the phenotypes we observe during meiosis are caused by the failure to process meiotic recombination intermediates, we abrogated meiotic DSB formation by deleting recl2 (also termed spol1) in mus81D sfr 1Δ, mus81D finll Δ and mus81D fmll Δ sfrl Δ strains. The spore viabilities of the mutant combinations were higher than or similar to the 12.5% expected from random segregation of three chromosome pairs (Fig. 2D). Although the spore viability in the mus 81Δ fmll Δ recl2 1 and mus81s fmlls sfrls recl2 Δ crosses is not completely restored to rec 12Δ levels, the rescue is robust enough to attribute much of the meiotic failure of these mutant combinations to a breakdown in processing meiotic recombination intermediates.

The transcription of mus81, eme1, swi5 and sfrl is upregulated (by two- to sixfold) at the start of meiosis, whereas that of fmll is not (16). Therefore, we wondered whether relative changes in the amounts of these proteins could influence whether DSBs are repaired as COs or NCOs. Indeed, Fml1 over-expression in wild type reduces COs at ade6-3083 in a dosage-dependent manner (Fig. 3A and table S9). This effect depends on Fmll's helicase activity because overexpression of Fml1-K99R or Fmll-D196N, which can bind but not unwind D-loops (Fig. 1E and fig. S2), causes a significant increase in COs akin to fmll Δ (Fig. 3A and table S9). Overexpression of these mutants also confers fmll Δ-like sensitivity to genotoxins (fig. S5). Most likely, these mutant proteins impede endogenous wild-type Fml1 and thereby generate a $f m l l \Delta$-like phenotype.

Further evidence that the relative amount of Fmll and Swi5-Sfr1 is a determinant in Fmll's ability to unwind D loops in vivo comes from analyzing the effect of Fmll overexpression in mus 81Δ crosses. Here both the
spore viability and chromosome segregation defects of mus 81Δ crosses are ameliorated in a helicase-dependent manner and in a similar way as deleting sfrl: without producing COs (Figs. 2B and 3, A and B). As in wildtype crosses, overexpression of mutant Fml1 probably impedes endogenous wild-type Fml1, worsening the already poor spore viability and chromosome segregation of a mus 81Δ cross (Figs. 2B and 3B and table S7). The partial rescue of spore viability and chromosome segregation in mus81D crosses is specific to Fmll because none of the other candidate DNA helicases (Rqh1, Srs2, Fbh1, and Fml2) when overexpressed could do this (table S5).

Swapping exogenous Holliday junction (HJ) resolvases, namely bacterial RusA and human GEN1, for Mus81 results in a reduction of CO associated with GC at an ade6 hot spot from $\sim 60 \%$ down to $\sim 40 \%(17,18)$. Our explanation was that these HJ resolvases (in contrast to Mus81-Eme1) cleave recombination intermediates in an unbiased manner producing COs and NCOs in a 1:1 ratio. We hypothesized that the remaining $20 \% \mathrm{NCO}$ recombination events stem from SDSA (Fig. 4A). If this is true, then exchanging Mus81 for RusA or GEN1 in a fmll Δ background, in which SDSA is abolished, would
result in 50\% COs and NCOs via unbiased HJ resolution (Fig. 4A). Indeed, 50% COs is what we find when RusA or GEN1 are expressed in mus81వ fml1 Δ strains (Fig. 4B).

It is conceivable that the Fmll-dependent NCO pathway proceeds via biased HJ cleavage rather than SDSA. However, deletion of the two known junctionspecific nucleases (Slx1 and the XPF ortholog Rad16), which could potentially fulfill this function, has no effect on CO formation or spore viability in a mus81D sfrls mutant (tables S2 and S5).

Our data show that Fmll-Mhf works in parallel with Mus81-Eme1 to process meiotic joint DNA molecules, and that Fmll's ability to produce NCOs is mitigated by a relative up-regulation of a Swi5-Sfr1 and Mus81-Eme1-dependent pathway, in which Swi5-Sfr1 may stabilize Rad51/Dmc1-mediated single-end invasions so that they can be preferentially cleaved by Mus81-Eme1. Fml1 represents the only factor directly driving a meiotic NCO-specific pathway; however, other DNA helicases, such as RTEL-1 in C. elegans, apparently can direct the recombination outcome via template choice, creating an additional level of regulation $(19,20)$.

References and Notes

1. M. S. McMahill, C. W. Sham, D. K. Bishop, PLoS Biol 5, e299 (2007).
2. W. Sun, A. Lorenz, F. Osman, M. C. Whitby, Nucleic Acids Res 39, 1718 (2011).
3. G. A. Cromie, R. W. Hyppa, G. R. Smith, Genetics 179, 1157 (2008).
4. P. Schuchert, J. Kohli, Genetics 119, 507 (1988).
5. W. W. Steiner, G. R. Smith, Genetics 169, 1973 (2005).
6. W. Sun et al., Mol Cell 32, 118 (2008).
7. R. Prakash et al., Genes Dev 23, 67 (2009).
8. T. R. Singh et al., Mol Cell 37, 879 (2010).
9. Z. Yan et al., Mol Cell 37, 865 (2010).
10. G. A. Cromie et al., Cell 127, 1167 (2006).
11. M. N. Boddy et al., Cell 107, 537 (2001).
12. F. Osman, J. Dixon, C. L. Doe, M. C. Whitby, Mol Cell 12, 761 (2003).
13. D. V. Bugreev et al., Nat Struct Mol Biol 18, 56 (2011).
14. N. Haruta et al., Nat Struct Mol Biol 13, 823 (2006).
15. C. Ellermeier, H. Schmidt, G. R. Smith, Genetics 168, 1891 (2004).
16. J. Mata, R. Lyne, G. Burns, J. Bähler, Nat Genet 32, 143 (2002).
17. L. J. Gaskell, F. Osman, R. J. Gilbert, M. C. Whitby, EMBO J 26, 1891 (2007).
18. A. Lorenz, S. C. West, M. C. Whitby, Nucleic Acids Res 38, 1866 (2010).
19. J. L. Youds et al., Science 327, 1254 (2010).
20. S. Rosu, D. E. Libuda, A. M. Villeneuve, Science 334, 1286 (2011).
21. S. A. Sabatinos, S. L. Forsburg, Methods Enzymol 470, 759 (2010).
22. G. R. Smith, Methods Mol Biol 557, 65 (2009).
23. A. L. Goldstein, J. H. McCusker, Yeast 15, 1541 (1999).
24. K. Maundrell, Gene 123, 127 (1993).
25. A. Lorenz, F. Osman, V. Folkyte, S. Sofueva, M. C. Whitby, Mol Cell Biol 29, 4742 (2009).
26. C. L. Doe, J. Dixon, F. Osman, M. C. Whitby, EMBO J 19, 2751 (2000).
27. S. C. Ip et al., Nature 456, 357 (2008).
28. U. Rass et al., Genes Dev 24, 1559 (2010).
29. J. Loidl, A. Lorenz, Methods Mol Biol 558, 15 (2009).
30. A. Lorenz et al., J Cell Sci 117, 3343 (2004).
31. R. W. Hyppa, G. R. Smith, Methods Mol Biol 557, 235 (2009).
32. A. L. Grishchuk, J. Kohli, Genetics 165, 1031 (2003).
33. R. W. Hyppa, G. R. Smith, Cell 142, 243 (2010).
34. F. Osman, J. Dixon, A. R. Barr, M. C. Whitby, Mol Cell Biol 25, 8084 (2005).
35. C. Shimoda, J Cell Sci 117, 389 (2004).
36. A. Lorenz, A. Estreicher, J. Kohli, J. Loidl, Chromosoma 115, 330 (2006).

Acknowledgements:

We thank R. Mercier for discussions and sharing data before publication. We are grateful to A. Decottignies, J. Kohli, R. J. McFarlane, P. Russell, G. R. Smith and W. W. Steiner for providing strains/reagents and to C. Bryer and J. Witzki for technical assistance. This work was supported by a Wellcome Trust Programme Grant 090767/Z/09/Z. A.L. was funded in part by an Erwin Schrödinger Fellowship (J 2489-B03) from the Austrian Science Fund (FWF).

Supporting Online Material:

www.sciencemag.org
Materials and Methods
Figs. S1 to S5
Tables S1 to S10
References (21-36)

Fig. 1. Fml1-Mhf is required for wild-type levels of NCO during meiosis. (A) Schematic of the meiotic recombination assay indicating the positions (in base pairs) of ura4+-aim2 (green), his3+-aim (blue) and ade6 (yellow) on chromosome 3. The point mutations in the ade6-3083/-M26 hotspot and ade6-469 coldspot alleles are labelled in red and light blue, respectively. The common types of outcomes of the assay are shown: (I) GC at ade6 without CO, (II) GC at ade6 with CO of the flanking markers, and (III) CO without GC at ade6. (B and C) Frequency of CO associated with GC events at ade6 hotspots in wild type and mutants (tables S1 and S2) (2). (D) Frequency of CO in two neighbouring intervals in wild type and the fml1s mutant (table S4). In (B) to (D), statistical significance in comparison with wild type indicated as ${ }^{*} P<0.1$, ${ }^{* *} P<0.05$, and ${ }^{* * *} P<0.01$ (for P values, see corresponding tables in the supplementary materials). (E) D loop unwinding by Fml1 CC (lanes b to d: $0.05 \mathrm{nM}, 0.5 \mathrm{nM}$, and 5 nM), Fml1 Δ C-K99R (lane e: 5 nM) and Fml1 CC -D196N (lane f: 5 nM). The schematics represent the D loop and its dissociation products, with the asterisk indicating the position of the 5 ' end ${ }^{32} \mathrm{P}$ label.

Fig. 2. Fml1 is able to drive a NCO pathway of meiotic recombination in the absence of Mus81. (A) Viability of progeny from wild-type and mutant crosses (table S5). (B) Distribution of DNA masses in wild-type and mutant asci with or without overexpression of wild-type and mutant Fml1 (fig. S3). (C) Frequency of CO associated with GC events at ade6-3083 from wild-type and mutant crosses. Statistical significance in comparison with wild type is shown as ${ }^{*} P<0.1$, ${ }^{* *} P<0.05$, and ${ }^{* * *} P<0.01$ (table S2). (D) Abolishing meiotic DSB formation by deleting rec12 partially rescues the spore viability defect of mus81 $\mathrm{fml} 1 \Delta$ mutants (table S5).

Fig. 3. Overexpression of Fml 1 suppresses COs and partially rescues the poor spore viability of a mus81ヵ mutant. (\mathbf{A} and \mathbf{B}) Frequency of CO associated with GC events at ade6-3083 (A) and viability of progeny (B) in wild-type and mus81 type and mutant Fml1 (tables S5 and S9). Statistical significance in comparison with wild type in (A) is shown as ${ }^{*} P<0.1,{ }^{* *} P<0.05$, and ${ }^{* * *} P<0.01$ (for exact P values, see table S9).

Fig. 4. Meiotic interhomologue recombination pathways in S. pombe. (A) The respective contribution of recombination pathways to the CO/NCO outcome and the changes observed when a pathway is deactivated. This model accounts for the fact that in a mus81د strain, only single HJs are observed to accumulate (10), but therefore it needs to invoke a D loop nickase activity (18). (B) Frequency of CO associated with GC events at ade6-3083 from wild-type, mus814, and mus814 fm/14 crosses expressing Mus81-Eme1, RusA or GEN1 1 (1-527). Statistical significance in comparison with wild type is shown as ${ }^{*} P<0.1,{ }^{* *} P<0.05$, and ${ }^{* * *} P<0.01$ (table S9) (18).

Supplementary Material for

The Fission Yeast FANCM Ortholog Directs Non-Crossover Recombination During Meiosis

Alexander Lorenz, Fekret Osman, Weili Sun, Saikat Nandi, Roland Steinacher, Matthew C. Whitby*

*To whom correspondence should be addessed. E-mail: matthew.whitby@bioch.ox.ac.uk

Published in final edited form as:
Science. 2012 June 22; 336 (6088):1585-1588. doi: 10.1126/science. 1220111

This PDF file includes:

Materials and Methods
Figs. S1 to S5
Tables S1 to S10
References (21-36)

METHODS

Yeast strains and plasmid construction. Schizosaccharomyces pombe strains used for this study are listed in Table S10. Yeast cells were cultured in YES broth and on YES plates, unless they contained plasmids, in which case the cells were grown in PMG broth and on PMG (or EMMG in the case of fig. S5) agar plates containing the required supplements (concentration $\sim 250 \mu \mathrm{~g} / \mathrm{ml}$). Sporulation of crosses were performed on ME agar, expect for crosses with strains containing plasmids, which were done on SPAS agar supplemented with the required amino acids (concentration $\sim 50 \mu \mathrm{~g} / \mathrm{ml}$). Determination of spore viability by random spore analysis and the meiotic recombination assay have been previously described in detail (12, 17, 21, 22).

The $s f r 1$ gene was deleted in strain ALP729 using natMX4 as the selectable marker, by cloning up- and downstream flanking sequences of sfrl into pAG25 (23). This construct removes the complete open reading frame except for 6 nucleotides at the 5 ' end. The resulting strain was verified by PCR and genotoxin testing. For $d m c l$ the $u r a 4^{+}$gene in an already existing dmclD::ura4 4^{+}strain was targeted with a construct carrying the natMX4 marker from pAG25, from this transformation clonNAT-resistant Ura colonies were selected.

All plasmids used in this study have been verified by sequencing. Plasmids pREP41 (24), pFml1 ${ }^{+}$(pMW 848 , $\mathrm{pREP41-Fml1}$) (0), $\mathrm{pFml1}{ }^{++}$($\mathrm{pALo64}$, $\mathrm{pREP} 1-\mathrm{Fml}$; the $f m l 1$ open reading frame was excised from pMW848 as a SalI-SmaI fragment and cloned into pREP1), pFml1-K99R (pALo70, pREP1-Fml1-K99R; introducing an A296G point mutation into fmll using QuikChange XL site-directed mutagenesis, Agilent Technologies, CA), pFml1-D196N (pALo71, pREP1-Fml1-D196N; introducing a G586A point mutation into fmll using QuikChange XL site-directed mutagenesis), pFbh^{+}(pMW637, pREP41-Fbh1) (25), pSrs2 ${ }^{+}$(pIJ 9 , $\mathrm{pREP} 41-\mathrm{Srs} 2$) (25), $\mathrm{pRqh} 1^{+}$(pMW563, $\mathrm{pREP} 41-\mathrm{Rqh} 1$) (18), $\mathrm{pFml} 2^{+}$ (pMW849, pREP41-Fml2; the fml2 open reading frame was amplified from genomic DNA and cloned as NdeI-BamHI fragment into pREP41), pRusA (pMW437, pREP1-NLS-RusA-GFP) (26), pMus81* (pMW592, pREP41-2myc6his-Mus81-Pk-Eme1) (17), pGEN1 ${ }^{+}$(pALo52, pREP41-GEN1 ${ }^{(1-527)}$) (18), and pGEN1 ${ }^{++}$(pALo61, pREP1-GEN1 ${ }^{(1-527)}$; the GEN1 ${ }^{(1-527)}$ sequence was excised from pALo52 as a BamHI-NcoI fragment and cloned into pREP1) were transformed into fission yeast strains FO808, FO1260, FO1267, MCW1221, MCW1237, MCW1238, MCW3202/ALP733, MCW3514/ALP802, MCW4994/ALP1170, and MCW5169/ALP1267, and the resulting strains tested for spore viability and in the meiotic recombination assay. Note that in our experiments with GEN1 we use an active truncated form (GEN1 ${ }^{1-527}$) because it expresses well in S. pombe and has been characterized extensively in vitro (18, 27, 28).

Meiotic time courses, microscopy and gel electrophoresis of crossover DNA products. The protocol for azygotic and pat1-114 diploid meiotic time courses has been described in detail (29). Samples of each time course were fixed in 70% ethanol, stained with Hoechst 33342 and their meiotic progression was checked by assessing the relative numbers of uninucleate, horsetail, and multi-nucleate cells in 60 minute intervals. Spreading of nuclei and subsequent processing was performed as described previously (29). For immunostaining rabbit α-Rec10 (30) and mouse α-c-Myc (Sigma-Aldrich Company Ltd., Dorset, UK) antibodies were used. All analysis was performed using an Olympus BX50 epifluorescence microscope equipped with the appropriate filter sets to detect red, green, and blue fluorescence (Chroma Technology Corp., VT). Black-and-white images were taken with a CoolSNAP HQ ${ }^{2}$ CCD camera (Photometrics, AZ) steered by MetaMorph software (v7.7.3.0, Molecular Devices Inc., CA). Images were pseudo-coloured and overlayed using Adobe Photosop CS5 (v12.0, Adobe Systems Inc., CA). Physical analysis of crossover products at mbsl was performed as outlined previously (31).

D loop binding and unwinding assays. We have been unable to purify full-length Fmll and therefore for biochemical assays active C-terminally truncated forms of Fmll, FmllK99R, and Fml1-D196N were purified and tested for D loop binding and unwinding as described (6). Binding reactions ($20 \mu \mathrm{l}$) contained 0.5 nM labeled D loop in binding buffer (50 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{mM}$ DTT, $100 \mu \mathrm{~g} / \mathrm{ml} \mathrm{BSA}, 6 \%$ glycerol). Reactions were started by addition of protein and incubated for 15 minutes on ice before resolving bound and unbound DNA on a 4% native polyacrylamide gel in low ionic strength buffer (6.7 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,3.3 \mathrm{mM}$ sodium acetate, 2 mM EDTA). Unwinding reactions ($20 \mu \mathrm{l}$) contained 0.5 nM labeled D loop in binding buffer plus $2.5 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ and 5 mM ATP. Reactions were started by addition of protein and incubated for 30 minutes at $37{ }^{\circ} \mathrm{C}$ before being stopped by adding $5 \mu \mathrm{l}$ of stop mix (2.5% SDS, 200 mM EDTA, $10 \mathrm{mg} / \mathrm{ml}$ proteinase K) and further incubation at $37^{\circ} \mathrm{C}$ for 15 minutes to deproteinize the mixture. Products were analyzed by electrophoresis through a 10% native polyacrylamide gel in $1 \times$ TBE buffer. Gels were dried on 3 MM Whatman paper and analyzed with a Fuji FLA3000 PhosphorImager (Fujifilm Corp., Japan).

Statistics. Statistical analysis for the recombination data was performed in Excel (Microsoft Office), in G*Power 3.1.3 (Department of Psychology, Heinrich-Heine-University Düsseldorf, Germany) and on http://www.socr.ucla.edu/SOCR.html (University of California, Los Angeles). First each data set was tested for normal distribution using a Shapiro-

Wilk test (http://dittami.gmxhome.de/shapiro/), rejecting the null hypothesis (H_{0}; 'data fits a normal distribution') at an α-level of $p<0.05$. Several data sets did not conform to a normal distribution and therefore all comparisons were done using a two-tailed, two independent sample Wilcoxon rank-sum test (a.k.a. Mann-Whitney U test). This test is nonparametric and does not depend on data sets being normally distributed. The P values of tests against the appropriate wild-type controls are presented in Supplementary Tables S , S2, S3, S4, and S9. The P values of the Fisher's exact test in Table S7 are given for a comparison with the mus81 Δ cross and were calculated at a statistical power of $1-\beta>0.95$. H_{0} ('data sets being similar') was rejected at an α-level $P<0.1$. In Figs. 1B-D, 2C, 3A, and 4B $P<0.01$ is indicated by three asterisks, $P>0.01<0.05$ by two, and $P>0.05<0.1$ by one.

SUPPLEMENT

Table S1. Frequency of gene conversion and crossing over in the ura4 4^{+}-aim 2 - ade6 - his 3^{+}-aim interval. The values are the means from n independent crosses and the values in brackets are the standard deviations. The number of Ade ${ }^{+}$recombinants tested is indicated, as is the total number of viable spores analyzed for crossing over between ura4 ${ }^{+}$-aim 2 and his 3^{+}-aim. ade6-M26 is a known hot spot for recombination and therefore acts predominantly as a recipient of genetic information, this and the order of markers explains the disparity between P1/R1 and P2/R2 classes. CentiMorgan (cM) are calculated from the accumulated data of the independent crosses, not from the mean values, using the mapping function of Haldane. P values are calculated by a two-tailed Mann-Whitney U test against the data from the wild-type cross (MCW1196 \times MCW1195).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Cross} \& \multirow[b]{2}{*}{n} \& \multirow[b]{2}{*}{Frequency of ade $^{+}$in \%} \& \multirow[b]{2}{*}{$$
\begin{gathered}
\text { ade }^{+} \\
\text {tested }
\end{gathered}
$$} \& \multicolumn{4}{|c|}{\% ade $^{+}$} \& \multirow[b]{2}{*}{tested} \& \multicolumn{2}{|l|}{Crossovers (CO)}

\hline strain \& genotype \& \& \& \& ura $^{-h i s}{ }^{+}$(P1) \& ura ${ }^{+}{ }^{\text {his }}$ (P2) \& ura`his ${ }^{-1}{ }^{\text {(R1) }}$ \& ura ${ }^{+}{ }^{\text {a }}{ }^{+}$(R2) \& \& Frequency of CO in
$\%$ \& cM

\hline $$
\begin{gathered}
\hline \text { MCW1196 } \\
\times
\end{gathered}
$$ \& wild type \& 20 \& $$
\begin{gathered}
\hline 0.304 \\
(0.108)
\end{gathered}
$$ \& 3,501 \& $$
\begin{gathered}
\hline 6.58 \\
(2.57)
\end{gathered}
$$ \& $$
\begin{aligned}
& \hline 31.64 \\
& (5.92)
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline 57.28 \\
& (6.11)
\end{aligned}
$$ \& $$
\begin{gathered}
\hline 4.5 \\
(3.01)
\end{gathered}
$$ \& 5,562 \& $$
\begin{aligned}
& \hline 12.702 \\
& (3.94)
\end{aligned}
$$ \& 14.69

\hline | MCW1195 |
| :--- |
| MCW1832 |
| \times | \& $f b h 1 \Delta^{\S}$ \& 18 \& \[

$$
\begin{aligned}
& 0.785^{\mathrm{a}, \S} \\
& (0.263)
\end{aligned}
$$

\] \& 1,392 \& \[

$$
\begin{aligned}
& 11.63^{\text {b }} \\
& (5.45)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32.0^{\mathrm{b}} \\
& (5.2)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 49.07^{\mathrm{b}} \\
& (7.74)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
7.3^{\text {b }} \\
(3.4)
\end{gathered}
$$

\] \& 1,703 \& \[

$$
\begin{aligned}
& 16.988^{\mathrm{c}} \\
& (7.152)
\end{aligned}
$$
\] \& $21.72^{\text {8 }}$

\hline $$
\begin{gathered}
\text { MCW1785 } \\
\text { FO1360 } \\
\times
\end{gathered}
$$ \& $r q h 1 \Delta$ \& 15 \& \[

$$
\begin{gathered}
0.024^{\mathrm{d}} \\
(0.006)
\end{gathered}
$$

\] \& 718 \& \[

$$
\begin{gathered}
7.72^{\mathrm{e}} \\
(2.61)
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 27.33^{\mathrm{e}} \\
& (6.22)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 59.43^{e} \\
& (5.56)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
5.52^{\mathrm{e}} \\
(3.31)
\end{gathered}
$$

\] \& 2,044 \& \[

$$
\begin{gathered}
3.09^{\mathrm{f}} \\
(1.039)
\end{gathered}
$$
\] \& 3.13

\hline FO1368 FO1346 \& srs2 ${ }^{\text {d }}$ \& 10 \& \[
$$
\begin{aligned}
& 0.258^{\mathrm{g}} \\
& (0.048)
\end{aligned}
$$

\] \& 1,867 \& \[

$$
\begin{gathered}
5.06^{\mathrm{h}} \\
(1.29)
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 32.39^{\mathrm{h}} \\
& (3.44)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 60.08^{\mathrm{h}} \\
& (4.63)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.47^{\mathrm{h}} \\
& (1.08)
\end{aligned}
$$

\] \& 1,437 \& \[

$$
\begin{gathered}
8.387^{i} \\
(1.449)
\end{gathered}
$$
\] \& 9.22

\hline | FO1354 MCW3187 |
| :--- |
| \times | \& fml1 ${ }^{\text {a }}$ \& 7 \& \[

$$
\begin{gathered}
0.235^{\mathrm{j}} \\
(0.093)
\end{gathered}
$$

\] \& 1,142 \& \[

$$
\begin{aligned}
& 10.79^{\mathrm{k}} \\
& (4.03)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 19.23^{\mathrm{k}} \\
& (3.88)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 67.56^{\mathrm{k}} \\
& (6.32)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
2.42^{\mathrm{k}} \\
(1.42)
\end{gathered}
$$

\] \& 2,663 \& \[

$$
\begin{aligned}
& 14.895^{1} \\
& (2.829)
\end{aligned}
$$
\] \& 18.08

\hline | MCW3185 |
| :--- |
| MCW3189 |
| \times | \& $f m 12 \Delta$ \& 8 \& \[

$$
\begin{aligned}
& 0.136^{\mathrm{m}} \\
& (0.029)
\end{aligned}
$$

\] \& 582 \& \[

$$
\begin{gathered}
7.34^{\mathrm{n}} \\
(2.64)
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
29.45^{\mathrm{n}} \\
(3.15)
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 61.04^{n} \\
& (3.36)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
2.17^{\mathrm{n}} \\
(1.42)
\end{gathered}
$$
\] \& 3,734 \& 11.031° (1.517) \& 11.85

\hline | MCW3186 |
| :--- |
| MCW3183 |
| \times |
| MCW3182 | \& $f m l 1 \Delta f m l 2 \Delta^{\dagger}$ \& 8 \& \[

0.217^{\mathrm{p}}
\]

(0.087) \& 1,219 \& $$
\begin{aligned}
& 11.88^{q} \\
& (3.37)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 18.56^{\mathrm{q}} \\
& (5.99)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 67.06^{\mathrm{q}} \\
& (8.69)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
2.5^{q} \\
(2.32)
\end{gathered}
$$
\] \& 3,426 \& $14.366^{\text {r }}$ (3.516) \& 16.81

\hline
\end{tabular}

${ }^{\text {a }} P=1.885 \times 10^{-6}$, highly significant; ${ }^{\mathrm{b}} P=0.027$, significant at an α-level of $0.05 ;{ }^{\mathrm{c}} P=0.019$, significant at an α-level of 0.05 .
${ }^{\mathrm{d}} P=5.733 \times 10^{-7}$, highly significant; ${ }^{\mathrm{e}} P=0.177$, not significant; ${ }^{\mathrm{f}} P=5.733 \times 10^{-7}$, highly significant.
${ }^{\mathrm{g}} P=0.312$, not significant; ${ }^{\mathrm{h}} P=0.725$, not significant; ${ }^{\mathrm{i}} P=2.073 \times 10^{-3}$, highly significant.
${ }^{\mathrm{j}} P=0.143$, not significant; ${ }^{\mathrm{k}} P=9.311 \times 10^{-3}$, highly significant; ${ }^{1} P=0.121$, not significant.
${ }^{m} P=1.367 \times 10^{-4}$, highly significant; ${ }^{n} P=0.286$, not significant; ${ }^{\circ} P=0.416$, not significant.
${ }^{\mathrm{p}} P=0.067$, significant at an α-level of $0.1 ;{ }^{9} P=3.747 \times 10^{-3}$, highly significant; ${ }^{\mathrm{T}} P=0.242$, not significant.
${ }^{\$}$ data from Ref. (2), overall the GC and the CO frequencies are increased in $f b h 1 \Delta$ compared to wild type, something that was not as pronounced, especially for the COs, in our previous data set (2). This increase in GC and CO could be caused by either more DSBs or by changes in the interhomolog bias (similar to what has been suggested for RTEL-1 (20)). Previously, fbhl 1Δ has been shown to have poor spore viability, therefore we cannot discount the possibility that it has an effect on the $\mathrm{CO} / \mathrm{NCO}$ decision during meiosis (2).
${ }^{\dagger}$ Fml2 and Fmll are paralogs, and therefore have the potential to be functionally redundant with each other. We included the fimll Δ fil2 double mutant in our analysis to test this possibility.

Table S2. Frequency of gene conversion and crossing over in the ura4 ${ }^{+}$-aim 2 - ade 6 - his 3^{+}-aim interval. The values are the means from n independent crosses and the values in brackets are the standard deviations. The number of Ade ${ }^{+}$recombinants tested is indicated, as is the total number of viable spores analyzed for crossing over between ura4 4^{+}-aim 2 and his 3^{+}-aim. ade6-3083 is a known hot spot for recombination and therefore acts predominantly as a recipient of genetic information, this and the order of markers explains the disparity between $\mathrm{P} 1 / \mathrm{R} 1$ and $\mathrm{P} 2 / \mathrm{R} 2$ classes. CentiMorgan (cM) are calculated from the accumulated data of the independent crosses, not from the mean values, using the mapping function of Haldane. P values are calculated by a two-tailed Mann-Whitney U test against the data from the wild-type cross (ALP733 \times ALP731).

Cross		n	Frequency of ade $^{+}$in \%	$\begin{gathered} \text { ade }^{+} \\ \text {tested } \end{gathered}$	\% ade $^{+}$				tested	Crossovers (CO)	
strain	genotype				urahis ${ }^{+}$(P1)	ura ${ }^{+}{ }^{\text {his }}$ (${ }^{\text {P2) }}$	ura ${ }^{-}{ }^{-1}$ (R1)	ura ${ }^{+}{ }^{\text {his }}{ }^{+}$(R2)		Frequency of CO in $\%$	cM
ALP733	wild type	21	$\begin{gathered} 1.371 \\ (0.515) \end{gathered}$	4,014	$\begin{gathered} \hline 4.3 \\ (3.14) \end{gathered}$	$\begin{aligned} & \hline 35.34 \\ & (6.92) \end{aligned}$	$\begin{aligned} & \hline 58.18 \\ & (5.71) \end{aligned}$	$\begin{gathered} \hline 2.18 \\ (1.47) \end{gathered}$	3,265	$\begin{aligned} & 13.424 \\ & (5.33) \end{aligned}$	15.83
$\begin{gathered} \text { ALP731 } \\ \text { ALP1133 } \\ \times \end{gathered}$	fmll Δ	12	$\begin{aligned} & 1.171^{\mathrm{a}} \\ & (0.329) \end{aligned}$	2,069	$\begin{gathered} 5.17^{b} \\ (1.62) \end{gathered}$	$\begin{gathered} 22.69^{b} \\ (2.96) \end{gathered}$	$\begin{gathered} 70.6^{b} \\ (2.53) \end{gathered}$	$\begin{gathered} 1.55^{b} \\ (0.57) \end{gathered}$	2,091	$\begin{aligned} & 13.157^{\mathrm{c}} \\ & (2.545) \end{aligned}$	15.52
$\begin{gathered} \text { MCW4718 } \\ \text { ALP1255 } \\ \times \end{gathered}$	fmll-K99R	11	$\begin{aligned} & 1.681^{\mathrm{d}} \\ & (0.201) \end{aligned}$	3,200	$\begin{aligned} & 6.45^{\mathrm{e}} \\ & (1.3) \end{aligned}$	$\begin{aligned} & 20.99^{\mathrm{e}} \\ & (3.03) \end{aligned}$	$\begin{aligned} & 70.57^{\mathrm{e}} \\ & (2.91) \end{aligned}$	$\begin{gathered} 1.99^{\mathrm{e}} \\ (0.64) \end{gathered}$	2,123	$\begin{aligned} & 18.108^{\mathrm{f}} \\ & (5.076) \end{aligned}$	21.86
$\begin{gathered} \text { ALP1231 } \\ \text { ALP1277 } \\ \times \end{gathered}$	mhfl Δ	10	$\begin{gathered} 0.891^{\mathrm{g}} \\ (0.248) \end{gathered}$	1,326	$\begin{aligned} & 4.22^{\mathrm{h}} \\ & (1.83) \end{aligned}$	$\begin{aligned} & 28.31^{\mathrm{h}} \\ & (4.91) \end{aligned}$	$\begin{aligned} & 65.79^{\mathrm{h}} \\ & (5.61) \end{aligned}$	$\begin{gathered} 1.68^{\mathrm{h}} \\ (0.84) \end{gathered}$	1,552	$\begin{aligned} & 13.838^{i} \\ & (4.171) \end{aligned}$	15.78
$\begin{gathered} \text { ALP1274 } \\ \text { ALP1278 } \\ \times \end{gathered}$	$m h f 2 \Delta$	12	$\begin{gathered} 0.984^{j} \\ (0.204) \end{gathered}$	1,513	$\begin{gathered} 5.22^{\mathrm{k}} \\ (2.41) \end{gathered}$	$\begin{gathered} 25.8^{k} \\ (4.81) \end{gathered}$	$\begin{aligned} & 65.86^{\mathrm{k}} \\ & (6.37) \end{aligned}$	$\begin{gathered} 3.12^{\mathrm{k}} \\ (1.47) \end{gathered}$	1,689	$\begin{aligned} & 15.266^{1} \\ & (5.532) \end{aligned}$	20.14
$\begin{gathered} \text { ALP1276 } \\ \text { ALP800 } \\ \times \end{gathered}$	sfr $1 \Delta-2$	10	$\begin{gathered} 0.11^{\mathrm{m}} \\ (0.026) \end{gathered}$	2,429	$\begin{aligned} & 3.66^{\mathrm{n}} \\ & (1.6) \end{aligned}$	$\begin{gathered} 43.94^{n} \\ (2.93) \end{gathered}$	$\begin{aligned} & 49.43^{n} \\ & (2.51) \end{aligned}$	$\begin{gathered} 2.96^{\mathrm{n}} \\ (1.88) \end{gathered}$	2,486	$\begin{gathered} 2.664^{\circ} \\ (1.838) \end{gathered}$	2.73
$\begin{gathered} \text { ALP782 } \\ \text { ALP1134 } \\ \times \end{gathered}$	frll Δ sfr $1 \Delta-2$	12	$\begin{gathered} 0.096^{\mathrm{p}} \\ (0.021) \end{gathered}$	2,313	$\begin{gathered} 4.0^{q} \\ (1.39) \end{gathered}$	$\begin{aligned} & 25.84^{\mathrm{q}} \\ & (3.51) \end{aligned}$	$\begin{gathered} 68.17^{q} \\ (3.78) \end{gathered}$	$\begin{gathered} \\ 1.99^{9} \\ (0.85) \end{gathered}$	2,484	$\begin{gathered} 3.396^{\mathrm{r}} \\ (2.046) \end{gathered}$	3.63
$\begin{gathered} \text { MCW4719 } \\ \text { ALP802 } \\ \times \end{gathered}$	mus $81 \Delta^{\text {§ }}$	10	$\begin{gathered} 0.227^{\mathrm{s}} \\ (0.085) \end{gathered}$	46	$\begin{gathered} 2.0^{t} \\ (6.32) \end{gathered}$	$\begin{aligned} & 94.89^{t} \\ & (11.1) \end{aligned}$	$0.0{ }^{\text {t }}$	$\begin{gathered} 3.11^{t} \\ (9.85) \end{gathered}$	1,115	$\begin{gathered} 1.932^{u} \\ (1.399) \end{gathered}$	2.06
ALP822 ALP824 \times	$m u s 81 \Delta$ sfr $1 \Delta-2$	19	$\begin{gathered} 0.029^{v} \\ (0.009) \end{gathered}$	745	$\begin{gathered} 1.04^{\mathrm{w}} \\ (1.56) \end{gathered}$	$\begin{gathered} 92.56^{\mathrm{w}} \\ (5.88) \end{gathered}$	$\begin{aligned} & 5.61^{w} \\ & (5.4) \end{aligned}$	$\begin{gathered} 0.8^{\mathrm{w}} \\ (1.55) \end{gathered}$	3,178	$\begin{gathered} 3.179^{\mathrm{x}} \\ (2.596) \end{gathered}$	2.85
$\begin{gathered} \text { ALP823 } \\ \text { ALP1365 } \\ \times \end{gathered}$	$\begin{gathered} \text { fml1 } \Delta \text { mus } 81 \Delta \\ \text { sfr } 1 \Delta-2 \end{gathered}$	11	$<0.00005^{\text {y }}$	n. a.					1,509	$\begin{aligned} & 1.269^{\mathrm{z}} \\ & (1.056) \end{aligned}$	1.34
ALP1364 or MCW4720 MCW6074 \times	$m h f 1 \Delta m h f 2 \Delta$	8	$\begin{aligned} & 0.792^{\mathrm{A}} \\ & (0.184) \end{aligned}$	1,269	$\begin{gathered} 4.18^{\mathrm{B}} \\ (3.76) \end{gathered}$	$\begin{gathered} 25.13^{\mathrm{B}} \\ (4.08) \end{gathered}$	$\begin{gathered} 64.72^{\mathrm{B}} \\ (10.04) \end{gathered}$	$\begin{aligned} & 5.97^{\mathrm{B}} \\ & (5.4) \end{aligned}$	1,6199	$\begin{aligned} & 19.46^{\mathrm{C}} \\ & (4.669) \end{aligned}$	25.36
$\begin{gathered} \text { MCW6075 } \\ \text { ALP1318 } \\ \times \end{gathered}$	$f m l 1 \Delta \operatorname{mhf} 1 \Delta$ $m h f 2 \Delta$	6	$\begin{gathered} 0.914^{\mathrm{D}} \\ (0.08) \end{gathered}$	1,107	$\begin{gathered} 3.61^{\mathrm{E}} \\ (1.87) \end{gathered}$	$\begin{gathered} 27.29^{\mathrm{E}} \\ (2.88) \end{gathered}$	$\begin{aligned} & 58.41^{\mathrm{E}} \\ & (4.74) \end{aligned}$	$\begin{aligned} & 10.69^{\mathrm{E}} \\ & (0.74) \end{aligned}$	1,308	$\begin{aligned} & 21.272^{\mathrm{F}} \\ & (7.999) \end{aligned}$	26.36
ALP1317 ALP1545		6	$0.509^{\text {G }}$	1,045	$3.09{ }^{\text {H }}$	$34.29^{\text {H }}$	$60.68^{\text {H }}$	$1.94{ }^{\text {H }}$	1,164	6.821^{1}	7.29

ALP1544			(0.058)		(1.8)	(4.7)	(4.21)	(0.94)		(2.423)	
$\begin{gathered} \text { ALP1092 } \\ \times \end{gathered}$	$s l x 1 \Delta$	12	$\begin{aligned} & 0.712^{\mathrm{K}} \\ & (0.288) \end{aligned}$	2,975	$\begin{aligned} & 5.25^{\mathrm{L}} \\ & (2.11) \end{aligned}$	$\begin{gathered} 32.03^{\mathrm{L}} \\ (3.41) \end{gathered}$	$\begin{aligned} & 59.16^{\mathrm{L}} \\ & (3.79) \end{aligned}$	$\begin{gathered} 3.56^{\mathrm{L}} \\ (0.94) \end{gathered}$	4,837	$\begin{aligned} & 14.787^{\mathrm{M}} \\ & (5.087) \end{aligned}$	20.08
ALP1091											
$\underset{\times}{\text { ALP1104 }}$	rad16 ${ }^{\text {d }}$	12	$\begin{aligned} & 1.205^{\mathrm{N}} \\ & (0.245) \end{aligned}$	3,545	$\begin{gathered} 3.94^{\circ} \\ (1.19) \end{gathered}$	$\begin{gathered} 34.39^{\circ} \\ (2.37) \end{gathered}$	$\begin{gathered} 59.35^{\circ} \\ (2.93) \end{gathered}$	$\begin{aligned} & 2.33^{\circ} \\ & (1.18) \end{aligned}$	3,118	$\begin{aligned} & 15.856^{\mathrm{P}} \\ & (2.988) \end{aligned}$	19.29
ALP1103											

${ }^{\text {a }} P=0.41$, not significant; ${ }^{\mathrm{b}} P=2.897 \times 10^{-6}$, highly significant; ${ }^{\mathrm{c}} P=1.0$, not significant.
${ }^{\mathrm{d}} P=0.159$, not significant; ${ }^{\mathrm{e}} P=5.549 \times 10^{-6}$, highly significant; ${ }^{\mathrm{f}} P=0.041$, significant at an α-level of 0.05 .
${ }^{\mathrm{g}} P=0.025$, significant at an α-level of $0.05 ;{ }^{\text {h }} P=0.007$, highly significant; ${ }^{\mathrm{i}} P=0.899$, not significant.
${ }^{\mathrm{j}} P=0.061$, significant at an α-level of $0.1 ;{ }^{\mathrm{k}} P=2.449 \times 10^{-4}$, highly significant; ${ }^{1} P=0.575$, not significant.
${ }^{\mathrm{m}} P=9.12 \times 10^{-6}$, highly significant; ${ }^{\mathrm{n}} P=8.427 \times 10^{-4}$, highly significant; ${ }^{\circ} P=9.12 \times 10^{-6}$, highly significant.
${ }^{\mathrm{p}} P=2.412 \times 10^{-6}$, highly significant; ${ }^{\mathrm{q}} P=3.884 \times 10^{-5}$, highly significant; ${ }^{\mathrm{r}} P=7.093 \times 10^{-6}$, highly significant.

${ }^{\mathrm{v}} P=6.54 \times 10^{-8}$, highly significant; ${ }^{\mathrm{w}} P=6.54 \times 10^{-8}$, highly significant; ${ }^{\mathrm{x}} P=2.861 \times 10^{-7}$, highly significant; ${ }^{\mathrm{x}}$ data is corrected for strongly distorted crossing over frequencies.
${ }^{\mathrm{y}}$ This is an estimate, there were no ade ${ }^{+}$colonies among 32,276 plated spores; ${ }^{2} P=4.592 \times 10^{-6}$, highly significant.
${ }^{\text {A }} P=5.021 \times 10^{-3}$, highly significant; ${ }^{\mathrm{B}} P=1.28 \times 10^{-3}$, highly significant; ${ }^{\mathrm{C}} P=0.017$, significant at an α-level of 0.05 .
${ }^{\mathrm{D}} P=0.162$, not significant; ${ }^{\mathrm{E}} P=4.267 \times 10^{-3}$, highly significant; ${ }^{\mathrm{F}} P=0.031$, significant at an α-level of 0.05 .

 (as previously discussed (32,33)), but does not impinge on the CO/NCO-decision once an extended D loop is formed.
${ }^{\mathrm{K}} P=7.567 \times 10^{-4}$, highly significant; ${ }^{\mathrm{L}} P=0.262$, not significant; ${ }^{\mathrm{M}} P=0.389$, not significant.
${ }^{N} P=0.389$, not significant; ${ }^{\circ} P=0.765$, not significant; ${ }^{\mathrm{P}} P=0.217$, not significant.
${ }^{\text {§ }}$ data from Ref. (18)

Table S3. Frequency of gene conversion and crossing over in the ura 4^{+}-aim 2 -ade 6 - his 3^{+}-aim interval. The values are the means from n independent crosses and the values in brackets are the standard deviations. The number of Ade recombinants tested is indicated, as is the total number of viable spores analyzed for crossing over between ura4 ${ }^{+}$-aim 2 and his 3^{+}-aim. ade6-M375 is a known cold spot for meiotic DSB formation. Nevertheless recombination induced at this site causes a disparity between P1/R1 and P2/R2 classes, since ade6-M375 is the recipient of genetic information. CentiMorgan (cM) are calculated from the accumulated data of the independent crosses, not from the mean values, using the mapping function of Haldane. P values are calculated by a two-tailed Mann-Whitney U test against the data from the wild-type cross (ALP1541 \times ALP731).

Cross		n	Frequency of ade $^{+}$in \%	$\begin{gathered} \text { ade }^{+} \\ \text {tested } \end{gathered}$	\% ade $^{+}$				tested	Crossovers (CO)	
strain	genotype				ura ${ }^{\text {his }}{ }^{+}$(P1)	ura ${ }^{+}{ }^{\text {his }}{ }^{-}$(P2)	ura`his ${ }^{-1}$ (R1)	ura $^{+} \mathrm{his}^{+}$(R2)		Frequency of CO in \%	cM
$\begin{gathered} \text { ALP1541 } \\ \times \end{gathered}$	wild type	6	$\begin{gathered} \hline 0.0278 \\ (0.0036) \end{gathered}$	1,053	$\begin{gathered} \hline 6.39 \\ (2.46) \end{gathered}$	$\begin{aligned} & \hline 34.44 \\ & (2.66) \end{aligned}$	$\begin{aligned} & \hline 56.74 \\ & (4.45) \end{aligned}$	$\begin{gathered} \hline 2.42 \\ (0.62) \end{gathered}$	1,083	$\begin{aligned} & \hline 10.075 \\ & (3.539) \end{aligned}$	11.70
$\begin{gathered} \text { ALP731 } \\ \text { MCW1832 } \\ \times \\ \text { MCW1785 } \end{gathered}$	$f m l 1 \Delta$	6	$\begin{gathered} 0.0474^{\mathrm{a}} \\ (0.0105) \end{gathered}$	1,166	$\begin{gathered} 7.5^{\mathrm{b}} \\ (0.87) \end{gathered}$	$\begin{aligned} & 24.62^{b} \\ & (1.39) \end{aligned}$	$\begin{aligned} & 65.32^{b} \\ & (2.16) \end{aligned}$	$\begin{gathered} 2.57^{b} \\ (0.95) \end{gathered}$	1,155	$\begin{aligned} & 14.988^{c} \\ & (3.558) \end{aligned}$	17.68

${ }^{\mathrm{a}} P=0.025$, significant at an α-level of $0.05 ;{ }^{\mathrm{b}} P=0.004$, highly significant; ${ }^{\mathrm{c}} P=0.055$, significant at an α-level of 0.1 .

Table S4. Frequency of crossing over in the his 1-102 - leu2-120 - lys $7-2$ interval. The values are the means from n independent crosses, the values in brackets are the standard deviations. The total number of viable spores analyzed for crossing over between his 1 and leu2, leu 2 and lys 7 , as well as hisl and lys 7 . Since leu 2 is located inbetween hisl and lys 7 , the segregation pattern of leu2-120 in these crosses was used to determine the frequency of double crossovers in the his $1-l y s 7$ interval. CentiMorgan (cM) are calculated from the accumulated data of the independent crosses, not from the mean values, using the mapping function of Haldane. P values are calculated by a two-tailed Mann-Whitney U test against the data from the wild-type cross (ALP996 \times ALP1002).

Cross		n	tested	Crossovers (CO)					
strain	genotype			$\begin{aligned} & \hline \text { his1-102 } \\ & \text { leu2-120 } \end{aligned}$		$\begin{gathered} \text { leu2-120 } \\ \text { lys } 7-2 \end{gathered}$		$\begin{gathered} \text { his1-102 } \\ \text { (leu2-120) } \\ \text { lys } 7-2 \end{gathered}$	
$\begin{gathered} \text { ALP996 } \\ \times \end{gathered}$	wild type	5	723	$\begin{gathered} 16.393 \% \\ (1.614) \end{gathered}$	19.96 cM	$\begin{gathered} 10.868 \text { \% } \\ (1.409) \end{gathered}$	12.15 cM	$\begin{gathered} 25.899 \% \\ (1.469) \end{gathered}$	36.42 cM
ALP1002 ALP1014 \times ALP1017	fml1 Δ	5	825	$\begin{gathered} 21.244 \%^{\mathrm{a}} \\ (1.733) \end{gathered}$	27.39 cM	$\begin{gathered} 13.689 \%^{\mathrm{b}} \\ (3.544) \end{gathered}$	15.51 cM	$\begin{gathered} 32.133 \%^{\mathrm{c}} \\ (3.841) \end{gathered}$	50.08 cM

[^0]Table S5. Spore viability

strain	cross	spore viability in \% of plated spores, numbers in brackets are spores plated/experiment ${ }^{\text {a }}$										Mean \pm s.d. ${ }^{\text {a }}$
WT	ALP714 \times ALP688	$\begin{aligned} & 61.41 \\ & (894) \end{aligned}$	$\begin{aligned} & 73.85 \\ & (891) \end{aligned}$	$\begin{aligned} & 82.4 \\ & (915) \end{aligned}$	$\begin{aligned} & 75.41 \\ & (915) \end{aligned}$	$\begin{aligned} & 59.68 \\ & (930) \end{aligned}$	$\begin{aligned} & 102.7 \\ & (888) \end{aligned}$	$\begin{aligned} & 80.6 \\ & (897) \end{aligned}$	$\begin{aligned} & 80.35 \\ & (921) \end{aligned}$	$\begin{aligned} & 91.32 \\ & (1,371) \end{aligned}$	$\begin{aligned} & 61.5 \\ & (891) \end{aligned}$	$\begin{aligned} & 76.92 \pm 13.8 \\ & (9,513) \end{aligned}$
fml1 ${ }^{\text {d }}$	ALP989 \times ALP990	$\begin{aligned} & 89.44 \\ & (900) \end{aligned}$	$\begin{aligned} & 72.05 \\ & (891) \end{aligned}$	$\begin{aligned} & 69.16 \\ & (921) \end{aligned}$	$\begin{aligned} & 76.46 \\ & (909) \end{aligned}$	$\begin{aligned} & 59.42 \\ & (924) \end{aligned}$	$\begin{aligned} & 60.82 \\ & (906) \end{aligned}$	$\begin{aligned} & 64.09 \\ & (891) \end{aligned}$	$\begin{aligned} & 68.2 \\ & (915) \end{aligned}$	$\begin{aligned} & 63.29 \\ & (888) \end{aligned}$	$\begin{aligned} & 102.96 \\ & (879) \end{aligned}$	$\begin{aligned} & 72.59 \pm 13.84 \\ & (9,024) \end{aligned}$
fmll-K99R	ALP1255 \times ALP1231	$\begin{aligned} & 68.14 \\ & (948) \end{aligned}$	$\begin{aligned} & 55.79 \\ & (864) \end{aligned}$	$\begin{aligned} & 56.37 \\ & (1,020) \end{aligned}$	$\begin{aligned} & 50.61 \\ & (903) \end{aligned}$	$\begin{aligned} & 68.31 \\ & (975) \end{aligned}$	$\begin{aligned} & 57.19 \\ & (918) \end{aligned}$	$\begin{aligned} & 65.42 \\ & (1,044) \end{aligned}$	$\begin{aligned} & 65.73 \\ & (966) \end{aligned}$	$\begin{aligned} & 59.16 \\ & (999) \end{aligned}$	$\begin{aligned} & 57.85 \\ & (987) \end{aligned}$	$\begin{aligned} & 60.46 \pm 6.04 \\ & (9,624) \end{aligned}$
$s f r 1 \Delta-2$	ALP797 × ALP775	$\begin{aligned} & 54.75 \\ & (1,527) \end{aligned}$	$\begin{aligned} & 57.84 \\ & (861) \end{aligned}$	$\begin{aligned} & 55.95 \\ & (924) \end{aligned}$	$\begin{aligned} & 47.15 \\ & (2,859) \end{aligned}$	$\begin{aligned} & 41.49 \\ & (1,239) \end{aligned}$	$\begin{aligned} & 48.32 \\ & (1,341) \end{aligned}$	$\begin{aligned} & 41.19 \\ & (1,272) \end{aligned}$	$\begin{aligned} & 38.51 \\ & (1,332) \end{aligned}$	$\begin{aligned} & 53.14 \\ & (1,449) \end{aligned}$	$\begin{aligned} & 43.6 \\ & (1,383) \end{aligned}$	$\begin{aligned} & 48.19 \pm 6.92 \\ & (14,187) \end{aligned}$
frll Δ sfrl ${ }^{\text {d-2 }}$	ALP1135 \times ALP1136	$\begin{aligned} & 36.95 \\ & (1,356) \end{aligned}$	$\begin{aligned} & 47.32 \\ & (1,380) \end{aligned}$	$\begin{aligned} & 41.59 \\ & (1,380) \end{aligned}$	$\begin{aligned} & 33.58 \\ & (1,212) \end{aligned}$	$\begin{aligned} & 53.22 \\ & (1,287) \end{aligned}$	$\begin{aligned} & 40.55 \\ & (1,344) \end{aligned}$	$\begin{aligned} & 54.82 \\ & (1,182) \end{aligned}$	$\begin{aligned} & 33.57 \\ & (1,248) \end{aligned}$	$\begin{aligned} & 51.65 \\ & (1,179) \end{aligned}$	$\begin{aligned} & 43.5 \\ & (1,269) \end{aligned}$	$\begin{aligned} & 43.68 \pm 7.86 \\ & (12,837) \end{aligned}$
mus81碞	ALP812 \times ALP813	$\begin{aligned} & 3.47 \\ & (132,600) \end{aligned}$	$\begin{aligned} & 4.88 \\ & (133,200) \end{aligned}$	$\begin{aligned} & 2.61 \\ & (32,400) \end{aligned}$	$\begin{aligned} & 2.99 \\ & (60,900) \end{aligned}$	$\begin{aligned} & 1.08 \\ & (45,000) \end{aligned}$	$\begin{aligned} & 0.82 \\ & (24,000) \end{aligned}$	$\begin{aligned} & 1.25 \\ & (25,200) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (27,000) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (27,000) \end{aligned}$	$\begin{aligned} & 0.39 \\ & (54,000) \end{aligned}$	$\begin{aligned} & 1.85 \pm 1.55 \\ & (561,300) \end{aligned}$
	ALP820 \times ALP814	$\begin{aligned} & 38.60 \\ & (2,184) \end{aligned}$	$\begin{aligned} & 28.27 \\ & (4,563) \end{aligned}$	$\begin{aligned} & 27.34 \\ & (5,508) \end{aligned}$	$\begin{aligned} & 20.77 \\ & (3,510) \end{aligned}$	$\begin{aligned} & 21.34 \\ & (3,276) \end{aligned}$	$\begin{aligned} & 46.04 \\ & (2,541) \end{aligned}$	$\begin{aligned} & 32.55 \\ & (2,160) \end{aligned}$	$\begin{aligned} & 38.29 \\ & (2,220) \end{aligned}$	$\begin{aligned} & 26.07 \\ & (2,562) \end{aligned}$	$\begin{aligned} & 29.7 \\ & (2,566) \end{aligned}$	$\begin{aligned} & 30.9 \pm 8.06 \\ & (31,090) \end{aligned}$
frll ${ }^{\text {m mus81 }}$ sfr $1 \Delta-2$	ALP1167 \times ALP1168	$\begin{aligned} & 5.35 \\ & (24,000) \end{aligned}$	$\begin{aligned} & 4.45 \\ & (36,000) \end{aligned}$	$\begin{aligned} & 1.77 \\ & (37,050) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (37,800) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (43,500) \end{aligned}$	$\begin{aligned} & 2.96 \\ & (37,950) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (36,000) \end{aligned}$	$\begin{aligned} & 1.42 \\ & (36,000) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (38,250) \end{aligned}$	$\begin{aligned} & 0.71 \\ & (39,000) \end{aligned}$	$\begin{aligned} & 2.25 \pm 1.6 \\ & (365,550) \end{aligned}$
$\mathrm{WT}+\mathrm{eV}$	$\begin{gathered} \text { MCW1221×FO808 } \\ + \text { pREP41 } \end{gathered}$	$\begin{aligned} & 64.65 \\ & (843) \end{aligned}$	$\begin{aligned} & 83.5 \\ & (921) \end{aligned}$	$\begin{aligned} & 61.18 \\ & (912) \end{aligned}$	$\begin{aligned} & 58.62 \\ & (911) \end{aligned}$	$\begin{aligned} & 59.66 \\ & (870) \end{aligned}$	$\begin{aligned} & 79.67 \\ & (915) \end{aligned}$	$\begin{aligned} & 68.9 \\ & (894) \end{aligned}$	$\begin{aligned} & 69.06 \\ & (918) \end{aligned}$	$\begin{aligned} & 66.44 \\ & (885) \end{aligned}$	$\begin{aligned} & 61.71 \\ & (888) \end{aligned}$	$\begin{aligned} & 67.34 \pm 8.38 \\ & (8,957) \end{aligned}$
$\mathrm{WT}+\mathrm{pFmll}^{+}$	$\begin{gathered} \text { ALP733 } \times \text { FO1267 } \\ + \text { pREP41-Fml1 } \end{gathered}$	$\begin{aligned} & 75.74 \\ & (672) \end{aligned}$	$\begin{aligned} & 70.54 \\ & (662) \end{aligned}$	$\begin{aligned} & 85.76 \\ & (667) \end{aligned}$	$\begin{aligned} & 71.72 \\ & (693) \end{aligned}$	$\begin{aligned} & 79.56 \\ & (680) \end{aligned}$	$\begin{aligned} & 74.16 \\ & (685) \end{aligned}$	$\begin{aligned} & 78.81 \\ & (703) \end{aligned}$	$\begin{aligned} & 71.12 \\ & (696) \end{aligned}$	$\begin{aligned} & 88.24 \\ & (689) \end{aligned}$	$\begin{aligned} & 69.66 \\ & (745) \end{aligned}$	$\begin{aligned} & 76.53 \pm 6.48 \\ & (6,892) \end{aligned}$
$\mathrm{WT}+\mathrm{pFmll}^{++}$	$\begin{gathered} \text { ALP733 } \times \text { FO1267 } \\ + \text { pREP1-Fml1 } \end{gathered}$	$\begin{aligned} & 80.79 \\ & (807) \end{aligned}$	$\begin{aligned} & 51.34 \\ & (859) \end{aligned}$	$\begin{aligned} & 62.22 \\ & (847) \end{aligned}$	$\begin{aligned} & 61.03 \\ & (816) \end{aligned}$	$\begin{aligned} & 68.96 \\ & (931) \end{aligned}$	$\begin{aligned} & 72.7 \\ & (923) \end{aligned}$	$\begin{aligned} & 83.47 \\ & (847) \end{aligned}$	$\begin{aligned} & 56.81 \\ & (808) \end{aligned}$	$\begin{aligned} & 73.02 \\ & (882) \end{aligned}$	$\begin{aligned} & 52.29 \\ & (853) \end{aligned}$	$\begin{aligned} & 66.26 \pm 11.32 \\ & (8,573) \end{aligned}$
WT + pFml1-K99R	$\begin{gathered} \text { ALP733 } \times \text { FO1267 } \\ + \text { pREP1-Fml1-K99R } \end{gathered}$	$\begin{aligned} & 67.27 \\ & (828) \end{aligned}$	$\begin{aligned} & 48.85 \\ & (827) \end{aligned}$	$\begin{aligned} & 56.28 \\ & (844) \end{aligned}$	$\begin{aligned} & 69.96 \\ & (839) \end{aligned}$	$\begin{aligned} & 64.48 \\ & (853) \end{aligned}$	$\begin{aligned} & 48.22 \\ & (869) \end{aligned}$	$\begin{aligned} & 65.33 \\ & (721) \end{aligned}$	$\begin{aligned} & 52.94 \\ & (918) \end{aligned}$	$\begin{aligned} & 59.31 \\ & (870) \end{aligned}$	$\begin{aligned} & 91.6 \\ & (762) \end{aligned}$	$\begin{aligned} & 62.42 \pm 12.77 \\ & (8,331) \end{aligned}$
WT + pFml1-D196N	$\begin{array}{r} \text { ALP } 733 \times \text { FO1267 } \\ + \\ \text { pREP1-Fml1-D196N } \end{array}$	$\begin{aligned} & 74.57 \\ & (936) \end{aligned}$	$\begin{aligned} & 64.72 \\ & (958) \end{aligned}$	$\begin{aligned} & 62.2 \\ & (926) \end{aligned}$	$\begin{aligned} & 57.42 \\ & (923) \end{aligned}$	$\begin{aligned} & 63.19 \\ & (910) \end{aligned}$	$\begin{aligned} & 55.3 \\ & (944) \end{aligned}$	$\begin{aligned} & 62.73 \\ & (907) \end{aligned}$	$\begin{aligned} & 60.31 \\ & (955) \end{aligned}$	$\begin{aligned} & 52.69 \\ & (947) \end{aligned}$	$\begin{aligned} & 71.49 \\ & (891) \end{aligned}$	$\begin{aligned} & 62.46 \pm 6.76 \\ & (9,297) \end{aligned}$
mus $81 \Delta+\mathrm{eV}$	$\begin{gathered} \text { MCW1238 } \times \text { MCW1237 } \\ + \text { pREP41 } \end{gathered}$	$\begin{aligned} & 0.8 \\ & (19,800) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (16,200) \end{aligned}$	$\begin{aligned} & 1.08 \\ & (16,380) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (28,800) \end{aligned}$	$\begin{aligned} & 0.84 \\ & (14,700) \end{aligned}$	$\begin{aligned} & 3.98 \\ & (33,000) \end{aligned}$	$\begin{aligned} & 3.85 \\ & (8,100) \end{aligned}$	$\begin{aligned} & 3.65 \\ & (8,400) \end{aligned}$	$\begin{aligned} & 4.43 \\ & (9,450) \end{aligned}$	$\begin{aligned} & 3.16 \\ & (8,100) \end{aligned}$	$\begin{aligned} & 2.33 \pm 1.61 \\ & (162,930) \end{aligned}$
$m u s 81 \Delta+\mathrm{pFmll}^{+}$	$\begin{gathered} \text { ALP802 } \times \text { FO1260 } \\ + \text { pREP41-Fml1 } \end{gathered}$	$\begin{aligned} & 21.36 \\ & (9,800) \end{aligned}$	$\begin{aligned} & 22.93 \\ & (5,425) \end{aligned}$	$\begin{aligned} & 18.64 \\ & (4,200) \end{aligned}$	$\begin{aligned} & 15.19 \\ & (5,775) \end{aligned}$	$\begin{aligned} & 19.32 \\ & (10,150) \end{aligned}$	$\begin{aligned} & 17.2 \\ & (5,075) \end{aligned}$	$\begin{aligned} & 23.33 \\ & (4,050) \end{aligned}$	$\begin{aligned} & 23.65 \\ & (6,650) \end{aligned}$	$\begin{aligned} & 24.8 \\ & (4,025) \end{aligned}$	$\begin{aligned} & 12.54 \\ & (6,125) \end{aligned}$	$\begin{aligned} & 19.9 \pm 4.04 \\ & (61,275) \end{aligned}$
$m u s 81 \Delta+\mathrm{pFml}^{++}$	ALP802 \times FO1260 $+\mathrm{pREP} 1-\mathrm{Fml} 1$	$\begin{aligned} & 18.33 \\ & (6,300) \end{aligned}$	$\begin{aligned} & 18.18 \\ & (6,150) \end{aligned}$	$\begin{aligned} & 27.5 \\ & (5,040) \end{aligned}$	$\begin{aligned} & 25.83 \\ & (5,280) \end{aligned}$	$\begin{aligned} & 19.89 \\ & (6,240) \end{aligned}$	$\begin{aligned} & 17.1 \\ & (6,450) \end{aligned}$	$\begin{aligned} & 15.74 \\ & (6,450) \end{aligned}$	$\begin{aligned} & 16.53 \\ & (5,070) \end{aligned}$	$\begin{aligned} & 16.27 \\ & (5,550) \end{aligned}$	$\begin{aligned} & 16.45 \\ & (6,000) \end{aligned}$	$\begin{aligned} & 19.18 \pm 4.15 \\ & (58,530) \end{aligned}$
$m u s 81 \Delta+\mathrm{pFml1-K99R}$	$\begin{gathered} \text { ALP802 } \times \text { FO1260 } \\ + \text { pREP1-Fml1-K99R } \end{gathered}$	$\begin{aligned} & 0.02 \\ & (45,000) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (42,000) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (44,100) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (45,000) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (48,000) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (43,500) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (45,000) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (48,300) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (43,200) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (46,800) \end{aligned}$	$\begin{aligned} & 0.08 \pm 0.04 \\ & (450,900) \end{aligned}$
mus810 + pFml1-D196N	$\begin{gathered} \text { ALP802× FO1260 } \\ + \text { pREP1-Fml1-D196N } \end{gathered}$	$\begin{aligned} & 0.15 \\ & (39,000) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (63,000) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (93,000) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (93,000) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (66,000) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (84,000) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (72,000) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (99,000) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (93,000) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (114,000) \end{aligned}$	$\begin{aligned} & 0.09 \pm 0.03 \\ & (816,000) \end{aligned}$
$m u s 81 \Delta+\mathrm{pFbh}^{+}{ }^{+}$	$\begin{gathered} \text { ALP802×FO1260 } \\ + \text { pREP41-Fbh1 } \end{gathered}$	$\begin{aligned} & 1.55 \\ & (5,925) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (7,950) \end{aligned}$	$\begin{aligned} & 0.97 \\ & (7,500) \end{aligned}$	$\begin{aligned} & 1.54 \\ & (7,200) \end{aligned}$	$\begin{aligned} & 1.12 \\ & (7,800) \end{aligned}$	$\begin{aligned} & 1.33 \\ & (9,825) \end{aligned}$					$\begin{aligned} & 1.33 \pm 0.24 \\ & (46,200) \end{aligned}$
$m u s 81 \Delta+\mathrm{pSrs} 2{ }^{+}$	$\begin{gathered} \text { ALP802×FO1260 } \\ + \text { pREP41-Srs } 2 \end{gathered}$	$\begin{aligned} & 1.28 \\ & (9,450) \end{aligned}$	$\begin{aligned} & 3.19 \\ & (6,525) \end{aligned}$	$\begin{aligned} & 2.09 \\ & (5,700) \end{aligned}$	$\begin{aligned} & 2.07 \\ & (6,750) \end{aligned}$	$\begin{aligned} & 1.71 \\ & (7,650) \end{aligned}$	$\begin{aligned} & 1.84 \\ & (6,150) \end{aligned}$					$\begin{aligned} & 2.03 \pm 0.64 \\ & (42,225) \end{aligned}$
$m u s 81 \Delta+\mathrm{pRqh}^{+}$	$\begin{gathered} \text { ALP802 } \times \text { FO1260 } \\ + \text { pREP41-Rqh1 } \end{gathered}$	$\begin{aligned} & 0.35 \\ & (6,000) \end{aligned}$	$\begin{aligned} & 0.6 \\ & (4,500) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (5,100) \end{aligned}$	$\begin{aligned} & 0.35 \\ & (8,400) \end{aligned}$	$\begin{aligned} & 0.74 \\ & (9,150) \end{aligned}$	$\begin{aligned} & 0.91 \\ & (5,700) \end{aligned}$					$\begin{aligned} & 0.6 \pm 0.22 \\ & (38,850) \end{aligned}$
mus $81 \Delta+\mathrm{pFml}^{+}$	$\begin{gathered} \text { ALP802 } \times \text { FO1260 } \\ + \text { pREP41-Fml2 } \end{gathered}$	$\begin{aligned} & 1.33 \\ & (6,000) \end{aligned}$	$\begin{aligned} & 2.2 \\ & (4,050) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (5,850) \end{aligned}$	$\begin{aligned} & 1.98 \\ & (5,850) \end{aligned}$	$\begin{aligned} & 0.78 \\ & (6,000) \end{aligned}$	$\begin{aligned} & 1.26 \\ & (9,600) \end{aligned}$					$\begin{aligned} & 1.51 \pm 0.51 \\ & (37,350) \end{aligned}$
recl24-171	ALP1428 \times ALP1429	$\begin{aligned} & 34.47 \\ & (1,938) \end{aligned}$	$\begin{aligned} & 38.93 \\ & (1,662) \end{aligned}$	$\begin{aligned} & 33.88 \\ & (2,010) \end{aligned}$	$\begin{aligned} & 26.76 \\ & (2,238) \end{aligned}$	$\begin{aligned} & 20.84 \\ & (1,761) \end{aligned}$	$\begin{aligned} & 28.83 \\ & (1,644) \end{aligned}$					$\begin{aligned} & 30.62 \pm 6.45 \\ & (11,253) \end{aligned}$
	ALP1472 \times ALP1473	25.96	27.47	29.66	38.98	23.19	30.45					29.28 ± 5.42

		$(1,668)$	$(1,809)$	$(1,740)$	$(1,719)$	$(1,647)$	$(1,698)$					$(10,281)$
rec12土－171 fml1 ${ }^{\text {mus }} 81 \Delta$	ALP1470 \times ALP1471	$\begin{aligned} & 12.52 \\ & (2,268) \end{aligned}$	$\begin{aligned} & 13.47 \\ & (2,376) \end{aligned}$	$\begin{aligned} & 12.49 \\ & (2,409) \end{aligned}$	$\begin{aligned} & 12.26 \\ & (2,520) \end{aligned}$	$\begin{aligned} & 10.08 \\ & (2,580) \end{aligned}$						$\begin{aligned} & 12.16 \pm 1.26 \\ & (12,153) \end{aligned}$
rec12土－171 fmll ${ }^{\text {mus }} 81 \Delta$ sfrld－2	ALP1474 \times ALP1475	$\begin{aligned} & 15.83 \\ & (1,800) \end{aligned}$	$\begin{aligned} & 14.32 \\ & (1,836) \end{aligned}$	$\begin{aligned} & 15.06 \\ & (1,800) \end{aligned}$	$\begin{aligned} & 15.34 \\ & (1,695) \end{aligned}$	$\begin{aligned} & 13.29 \\ & (1,851) \end{aligned}$	$\begin{aligned} & 19.94 \\ & (1,710) \end{aligned}$					$\begin{aligned} & 15.63 \pm 2.29 \\ & (10,692) \end{aligned}$
fmll Δ mus $81 \Delta+p M u s 81 *$	ALP1170 \times ALP1267 ＋pREP41－Mus81－Eme1	$\begin{aligned} & 20.53 \\ & (2,250) \end{aligned}$	$\begin{aligned} & 37.1 \\ & (2,418) \end{aligned}$	$\begin{aligned} & 8.47 \\ & (2,610) \end{aligned}$	$\begin{aligned} & 32.26 \\ & (2,430) \end{aligned}$	$\begin{aligned} & 15.87 \\ & (2,439) \end{aligned}$						$\begin{aligned} & 22.85 \pm 11.75 \\ & (12,147) \end{aligned}$
fmll ${ }^{\text {m mus } 81 \Delta+p R u s A ~}$	$\begin{gathered} \text { ALP1170 } \times \text { ALP1267 } \\ + \text { pREP1-rusA } \end{gathered}$	$\begin{aligned} & 13.82 \\ & (6,000) \end{aligned}$	$\begin{aligned} & 6.83 \\ & (6,240) \end{aligned}$	$\begin{aligned} & 7.19 \\ & (5,940) \end{aligned}$	$\begin{aligned} & 7.91 \\ & (6,120) \end{aligned}$	$\begin{aligned} & 19.37 \\ & (6,300) \end{aligned}$	$\begin{aligned} & 16.33 \\ & (6,105) \end{aligned}$					$\begin{aligned} & 11.91 \pm 5.35 \\ & (36,705) \end{aligned}$
frll Δ mus $81 \Delta+p G E N 1^{++}$	ALP1170 \times ALP1267 + pREP1－GEN1 ${ }^{(1-527)}$	$\begin{aligned} & 0.76 \\ & (5,400) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (7,200) \end{aligned}$	$\begin{aligned} & 0.92 \\ & (5,100) \end{aligned}$	$\begin{aligned} & 0.96 \\ & (5,400) \end{aligned}$	$\begin{aligned} & 1.11 \\ & (4,950) \end{aligned}$	$\begin{aligned} & 1.26 \\ & (4,200) \end{aligned}$					$\begin{aligned} & 0.97 \pm 0.19 \\ & (32,250) \end{aligned}$
rqh1s	ALP783 \times ALP784	$\begin{aligned} & 26.17 \\ & (1,028) \end{aligned}$	$\begin{aligned} & 34.98 \\ & (972) \end{aligned}$	$\begin{aligned} & 28.01 \\ & (1,389) \end{aligned}$	$\begin{aligned} & 36.76 \\ & (1,314) \end{aligned}$	$\begin{aligned} & 30.49 \\ & (1,197) \end{aligned}$	$\begin{aligned} & 30.69 \\ & (1,554) \end{aligned}$	$\begin{aligned} & 44.17 \\ & (1,560) \end{aligned}$	$\begin{aligned} & 21.89 \\ & (1,599) \end{aligned}$	$\begin{aligned} & 31.03 \\ & (2,340) \end{aligned}$	$\begin{aligned} & 29.98 \\ & (2,295) \end{aligned}$	$\begin{aligned} & 31.42 \pm 6.12 \\ & (15,248) \end{aligned}$
srs2 ${ }^{\text {a }}$	$\begin{aligned} & \text { MCW1017 } \times \text { MCW1016 } \\ & \text { *FO1346 } \times \text { FO1354 } \end{aligned}$	$\begin{aligned} & 78.0 \\ & (600) \end{aligned}$	$\begin{aligned} & 77.0 \\ & (600) \end{aligned}$	$\begin{aligned} & 80.0 \\ & (600) \end{aligned}$	$\begin{aligned} & 70.0^{*} \\ & (750) \end{aligned}$	$\begin{aligned} & 72.0^{*} \\ & (750) \end{aligned}$						$\begin{aligned} & 75.4 \pm 4.22 \\ & (3,300) \end{aligned}$
fml2 ${ }^{\text {a }}$	ALP1576 \times ALP1575	$\begin{aligned} & 74.52 \\ & (777) \end{aligned}$	$\begin{aligned} & 53.0 \\ & (832) \end{aligned}$	$\begin{aligned} & 49.7 \\ & (843) \end{aligned}$	$\begin{aligned} & 79.89 \\ & (756) \end{aligned}$	$\begin{aligned} & 79.78 \\ & (811) \end{aligned}$	$\begin{aligned} & 90.27 \\ & (771) \end{aligned}$					$\begin{aligned} & 71.2 \pm 16.23 \\ & (4,790) \end{aligned}$
$d m e 1 \Delta-12$	ALP1545 \times ALP1544	$\begin{aligned} & 43.96 \\ & (1,035) \end{aligned}$	$\begin{aligned} & 72.66 \\ & (1,006) \end{aligned}$	$\begin{aligned} & 67.94 \\ & (814) \end{aligned}$	$\begin{aligned} & 51.08 \\ & (1,016) \end{aligned}$	$\begin{aligned} & 82.03 \\ & (1,085) \end{aligned}$	$\begin{aligned} & 70.92 \\ & (1,049) \end{aligned}$					$\begin{aligned} & 64.77 \pm 14.34 \\ & (6,005) \end{aligned}$
slx14	ALP1083 \times ALP1084	$\begin{aligned} & 85.47 \\ & (888) \end{aligned}$	$\begin{aligned} & 86.84 \\ & (1,011) \end{aligned}$	$\begin{aligned} & 88.06 \\ & (1,131) \end{aligned}$	$\begin{aligned} & 61.92 \\ & (927) \end{aligned}$	$\begin{aligned} & 41.08 \\ & (852) \end{aligned}$	$\begin{aligned} & 68.33 \\ & (903) \end{aligned}$	$\begin{aligned} & 62.98 \\ & (867) \end{aligned}$	$\begin{aligned} & 62.6 \\ & (885) \end{aligned}$	$\begin{aligned} & 67.02 \\ & (849) \end{aligned}$	$\begin{aligned} & 74.48 \\ & (921) \end{aligned}$	$\begin{aligned} & 69.88 \pm 14.48 \\ & (9,234) \end{aligned}$
$r a d 16 \Delta$	ALP1117 \times ALP1118	$\begin{aligned} & 60.47 \\ & (1,032) \end{aligned}$	$\begin{aligned} & 48.9 \\ & (912) \end{aligned}$	$\begin{aligned} & 62.31 \\ & (918) \end{aligned}$	$\begin{aligned} & 48.91 \\ & (963) \end{aligned}$	$\begin{aligned} & 59.94 \\ & (996) \end{aligned}$	$\begin{aligned} & 58.38 \\ & (978) \end{aligned}$	$\begin{aligned} & 66.04 \\ & (963) \end{aligned}$	$\begin{aligned} & 74.45 \\ & (1,002) \end{aligned}$	$\begin{aligned} & 42.49 \\ & (786) \end{aligned}$	$\begin{aligned} & 41.67 \\ & (936) \end{aligned}$	$\begin{aligned} & 56.36 \pm 10.59 \\ & (9,486) \end{aligned}$
	ALP1089 \times ALP1090	$\begin{aligned} & 29.88 \\ & (2,952) \end{aligned}$	$\begin{aligned} & 29.41 \\ & (2,928) \end{aligned}$	$\begin{aligned} & 30.17 \\ & (3,096) \end{aligned}$	$\begin{aligned} & 38.22 \\ & (2,640) \end{aligned}$	$\begin{aligned} & 28.51 \\ & (3,048) \end{aligned}$	$\begin{aligned} & 39.5 \\ & (3,000) \end{aligned}$	$\begin{aligned} & 30.4 \\ & (2,970) \end{aligned}$	$\begin{aligned} & 34.68 \\ & (2,970) \end{aligned}$	$\begin{aligned} & 29.35 \\ & (2,964) \end{aligned}$	$\begin{aligned} & 26.72 \\ & (2,934) \end{aligned}$	$\begin{aligned} & 31.68 \pm 4.29 \\ & (29,502) \end{aligned}$
rad16 ${ }^{\text {mus }} 10$ sfr $1 \Delta-2$	ALP1143 \times ALP1144	$\begin{aligned} & 23.35 \\ & (2,814) \end{aligned}$	$\begin{aligned} & 29.51 \\ & (6,228) \\ & \hline \end{aligned}$	$\begin{aligned} & 28.85 \\ & (2,880) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (3,222) \end{aligned}$	$\begin{aligned} & 30.13 \\ & (3,030) \end{aligned}$	$\begin{aligned} & 34.91 \\ & (3,165) \end{aligned}$	$\begin{aligned} & 23.43 \\ & (2,808) \end{aligned}$	$\begin{aligned} & 27.71 \\ & (6,243) \\ & \hline \end{aligned}$	$\begin{aligned} & 31.79 \\ & (3,108) \\ & \hline \end{aligned}$	$\begin{aligned} & 33.05 \\ & (3,150) \end{aligned}$	$\begin{aligned} & 28.47 \pm 4.36 \\ & (36,648) \end{aligned}$

${ }^{\text {a }}$ numbers in brackets represent total number of plated spores（ n ）．
V stands for empty vector．
Table S6．Percentage of asci formed in a mating population．Strains with different mating types were mixed together，plated onto solid sporulation media and incubated at $+25^{\circ} \mathrm{C}$ before being inspected after 2 and 3 days under a standard light microscope，except for the $m u s 81 \Delta$ fmll Δ double mutant（ALP1050 \times ALP1051），which was followed for 7 days．

Cross		$\begin{gathered} n \\ \text { total cells } \\ \text { tested } \\ \hline \end{gathered}$	\％Asci	Standard Deviation
strain	genotype			
ALP714 \times ALP688	wild type	1，541	42.93	1.75
ALP989 \times ALP990	fml1 Δ	1，167	34.27	1.76
ALP812 \times ALP813	mus81过	1，419	26.69	1.51
ALP797 \times ALP775	sfr 1Δ	1，038	36.21	6.21
ALP820 \times ALP814	$m u s 81 \Delta s f r 1 \Delta$	1，125	19.90	5.57
ALP1050 \times ALP1051	fml1 ${ }^{\text {m mus81 }}$	3，929	0.81	0.45
ALP1167 \times ALP1168	fmll Δ mus81的rla	1，383	10.91	4.19

Table S7．Distribution of DNA masses in wild－type and mutant asci with or without over－expression of wild－type and mutant Fml1．Asci were classified into five categories：（I） 4 regularly distributed DNA masses，（II） 1 DNA mass（total segregation failure），（III）more than 1 but less than 4 DNA masses（partial segregation failure），（IV） 4 irregularly distributed DNA masses（mis－segregation of chromosomes），and（V）more than 4 DNA masses（DNA fragmentation）．Percentage of asci in each category is given．Strains with different mating types were mixed together，plated onto solid sporulation media and incubated at $+25^{\circ} \mathrm{C}$ for several days．Cells were stained with Hoechst 33342 and evaluated under an epifluorescence microscope．P values are calculated by a one－tailed Fisher＇s exact test against the data from the mus810 cross（ALP812 \times ALP813）．

Strains crossed	genotype	n	I	II	III	IV	V
ALP714 \times ALP688	wild type	107	99.065	0.0	0.0	0.0	0.935
ALP989 \times ALP990	fml1碞	117	88.034	0.0	5.983	5.983	0.0
ALP797 \times ALP775	sfrls	127	29.134	0.787	20.472	47.244	2.362
ALP812 \times ALP813		113	0.0	38.938	47.788	9.735	3.54
ALP820 \times ALP814	mus81的r 1Δ	90	6.667	$2.222^{\text {a }}$	23.333	50.0	17.778
ALP1050 \times ALP1051	fml1 Δ mus81号	101	0.0	$46.535^{\text {b }}$	43.564	8.911	0.99
ALP1167 \times ALP1168	fmll Δ mus81的rls	133	0.0	$40.602^{\text {c }}$	42.105	10.526	6.767
ALP802 \times FO1260＋pFml1 ${ }^{+}$	mus81 ${ }^{+}$pREP41－Fml1	114	0.0	$22.807^{\text {d }}$	42.982	24.561	9.649
ALP802 \times FO1260＋pFml1－K99R		113	0.0	$48.673^{\text {e }}$	32.743	14.159	4.425
ALP802 \times FO1260 + pFml1－D196N		134	0.0	$46.269^{\text {f }}$	35.075	14.925	3.731

${ }^{\mathrm{a}} P=4.089 \times 10^{-12}$ ，highly significant
${ }^{\mathrm{b}} P=0.008$ ，highly significant
${ }^{\mathrm{c}} P=0.565$ ，not significant
${ }^{\mathrm{d}} P=1.278 \times 10^{-4}$ ，highly significant
${ }^{\mathrm{e}} P=3.119 \times 10^{-6}$ ，highly significant
${ }^{\mathrm{f}} P=0.006$ ，highly significant
Table S8．Mus81 foci in Rec10－positive nuclei of wild－type and sfr1D－2 strains（for details on staging of Rec10－stained linear elements see fig．S4）．

	dots	threads	networks
wild type（ALP1524）			
\％of Mus81－positive nuclei	20.0	28.6	100.0
Average number of Mus81 foci／nucleus	0.4	0.67	19.6
Maximum number of Mus81 foci	4	5	49
n	20	21	28
sfr1D－2（ALP1540）			80.0
\％of Mus81－positive nuclei	20.0	25.0	46
Average number of Mus81 foci／nucleus	0.35	0.45	68.2
Maximum number of Mus81 foci	2	4	5.27
n	20	20	34

Table S9. Frequency of gene conversion and crossing over in the ura4 ${ }^{+}$-aim 2 - ade 6 - his 3^{+}-aim interval. The values are the means from n independent crosses and the values in brackets are the standard deviations. The number of Ade ${ }^{+}$recombinants tested is indicated, as is the total number of viable spores analyzed for crossing over between ura 4^{+}-aim 2 and his 3^{+}-aim. ade6-3083 is a known hot spot for recombination and therefore acts predominantly as a recipient of genetic information, this and the order of markers explains the disparity between $\mathrm{P} 1 / \mathrm{R} 1$ and $\mathrm{P} 2 / \mathrm{R} 2$ classes. CentiMorgan (cM) are calculated from the accumulated data of the independent crosses, not from the mean values, using the mapping function of Haldane. P values are calculated by a two-tailed Mann-Whitney U test against the data from the wild-type cross (ALP733 \times FO1267 +pREP 41).

Cross		n	Frequency of ade ${ }^{+}$in \%	ade $^{+}$tested	\% ade $^{+}$				tested	Crossovers (CO)	
strain	genotype				urahis ${ }^{+}$(P1)	ura $^{+}{ }^{\text {his }}{ }^{-}$(P2)	ura'his ${ }^{-1}$ (R1)	ura ${ }^{+}{ }^{\text {his }}{ }^{+}$(R2)		Frequency of CO in \%	cM
$\begin{gathered} \text { ALP733 } \\ \times \end{gathered}$	$\begin{gathered} \text { wild type } \\ + \text { empty vector } \end{gathered}$	12	$\begin{gathered} \hline 0.803 \\ (0.098) \end{gathered}$	2,247	$\begin{gathered} \hline 2.79 \\ (1.17) \end{gathered}$	$\begin{aligned} & \hline 36.02 \\ & (4.11) \end{aligned}$	$\begin{aligned} & \hline 58.29 \\ & (3.86) \end{aligned}$	$\begin{gathered} \hline 2.89 \\ (2.09) \end{gathered}$	2,374	$\begin{aligned} & 13.628 \\ & (4.951) \end{aligned}$	15.82
$\begin{gathered} \text { FO1267 } \\ +\mathrm{pREP} 41 \end{gathered}$											
$\begin{gathered} \text { ALP733 } \\ \times \end{gathered}$	$\begin{gathered} \text { wild type } \\ + \text { pREP41-Fml1 } \end{gathered}$	12	$\begin{gathered} 0.969^{\mathrm{a}} \\ (0.081) \end{gathered}$	2,359	$\begin{gathered} 2.05^{b} \\ (1.05) \end{gathered}$	$\begin{aligned} & 43.47^{b} \\ & (3.94) \end{aligned}$	$\begin{aligned} & 51.57^{b} \\ & (3.16) \end{aligned}$	$\begin{gathered} 2.91^{b} \\ (1.42) \end{gathered}$	2,470	$\begin{aligned} & 10.505^{\mathrm{c}} \\ & (2.424) \end{aligned}$	11.87
$\begin{gathered} \text { FO1267 } \\ +\quad \text { pFml1 } \end{gathered}$											
$\underset{\times}{\text { ALP733 }}$	wild type $+\mathrm{pREP} 1-\mathrm{Fml} 1$	11	$\begin{aligned} & 1.055^{\mathrm{d}} \\ & (0.119) \end{aligned}$	2,314	$\begin{gathered} 3.53^{\mathrm{e}} \\ (1.59) \end{gathered}$	$\begin{aligned} & 45.64^{\mathrm{e}} \\ & (3.72) \end{aligned}$	$\begin{aligned} & 46.57^{\mathrm{e}} \\ & (3.89) \end{aligned}$	$\begin{gathered} 4.26^{\mathrm{e}} \\ (1.39) \end{gathered}$	2,324	$\begin{aligned} & 13.889^{f} \\ & (5.265) \end{aligned}$	16.11
$\begin{gathered} \text { FO1267 } \\ +\mathrm{pFmll}^{+} \end{gathered}$											
$\begin{gathered} \text { ALP733 } \\ \times \end{gathered}$	$\begin{gathered} \text { wild type } \\ + \text { pREP1-Fml1-K99R } \end{gathered}$	11	$\begin{gathered} 0.897^{\mathrm{g}} \\ (0.173) \end{gathered}$	1,876	$\begin{aligned} & 5.55^{\mathrm{h}} \\ & (2.0) \end{aligned}$	$\begin{aligned} & 26.72^{\mathrm{h}} \\ & (2.76) \end{aligned}$	$\begin{aligned} & 65.43^{\mathrm{h}} \\ & (2.22) \end{aligned}$	$\begin{aligned} & 2.29^{\mathrm{h}} \\ & (0.83) \end{aligned}$	1,987	$\begin{aligned} & 17.262^{\mathrm{i}} \\ & (2.953) \end{aligned}$	21.25
$\begin{gathered} +\mathrm{pFml1} \\ \text { K99R } \end{gathered}$											
$\begin{gathered} \text { ALP733 } \\ \times \end{gathered}$	$\begin{gathered} \text { wild type } \\ + \text { pREP1-Fml1-D196N } \end{gathered}$	12	$\begin{aligned} & 1.077^{\mathrm{j}} \\ & (0.19) \end{aligned}$	2,310	$\begin{gathered} 4.96^{\mathrm{k}} \\ (1.59) \end{gathered}$	$\begin{aligned} & 25.48^{\mathrm{k}} \\ & (3.98) \end{aligned}$	$\begin{gathered} 67.7^{\mathrm{k}} \\ (3.49) \end{gathered}$	$\begin{gathered} 1.86^{\mathrm{k}} \\ (1.08) \end{gathered}$	2,545	$\begin{aligned} & 15.631^{1} \\ & (2.601) \end{aligned}$	18.76
$\begin{gathered} \text { FO1267 } \\ + \text { pFml1- } \\ \text { D196N } \end{gathered}$											
ALP802		12	$\begin{gathered} 0.52^{\mathrm{m}} \\ (0.102) \end{gathered}$	1,117	$\begin{gathered} 1.7^{\mathrm{n}} \\ (1.56) \end{gathered}$	$\begin{gathered} 93.38^{\mathrm{n}} \\ (4.5) \end{gathered}$	$\begin{gathered} 0.8^{\mathrm{n}} \\ (1.56) \end{gathered}$	$\begin{aligned} & 4.12^{\mathrm{n}} \\ & (3.72) \end{aligned}$	2,404	$\begin{gathered} 3.086^{\circ} \\ (1.465) \end{gathered}$	3.4
$\begin{aligned} & \text { FO1260 } \\ & +\mathrm{pFml1} \end{aligned}$											
$\begin{gathered} \text { ALP802 } \\ \times \end{gathered}$	$\begin{gathered} \text { mus81D } \\ + \text { pREP41-Mus81- } \end{gathered}$	10	$\begin{gathered} 0.98^{\mathrm{p}} \\ (0.216) \end{gathered}$	1,445	$\begin{gathered} 3.26^{\mathrm{q}} \\ (1.14) \end{gathered}$	$\begin{gathered} 39.33^{\mathrm{q}} \\ (6.9) \end{gathered}$	$\begin{aligned} & 53.57^{\mathrm{q}} \\ & (7.22) \end{aligned}$	$\begin{gathered} 3.84^{\mathrm{q}} \\ (2.24) \end{gathered}$	1,504	$\begin{aligned} & 12.986^{\mathrm{r}} \\ & (3.381) \end{aligned}$	15.91
+ pMus81*											
$\underset{\times}{\text { ALP1170 }}$	fml1 Δ mus 81Δ + pREP41-Mus81-	7	$\begin{aligned} & 1.492^{\mathrm{s}} \\ & (0.495) \end{aligned}$	532	$\begin{aligned} & 7.67^{t} \\ & (3.0) \end{aligned}$	$\begin{aligned} & 22.28^{t} \\ & (4.16) \end{aligned}$	$\begin{aligned} & 66.97^{\mathrm{t}} \\ & (5.55) \end{aligned}$	$\begin{gathered} 3.08^{\mathrm{t}} \\ (1.78) \end{gathered}$	366	$\begin{aligned} & 19.454^{\mathrm{u}} \\ & (8.064) \end{aligned}$	26.83
+ pMus81*											
$\begin{gathered} \text { ALP802 } \\ \times \end{gathered}$	$\begin{gathered} \text { mus } 81 \Delta \\ +\mathrm{pREP}^{1-r u s A} \end{gathered}$	13	$\begin{gathered} 0.836^{\mathrm{v}} \\ (0.295) \end{gathered}$	2,047	$\begin{aligned} & 8.78^{\mathrm{w}} \\ & (4.12) \end{aligned}$	$\begin{aligned} & 49.36^{\mathrm{w}} \\ & (7.21) \end{aligned}$	$\begin{aligned} & 29.9^{\mathrm{w}} \\ & (7.24) \end{aligned}$	$\begin{aligned} & 11.96^{\mathrm{w}} \\ & (6.92) \end{aligned}$	2,088	$\begin{aligned} & 11.892^{\mathrm{x}} \\ & (4.308) \end{aligned}$	12.75
$\begin{array}{r} \text { FO1260 } \\ + \text { pRusA } \end{array}$											
$\underset{\times}{\text { ALP1170 }}$	fml1 Δ mus 81Δ + pREP1-rusA	12	$\begin{gathered} 0.759^{y} \\ (0.2) \end{gathered}$	500	$\begin{aligned} & 11.04^{\mathrm{z}} \\ & (5.67) \end{aligned}$	$\begin{gathered} 35.88^{z} \\ (14.28) \end{gathered}$	$\begin{aligned} & 43.71^{\mathrm{z}} \\ & (12.17) \end{aligned}$	$\begin{gathered} 9.37^{\mathrm{z}} \\ (5.15) \end{gathered}$	4,039	$\begin{gathered} 15.852^{\mathrm{A}} \\ (6.77) \end{gathered}$	18.41
ALP1267											

+ pRusA											
$\begin{gathered} \text { ALP802 } \\ \times \end{gathered}$	$\begin{gathered} \text { mus81s } \\ + \text { pREP41- } \end{gathered}$	12	$\begin{aligned} & 0.744^{\mathrm{B}} \\ & (0.137) \end{aligned}$	2,054	$\begin{gathered} 4.15^{\mathrm{C}} \\ (1.5) \end{gathered}$	$\begin{aligned} & 53.59^{\mathrm{C}} \\ & (4.72) \end{aligned}$	$\begin{gathered} 36.18^{\mathrm{C}} \\ (6.29) \end{gathered}$	$\begin{gathered} 6.08^{C} \\ (2.36) \end{gathered}$	2,683	$\begin{gathered} 10.611^{\mathrm{D}} \\ (5.95) \end{gathered}$	10.73
FO1260	GEN1 ${ }^{(1-527) \S}$										
+ pGEN1 ${ }^{+}$											
$\underset{\times}{\text { ALP1170 }}$	$\begin{gathered} \text { fml1 } \Delta \text { mus } 81 \Delta \\ +\mathrm{pREP} 41-\mathrm{GEN} 1^{(1-527)} \end{gathered}$	4	$\begin{aligned} & 0.272^{\mathrm{E}} \\ & (0.065) \end{aligned}$	32	$\begin{gathered} 8.33^{\mathrm{F}} \\ (16.67) \end{gathered}$	$\begin{aligned} & 42.71^{\mathrm{F}} \\ & (13.77) \end{aligned}$	$\begin{aligned} & 46.18^{\mathrm{F}} \\ & (12.6) \end{aligned}$	$\begin{gathered} 2.78^{\mathrm{F}} \\ (5.56) \end{gathered}$	485	$\begin{aligned} & 11.374^{\mathrm{G}} \\ & (1.204) \end{aligned}$	13.13
$\begin{aligned} & \text { ALP1267 } \\ & + \text { pGEN1 }^{+} \end{aligned}$											
$\underset{\times}{\text { ALP1170 }}$	$\begin{aligned} & f m l 1 \Delta \text { mus } 81 \Delta \\ + & \text { pREP1-GEN1 } 1 \end{aligned}$	7	$\begin{aligned} & 0.515^{\mathrm{H}} \\ & (0.455) \end{aligned}$	140	$\begin{gathered} 3.25^{J} \\ (4.23) \end{gathered}$	$\begin{gathered} 45.96^{\mathrm{J}} \\ (11.11) \end{gathered}$	$\begin{aligned} & 44.06^{\mathrm{J}} \\ & (8.92) \end{aligned}$	$\begin{gathered} 6.73^{J} \\ (6.78) \end{gathered}$	1,859	$\begin{aligned} & 17.388^{\mathrm{K}} \\ & (4.415) \end{aligned}$	20.61
$\begin{gathered} \text { ALP1267 } \\ + \text { pGEN1 }^{+} \\ \hline \end{gathered}$											

${ }^{a} P=9.987 \times 10^{-4}$, highly significant; ${ }^{\mathrm{b}} P=5.32 \times 10^{-4}$, highly significant; ${ }^{\mathrm{c}} P=0.149$, not significant.
${ }^{\mathrm{d}} P=2.218 \times 10^{-4}$, highly significant; ${ }^{\mathrm{e}} P=4.865 \times 10^{-5}$, highly significant; ${ }^{\mathrm{f}} P=1.0$, not significant.
${ }^{\mathrm{g}} P=0.074$, significant at an α-level of $0.1 ;{ }^{\mathrm{h}} P=4.513 \times 10^{-4}$, highly significant; ${ }^{\mathrm{i}} P=0.176$, not significant.
${ }^{\mathrm{j}} P=5.32 \times 10^{-4}$, highly significant; ${ }^{\mathrm{k}} P=2.755 \times 10^{-4}$, highly significant; ${ }^{1} P=0.644$, not significant.
${ }^{m} P=4.146 \times 10^{-5}$, highly significant; ${ }^{\mathrm{n}} P=3.226 \times 10^{-5}$, highly significant; ${ }^{0} P=4.146 \times 10^{-5}$, highly significant.
${ }^{p} P=0.075$, significant at an α-level of $0.1 ;{ }^{q} P=0.187$, not significant; ${ }^{1} P=0.553$, not significant.
${ }^{\mathrm{s}} P=0.007$, highly significant; ${ }^{\mathrm{t}} P=0.009$, highly significant; ${ }^{4} P=0.176$, not significant.
${ }^{\mathrm{v}} P=0.301$, not significant; ${ }^{\mathrm{w}} P=2.209 \times 10^{-5}$, highly significant; ${ }^{\mathrm{x}} P=0.301$, not significant.
${ }^{\mathrm{y}} P=0.119$, not significant; ${ }^{\mathrm{z}} P=0.057$, significant at an α-level of 0.1 (tested against mus $81 \Delta+\mathrm{pREP} 1$-rusA: $P=2.0 \times 10^{-3}$, highly significant); ${ }^{\mathrm{A}} P=0.686$, not significant.
${ }^{\mathrm{B}} P=0.141$, not significant; ${ }^{\mathrm{C}} P=3.226 \times 10^{-5}$, highly significant; ${ }^{\mathrm{D}} P=0.248$, not significant.
$P=0.004$, highly significant; ${ }^{\mathrm{F}} P=0.332$, not significant; ${ }^{\mathrm{G}} P=0.396$, not significant.
${ }^{\mathrm{H}} P=0.011$, significant at an α-level of $0.05 ;{ }^{\mathrm{J}} P=0.099$, significant at an α-level of $0.1 ;{ }^{\mathrm{K}} P=0.128$, not significant.
data from Ref. (18)

Table S10．Strain list

Strain	Relevant genotype	Origin
MCW1196	h^{+N} ade6－469 his ${ }^{+}$－aim his3－D1 leu1－32 ura4－D18	Ref．（12）
MCW1195	h^{-}ade6－M26 ura4 ${ }^{+}$－aim 2 arg3－D4 his3－D1 ura4－D18	Ref．（12）
MCW1832		Ref．（2）
MCW1785		Ref．（2）
FO1360	h^{+N} rqh10：：kanMX6 ade6－469 his3 ${ }^{+}$－aim his3－D1 leu1－32 ura4－D18	this study
FO1368	h^{-}rqh1汭kanMX6 ade6－M26 ura4＋${ }^{+}$－aim2 arg3－D4 his3－D1 ura4－D18	this study
FO1346	h^{+N} srs $2 \Delta::$ kanMX6 ade6－M26 ura4 ${ }^{+}$－aim2 arg3－D4 his3－D1 ura4－D18	this study
FO1354	$h^{-s m t 0}$ srs24：：kanMX6 ade6－469 his 3^{+}－aim his3－D1 leu1－32 ura4－D18	this study
MCW3187		this study
MCW3185	h^{-}fmll $\Delta::$ ：natMX4 ade6－M26 ura4 ${ }^{+}$－aim2 arg3－D4 his3－D1 ura4－D18	this study
MCW3189	h^{+N} fml2వ：：kanMX6 ade6－469 his3 ${ }^{+}$－aim his3－D1 leu1－32 ura4－D18	this study
MCW3186	h^{-}fml2土：：kanMX6 ade6－M26 ura4＋－aim2 arg3－D4 his3－D1 ura4－D18	this study
MCW3183		this study
MCW3182		this study
MCW3202／ALP733	h^{+S} ade6－3083 ura4 ${ }^{+}$－aim 2 his3－D1 leu1－32 ura4－D18	Ref．（18）
MCW3200／ALP731	$h^{- \text {sml0 }}$ ade6－469 his 3^{+}－aim arg3－D4 his3－D1 ura4－D18	Ref．（18）
MCW4881／ALP1133	h^{+S} fml1 $\Delta:: h p h M X 4$ ade6－3083 ura4 ${ }^{+}$－aim2 his3－D1 leu1－32 ura4－D18	this study
MCW4718／FO2608		this study
MCW5136／ALP1255	h^{+S} fml1－K99R：：natMX4 ade6－3083 ura4 ${ }^{+}$－aim 2 his3－D1 leu1－32 ura4－D18	this study
MCW5093／ALP1231	$h^{-s m 10}$ fml1－K99R：：natMX4 ade6－469 his3 ${ }^{+}$－aim arg3－D4 his3－D1 ura4－D18	this study
MCW5185／ALP1277	h^{+S} mhf1 $\triangle::$ kanMX6 ade6－3083 ura4 ${ }^{+}$－aim2 his3－D1 leu1－32 ura4－D18	this study
MCW5182／ALP1274		this study
MCW5186／ALP1278	h^{+S} mhf2 $\Delta::$ natMX4 ade6－3083 ura4 ${ }^{+}$－aim2 his 3－D1 leu1－32 ura4－D18	this study
MCW5184／ALP1276	$h^{\text {－smt0 }}$ mhf2 $\Delta::$ natMX4 ade6－469 his 3^{+}－aim arg3－D4 his3－D1 ura4－D18	this study
MCW4473／ALP996	h^{+N} lys 7－2	this study
MCW4507／ALP1002	h^{-}his1－102 leu2－120	this study
MCW4543／ALP1014	h^{+N} fmll 1 ：： $\mathrm{natMX4}$ lys $7-2$	this study
MCW4546／ALP1017	h^{-}fml1枵：natMX4 his1－102 leu2－120	this study
ALP714	h^{+S}	this study
ALP688	$h^{- \text {sml0 }}$	this study
MCW4475／ALP989		this study
MCW4476／ALP990	$h^{- \text {smt0 }}$ fmll $1 \Delta:: n a t M X 4$	this study
MCW3497／ALP797	h^{+S} sfr1D－2：：natMX4	this study
MCW3355／ALP775	$h^{\text {－smto }}$ sfr1 $\Delta-2::$ natMX4	this study
MCW4885／ALP1135		this study
MCW4886／ALP1136	$h^{\text {－smt0 }}$ fml1 $\Delta:: h p h M X 4$ sfr1 ${ }^{\text {a－2：}}$ ：$n a t M X 4$	this study
MCW3542／ALP812		this study
MCW3543／ALP813	$h^{-s m t 0}$ mus81穴：kanMX6	this study
MCW3587／ALP820		this study
MCW3544／ALP814		this study
MCW4991／ALP1167		this study
MCW4992／ALP1168	$h^{-s m t 0}$ fml1 $::$ hphMX4 mus810：：kanMX6 sfr1D－2：：natMX4	this study
MCW3500／ALP800	h^{+S} sfr1 1－2：：natMX4 ade6－3083 ura4 ${ }^{+}$－aim2 his3－D1 leu1－32 ura4－D18	this study
MCW3386／ALP782		this study
MCW4882／ALP1134		this study

MCW4719/FO2609		this study
MCW3514/ALP802	h^{+S} mus81汭kanMX6 ade6-3083 ura4 ${ }^{+}$-aim2 his 3-D1 leul-32 ura4-D18	Ref. (18)
MCW3589/ALP822		Ref. (18)
MCW3591/ALP824		this study
MCW3590/ALP823	$h^{\text {smm0 }}$ mus810::kanMX6 sfr1D-2::natMX4 ade6-469 his3 ${ }^{+}$-aim arg3-D4 his 3-D1 ura4-D18	this study
MCW5330/ALP1365	h^{+s} fml1 $1:: h p h M X 4$ mus81D:::kanMX6 sfr1D-2::natMX4 ade6-3083 ura4 ${ }^{+}$-aim2 his3-D1 leu1-32 ura4-D18	this study
MCW5329/ALP1364	$h^{- \text {sml0 }}$ fml1 $0:$ hphMX4 mus814::kanMX6 sfr1D-2::natMX4 ade6-469 his 3^{+}-aim arg3-D4 his3-D1 ura4-D18	this study
MCW4720/FO2610		this study
MCW4624/ALP1050		this study
MCW4625/ALP1051	$h^{\text {smml }}$ fmlla:: $\mathrm{natMX4} 4 \mathrm{mus} 81 \Delta:: \mathrm{kanMX6}$	this study
FO1260	$h^{\text {- mus814: }}$:kanMX6 ade6-469 his 3^{+}-aim his3-D1 leu1-32 ura4-D18	lab strain; Ref. (18)
MCW1221	h^{+N} arg3-D4 his3-D1 leul-32 ura4-D18	lab strain; Ref. (34)
FO808	h arg3-D4 his 3-D1 leul-32 ura4-D18	lab strain; Ref. (18)
FO1267	$h^{\text {a }}$ ade6-469 his3 ${ }^{+}$-aim his3-D1 leul-32 ura4-D18	lab strain; Ref. (18)
MCW1238/FO909	h^{+N} mus814::kanMX6 arg3-D4 his 3-D1 leu1-32 ura4-D18	lab strain; Ref. (18)
MCW1237/FO908	$h^{\text {r mus814::kanMX6 arg3-D4 his3-D1 leu1-32 ura4-D18 }}$	lab strain; Ref. (18)
MCW5516/ALP1428	h^{+N} rec12八-171::ura4+ ura4-D18	this study
MCW5517/ALP1429	$h^{-s m m 0}$ rec 12d-171::ura4+ ura4-D18	this study
MCW5580/ALP1472		this study
MCW5581/ALP1473		this study
MCW5578/ALP1470		this study
MCW5579/ALP1471		this study
MCW5582/ALP1474		this study
MCW5583/ALP1475		this study
MCW4994/ALP1170		this study
MCW5169/ALP1267		this study
MCW5788/ALP1541	h^{+N} ade6-M375 ura4 ${ }^{+}$-aim 2 his 3-D1 leu1-32 ura4-D18	this study
MCW5789/ALP1542	h^{+N} fml1 $1:$:hphMX4 ade6-M375 ura4 ${ }^{+}$-aim2 his 3-D1 leu1-32 ura4-D18	this study
MCW6074/FO2992	h^{+N} mhf1 $1:$:kanMX6 mhf2 $2:: n a t M X 4$ ade6-469 his3 ${ }^{+}$-aim arg3-D4 his3-D1 ura4-D18	this study
MCW6075/FO2993		this study
MCW5234/ALP1318	h^{+5} fml1 $1:: h p h M X 4$ mhf1 $1:$:kanMX6 mhf2 $\Delta::$ natMX4 ade6-3083 ura4 ${ }^{+}$-aim 2 his 3-D1 leu1-32 ura4-D18	this study
MCW5233/ALP1317		this study
MCW3387/ALP783	h^{+5} rqhlà:kanMX6	this study
MCW3388/ALP784	$h^{-s m 00}$ rqhi $1:$:kanMX6	this study
MCW1017/FO902	h^{+N} srs2A: : ura $^{+}{ }^{+}$arg3-D4 his3-D1 leu1-32 ura4-D18	lab strain; Ref. (34)
MCW1016/FO901	h' srs2A: :ura 4^{+}arg3-D4 his3-D1 leu1-32 ura4-D18	lab strain
MCW6007/ALP1576	h^{+5} fri2 $24:$:kanMX6 ade6-3083 ura4 ${ }^{+}$-aim2 his3-D1 leu1-32 ura4-D18	this study
MCW6006/ALP1575	$h^{-s m l 0}$ fml2 $21:$:kanMX6 ade6-469 his3 ${ }^{+}$-aim arg3-D4 his 3-D1 ura4-D18	this study
MCW5795/ALP1545	h^{+5} dmc 1D-12::natMX4 ade6-3083 ura4 ${ }^{+}$-aim 2 his 3-D1 leu1-32 ura4-D18	this study
MCW5793/ALP1544		this study
MCW4794/ALP1092		this study
MCW4793/ALP1091	$h^{-s m 10}$ slxID: $\mathrm{kanMX6}$ ade6-469 his 3^{+}-aim arg3-D4 4 his 3-D1 ura4-D18	this study
MCW4816/ALP1104	h^{+5} rad164::kanMX6 ade6-3083 ura4+ -aim2 his3-D1 leul-32 ura4-D18	this study
MCW4815/ALP1103	$h^{-s m m 0}$ rad164::kanMX6 ade6-469 his 3^{+}-aim arg3-D4 his 3-D1 ura4-D18	this study
MCW4785/ALP1083	h^{+5} slx 1D: $:$ kanMX6	this study
MCW4786/ALP1084	$h^{\text {smm0 }}$ slx $1 \Delta:$:kanMX6	this study

MCW4841/ALP1117	$h^{\text {+s rad164::kanMX6 }}$	this study
MCW4842/ALP1118	$h^{-s m m 0}$ rad 164 $:$: $\mathrm{kanMX6}$	this study
MCW4791/ALP1089		this study
MCW4792/ALP1090		this study
MCW4964/ALP1143		this study
MCW4965/ALP1144		this study
MCW5202/ALP1291	$h^{\text {//h mbsl-24/mbsl-25 patl-114/patl-114 ade6-M210/ade6-M216 leul }+/ \text { leul-32 ural }+ \text { /ural-61 }}$	this study
MCW5203/ALP1292	h/h mbsl-24/mbsl-25 patl-114/pat1-114 ade6-M210/ade6-M216 leul +/leul-32 ural +/ural-61	this study
MCW5154/ALP1264		this study
MCW5155/ALP1265		this study
MCW5717/ALP1524	$h^{+N} / h^{\text {a }}$ mus $81^{+}:: 13$ myc-kanMX6/mus $81^{+}:: 13$ myc-kanMX6 ade6-M210/ade6-M216	this study
MCW5787/ALP1540	$h^{+5} / h^{-s m l 0}$ sfr $1 \Delta-2::$ natMX4/sfr1 1 -2::natMX4 mus81 ${ }^{+}: 13 \mathrm{myc}$ c-kanMX6/mus81 ${ }^{+}$ade6-M210/ade6-M216	this study
ALP729	h^{+5} arg3-D4 4 his3-D1 leul-32 ura4-D18	lab strain
MCW2575/ALP500	h^{+N} dmc14: ${ }^{\text {ara4 }}$ arg3-D4 his3-D1 leu1-32 ura4-D18	lab strain

Figure S1. Physical assay for analyzing CO formation during meiosis. (A) Schematic of the physical meiotic recombination assay at mbslon chromosome 1 . The restriction sites, the position of the probe used at this locus and the sizes of the expected DNA fragments after endonuclease digestion are indicated (31). (B) Southern Blot showing diploid wild-type and fmll Δ meiotic patl-114 timecourses with CO products arising by the 4 hour timepoint following meiotic induction. (C) Quantification of the CO product at the 6 hour timepoint from Southern blots like in (B). Incomplete digestion results in a band of the same size as R1, therefore the percentage of CO recombination was calculated using $2 \times$ R2/total DNA (33). (D-E) Percentage of different meiotic stages evaluated with Hoechst 33342 -stained cells in wild-type (ALP1291 and ALP1292) and fmll山 (ALP1264 and ALP1265) timecourses (29). (C-E) Values represent the average of two independent experiments each, error bars indicate the range (experiment 1 : WT $=3.18 \% \mathrm{CO}$ and $f m l l \Delta=4.06 \% \mathrm{CO}$; experiment 2 : $\mathrm{WT}=4.02 \% \mathrm{CO}$ and $f m l l \Delta=5.10 \% \mathrm{CO}$).

a bedefghijklmoopqr

Figure S2. Gel retardation assay showing binding of Fml1 $\Delta \mathrm{C}$ (lanes $\mathrm{b}-\mathrm{f}: 0.05 \mathrm{nM}, 0.1 \mathrm{nM}, 0.5 \mathrm{nM}, 5 \mathrm{nM}$, and 10 nM), Fml1 $\Delta \mathrm{C}-\mathrm{K} 99 \mathrm{R}$ (lane h-1: $0.05 \mathrm{nM}, 0.1 \mathrm{nM}, 0.5 \mathrm{nM}, 5 \mathrm{nM}$, and 10 nM), and Fml1 Δ C-D196N (lanes $\mathrm{n}-\mathrm{r}: 0.05 \mathrm{nM}, 0.1 \mathrm{nM}, 0.5 \mathrm{nM}, 5 \mathrm{nM}$, and 10 nM) to a synthetic D loop. See Methods for further details.

Figure S3. Examples of asci as evaluated in Fig. 2B. (A-K) Bright field microscopy images and (A'-K') epifluorescence microscopy images of DNA stained with Hoechst 33342 . Outlines of the asci are indicated as dashed white lines. (A, A', B, B') Asci from a wild-type cross (ALP714 \times ALP688) with 4 equally distributed DNA masses. (C, C') Asci from a mus81 Δ sfrl $1 \Delta-2$ cross (ALP820 \times ALP814) with 4 irregularly distributed DNA masses. (D, D') Asci from a sfr1 $\Delta-2$ cross (ALP797 \times ALP775) with 4 irregularly distributed DNA masses. ($\mathbf{E}, \mathbf{E}^{\prime}$) Asci from a sfrl $1 \Delta-2$ cross (ALP797 \times ALP775) with 2 irregularly distributed DNA masses. (F, \mathbf{F} ') Asci from a mus81 $\operatorname{sfr} 1 \Delta-2$ cross (ALP820 \times ALP814) with 3 irregularly distributed DNA masses. ($\mathbf{G}, \mathbf{G}^{\prime}$) Asci from a mus81 Δ sfrl $\Delta-2$ cross (ALP820 \times ALP814) with 6 irregularly distributed DNA masses. (H, H') Asci from a sfr $1 \Delta-2$ cross (ALP797 \times ALP775) with 2 regularly distributed DNA masses. (I, I', K, K’) Asci from a mus81 Δ cross (ALP812 \times ALP813) with a single DNA mass (spores with immature spore walls are indicated by arrowheads). Spore wall formation is normally initiated during meiosis II, this suggests that asci containing less than 4 spores also must have passed meiosis I and the spindle pole body duplication at the onset of meiosis II (reviewed in (35)).

Figure S4. Mus81 focus formation in wild type and sfrld-2. (A) Examples of Mus81 foci in Rec10-positive nuclei of each stage of linear elements from diploid wild type (ALP1524). The row labeled merge shows Rec10 in green and Mus81-13myc in red and the bottom row shows DNA stained with Hoechst 33342. The 4 stages have been shown to accumulate at different time points of a meiotic time course (dots and threads arising early, whereas networks and bundles can be found only in later time points). Rec10 also coincides and colocalizes with different recombination markers, like Rec7 and Rad51 at particular stages (30, 36). (B) Percentage of Mus81-positive nuclei among meiotic nuclei staged according to their linear element morphology in wild type (ALP1524) and sfrl 1Δ-2 (ALP1540). (C) Average number of Mus81 foci in meiotic nuclei staged according to their linear element morphology in wild type (ALP1524) and sfrl Δ-2 (ALP1540).

Figure S5. Effect of wild-type and mutant Fmll over-expression (expressed from the thiamine-repressible nmtl-promotor in pREP1) on the sensitivity of a wild-type strain (MCW1221) against the alkalyting agent methyl-methanesulfonate (MMS). pREP1 serves as the empty vector (eV) control. Cells were spotted in a 10 -fold dilution series (from 10^{5} to 10^{2} cells) onto EMMG agar containing thiamine (repressed) and MMS as indicated.

Supplemental References

[^1]
[^0]: ${ }^{a} P=0.008$, highly significant; ${ }^{b} P=0.151$, not significant; ${ }^{c} P=0.032$, significant at an α-level of 0.05 .

[^1]: 21. S. A. Sabatinos, S. L. Forsburg, Methods Enzymol 470, 759 (2010).
 22. G. R. Smith, Methods Mol Biol 557, 65 (2009).
 23. A. L. Goldstein, J. H. McCusker, Yeast 15, 1541 (1999).
 24. K. Maundrell, Gene 123, 127 (1993).
 25. A. Lorenz, F. Osman, V. Folkyte, S. Sofueva, M. C. Whitby, Mol Cell Biol 29, 4742 (2009).
 26. C. L. Doe, J. Dixon, F. Osman, M. C. Whitby, EMBO J 19, 2751 (2000).
 27. S. C. Ip et al., Nature 456, 357 (2008).
 28. U. Rass et al., Genes Dev 24, 1559 (2010).
 29. J. Loidl, A. Lorenz, Methods Mol Biol 558, 15 (2009).
 30. A. Lorenz et al., J Cell Sci 117, 3343 (2004).
 31. R. W. Hyppa, G. R. Smith, Methods Mol Biol 557, 235 (2009).
 32. A. L. Grishchuk, J. Kohli, Genetics 165, 1031 (2003).
 33. R. W. Hyppa, G. R. Smith, Cell 142, 243 (2010).
 34. F. Osman, J. Dixon, A. R. Barr, M. C. Whitby, Mol Cell Biol 25, 8084 (2005).
 35. C. Shimoda, J Cell Sci 117, 389 (2004).
 36. A. Lorenz, A. Estreicher, J. Kohli, J. Loidl, Chromosoma 115, 330 (2006).
