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Abstract. In this paper we describe an argumentation-based representation of normal form games, and demonstrate how argu-
mentation can be used to compute pure strategy Nash equilibria. Our approach builds on Modgil’s Extended Argumentation
Frameworks. We demonstrate its correctness, showprove several theoretical properties it satisfies, and outline how it can be
used to explain why certain strategies are Nash equilibria to a non-expert human user.
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1. Introduction

Game theory studies how multiple rational decision-makers should act given interactions between
their strategies, and preferences over the resultant outcomes. Game theory has been applied to myriad
fields [9]. Within game theory, decision-makers (referred to as players), their strategies, preferences and
outcomes are represented within a game, and the solutions to a game identify some form of rational
outcome. One such solution concept is that of a dominant strategy, where a player has a strategy or a
set of strategies that will always result in the best outcome for them, regardless of what other players
do. However, such dominant strategies often do not exist. In this work, we consider instead the notion
of a Nash equilibrium, which identifies optimal strategies given that other players also pursue their own
optimal strategies. Such Nash equilibria therefore represent a form of best response, and provide a well
understood solution concept in game theory. However, finding Nash equilibria is computationally diffi-
cult, and it is sometimes difficult for a non-expert to understand why a given strategy is (or is not) a Nash
equilibrium. We believe that by providing an argumentation-based representation of games, dialogues
can be used to explain a Nash equilibrium to such non-experts. While work such as [7] has considered
game theory in the context of ABA, to our knowledge, this work is the first to link abstract argumentation
and Nash equilibria. We consider only so-called pure strategies for normal form games and intend to
relax this restriction in future work.

The remainder of the paper is structured as follows. In Section 2, we provide a brief overview of argu-
mentation and game-theory concepts necessary to understand our article. In Section 3, we describe how
a normal form game can be encoded using argumentation. Section 4 examines some formal properties of
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our approach. Section 5 shows how we can build upon the proposed framework to provide explanations
to a user about whether a strategy profile is a Nash equilibrium or not. Lastly, we discuss related and
future work in Section 6 before concluding.

2. Background

We begin by providing the necessary background in game theory and argumentation required for the
rest of the paper.

2.1. Game theory

In this paper, we use the usual normal form for games [16].

Definition 1 (Normal game). A (normal) game is G = (Ag, Ac, Av, Ou, Ef , �) where Ag =
{0, 1, . . . , n} is a finite set of players; Ac is a finite set of strategies; Av = [Ac0, . . . , Acn] with
Aci ⊆ Ac denoting the strategies available to i; Ou = {o0, . . . , om} is a set of possible outcomes;
Ef : Acn → Oun captures the consequences of the joint strategies for each player; and �= [�0, . . . , �n]
with �i⊆ Ou × Ou denoting the preference relation for player i.

The notation ok �i ol means that player i prefers outcome ol to ok. As commonly done, we write
oi <i oj iff oi �i oj and oj �i oi .1 Likewise, we will use the notation oi �i oj iff oi ≮i oj and
oi >i oj iff oi �i oj . A pure strategy profile S is a tuple containing one strategy from each player in the
game. The set of all such pure strategy profiles is SG = ∏

i∈Ag Aci , and represents one joint strategy of
all players. A partial strategy profile is a tuple containing a single strategy for a subset of the players.
Given any pure strategy profile S = [s0, . . . , sn], we write S−i to denote the partial strategy profile
[s0, . . . , si−1, ∅, si+1, . . . , sn], where the strategy for player i is not specified. We then write S−i ⊕ si to
denote strategy profile S. With a slight abuse of notation, for any S, S ′ ∈ SG we write that S �i S ′ iff
Ef (S)i �i Ef (S ′)i .2

Example 1. Let us consider the stag hunt game G = ({0, 1}, Ac, Av, Ou, Ef , �), where Ac =
{stag, hare}, Av = [Ac, Ac], Ou = {4, 3, 2, 1}, � is the standard less than relation over numbers. Ta-
ble 1a graphically illustrates this game in normal form, and specifies Ef . For example, the tuple (1, 3) in

Table 1

Two games in normal form

1We assume that for all players i, �i is transitive and complete (each two outcomes are comparable). Thus, �i is acyclic.
I.e., if a <i b <i c then c �i a.

2The notation Ef (S′)i means the i-th element of Ef (S′).
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the column “hare” and row “stag” means that Ef ([stag, hare]) = (1, 3). Given the pure strategy profile
S = [stag, hare], S−0 = [∅, hare] and S−0 ⊕ hare = [hare, hare]. Here [stag, hare] �0 [hare, hare]
because (1, 3)0 �0 (2, 2)0 but [hare, hare] �1 [stag, hare].

In asking why a player should pursue some strategy, we must take into account the strategies of others.
If each player has chosen a strategy, and no player can increase their own outcome by changing their

strategy while the other players keep theirs unchanged, then the current pure strategy profile constitutes
a Nash equilibrium.

Definition 2. Let G = (Ag, Ac, Av, Ou, Ef , �), we say that S ∈ SG is a Nash equilibrium if for every
i ∈ Ag and for any strategy s ∈ Aci , it holds that S−i ⊕ s �i S.

A simple algorithm to identify all Nash equilibrium in the presence of pure strategies involves iterating
through every player and identifying the best strategy profile (in terms of Ef for that player) given all
other players’ possible joint strategies. Any strategy profile which all players consider best is then a
Nash equilibrium.

Given a game in normal form, the above algorithm involves – for a two player game – scanning down
each column and marking the best strategy for the row player, and then doing the same for each row
marking the best strategy for the column player. Each cell marked for both players is a Nash equilibrium.
In the remainder of this paper, we show an argumentation-based alternative.

Example 2 (Cont’d). There are two Nash equilibria in the stag hunt game: [stag, stag] and [hare, hare].
The strategy profile [stag, stag] is a Nash equilibrium because [hare, stag] �0 [stag, stag] and
[stag, hare] �1 [stag, stag]. Similarly, [hare, hare] is also a Nash equilibrium as [stag, hare] �0

[hare, hare] and [hare, stag] �1 [hare, hare].

2.2. Argumentation

We encode normal form games in terms of arguments and attacks by building on Modgil’s Extended
Argumentation Frameworks (EAF) [11].

Definition 3. An Extended Argumentation Framework is a triple 〈A,C,D〉 where A is a set of argu-
ments, C ⊆ A × A, D ⊆ A × C and if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ C.

Definition 4 (Defeat). Let AS = (A,C,D) be an EAF, x, y ∈ A and Y ⊆ A. We say that y defeats x

w.r.t. Y , denoted y →Y x iff (y, x) ∈ C and there is no z ∈ Y s.t. (z, (y, x)) ∈ D.

Definition 5 (Argumentation semantics). Let AS = (A,C,D) be an EAF and E ⊆ A. We say that:

• E is conflict-free iff for every x, y ∈ E, if (y, x) ∈ C then (x, y) /∈ C, and there exists z ∈ E s.t.
(z, (y, x)) ∈ D.

• x ∈ A is acceptable w.r.t. E iff for every y ∈ A s.t. y →E x, there exists z ∈ E s.t. z →E y and
there exists RE = {x1 →E y1, . . . , xn →E yn} s.t. for every i ∈ {1, . . . , n}, xi ∈ E, z →E y ∈ RE

and for every xj →E yj ∈ RE , for every y ′ s.t. (y ′, (xj , yj )) ∈ D, there exists x ′ →E y ′ ∈ RE

• E is an admissible extension iff every argument in E is acceptable w.r.t. E

• E is a preferred extension iff E is a maximal (w.r.t. ⊆) admissible extension
• E is a stable extension iff for every y /∈ E, there exists x ∈ E such that x →E y.
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We will use the notation Exts(AS) (resp. Extp(AS)) to denote the set of all stable (resp. preferred)
extensions.

We note in passing that it is possible to flatten an EAF, that is, transform it to a standard abstract
argumentation framework such that all arguments within an extension (according to some semantics)
within the EAF are equivalently found in the extension of the abstract framework [3,13,14]. Therefore,
standard argumentation solvers [18] can be applied – once flattened – to identify justified arguments
within an EAF.

3. Argumentation-based approach for games

We consider an argumentation framework with multi-level arguments. At the base level, we consider
all possible strategy profiles as arguments. Since only a single strategy profile can ever occur (as players
execute one set of strategies in the interaction), every argument at this level must attack every other
argument. We refer to such arguments as game-based arguments, and note that they are equivalent to
pure strategy profiles.

Definition 6 (Game-based argument). Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, a game-based argu-
ment (w.r.t. G) is a pure strategy profile S ∈ SG.

The set of all game-based arguments for a game G is denoted by Ag(G).
Next, we introduce preference arguments. Intuitively, these can be interpreted as statements of the

form: “Given that the other players are performing a given set of strategies, the remaining player’s
preferred strategy should be playing x”.

Definition 7 (Preference argument). Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, S ∈ SG be a pure
strategy profile and i ∈ Ag. A preference argument (w.r.t. G) is a tuple (S−i , s), where s ∈ Aci .

The set of preference arguments for a game G is denoted by Ap(G). A cluster of preference arguments
is a maximal set of preference arguments sharing the same partial strategy profile.

Finally, we introduce valuation arguments, which can be interpreted as statements of the form: “Given
that the other players are performing a given set of strategies, it is the case that the outcome of strategy
s is better than the outcome of strategy s ′ for the remaining player”.

Definition 8 (Valuation argument). Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, i ∈ Ag, (S−i , s), (S−i ,

s ′) ∈ Ap(G) be two preference arguments and S−i ⊕ s ′ <i S−i ⊕ s. A valuation argument (w.r.t. G) is
the pair (S−i , s

′ < s).

The set of valuation arguments for a game G is denoted by Av(G).

Example 3 (Cont’d). The sets of game-based, preference and valuation arguments w.r.t. G are shown
in Table 2. The argument a1 represents the case where player 0 chooses to hunt a stag and player 1
chooses to hunt a hare. The argument a9 represents the argument: “Given that player 0 chooses to hunt a
hare, player 2’s preferred strategy should be to hunt a stag”. The argument a16 represents the argument:
“Given that player 1 chooses to hunt a hare, the outcome of hunting a hare is better than the outcome of
hunting a stag for player 0”.
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Table 2

Arguments for the stag hunt game

Game-based arguments Preference arguments Valuation arguments
a1 = [stag, hare] a5 = ([stag, ∅], stag) a13 = ([stag, ∅], stag > hare)
a2 = [stag, stag] a6 = ([stag, ∅], hare) a14 = ([∅, stag], stag > hare)
a3 = [hare, stag] a7 = ([∅, stag], stag) a15 = ([hare,∅], hare > stag)

a4 = [hare, hare] a8 = ([∅, stag], hare) a16 = ([∅, hare], hare > stag).
a9 = ([hare, ∅], stag)

a10 = ([hare, ∅], hare)
a11 = ([∅, hare], stag)

a12 = ([∅, hare], hare)

We now turn our attention to attacks. We note that preference and valuation arguments provide rea-
sons why one argument should not attack another, and therefore introduce not only attacks between
arguments, but also attacks on attacks.

Definition 9 (Attack). For a game G = (Ag, Ac, Av, Ou, Ef , �), α1, α2 ∈ Ag(G), a3 = (S1, s2), α4 =
(S3, s4) ∈ Ap(G) and α5 = (S5, s6 > s7) ∈ Av(G). We say that:

• α1 attacks α2, denoted (α1, α2) ∈ Cr (G), iff α1 �= α2.
• α3 attacks α4, denoted (α3, α4) ∈ Cp(G), iff S1 = S3 and s2 �= s4.
• α3 attacks (α1, α2) ∈ Cr (G), denoted by (α3, (α1, α2)) ∈ Cu(G), iff there exists s ∈ Ac such that

S1 ⊕ s = α1 and S1 ⊕ s2 = α2.
• α5 attacks (α3, α4) ∈ Cp(G), denoted by (α5, (α3, α4)) ∈ Cv(G), iff S5 = S3, s6 = s4 and s7 = s2.

The first attack captured within Definition 9 is between every two distinct game-based arguments.
As each player has to choose exactly one strategy, different strategy profiles are clearly incompatible.
The second bullet point represents attacks between preference arguments. In the stag hunt example for
instance, a5 attacks a6 (and vice-versa) because in the event of player 0 hunting a stag, player 1 can
either hunt a stag or a hare. The third type of attack captures attacks from preference arguments to
attacks between game-based arguments. Within the stag hunt, a5 attacks (a1, a2) because a5 states that
it is preferable for player 1 to hunt a stag when player 0 is also hunting a stag. Note that in general, the
preference argument (S1, s2) attacks all attacks against the game-based argument S1 ⊕ s2 coming from
any other game-based arguments of the form S1 ⊕ s ′, for any s ′ ∈ Ac such that s ′ �= s2. The last type of
attack captures attacks from valuation arguments to attacks between preference arguments. Returning to
the stag hunt, a13 attacks (a6, a5) as a13 states that the strategy “hunt a stag” is better than the strategy
“hunt a hare” for player 1 when player 0 is hunting a stag.

The arguments and attacks induce a very specific type of extended argumentation framework, where
object-level (game-based) arguments have their attacks attacked by meta-arguments (preference argu-
ments) at level one, and where attacks between these meta-arguments are attacked by meta-arguments
at level two (valuation arguments).

The first layer is needed to encode every possible outcomes, the second layer is useful for specify-
ing outcomes that are comparable whereas the third layer returns an agent’s preference between two
outcomes.

Definition 10 (Argumentation framework). Let G be a game. The argumentation framework corre-
sponding to G is the tuple ASG = (A,C,D) where A = Ag(G)∪Ap(G)∪Av(G), C = Cr (G)∪Cp(G)

and D = Cu(G) ∪ Cv(G).
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Fig. 1. Argumentation graph corresponding to stag hunt game.

Example 4 (Example 3 Contd). Fig. 1 represents the game-based, preference and valuation arguments
of G using blue (a1, a2, a3 and a4), yellow (a5 to a12) and green nodes respectively (a13 to a16). The
attacks between arguments (C) and on attacks (D) are represented using solid black arrows and dashed
red arrows respectively.

For our framework to be an EAF, it must satisfy some constraints, as described in [12], and we can
easily show that this is the case.

Proposition 1. Let G be a game and ASG = (A,C,D) be the corresponding argumentation framework,
it holds that if (z, (x, y)), (z′, (y, x)) ∈ D then (z, z′), (z′, z) ∈ C.

Proof. There are only two types of attacks on attacks: (1) attacks coming from valuation arguments
to attacks between preference arguments and (2) attacks coming from preference arguments to attacks
between game-based arguments. In the rest of this proof, we prove that Proposition 1 is satisfied for the
two types of attacks on attacks.

• Considering (1), for a fixed partial strategy profile Si , and fixed strategies sj , sk ∈ Ac, there is
exactly one (or no) valuation argument of the form (Si, sj > sk) or (Si, sk > sj ). As a result, the
condition in Proposition 1 is trivially satisfied for attacks coming from valuation arguments.

• We now study the case (2) and show that Proposition 1 is also satisfied for attacks coming
from preference arguments on attacks between game-based arguments. Assume that (a3, (x, y)),
(a4, (y, x)) ∈ D, where a3 = (S1, s2), a4 = (S1, s4), x = S1 ⊕ s4 and y = S1 ⊕ s2. By Definition 9,
s2 �= s4 thus (a3, a4), (a4, a3) ∈ Cp(G) ⊆ C. �

Since – given Proposition 1 – our argumentation system is an EAF, we can use EAF semantics to
evaluate it.
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Example 5 (Example 4 Contd). In our running example, a5 defeats a6 w.r.t. A as (a5, a6) ∈ C and
there is no argument z ∈ A such that (z, (a5, a6)) ∈ D. However, a6 does not defeat a5 w.r.t. A be-
cause (a13, (a6, a5)) ∈ D. All extensions contain arguments {a16, a15, a14, a13, a12, a10, a7, a5}, while
one preferred extension contains {a2} and the other contains {a4}.

4. System properties

Having described our system, we now consider its properties. The most important result we seek
to show is the correspondence between argumentation semantics and Nash equilibria, and we begin by
laying the groundwork for this. We then consider how many arguments will be generated for an arbitrary
normal form game.

We begin by considering which preference arguments will appear in a preferred extension. This result
is used in later proofs.

Lemma 1. Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG be the corresponding AS. For each
preferred extension E of ASG, for each cluster C of preference arguments, there exists a unique argu-
ment c ∈ C such that c ∈ E.

Proof. Assume a partial strategy profile S = [s0, . . . , si−1, ∅, si+1, sn] and the corresponding cluster of
preference arguments C. Because our preferences are complete and acyclic, we know that there exists a
strategy s∗ such that for every s ∈ Aci , S ⊕ s �i S ⊕ s∗. From the definition of the valuation argument,
there are no valuation arguments attacking the attacks from the preference argument (S, s∗) to other
preference arguments. As a result, we conclude that (S, s∗) is in a preferred extension E and that all the
other arguments in C are not E. Moreover, you need to choose one such argument from the cluster C

for each preferred extension to satisfy the maximality condition of the semantics. �

Next, we show that if there is a preferred extension with game-based arguments, then each such ex-
tension has exactly one game-based argument.

Lemma 2. If any preferred extension of ASG contains a game-based argument, then it contains exactly
one game-based argument.

Proof. Let E be a preferred extension containing game-based arguments. We prove by contradiction that
it is not possible for E to have more than one game-based argument. Assume that E contains two game-
based arguments a1 and a2. By definition of the attack relation, there is a symmetric attack between a1

and a2. Hence there must exist two preference arguments p3 and p4 with (p3, (a1, a2)), (p4(a2, a1)) ∈ D
and (p3, p4), (p4, p3) ∈ C. It is not possible for both (p4, p3) and (p3, p4) to be attacked by valuation
arguments as this would require an inconsistency or cycle in �. By this observation, E contains only p3

or p4. Hence, {a1, a2} is not conflict-free, contradiction. �

We now show that a game-based argument which is not a Nash equilibrium will not appear in any
preferred extension of the associated argumentation system.

Lemma 3. Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG be the corresponding AS. If S ∈ SG

such that S is not a Nash equilibrium then for every preferred extension E, S /∈ E.

Proof. Assume there is a non-Nash equilibrium game-based argument S ′ = [s ′
0, . . . , s

′
n] in a preferred

extension E. Then, from Lemma 2, E does not contain any other game-based arguments. Since S ′ is not
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a Nash equilibrium, there exists i ∈ Ag and s ∈ Aci such that S ′
−i ⊕ s ′

i <i S ′
−i ⊕ s. In the rest of this

proof, we consider the strategy s∗ such that for every s ∈ Aci , S ′
−i ⊕ s �i S ′

−i ⊕ s∗. By definition, the
attack from S ′ to S ′

−i ⊕ s∗ is attacked by the preference argument (S ′
−i , s

∗). Moreover, the preference
argument (S ′

−i , s
∗) attacks all the other preference arguments (S ′

−i , s
′), where s ′ ∈ Aci and s ′ �= s.

By definition of the valuation arguments, none of the attacks from (S ′
−i , s

∗) to those other preference
arguments is defeated. As a result, we conclude that there is a preferred extension that contains (S ′

−i , s
∗).

Let s+ = {s ∈ Aci | S ′
−i ⊕ s �i S ′

−i ⊕ s∗ and S ′
−i ⊕ s∗ �i S ′

−i ⊕ s}, we can conclude that there is at least
one argument (S ′

−i , so), so ∈ s+ in E (Lemma 1) and (S ′
−i , so) attacks the attack from S ′ to S ′

−i ⊕ so,
contradiction. �

Corollary 1. Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG be the corresponding AS. If E is a
preferred extension that contains a game-based argument S, then S is a Nash equilibrium.

In the next proposition, we show that if a preferred extension contains a game-based argument, then it
is a stable extension.

Proposition 2. Let G be a game and ASG = (A,C,D) be the corresponding argumentation framework.
If E ∈ Extp(ASG) and E ∩ Ag(G) �= ∅ then E ∈ Exts(ASG).

Proof. We show that if a preferred extension possesses a game-based argument, then it is also a stable
extension. Assume E contains a single game-based argument. By Lemma 2, E contains exactly one
game-based argument. Therefore, all game-based arguments not in the extension are defeated by the
game-based argument within the extension with respect to E, meaning that the game-based argument is
a member (at the game-based level) of the stable extension. �

It may seem intuitive that the preferred and stable extension should coincide. However, this is not the
case, as demonstrated by the following counter-example.

Example 6. Consider the matching pennies game G = (Ag, Ac, Av, Ou, Ef , �) where Ag = {0, 1},
Ac = {heads, tails}, Av = [Ac, Ac], Ou = {1, −1}, � is defined as the “less-than relation” for each
player, and Ef is defined in Table 1b.

The set of arguments is A = {b1, b2, b3, . . . , b16} and are listed in Table 3. There is only one preferred
extension {b16, b15, b14, b13, b12, b10, b8, b6} but no stable extensions.

Furthermore, even when multiple preferred extensions exist, these may not coincide with the stable
extensions.

Table 3

Arguments for the matching pennies game

Game-based arguments Preference arguments Valuation arguments
b1 = [heads, heads] b5 = ([heads,∅], heads) b13 = ([heads, ∅], tails > heads)
b2 = [heads, tails] b6 = ([heads,∅], tails) b14 = ([∅, tails], tails > heads)
b3 = [tails, tails] b7 = ([∅, tails], heads) b15 = ([tails, ∅], heads > tails)
b4 = [tails, heads] b8 = ([∅, tails], tails) b16 = ([∅, heads], heads > tails)

b9 = ([tails, ∅], tails)
b10 = ([tails, ∅], heads)
b11 = ([∅, heads], tails)
b12 = ([∅, heads], heads)
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Table 4

Three strategy variant of the matching pennies game

Example 7. Let us consider the following variant of the matching pennies game with three strategies
for each player. We have G = (Ag, Ac, Av, Ou, Ef , �) where Ag = {0, 1}, Ac = {heads, tails, edge},
Av = [Ac, Ac], Ou = {1, −1}, � is defined as the “less-than” relation for numbers for each player,
and Ef is defined in Table 4. This variant of the game has eight distinct preferred extensions, but none
contain any game-based arguments.

We now turn to our main result, namely the equivalence of the Nash equilibrium with the game-based
arguments found in the preferred extensions.

Proposition 3 (Equivalence). Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG be the argument
framework for the game. A strategy profile S = [s0, . . . , sn] ∈ SG is a Nash equilibrium iff there exists
E ∈ Extp(ASG) such that S ∈ E.

Proof. We split this proof in two parts:

(⇒) We need to show that if S is a Nash equilibrium, then it is within a preferred extension of
ASG. Let us consider the set of arguments E = {S} ∪ Av(G) ∪ {(S−i , si) | i ∈ Ag}. We now
show that E is a preferred extension of ASG. It is clear that E is conflict-free as for every
x, y ∈ E, (x, y) /∈ C. Every argument in Av(G) is acceptable w.r.t. E as valuation arguments
are not attacked. Every argument a = (S−i , si) is also acceptable w.r.t. E because for every
s ′ ∈ Aci and s ′ �= si , the attacks from a′ = (S−i , s

′) to a, is either not a defeat w.r.t. E (if there
is a valuation argument that attacks (a′, a)) or it is a defeat but a′ is defeated by a w.r.t. E. The
argument S is also acceptable w.r.t. E because for every S ′ ∈ SG and S ′ �= S, the attack from S ′
to S is not a defeat w.r.t. E as the arguments (S−i , si) are attacking those attacks. We conclude
that the set E is admissible. Following Lemmas 2 and 1, we conclude that E is maximal for
set inclusion as it contains all the valuation arguments, one preference argument per cluster and
exactly one game-based argument.

(⇐) We need to show that if S is within a preferred extension, then S is a Nash equilibrium. This
follows directly from the result from Corollary 1. �

Returning to the stable extensions, the following result shows that there is a one-to-one correspon-
dence between the sets of Nash equilibria and the set of classes of stable extensions,3 where each Nash
equilibrium S corresponds to the class of stable extensions containing argument S.

3We say two stable extensions are equivalent iff they have the same game-based argument.
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Corollary 2. Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG be the corresponding EAF. There is
a bijection between Y = {S ∈ SG | S is a Nash equilibrium} and {{E ∈ Exts(ASG) | S ′ ∈ E} | S ′ ∈ Y }.
Proof. Follows directly from Proposition 3 and Proposition 2. �

Finally, we consider how many arguments an argumentation system representing a normal form game
will contain.

Proposition 4 (Number of arguments). Let G = (Ag, Ac, Av, Ou, Ef , �) be a game s.t. |Ag| = n and
m = maxi∈Ag |Aci |, the number of arguments in ASG is in O(mn+1 · n).

Proof. The proof is split into three parts.

(1) Suppose n players and m strategies per player. Each game-based argument corresponds to a pure
strategy profile, i.e., there are mn game-based arguments.

(2) Consider the number of the preference arguments. There are mn−1 · n partial strategy profiles.
Roughly speaking, a preference argument is obtained from a partial strategy profile by replacing
the empty set with a strategy. Hence, there are up to mn−1 · n · m = mn · n preference arguments.

(3) We estimate the number of valuation arguments. Each valuation argument is obtained from one
partial strategy profile and one pair of different strategies. There are mn−1 · n partial strategy
profiles and up to m · (m− 1) pairs of different strategies. Furthermore, if a strategy x is preferred
to strategy y, then y is not preferred to x. Thus, there are up to m·(m−1)

2 possible combinations to

consider. Hence, the total number of valuation arguments is limited by mn−1·m·(m−1)·n
2 which is in

O(mn+1 · n). Thus, the total number of arguments is in O(mn) +O(mn · n) +O(mn+1 · n) which
is in O(mn+1 · n). �

We note that computing Nash equilibria is known to be computationally difficult, and the result re-
garding the number of arguments is therefore unsurprising.

5. Dialogue-based explanations

In this section, we show how our framework can be used for determining whether a pure strategy pro-
file is a Nash equilibrium or not. Let G = (Ag, Ac, Av, Ou, Ef , �) be a game, and ASG = (A,C,D) the
corresponding AS. We consider a dialogue between two agents (the proponent P and the opponent O).
The proponent’s goal is to show that an argument A is a Nash Equilibrium and the opponent seeks to
demonstrate that the proponent’s game argument (A) is not a Nash equilibrium by proposing an alterna-
tive game-based argument (B) such that there is a player i ∈ Ag for which A−i = B−i and A �= B and
for whom B yields a better outcome than A.

We now demonstrate the sequence of utterances dialogue participants should use to ensure that the
proponent will win the dialogue if and only if A is a Nash equilibrium. However, argument B advanced
by the opponent may not be a Nash Equilibrium. Therefore, multiple rounds of the dialogue may be
required to identify such equilibria.

The dialogue consists of agents advancing locutions which refer to arguments, valuations and players.
While a dialogue without locutions can be defined, we believe that such locutions aid the explanatory
process without introducing additional complexity, and that the locutions’ intuitive meaning is clear. We
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Table 5

The dialogue for Scenario 1

P : claim(A) Claim that A is a NE
O: alt(B, A, i) B is strictly better than A for player i

P : eq(B ′, A′, i) The presence of A′ and B ′ mean that A and B are of
equal utility to player i

O: assert(V , A′ → B ′, i) The valuation argument V shows that B is strictly
preferred to A as V attacks A′ → B ′ for player i

P : concede(A) Concede that A is not a NE

Table 6

The dialogue for Scenario 2

P : claim(A) Claim that A is a NE
O: alt(B, A, i) B is strictly better than A for player i

P : assert(V , B ′ → A′, i) The valuation argument V shows that A is strictly
preferred to B as V attacks B ′ → A′ for player i

O: concede(B) Concede that B is strictly worse than A for player i

Table 7

The dialogue for Scenario 3

P : claim(A) Claim that A is a NE
O: alt(B, A, i) B is strictly better than A for player i

P : eq(B ′, A′, i) The presence of A′ and B ′ mean that A and B are of
equal utility to player i

O: concede(B) Concede that B is not strictly better than A for player i

therefore do not provide a formal account of these locutions. There can be three possible scenarios for
the dialogue:

(1) B is strictly better than A for an agent i, i.e. A <i B. By construction, there will be two preference
arguments A′ and B ′ such that A′ attacks (B, A) ∈ D and B ′ attacks (A, B) ∈ D respectively. Since
B is strictly better than A for an agent i, there will be a valuation argument V = (A−i , si > s ′

i),
where A = A−i ⊕ s ′

i and B = B−i ⊕ si , such that V attacks (A′, B ′) ∈ D. This line of reasoning is
then captured by the dialogue shown in Table 5.

(2) B is strictly worse than A for an agent i, i.e. B <i A. By construction, there will be two preference
arguments A′ and B ′ such that A′ attacks (B, A) ∈ D and B ′ attacks (A, B) ∈ D respectively. Since
A is strictly better than B for an agent i, there will be a valuation argument V = (A−i , si > s ′

i),
where A = A−i ⊕ si and B = B−i ⊕ s ′

i , such that V attacks (B ′, A′) ∈ D. This line of reasoning is
then captured by the dialogue shown in Table 6.

(3) B is equivalent to A for an agent i, i.e. B �i A and A �i B. By construction, there will be
two preference arguments A′ and B ′ such that A′ attacks (B, A) ∈ D and B ′ attacks (A, B) ∈ D
respectively. The attacks (B ′, A′), (A′, B ′) ∈ C are not attacked. This line of reasoning is then
captured by the dialogue shown in Table 7.

If the resultant dialogue evolves as per Scenario 1, then the proponent’s game argument is not a Nash
Equilibrium.
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Table 8

In the left dialogue, the proponent is demonstrating that argument a2 is a Nash equilibrium. In the right dialogue, both agents
advance Nash equilibria

P : a2

O: a1

P : a5

O: a6

P : a13

P : a2

O: a4

6. Discussion, related and future work

In this paper, we described how normal form games can be given an argumentation-based interpreta-
tion so as to allow – via argumentation semantics – for pure Nash equilibria to be computed. Intuitively,
a Nash equilibrium identifies the best strategy a player can pursue given others’ strategies. However,
explaining – to a non-expert – why some set of strategies forms a Nash equilibrium is often difficult, and
our argument-based interpretation is the first step towards an explanatory dialogue for such explanation.
Other work has shown the utility of providing such dialogue-based explanations [5,8,15].

Our approach is based on extended argumentation frameworks, and Modgil [12] has proposed a proof
dialogue for such frameworks. The dialogue presented in Section 5 is tailored for our framework and
more specialised than Modgil’s proof dialogue, but (we believe) provides a better explanation. In ad-
dition, while Modgil’s dialogue specifies legal moves, it does not identify what arguments should be
advanced by a dialogue participant, noting only that there exists a winning strategy to demonstrate that
an argument is in the credulous preferred semantics. In contrast, our (simple) dialogue amalgamates both
the legal moves that a player can make and the strategy that they must follow. This is best illustrated in
Table 8, which shows two possible dialogues of the stag hunt game (shown in Table 1 and Fig. 1) from
Modgil’s system. The left hand dialogue is analogous to Scenario 2 of our approach (cf. Section 5), but
contains only the arguments themselves without explaining why they exist or attack other arguments (un-
like our approach). The dialogue on the right demonstrates a non-winning but legal strategy in Modgil’s
system, which has no explanatory power.

Examining Tables 5–7, we note that the losing player will make a last concede move in all cases.
This is similar to [11]’s proof dialogue where the winning player makes the last move. Furthermore,
Tables 5–7 capture all possible evolutions of our explanatory dialogue.

If A is a Nash Equilibrium, then there is no dialogue whose first move by P is claim(A) and finishes
with P conceding. Thus, P will win the dialogue and show that A is a Nash Equilibrium. Similarly, if
A is not a Nash Equilibrium, then there is a dialogue whose first move by P is claim(A) and finishes
by P conceding. Thus, P will lose the dialogue under perfect play. Therefore, our dialogue will identify
whether a game argument is, or is not a NE. By running the dialogue over every game argument A, we
are able to determine whether it is a NE. In other words, our dialogue is sound and complete. We note
that the dialogue game of [11] is also sound and complete, making them – in some sense – equivalent in
this context.

In the short term, we intend to empirically evaluate the explanatory capability of our dialogue with
human subjects. Other extensions which we intend to investigate include providing an argumentation
semantics for mixed Nash equilibria (perhaps through the use of some form of ranking semantics [1,4,
10]), and investigating other solution concepts (e.g., Pareto optimality) for more complex types of games.
Finally, there are clear links between game theory and group-based practical reasoning. Building on
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work such as [2,19], we intend to investigate how an argument-based formulation to practical reasoning
underpinned by game theory can be created.

In this work, we introduced three levels of argument to compute the Nash equilibria. An obvious
alternative formulation would use a single level, where joint strategy profiles are arguments (equivalent
to game-based arguments), and attacks are constructed based on the algorithm for computing equilibria.
While this approach would yield similar results, it provides no explanation as to why the attacks appear
(and therefore why something is a Nash equilibrium).In our formulation, we have arguments about the
object level (i.e., game arguments), as well as arguments about preferences over these objects, which
are themselves reasoned about. Modgil [11] demonstrates that the standard way of reasoning about such
structures is through the use of meta-level argumentation, instantiated as an extended argumentation
framework. By making use of this multi-level approach, we have shown how our dialogues can exploit
this structure to provide explanation.

Several other authors have investigated some links between game theory and argumentation. For ex-
ample, in his seminal paper, Dung [6] noted that the stable extension corresponds to the stable solution
of an cooperative n-person game, but did not seem to deal with non-cooperative games as we do here.
Game theory was also used to describe argument strength by Matt and Toni [10], and Rahwan and Lar-
son [17] investigated the links between argumentation and game theory from a mechanism design point
of view. Perhaps most closely related to the current work is Fan and Toni’s work [7] exploring the links
between dialogue and assumption-based argumentation (ABA). Here, the authors showed how admissi-
ble sets of arguments obtained from their ABA constructs are equivalent to Nash equilibria. In contrast to
the current work, they only considered two player games and utilised structured argumentation, allowing
them to describe a proof dialogue with associated strategies.

7. Conclusions

In this paper, we provided an argumentation-based interpretation of pure strategies in normal form
games, demonstrating how argumentation semantics can be aligned with the Nash equilibrium as a so-
lution concept, and examining some of the argumentation system’s properties. We also formalised dia-
logues for our framework, highlighting how it can be used for real-word explanations of Nash Equilibria
to non-experts.

We believe that this work has significant application potential in the context of argument-based ex-
planation. At the same time, we recognise that there are significant open avenues for research in this
area, but believe that the current work is an important step in investigating the linkages between the two
domains.
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