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Abstract
Background: Positron emission tomography (PET) images of head and neck 
squamous cell carcinoma (HNSCC) patients can assess the functional and bio-
chemical processes at cellular levels. Therefore, PET radiomics- based prediction 
and prognostic models have the potentials to understand tumour heterogeneity 
and assist clinicians with diagnosis, prognosis and management of the disease. 
We conducted a systematic review of published modelling information to evalu-
ate the usefulness of PET radiomics in the prediction and prognosis of HNSCC 
patients.
Methods: We searched bibliographic databases (MEDLINE, Embase, Web of 
Science) from 2010 to 2021 and considered 31 studies with pre- defined inclusion 
criteria. We followed the CHARMS checklist for data extraction and performed 
quality assessment using the PROBAST tool. We conducted a meta- analysis to es-
timate the accuracy of the prediction and prognostic models using the diagnostic 
odds ratio (DOR) and average C- statistic, respectively.
Results: Manual segmentation method followed by 40% of the maximum stand-
ardised uptake value (SUVmax) thresholding is a commonly used approach. The 
area under the receiver operating curves of externally validated prediction mod-
els ranged between 0.60– 0.87, 0.65– 0.86 and 0.62– 0.75 for overall survival, distant 
metastasis and recurrence, respectively. Most studies highlighted an overall high 
risk of bias (outcome definition, statistical methodologies and external validation 
of models) and high unclear concern in terms of applicability. The meta- analysis 
showed the estimated pooled DOR of 6.75 (95% CI: 4.45, 10.23) for prediction 
models and the C- statistic of 0.71 (95% CI: 0.67, 0.74) for prognostic models.
Conclusions: Both prediction and prognostic models using clinical variables and 
PET radiomics demonstrated reliable accuracy for detecting adverse outcomes in 
HNSCC, suggesting the prospect of PET radiomics in clinical settings for diagno-
sis, prognosis and management of HNSCC patients. Future studies of prediction 
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1  |  INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is 
the sixth most common malignancy globally.1 HNSCC 
constitutes a diverse group of cancers originating from 
the mucosal epithelium of the oral cavity, pharynx, sin-
onasal tract and larynx.2 Despite advances in evaluation 
and treatment, HNSCC outcomes marginally improved 
over the past decades attributed to delayed diagnosis and 
recurrence.3 Understanding tumour heterogeneity is key 
in cancer management as it has implications on tumour 
development, therapeutic outcomes and survival.4

Non- invasive medical imaging techniques such as 
magnetic resonance, computed tomography (CT) and 
positron emission tomography (PET) provide information 
about tumours.4 Tumours exhibiting high intratumoral 
heterogeneity have been found to have a less favourable 
prognosis, which may be due to either inherent aggressive 
characteristics or treatment resistance.5 PET outperforms 
other imaging modalities as an ideal tool for characteris-
ing the tumour biology at the macroscopic level5,6. PET 
with 2- deoxy- 2- [fluorine- 18]fluoro- d- glucose (18F- FDG), 
which is a glucose analogue and has similar metabolism 
as glucose, provides valuable functional information 
based on increased glucose uptake and glycolytic activity 
of cancer cells. Hence, PET provides information about 
functional and biochemical changes in bodily tissues that 
precede anatomical changes.7,8 Clinical implications of 
PET are already evident in brain tumour, thyroid cancer, 
non- small cell lung cancer, breast cancer, oesophageal 
cancer, pancreatic cancer, colorectal cancer, cervical can-
cer, sarcoma and lymphoma in addition to head and neck 
cancer.9 PET in head and neck cancer is useful for clini-
cal staging, identifying deep- seated tumours, detection of 
unknown primary, distant metastasis, recurrent tumour, 
nodal staging of locally advanced head and neck cancer, 
detection of primary tumours, radiotherapy planning and 
treatment response evaluation.10– 13 Standard uptake value 
(SUV), metabolic tumour volume (MTV) or total lesion 
glycolysis (TLG) provides information useful for diagno-
sis, earlier evaluation and treatment response evaluation.4 
PET radiomic features are found to be better than SUV 
parameters in some types of cancer in survival outcome 
prediction.6 Textural analysis has been widespread in PET 

since the late 2000s.14 Due to the functional nature and 
close link to tumour biology, the radiomic features ex-
tracted from PET images have the potential to capture the 
phenotypic differences across the tumours correlated with 
the stage and prognosis of the disease.14

Machine learning models can be trained to recognise 
patterns in complex PET radiomics data, assisting clini-
cians with risk assessment, diagnosis and prognosis, thus 
improving patient care.15 By the middle of 2020 among the 
published radiomics studies only 16% were based on PET 
or PET/CT.16 Owing to the valuable information provided 
by PET images about tumour heterogeneity, it is essential 
to perform a systematic review evaluating the current sta-
tus and potentials of PET radiomic feature- based models 
in HNSCC outcomes to direct the course of future research 
in diagnosis, prognosis and management of HNSCC.

In this study, we present a systematic review to assess 
the current status of prediction and prognostic models 
based on pretreatment PET images in HNSCC studies. 
The objectives of the systematic review are to evaluate the 
implemented segmentation methods, identify essential 
radiomic feature- based predictors, assess model devel-
opment strategies and estimate the overall performance 
using meta- analysis.

2  |  MATERIALS AND METHODS

This review is conducted according to the guidance of pre-
ferred reporting items for systematic reviews and meta- 
analyses (PRISMA)17 and the critical appraisal and data 
extraction for systematic reviews of prediction modelling 
studies (CHARMS).18 The protocol for the study was reg-
istered on the international prospective register of sys-
tematic reviews (PROSPERO 2021 Registration number 
CRD42021287832).19

2.1 | Eligibility criteria

2.1.1 | Outcomes of interest

The outcomes of interest and their definitions are as 
follows:

and prognostic models should emphasise the quality of reporting, external model 
validation, generalisability to real clinical scenarios and enhanced reproducibility 
of results.

K E Y W O R D S

head and neck squamous cell carcinoma, positron emission tomography, prognosis, radiomics, 
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Overall survival (OS)/All- cause mortality (ACM): The 
time from diagnosis to death from any cause or last 
date of follow- up.
Recurrence (R): The time between the end of treatment 
to local or locoregional recurrence of disease progres-
sion or death from any cause or last date of follow- up. 
We considered disease- free survival (DFS), relapse- 
free survival and recurrence- free survival (RFS) as 
recurrence.20

Progression- free survival (PFS): The time from the end 
of primary treatment to the date of disease progression, 
death or last follow- up.
Distant metastasis (DM): The time to first clinical or 
pathological evidence of disease spread to distant or-
gans or lymph nodes.
Disease- specific survival (DSS): The time from diagno-
sis to time to death due to HNSCC.

2.1.2 | Inclusion criteria

Studies were included if they met the following criteria:

1. Patients diagnosed with HNSCC cancer pathologically 
(including anatomic subtypes)

2. FDG- PET/CT or FDG- PET scan is done before 
treatment

3. Radiomic features considered
4. The clinical outcomes of interest were OS/ACM, R, 

DM, PFS and DSS.
5. Patients are treated with chemotherapy/radiotherapy/

surgery/brachytherapy or a combination of these.
6. Studies with a minimum follow- up time of 1 year were 

included, and there was no restriction on the last fol-
low- up time at which the outcome was measured.

7. Provided details of predictive or prognostic models 
used along with their performance measures.

2.1.3 | Exclusion criteria

Studies were excluded if they (a) were based on animal/
genomic studies; (b) were comment letters, conference 
abstracts, meeting abstracts, book chapters, early access, 
editorial materials, systematic reviews or case reports; 
(c) had fewer than 50 patients; (d) were MRI or CT stud-
ies; (e) studies evaluating treatment response as an out-
come; (f) studies not published in English. The details 
on search strategy, study selection, data extraction and 
bias assessment are provided in Supporting Information 
(Tables S1– S3).

We categorised the included studies into prediction mod-
els (binary outcome) and prognostic models (time- to- event). 

The prediction model considers binary outcome; that is the 
outcome can take only one of two values, such as treatment 
failure or success, or mortality (dead or alive).21 Hence, the 
prediction model is a binary classification problem which 
is usually assessed by performance metrics, the area under 
the receiver operating curve (AUC) accuracy, sensitiv-
ity and specificity.22 The time- to- event analysis is used to 
analyse the time to disease remission, progression or death 
for cohorts of patients when the time to event is either re-
corded or censored.23 The prognostic modelling approach 
using the time- to- event data is essential when the time 
between exposure and event is of clinical interest for up-
grading treatments and techniques to improve the quality 
and longevity of life.24– 26 Kaplan– Meier plots, log- rank test 
and the Cox proportional hazard model are the commonly 
used techniques for analysing the time- to- event data.25,27 
The common performance metric used for the prognostic 
model is the concordance index or C- statistic.28

2.2 | Meta- analysis

We performed the random effect meta- analysis to evaluate 
the overall performance metrics of both predictive models 
(binary outcome) and prognostic models (time- to- event 
outcome) accounting for the heterogeneity between stud-
ies. For the meta- analysis, we considered all outcomes 
(OS, recurrence, DSS, DM and PFS) within each predictive 
and prognostic modelling framework. We performed addi-
tional meta- analyses to compare the performance metrics 
between manual and threshold- based segmentation meth-
ods for studies involving prediction and prognostic models. 
Further details are presented in Supporting Information.

3  |  RESULTS

3.1 | Study selection

The initial database search revealed 231 published papers 
between 2010 and 2021 December. The study selection 
process resulted in 31 model development studies eligible 
for the systematic review (Figure 1). The included stud-
ies in the review represented about 4500 HNSCC patients, 
including its subtypes. The main findings of this study are 
summarised in Tables 1 and 2.

3.2 | Study design and patient 
characteristics

All selected studies were retrospective cohort studies ex-
cept the study by Lafata et al.29 The sample size varied 
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across the studies between 5230 and 707,31 and 17 of the 
studies recruited more than 100 patients. The mean age of 
the patient was ≥50 years in 10 studies. Among the selected 
studies, 15 considered all disease stages, and 25 studies in-
cluded T and N grade of the tumour. Chemoradiotherapy 
is the most frequently mentioned treatment modality 
(n = 26) which was often combined with other treatment 
strategies like radiotherapy (n = 20), surgery (n = 6) and 
biotherapy. The Supporting Information provides fur-
ther details of sample design and study characteristics 
(Table S4).

3.3 | Segmentation methods

PET- CT was the preferred imaging modality in 30 
studies, and in one study, PET images alone were con-
sidered.29 The manual method was the preferred seg-
mentation method in about 40% of the studies, followed 
by the fixed percentage of standardised uptake value 
(SUV) threshold (40% of SUVmax)2,32– 36 and fixed value 
of SUV (2.5 SUV).30,37– 40 Other segmentation methods 
were 42% SUVmax, 30% SUVmax, SUV >1.5 times liver 
SUVmean, 50% iso- contour of SUVpeak, gradient- based 
auto- segmentation, Nestle's adaptive thresholding, 
50% of SUV peak and graph- based methods. One study 
did not report the employed segmentation method.41 
Tables  1 and 2 present a summary of segmentation 
methods used by included studies.

3.4 | Types of features

In addition to demographic, pathological and clinical vari-
ables, a few studies considered other variables like smok-
ing status, alcohol consumption, treatment/dose, family 
history of cancer, and body mass index. For radiomic fea-
tures, 19 studies reported histogram- based features and 13 
discussed shape- based features. Grey level co- occurrence 
matrix (GLCM), grey level run length matrix (GLRLM), 
grey level size zone matrix/ grey level zone length matrix 
(GLSZM/GLZLM) and neighbourhood grey tone differ-
ence matrix (NGTDM) features are essential second- order 
features. The number of features for the model develop-
ment considered varied between 14 and 6294, with 15 
studies incorporating more than 50 features.

3.5 | Feature engineering, feature 
selection and dimensionality reduction

We noted that 29 studies did not report the handling 
of the outliers and missing values. Some studies iden-
tified the skewness of the data and addressed it by the 
logarithmic transformation42 or incorporating median 
values.42,43 The min– max scalar was employed by one 
study.35 Only a single study44 reported dummy variables 
for handling categorical data. About 23 studies examined 
feature selection strategies. These included model- based 
feature selection like forward selection or backward 

F I G U R E  1  Flow diagram highlighting search strategy and selection of studies.
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elimination, least absolute shrinkage and selection op-
erator (LASSO) based embedded methods,31,33,34,41 and 
ridge regularisation.3,45 The principal component analy-
sis46 and factor analysis3 were two common dimension 
reduction methods reported. Lafata et al.29 implemented 
an unsupervised clustering algorithm for feature 
selection.

Few studies43,44,49 discussed hyperparameter optimi-
sation using cross- validation. Three studies35,36,47 imple-
mented the synthetic minority oversampling technique 
(SMOTE), while two others employed standard oversam-
pling method36,42 to deal with class imbalances. Almost 
half of the studies did not discuss the resampling method 
used. K- fold cross- validation and bootstrap resampling 
were the popular techniques utilised in the remaining 
studies.

3.6 | Prediction model with a 
binary outcome

Table 1 provides the performance metrics of included stud-
ies based on internal validation. AUC, sensitivity and speci-
ficity were the commonly cited performance metrics. The 
external validation was performed only in four studies42,47– 49 
for OS, DM and recurrence outcomes. Predictive models 
that reported the best performances were: ensemble lo-
gistic regression (OS; AUC = 0.87); random forest model 
(DM; AUC = 0.86) and ensemble logistic regression (recur-
rence; AUC = 0.75). The ranges of performance metrics of 
externally validated models were: OS (AUC = 0.60– 0.87, 
sensitivity = 0.58– 0.92 and specificity = 0.57– 0.62); DM 
(AUC = 0.65– 0.86, sensitivity = 0.64– 0.82 and specific-
ity = 0.66– 0.80); recurrence (AUC = 0.62– 0.75, sensitiv-
ity = 0.60– 0.67 and specificity = 0.61– 0.84).

3.7 | Prognostic model with a 
time- to- event outcome

CoxPH model was the commonly used prognostic model 
for the time- to- event (survival) data, and the C- statistic 
was the preferred performance metric (Table  2). The 
CoxPH models reported the best performance for recur-
rence, PFS and OS with C indices of 0.78,32 0.7633 and 
0.83,32 respectively. Models were externally validated by 
five studies.3,41,42,46,50 For OS prognosis, the random sur-
vival forest model42 exhibited a similar performance as 
that of the CoxPH model (C- index = 0.76). The random 
survival forest model documented the best performance 
for DM prognosis with a C- index of 0.88.42

3.8 | Important radiomic and  
non- radiomic features

Table 1 highlights the important features associated 
with the prediction model. T stage42,49 and tumour 
volume35,42 were significant non- radiomic predic-
tors for OS. However, except GLCMcorrelation,

35 no 
unique radiomic feature was consistently identified 
across the studies for OS prediction. For DM, non- 
radiomic features such as age, N stage, T stage, tu-
mour volume and Karnofsky Performance Status 
(KPS), and head and neck (H&N) type were impor-
tant.42,49 KPS, shape- based compactness, age, H&N 
type, N stage, T stage were critical non- radiomic 
features for recurrence.42,43,49 Second- order fea-
tures like NGTDMStrength, GLSZMGLN, GLCMEntropy, 
GLSZMLZLGE and GLGLMSGE (grey level gap length 
matrix) features were reported as the key radiomic 
features.42,43 The features predictive of PFS were 
MTV, SUVmin and the radiomic feature GLSZMSZLGE 
and histogram- kurtosis.44

Table  2 presents significant features reported for the 
prognostic models. For the prediction of OS, important 
predictors were age,33,42,53 T stage,42,49 primary tumour 
site,35,42 EBV DNA,30,53 and HPV status.40,42 Other crucial 
features included PET quantitative features like MTV,2,34,35 
SUV,3,37 TLG,30 GLCM- based features2,35 and shape- based 
features.3 For PFS, first- order feature uniformity39,40 and 
age40,52 were significant features. For recurrence predic-
tion, age,42,50 tumour volume34,54 and second- order ra-
diomic features were predominant features. For DSS, 
NGLCMuniformity was a key feature,39,40 while for DM, 
clinical variables and N stage were crucial for prognostic 
models.42,49

3.9 | Risk of bias in the studies

We assessed the quality of the included studies using 
PROBAST. The assessment of ROB and applicability is 
presented in Figure 2, and additional details are pro-
vided in Supporting Information (Table S6; Figure S1). 
The overall ROB was low or unclear in 10 studies and 
high in 21 studies. Within ROB, high bias was ob-
served in the ‘analysis’ domain in 25% of the studies 
and low bias in the ‘participant’ domain (93.5%). In 
terms of overall applicability, ROB was of low concern 
in 8 studies, unclear concern in 22 and high concern 
in 1 study. The responses to signalling questions in 
PROBAST are presented in Supporting Information 
(Table S6).
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3.10 | Meta- analysis

We conducted a meta- analysis of performance metrics 
of both predictive and prognostic models. For predictive 
models, there was no evidence of heterogeneity between 
models (Q = 10.97 with 11 degrees of freedom, p = 0.446). 
Figure 3A presents the estimates of the logarithm of the 
diagnostic odds ratio and summary estimate, and the cor-
responding 95% confidence interval (CI). The estimated 
log DOR ranged from 0.78 to 4.33, with the pooled esti-
mate being 1.91 (95% CI: 1.49, 2.32). The pooled estimate 
was equivalent to the estimated DOR of 6.75 (95% CI: 4.45, 
10.23), suggesting that PET- features- based models showed 
good predictive performance. We have also conducted 
separate meta- analyses of studies that used manual and 
SUV- based segmentation methods. The pooled estimate 
of DOR of studies that employed the manual method 
(8.36; 95% CI: 5.47, 12.78) was higher compared to studies 
that used the threshold- based segmentation method (4.89; 
95% CI: 1.79, 13.38) (Figure S2).

The meta- analysis of prognostic models did not 
suggest evidence of heterogeneity between mod-
els (Q = 24.47 with 16 degrees of freedom, p = 0.080). 
Figure 3B presents the estimated and pooled C- statistic 
and the 95% CI. The estimated C- statistic ranged from 

0.60 to 0.88, with the pooled estimate being 0.71 (95% 
CI: 0.67, 0.74), suggesting that the overall performance 
metric of PET- based prognostic models was reasonable. 
A single outcome variable did not exhibit consistently 
higher (or lower) performance metrics for either pre-
diction or prognostic models among all studies. The 
estimate of pooled C- statistic was smaller in studies 
that employed the manual segmentation method (0.68; 
95% CI: 0.63, 0.71) compared to studies that used the 
threshold- based segmentation method (0.75; 95% CI: 
0.70, 0.78) (Figure S3).

4  |  DISCUSSION

Over the past few years, there has been an increase in in-
terest in exploring the relevance of PET- based radiomics in 
HNSCC outcome management. PET- based radiomics en-
able the quantitative evaluation of tumour heterogeneity, 
thereby facilitating personalised treatment approaches. 
Various predictive and prognostic models have been em-
ployed to predict adverse outcomes in HNSCC. This sys-
tematic review aimed to evaluate the role of pretreatment 
PET radiomics in predicting adverse outcomes in HNSCC 
patients.

F I G U R E  2  Quality assessment using PROBAST for (A) the overall risk of bias at participants, predictors, outcome and analysis levels 
and the overall pooled data; (B) the overall applicability of the included studies at participants, predictors and outcome levels and the overall 
pooled data.55
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We systematically reviewed 31 studies to assess the 
current status of the modelling framework for predicting 
outcomes in HNSCC patients. We identified important seg-
mentation methods and critical radiomic features predic-
tive of outcome and evaluated the predictive and prognostic 
performance of the reported models using meta- analysis.

Manual segmentation was the preferred segmentation 
method followed by threshold- based (40% SUVmax and 2.5 
SUV) methods. The accuracy of manual segmentation is 
reported to be high, and it is a widely accepted standard 
if done by an expert radiologist. It is, however, often time- 
consuming and operator- dependent.56 Although deter-
mining the optimal threshold value is challenging, the 
recommended threshold values are between 41% and 50% 
of SUVmax. The 2.5 absolute SUV method is software and 
observer- independent, and easy to use.57 As automatic 
segmentation is an active field of research, automatic seg-
mentation methods are recommended in future studies.58

We observed that feature engineering techniques, im-
balance class adjustment techniques and hyperparameter 
tuning were minimally explored in the included studies. 
Applications of suitable feature selection and feature en-
gineering methods were critical as they impacted the per-
formance of the models.59– 61

Based on externally validated models, the ensemble lo-
gistic regression for OS and recurrence prediction and the 
random forest classifier for DM produced the best perfor-
mance metrics among prediction models. For other types 
of cancers, similar performance metrics were reported 
using different prediction models.62– 65

For the time- to- event dataset, the survival analysis 
using the CoxPH model and C- index as a performance 
metric was widely used and is a recommended method by 
several researchers.66 The proportional hazard assump-
tion of the Cox survival model is crucial; however, only 
Cheng et al.53 confirmed checking the assumption. If 
the assumption is not met, modelling approaches should 
include an appropriate stratified analysis or extend the 
model by incorporating time- dependent predictors. The 
random forest survival model has limited assumptions 
with a wide range of applications.67

Four studies reported external validation of fitted predic-
tive models, and five studies reported external validation of 
prognostic models, consistent with the recommendation by 
Nikolas et al.58 An exhaustive assessment of model perfor-
mance metrics was lacking in most studies. The assessment 

of performance metrics should be externally validated for 
discrimination (C- statistic, AUC), calibration (calibration in 
the large, calibration slope) and overall performance (Brier 
score, scaled Brier score). The validation of the developed 
model in a new patient set structurally different from the 
training cohort is necessary for confirming the developed 
model's generalisability and reproducibility, and wider im-
plementation in clinical practice.68

Our result suggests that the overall ROB was higher in 
more than 60% of studies and is of high concern regarding 
applicability in a single study. The high ROB is primarily due 
to high bias in the following areas: handling the missing data, 
appropriate use of prespecified or standard outcome defini-
tion, the number of participants, accounting for the com-
plexities in the data, and evaluation of appropriate model 
performance measures and lack of external validation.

The meta- analysis of performance metrics of both pre-
dictive and prognostic models demonstrated reasonable 
performance accuracy. It is important to emphasise that 
most of these models were not externally validated; there-
fore, the performance metrics of some models could be 
overly optimistic. However, considering the direction of 
these metrics and associated uncertainties, predictive and 
prognostic models incorporating PET features and other 
clinical attributes illustrated promising opportunities for 
further development and refinement of these models to-
ward clinical application.

4.1 | Limitations and recommendations

The current systematic review has some limitations. 
Most studies are retrospective cohorts with varying sam-
ple sizes. These differences limit comparison in terms of 
predictive features and the robustness of the model. Key 
comparisons of model development and validation are 
also limited as the majority of the studies did not report 
detailed methodologies. Despite the fact that PET- based 
models demonstrated satisfactory performance, the litera-
ture suggests that combining PET and CT- based features 
might improve model performance in head and neck can-
cer prognosis.41,42,52 The review and evaluation of models 
incorporating CT radiomics were outside the scope of the 
current systematic review.

We recommend more prospective studies with larger 
sample sizes focussing on different imaging modalities, 

F I G U R E  3  (A) Forest plot of the summary estimate of logarithmic DOR and the corresponding 95% confidence interval (CI) of 
prediction models (Performance metrics were based on external validation except for Ghosh et al.35 and Peng et al.,43 where the performance 
metrics were based on internal validation). (B) Forest plot of pooled C- statistic and the corresponding 95% CI of prognostic models 
(Performance metrics were based on internal validation except for Bogowicz et al.,46 Lv et al.,50 Martens et al.3 and Vallières et al.,42 where 
the performance metrics were based on external validation).
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including PET and CT- based radiomics, and the under-
lying mechanism of tumour heterogeneity. All studies 
should report outliers, acknowledge missing values han-
dlings and provide a detailed account of the implemented 
pipeline (like feature selection, dimensionality reduction, 
techniques to address the class imbalance, hyperparame-
ter tuning, model development, and internal and external 
validation) for enhanced reproducibility. Studies should 
incorporate appropriate performance metrics adhering 
to prediction and prognostic model reporting tools like 
CONSORT, STROBE and STARD.69

5  |  CONCLUSION

The systematic review explored the current status of existing 
prediction and prognostic models using clinical variables 
and PET radiomics in managing HNSCC. Both prediction 
and prognostic models demonstrated reliable diagnostic 
accuracy for detecting adverse outcomes, suggesting the 
prospect of using PET radiomics in clinical settings for di-
agnosis, prognosis and management of HNSCC patients. 
Future studies should emphasise the quality of reporting, 
external model validation, generalisability to real clinical 
scenarios and enhanced reproducibility of results.
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