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a b s t r a c t 

Although the self has traditionally been viewed as a higher-order mental function by most theoretical frame- 
works, recent research advocates a fundamental self hypothesis , viewing the self as a baseline function of the brain 
embedded within its spontaneous activities, which dynamically regulates cognitive processing and subsequently 
guides behavior. Understanding this fundamental self hypothesis can reveal where self-biased behaviors emerge 
and to what extent brain signals at rest can predict such biased behaviors. To test this hypothesis, we inves- 
tigated the association between spontaneous neural connectivity and robust self-bias in a perceptual matching 
task using resting-state functional magnetic resonance imaging (fMRI) in 348 young participants. By decoding 
whole-brain connectivity patterns, the support vector regression model produced the best predictions of the mag- 
nitude of self-bias in behavior, which was evaluated via a nested cross-validation procedure. The out-of-sample 
generalizability was further authenticated using an external dataset of older adults. The functional connectiv- 
ity results demonstrated that self-biased behavior was associated with distinct connections between the default 
mode, cognitive control, and salience networks. Consensus network and computational lesion analyses further re- 
vealed contributing regions distributed across six networks, extending to additional nodes, such as the thalamus, 
whose role in self-related processing remained unclear. These results provide evidence that self-biased behavior 
derives from spontaneous neural connectivity, supporting the fundamental self hypothesis. Thus, we propose an 
integrated neural network model of this fundamental self that synthesizes previous theoretical models and por- 
trays the brain mechanisms by which the self emerges at rest internally and regulates responses to the external 
environment. 
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. Introduction 

One of the most intriguing questions in science is how the brain
enerates a sense of the self. Previous philosophical, psychological,
nd neuroscientific discussions on this topic have yielded two com-
eting views ( Northoff, 2016 ). The first, hereafter referred to as the
igher-order self hypothesis , dates back to philosophers such as Descartes
nd Kant and regards the self as one of the brain’s highest functions
nd serves as a meta-representation of other lower-level functions such
s perception, emotion, and action ( Damasio, 1999 ; Northoff, 2012 ).
owever, recent research has challenged this notion and advocated

or an alternative fundamental self hypothesis , which depicts the self as
 fundamental brain function that precedes and regulates other func-
ions ( Humphreys and Sui, 2016 ; Northoff, 2016 ; Northoff et al., 2022 ;
in et al., 2020 ; Sui and Gu, 2017 ; Sui and Humphreys, 2015 ). Accord-

ng to this viewpoint, the self is an intrinsic feature of the brain that is
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mbedded within and continuously sustained in spontaneous activities
f the brain ( Northoff, 2016 ). When an internal or external stimulus ap-
ears, the self network interacts with task-related networks to exert its
nfluence on cognitive and affective processing ( Qin et al., 2020 ; Sui and
u, 2017 ). 

Northoff (2016) initially proposed the notion of the fundamental self,
nown as a basis model of self-specificity (BMSS), which argues for a
elationship between spontaneous brain activity and basic human func-
ions such as perception and emotions. Here, the term “fundamental ”
oes not imply that the self is the most basic function in the brain (nor
ould it be) but rather its independence and priority from other basic
unctions. In this context, the self refers to a moment-by-moment spon-
aneous function that intrinsically integrates bodily and mental aspects
 Qin et al., 2020 ). Sui and Gu (2017) summarized recent evidence re-
arding brain networks supporting the fundamental self found in various
xperimental paradigms in healthy participants and those with psychi-
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tric disorders, such as the perceptual matching task and self in embod-
ed and interoceptive tasks. They proposed a self-as-object model that ex-
lains how three neural networks —the default mode network, cognitive
ontrol network, and the salience network —interact to control behavior
n the presence of self-related stimuli. Similarly, Qin et al. (2020) con-
ucted a meta-analysis to examine a three-layer neural model of self, in-
luding Interoceptive-processing, Exteroceptive-processing, and Mental-
elf processing, which explains how external stimuli become self-related
nd thereby integrated within the self. 

Although these previous studies and tasks have been developed to
ddress specific aspects of the self, neural networks supporting the
undamental self have been identified from an integrative perspective
 Northoff, 2016 ; Qin et al., 2020 ; Sui and Gu, 2017 ). However, there
s little direct evidence on whether the fundamental self at the whole-
rain level can predict self-biased behavior. This study was set out to ad-
ress this issue by examining whether the resting-state connectome can
redict self-biased behavior, focusing on a common psychological find-
ng —the self-prioritization effect (SPE) in perceptual matching —which
uggests that self-related information is prioritized during information
rocessing ( Sui et al., 2012 ). 

It has been well documented that our brain prioritizes process-
ng stimuli related to ourselves ( Kotlewska and Nowicka, 2015 , 2016 ;
acrae et al., 2018 ; Sui and Humphreys, 2017b ). The SPE manifests it-

elf in a variety of cognitive processes, including memory, attention,
nd perception (for an overview, see Cunningham and Turk, 2017 ).
or example, individuals can automatically notice the mention of their
ame in background noise ( Moray, 1959 ) and recognize their own faces
ore quickly than other people’s faces ( Humphreys and Sui, 2016 ;
acikowski and Nowicka, 2010 ; Wójcik et al., 2019 ). Even temporarily
agging neutral stimuli, such as geometric shapes, colors, and gratings,
o the self in a few trials can generate a robust SPE to these stimuli
ssociated with the self ( Sui et al., 2012 ). Given the widespread mani-
estation of the SPE at various levels of cognitive processing, there might
e a link between intrinsic brain networks at the whole brain level and
elf-processing. 

According to the BMSS ( Northoff, 2016 ), if self-specificity is a fun-
amental component of spontaneous brain activity that can easily in-
egrate external stimuli with the self, there should be a distinctive pat-
ern of the brain’s resting-state networks (RSN) to self-biased behavior.
rain regions supporting this idea have been identified as cortical mid-

ine structures ( Northoff and Bermpohl, 2004 ). The default mode net-
ork (DMN), which is the most well-established RSN and is primarily
ctive during rest, overlaps with the network activated when one thinks
bout oneself, such as the medial prefrontal cortex (MPFC) ( Davey et al.,
016 ; Northoff and Bermpohl, 2004 ; Qin and Northoff, 2011 ). In ad-
ition, it has been reported that the processing of self-related stimuli
nfluences subsequent resting-state activity and vice versa ( Qin et al.,
016 ; Schneider et al., 2008 ; Wang et al., 2013 ), and that resting-
tate activities can be used to predict self-related characteristics such
s self-consciousness ( Huang et al., 2016 ; Wolff et al., 2019 ) or self-
eflectiveness ( Larabi et al., 2020 ). This evidence suggests that the RSN,
specially the DMN, might be able to predict self-biased behavior such
s the SPE. 

In addition, self functions are closely associated with basic psycho-
ogical processes of emotion and reward, as shown by the involvement
f the limbic and reward systems in self-related tasks ( de Greck et al.,
008 ; Kircher et al., 2000 ; Northoff, 2016 ). This indicates that not only is
t important to identify cortical brain connections, but recent evidence
uggests that the contribution of the subcortical structures in the fun-
amental self model should be evaluated. Meta-analyses have demon-
trated the role of several subcortical structures in self-processing, such
s the thalamus ( Murray et al., 2015 ; Qin et al., 2020 ). This is consis-
ent with developmental evidence indicating that newborn infants have
 rudimentary capacity to distinguish between self and non-self and that
heir explicit self-awareness typically emerges around the second year
f life (for reviews, see Gallagher and Meltzoff, 1996 ; Rochat, 2003 ). As
2 
 result, we expected brain functional connections between cortical and
ubcortical regions to predict self-biased behavior. 

In summary, we explored the fundamental self hypothesis in a large
ample of young and healthy participants ( n = 348) by predicting the
PE in perceptual matching ( Sui et al., 2012 ) from the resting-state con-
ectome. As the SPE in perceptual shows the stability of self-processing
cross contexts and tasks ( Scheller and Sui, 2022 ) and is associated with
ifferent aspects of cognitive processing ( Sui and Humphreys, 2015 ),
t may be an appropriate tool for examining how self-specificity regu-
ates mental functions, especially low-level functions such as attention
nd perception, and thereby it may serve as a suitable test of the fun-
amental self hypothesis ( Sui and Gu, 2017 ; Sui et al., 2012 ; Sui and
umphreys, 2015 ). In addition, in contrast to previous studies’ univari-
te general linear model approach that treated individual differences as
oise ( Scheinost et al., 2019 ; Sui et al., 2013 ), we used a machine learn-
ng approach by building a linear support vector regression (SVR) model
ith whole-brain resting-state functional connectivity (rs-FC) as the in-
ut feature and the predicted magnitude of the SPE as the output. This
pproach leverages rich information on the spontaneous brain activity
n rs-fMRI and the data-driven nature of machine learning to gener-
te individualized predictions. It has been used successfully to identify
eurobiological markers of individual difference variables such as de-
ographics ( Zhang et al., 2018 ), traits ( Jiang et al., 2018 ), and perfor-
ance in cognitive tasks ( Rosenberg et al., 2016 ; Sripada et al., 2020 ).
 rigorous leave-one-out cross-validation (LOOCV) procedure was ap-
lied to ensure out-of-sample generalizability ( Magnusson et al., 2019 ).
he contributing FCs were further identified through analyses of model
oefficients and computational lesions. 

. Methods 

.1. Participants 

A total of 380 healthy young participants were recruited to carry
ut a number of questionnaires and behavioral tasks while resting state
nd brain structure scans were conducted. After excluding those who
ailed to complete the perceptual matching task or lacked demographic
ata ( n = 20), or had excessive head motion during scanning ( n = 12, de-
ned as > 0.2 mm mean framewise displacement), the final sample used

or analysis consisted of 348 individuals (182 women; mean age, 22.5
ears; age range, 18–34 years). All the participants provided informed
onsent. This study was conducted under an ethical protocol approved
y the Ethics Committee of the Center for Biomedical Imaging Research
t Tsinghua University. 

.2. Behavioral assessment 

We used a well-established perceptual matching paradigm to quan-
ify the magnitude of an individual’s self-prioritization ( Fig. 1 a;
ui et al., 2012 ). This paradigm has not only overcome the familiarity
dvantage of self-relevant stimuli (e.g., own name vs. others’ name),
ut has also shown resistance to confounding factors such as word
ength ( Sui et al., 2012 ; Wo ź niak and Knoblich, 2019 ), and thus has
een widely adopted by the academic community ( Yankouskaya and
ui, 2022 ). There were two phases in this task. In the learning phase, par-
icipants were instructed to associate two geometric shapes (i.e., trian-
le and circle) with two personalized labels (i.e., “you ” and “stranger ”).
or example, participants may be told that a circle represents them-
elves and a triangle represents a stranger. The matching pattern was
ounterbalanced across participants, who were asked to judge whether
n upcoming series of random shape-label pairs corresponded to it. All
nstructions were presented on the first screen of the experimental pro-
ram until participants made a response indicating that they were ready
o begin the experiment. 

After the associations were created, participants started the match-
ng phase immediately. Each trial started with a central fixation cross
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Fig. 1. Overview of our approach. (a) Ex- 
ample of stimuli and procedures of the per- 
ceptual matching task. (b) Schematic flow of 
prediction pipeline. SPE, self-prioritization 
effect; rs-fMRI, resting-state functional mag- 
netic resonance imaging; ROI, region of in- 
terest; FC, functional connectivity; SVR, sup- 
port vector regression; LOOCV, leave-one- 
out cross-validation. 
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0.8° × 0.8° visual angle) for 500 ms. Then, a shape (3.8° × 3.8°) and a
abel (2.4° × 1.6°) were presented above and below the fixation cross for
00 ms. A subsequent blank frame occupied the screen until a response
as made or 1100 ms elapsed, during which the participants were ex-
ected to judge whether the shape-label pairing was correct as quickly
nd accurately as possible. Feedback (correct or incorrect) was provided
n the screen for 500 ms at the end of each trial. Each participant com-
leted 96 trials following 12 practice trials, with a total of 24 trials
or each condition (self-matching, self-mismatching, stranger-matching,
nd stranger-mismatching). All stimuli were rendered on a gray back-
round on a 17-inch monitor (1024 × 768 at 60 Hz). The experiment
as run on a PC using E-prime software (version 2.0). 

Previous studies using this paradigm have generally performed
roup-wise analyses to compare differences between the self and
ther conditions (e.g., Humphreys and Sui, 2015 ; Sui et al., 2013 ).
owever, machine learning techniques entail specific individualized

cores for prediction. We defined the SPE score as the difference in
ean reaction time (RT) between two matching conditions (i.e., SPE

core = RT stranger-matching – RT self-matching ) for the following reasons: 1)
elf-prioritization has been most robustly characterized by differences
etween the reaction time of the self and others in matching conditions
 Sui et al., 2013 ); 2) the accuracy performance in these two conditions
howed a ceiling effect with an average accuracy of over 91%, causing
he accuracy distribution not to be suitable for individual-level analysis.
his adopted metric has also been employed in previous neuroscience
esearch on the SPE (e.g., Jiang and Sui, 2022 ; Stolte et al., 2017 ). 

.3. Image acquisition 

Images were acquired with a Philips Achieva 3.0T TX system at the
enter of Bio-Medical Imaging Research, Tsinghua University. All par-
icipants completed a 508.3-second rs-fMRI scanning, during which they
ere instructed to open their eyes, to not think about anything system-
tically, and to not fall asleep. Functional images were acquired with
 T2-weighted echo-planar imaging sequence using the following pa-
ameters: repetition time (TR) = 2300 ms, echo time (TE) = 30 ms, flip
ngle = 90°, 37 ascending slices, field of view (FOV) = 256 × 256, ac-
uisition matrix = 96 × 96 × 37, voxel size = 2.5 × 2.5 × 3.45 mm. A
igh-resolution T1-weighted structural image was also obtained for each
3 
articipant using the following parameters: TR = 8.2 ms, TE = 3.8 ms,
60 contiguous sagittal slices, flip angle = 8°, FOV = 256 × 256, acquisi-
ion matrix = 256 × 256 × 160, voxel size = 0.938 × 0.938 × 1 mm; sen-
itivity encoding (SENSE) factor: anterior-posterior (AP) = 2, right-left
RL) = 1.5. Participants completed the behavioral assessment outside
he MRI scanner. 

.4. Image preprocessing 

Imaging data were preprocessed using the DPABI software package
version 6.0; Yan et al., 2016 ), which is based on Statistical Paramet-
ic Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/ ) and has been
idely used. The preprocessing procedure included the following steps:

1) the first 10 functional volumes were removed to ensure signal sta-
ility; (2) the remaining 211 volumes were slice-time corrected and re-
ligned to the first image; (3) the T1-weighted structural images were
o-registered to the mean functional image and then segmented into
ray matter, white matter, and cerebrospinal fluid; (4) the nuisance sig-
als were regressed out, including the Friston 24 head-motion param-
ters ( Friston et al., 1996 ), five principal components of white matter
nd cerebrospinal fluid signals, global signals, and linear signal trends;
5) derived images were normalized to the Montreal Neurological In-
titute space using the Diffeomorphic Anatomical Registration Through
xponentiated Lie algebra (DARTEL) algorithm and resampled to 3-mm
ubic voxels; (6) the normalized images were spatially smoothed with
 4-mm Gaussian kernel and temporally smoothed using the frequency
andwidth of 0.01–0.1 Hz; (7) to further eliminate effects of head move-
ent, as suggested by Power et al. (2012) , we applied a common thresh-

ld to scrub the volumes with framewise diffusion greater than 0.5 mm
see also Sripada et al., 2020 ; Y. Wang et al., 2021 ). 

Notably, in line with many neuroimaging prediction works (e.g.,
oldfarb et al., 2020 ; Yu et al., 2020 ), we employed a contentious step,
lobal signal regression (GSR), in this study. The primary considera-
ion behind this procedure is that GSR not only efficiently removes
rtifacts caused by head movement and physiological factors but also
obustly improves behavioral prediction performance ( Li et al., 2019 ).
owever, given that the neuroscience community has not reached a
onsensus on the issue of GSR ( Murphy and Fox, 2017 ) and that re-
ent studies have re-highlighted its importance ( Scalabrini et al., 2020 ;

https://www.fil.ion.ucl.ac.uk/spm/
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hang and Northoff, 2022 ), we also conducted an analysis without
SR. 

.5. Functional connectome construction 

As shown in Fig. 1 b, the whole-brain functional network nodes were
efined using the Human Brainnetome Atlas ( Fan et al., 2016 ), which
onsists of 210 cortical and 36 subcortical regions of interest (ROIs).
his fine-grained atlas reliably integrates information from anatomical
nd functional connections and has been used in many neuroimaging
tudies to predict individual differences ( Yeung et al., 2022 ). For each
articipant, time series within each node were computed by averaging
he blood oxygenation level-dependent (BOLD) signal over all voxels in
he ROIs. We then calculated the Pearson correlation for each pair of the
46 resulting time series to obtain a 246 × 246 symmetric FC matrix for
ach participant. Each element in the matrix characterizes the alleged
onnection (also called edge) strength between two nodes. 

.6. Individualized prediction 

When combining neuroimaging and behavioral data in machine
earning algorithms, an inescapable challenge is the potential curse
f dimensionality caused by few samples but high dimensionality
 Scheinost et al., 2019 ). Although numerous voxels in the brain were
rouped into 246 ROIs, more than 30,000 unique features (i.e., edges)
emained in the FC matrix. Two typical solutions are to retain only the
ost relevant features before feeding them into the model and to use

egularization techniques in the model to mitigate the influence of non-
redictive features ( Ying, 2019 ). We developed a prediction framework
ntegrating feature selection and a regularized linear SVR model to pre-
ict individuals’ SPE scores based on whole-brain FC (see Fig. S1). 

We implemented the linear SVR using the Scikit-learn library
 Pedregosa et al., 2011 ). SVR is a powerful supervised machine-learning
lgorithm extensively used in neuroscience and psychology studies
 Cui and Gong, 2018 ). When constructed based on a linear kernel func-
ion, SVR can be highly predictive and interpretive. Linear SVR uses
 regularization hyperparameter C to determine the model complexity
radeoff and thus has a significant impact on model performance. To
void data leakage during hyperparameter determination, we employed
 nested cross-validation (CV) procedure, which consisted of an outer
oop using a LOOCV and an inner loop using a 5-fold CV. As demon-
trated by Vabalas et al. (2019) , only a nested CV framework with com-
letely separated training and testing data can guarantee unbiased per-
ormance estimates. 

The inner 5-fold CV was applied to quickly find the best hyperparam-
ters (i.e., C), a process also known as grid search. The dataset input to
he inner loop was randomly divided into five parts, four of which were
egarded as the subtraining set and the remaining part as the subtest
et. For the feature selection step, we first performed a Pearson correla-
ion between each feature and the SPE score for the samples in the sub-
raining set. A commonly used threshold ( p < 0.01) was then applied to
emove noisy edges and retain those that were significantly correlated
 Rosenberg et al., 2016 ). These selected features were fed into the lin-
ar SVR models built with different values of C. Finally, according to the
erformance of these models on the subtest set, the best hyperparameter
 was obtained and passed to the training set of the outer loop. 

The outer loop adopted LOOCV to exploit every sample and eval-
ate the prediction performance more robustly ( Vabalas et al., 2019 ).
n each of the N iterations, a different participant was left out as the
est set and the remaining N-1 as the training set. The training set then
eselected features in a manner similar to the inner loop (Pearson cor-
elation threshold p < 0.01). The retained edges were fed into the tuned
inear SVR model with the best hyperparameter C determined by the
nner loop. The predicted value for the test set was obtained by feeding
he same features into the trained model. After N iterations, we acquired
 predicted SPE score for all participants. 
4 
.7. Prediction performance evaluation 

Model performance (i.e., the correspondence between predicted and
rue values) was evaluated using Pearson correlations. The stronger the
orrelation between the predicted and true SPE scores, the more suc-
essful the model ( Rosenberg et al., 2016 ). Notably, a common pitfall in
achine learning is that each cross-validation fold does not satisfy inde-
endence, and the best practice for assessing the significance of model
erformance is permutation testing ( Scheinost et al., 2019 ). Therefore,
e randomly shuffled the phenotype (i.e., SPE score) and reran the pre-
iction pipeline 1000 times to obtain a null distribution of the model
erformance. The p -value was calculated as (1 + the number of r-values
n the null distribution that are greater than or equal to the r-value re-
ulting from the unshuffled data)/1001 ( Phipson and Smyth, 2010 ). 

.8. Functional anatomy 

As each iteration of LOOCV may select slightly different features,
e first identified those edges that appeared in all iterations to con-

truct a consensus network for interpretation (see also Rosenberg et al.,
016 ). To quantify the contribution of each edge, linear machine-
earning algorithms traditionally rank feature importance based on the
aw weights assigned to features ( Chang and Lin, 2008 ). However,
aufe et al. (2014) recently suggested that such an interpretation of

he backward model (e.g., SVR and LASSO) may yield misleading con-
lusions. As a remedy for this case, they proposed the following formula
o transform the weight matrix into an interpretable activation pattern
atrix: 

 = 

∑
𝑋 
𝑊 

∑−1 
𝑦 

, 

here A represents the derived activation pattern matrix, W is the raw
eight matrix of the linear SVR, 

∑
𝐗 is the covariance matrix of the

ata, and 
−1 ∑
𝐲 

denotes the inverse covariance of the prediction values. 

Each edge in the consensus network’s contribution was computed
s the averaged activation pattern over iterations. We then summarized
he connectivity patterns using two methods. First, we grouped the 246
odes into 24 macroscale brain regions anatomically defined by the
rainnetome Atlas ( Fan et al., 2016 ). The contribution of connectiv-

ty in each pair of macroscale regions was characterized as the sum of
he activation patterns of all edges within it (for a similar approach, see
ong et al., 2019 ). Second, we regrouped the nodes into canonical net-
orks based on the Yeo 17-network parcellation ( Yeo et al., 2011 ). The
apping relationship between nodes and networks was defined by the

tlas development team ( Luo et al., 2020 ; Q. Wang et al., 2021 ). For
larity, we merged related sub-networks in the 17 networks (see also
hine et al., 2017 ) and referred to the undefined subcortical regions
s subcortical networks. For the resulting nine canonical networks, we
valuated the contribution of within- or between-network connectivity
nalogously to the analyses of macroscale brain regions. 

Moreover, to assess the role of each canonical network individu-
lly, we performed further computational lesion analysis. A lesion in
 canonical network means that the signals of all its constituent nodes
re erased, and the pipeline is then reran based on the resulting FC ma-
rix ( Rosenberg et al., 2016 ). The predictive performances of these “le-
ioned ” brains were subsequently compared separately with the whole-
rain result using Steiger’s Z test. 

.9. Model robustness and specificity analyses 

Previous studies have suggested that the predictive power of mod-
ls may be affected by confounding factors (for an overview, see
cheinost et al., 2019 ). In the worst case, the model may predict not
he desired phenotype but confounders such as demographic variables
r head movement. To verify the robustness of the identified network to
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Fig. 2. Visualization of prediction results. (a) Scatter 
plot depicting the correlation between predicted and 
observed SPE score. (b) Circle plot showing the iden- 
tified consensus network. The lines represent the con- 
nections between two nodes. Positive connections (i.e., 
edges significantly positively correlated with pheno- 
type) are red, whereas negative connections are cyan. 
SPE, self-prioritization effect; L, left; R, right. 
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hese factors, we performed several control analyses. First, instead of us-
ng Pearson’s correlation, we selected the most relevant features based
n partial correlation coefficients controlling for age, gender, or head
ovement (defined as mean framewise displacement). Second, before

eature selection, we removed any edges associated with age or head
ovement or that differed between genders ( p < 0.01). Third, we recon-

tructed a model using only these covariates as features and compared
ts performance with that of the main model. 

Another consideration for robustness is the choice of the algorithm.
lthough SVR is one of the most widely used algorithms ( Cui and
ong, 2018 ), we replaced it with several other common linear models

o further boost robustness, including the ordinary least squares (OLS)
egression, least absolute shrinkage and selection operator (LASSO), and
idge regression. Note that feature selection and CV strategies were the
ame. 

Finally, to examine the specificity of the prediction model, we used
he identified consensus network to predict participants’ self-construal
 Markus and Kitayama, 1991 ), which was measured using the 30-item
elf-Construal Scale ( Singelis, 1994 ). As self-construal is slightly associ-
ted with SPE ( Jiang and Sui, 2022 ), unsatisfactory predictive perfor-
ances can be expected if the consensus network is specific to the SPE

core ( Goldfarb et al., 2020 ). 

.10. External validation 

To further assess the out-of-sample generalizability of the identified
PE-specific consensus network, we performed external validation anal-
ses using an independent dataset. A detailed description of this dataset
s available in the online supplementary materials. In brief, 66 healthy
lder adults were recruited to complete a 5-minute rs-fMRI scan and a
2-minute task-fMRI scan, during which they completed the perceptual
atching task. We use the rs-fMRI data to predict SPE scores (defined

dentically to the main dataset) computed from behavioral data of task-
MRI. Since previous studies demonstrated that older adults retain sim-
lar SPE to the young ( Gutchess et al., 2007 ; Mattan et al., 2017 ), we
xpected that the neural model from the main results could generalize
o older adults to some extent. 

The validation procedure was consistent with previous machine
earning studies in neuroscience (e.g., Liu et al., 2021 ). We first ex-
luded participants that did not participate in rs-fMRI scanning ( n = 2)
r were missing fMRI data in one or more nodes of the atlas ( n = 2),
esulting in 62 participants for validation (34 women; mean age = 71.3
ears; age range = 58–84 years). Their rs-fMRI data were preprocessed
sing the same pipeline as the main dataset to obtain FC matrices. Subse-
uently, we refit the main dataset (all 348 participants) using the identi-
ed consensus network as features to learn the parameters of the model.
he independent dataset’s FC matrices were then fed into the trained
odel to generate predicted SPE scores. Considering that using an older
5 
ample may introduce additional confounds, we further evaluated vali-
ation performance using partial correlation, controlling for age, head
ovement, and gender. Notably, since older adults generally move their
eads more than younger adults, using the same excluding criterion as
he main dataset (i.e., > 0.2 mm mean framewise displacement) would
liminate nearly half of the samples ( n = 27). Therefore, we did not
xclude older subjects with excessive head movement to preserve sta-
istical power. However, the results under this exclusion criterion were
lso reported. 

. Results 

.1. Predictability of SPE 

As shown in Fig. 2 a, in the unseen data (i.e., not used to train the
odel), the true value of the SPE was significantly correlated with the
redicted value ( r = 0.41, permutation p < 0.001, MAE = 52.80), in-
icating that our linear SVR model successfully predicted the SPE of
ndividuals. 

.2. Contributing networks to prediction 

In the nested LOOCV, the number of selected features varied from
17 to 383 in multiple iterations, representing less than 2% of the brain’s
0,135 total edges as defined by the atlas. The identified consensus net-
ork that contained 314 edges was visualized in Fig. 2 b. Consistent with
revious prediction studies ( Yip et al., 2019 ; Zhang et al., 2018 ), the
ighest-degree nodes (i.e., nodes with the most connections) in the con-
ensus network were widely distributed across the brain, including the
rontal, occipital, parietal, and temporal lobes, as well as the subcorti-
al regions (see Table S1). Most of these high-degree nodes were located
n the right hemisphere. In addition, we listed the top 20 positive and
egative FCs with the strongest predictive contribution in Tables S2 and
3, respectively. As shown in the tables, FCs related to self-processing
ended to involve regions such as the medial prefrontal cortex (mPFC)
r subcortical structures, while FCs related to other-processing tended
o involve regions such as the lateral PFC or posterior cingulate cortices.

The contribution (i.e., summarized activation pattern) of FCs among
he 24 macroscale brain regions was depicted in Fig. 3 . The results in-
icated that the FCs between the thalamus and the parahippocampal
yrus (PhG), lateral occipital cortex (LOcC) and superior temporal gyrus
STG), thalamus and insular gyrus, superior frontal gyrus (SFG) and in-
erior frontal gyrus (IFG) were the primary predictors of stronger self-
rioritization. Meanwhile, the FCs between the PhG and middle tempo-
al gyrus, PhG and middle frontal gyrus, and within the IFG predicted
eaker self-prioritization. 

Besides, we also regrouped the 264 nodes into nine canonical net-
orks. The contribution of FCs among those canonical networks was
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Fig. 3. The contributions of FCs between each pair of 
macroscale brain regions to the predictive model. Cells on the 
diagonal represent the results of FCs within macroscale brain 
regions. The values in each cell denote the sum of activation 
patterns. For better readability, these values are normalized to 
between − 1 and 1 using scikit-learn’s MinMaxScaler module. 
SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG, in- 
ferior frontal gyrus; OrG, orbital gyrus; PrG, precentral gyrus; 
PCL, paracentral lobule; INS, insular gyrus; SPL, superior pari- 
etal lobule; IPL, inferior parietal lobule; Pcun, precuneus; PoG, 
postcentral gyrus; STG, superior temporal gyrus; MTG, middle 
temporal gyrus; ITG, inferior temporal gyrus; FuG, fusiform 

gyrus; PhG, parahippocampal gyrus; pSTS, posterior superior 
temporal sulcus; MVOcC, medioventral occipital cortex; LOcC, 
lateral occipital cortex; CG, cingulate gyrus; Amyg, amygdala; 
Hipp, hippocampus; BG, basal ganglia; Tha, thalamus. 

Fig. 4. Network-level results. (a) The sum of the FC’s activation pattern for each pair of canonical networks. Positive connections are red, whereas negative connec- 
tions are cyan. Thicker and darker connections indicate stronger connection strength (i.e., higher absolute value of the activation pattern). (b) Model performance of 
whole-brain FC and after computational lesion of each canonical network. The significance symbols indicate whether there is a significant difference between each 
computational lesioned model and the whole-brain model. ∗ p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗ p < 0.001. Sub, subcortical network; Vis, visual network; SMN, somatomotor 
network; DAN, dorsal attention network; VAN, ventral attention network; SN, salience network; Lim, limbic network; Con, control network; DMN, default mode 
network. 
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isualized in Fig. 4 a. The results demonstrated the predictive power of
onnectivity between the dorsal attention network (DAN) and somato-
otor network (SMN), the DMN and salience network (SN), and the
MN and DAN. As for the individual importance of each canonical net-
ork, the computational lesion analysis results (see Fig. 4 b) revealed

hat the model could still significantly predict individuals’ SPE scores
ithout any single canonical network, which corresponds to findings

n other fields, confirming that machine learning models tend to utilize
hole-brain signals ( Feng et al., 2018 ). Nevertheless, Steiger’s Z test still

ound several canonical networks that caused significant degradation in
odel performance after computational lesions, including the subcorti-

al network ( z = 5.74, p < 0.001), limbic network ( z = 3.30, p < 0.001),
MN ( z = 4.15, p < 0.001), DMN ( z = 2.85, p < 0.01), DAN ( z = 2.2,
 = 0.03), and SN ( z = 2.35, p = 0.02). 
6 
.3. Model robustness, specificity, and generalizability 

As described in the Methods section, we performed several control
nalyses to test the robustness of the identified network to confounding
actors. First, when selecting features based on partial correlation coef-
cients that controlled for age, gender, or head movement, the resulting
etworks still significantly predicted the participants’ SPE scores ( r s >
.25, permutation p s < 0.001). Second, although we removed any edges
ssociated with age or head movement or that differed between gen-
ers, the streamlined networks still significantly predicted the SPE ( r s
 0.31, permutation p s < 0.001). Third, the covariate-only model could
ot predict participants’ SPE scores ( r = − 0.16, permutation p = 0.99),
nd Steiger’s Z test showed that its performance was significantly worse
han that of the main model ( z = 7.78, p < 0.001). 
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The results from different algorithms revealed that the predictions of
he LASSO and ridge regression remained significant after replacing the
VR ( r = 0.21 and 0.23, respectively, permutation p s < 0.001), whereas
he OLS regression failed to predict individuals’ SPE scores ( r = 0.08,
ermutation p = 0.07). The inferior performance of LASSO and ridge
egression compared to SVR echoes previous machine-learning research
 Cho et al., 2020 ). The unsatisfactory performance of OLS can be
ttributed to overfitting caused by a lack of regularization ( Ying, 2019 ).

Regarding the issue of GSR, in line with previous machine-learning
ased studies (e.g., Ju et al., 2020 ), the performance of the SVR model
sing FC matrices without GSR was not significant ( r = − 0.05, permu-
ation p = 0.82). As suggested by Murphy and Fox (2017) , GSR is not
nherently right or wrong and depends on research questions and meth-
ds. A recent large-scale investigation by Li et al. (2019) found that GSR
harply strengthens the relationship between rs-FC and behavioral mea-
ures, which provides explanations for our results and the general use
f GSR in machine-learning research ( Goldfarb et al., 2020 ; Yu et al.,
020 ). 

The results of the specificity test demonstrated that although the con-
ensus network could successfully predict SPE scores, it could not sig-
ificantly predict participants’ independent self ( r = − 0.16, permutation
 > 0.99) or interdependent self ( r = 0.04, permutation p = 0.14). These
esults demonstrate that the consensus network is specific to the SPE,
hich is a behavior-level self-bias and cannot be generalized to higher-

evel self-reflections such as self-construals. Interestingly, a previous
tudy demonstrated that self-interdependency has a stronger impact
n individuals’ self-prioritization than self-independence ( Jiang and
ui, 2022 ). This is consistent with our results, showing that the interde-
endent self predicts slightly better than the independent self ( z = 2.70,
 < 0.01). 

Finally, external validation results indicate that the SPE-specific net-
ork and model identified in the main dataset ( n = 348) can be gen-
ralized to an independent dataset of older adults [ r (62) = 0.33, per-
utation p < 0.01, MAE = 217.2, see Fig. S2]. To ensure that con-

ounding variables did not play a role, we calculated the partial cor-
elation between predicted and actual SPE scores controlling for age,
ender, and head movement. The predictive performance showed little
hange [ r (62) = 0.32, permutation p < 0.01]. In addition, after remov-
ng participants with excessive head movement (using the same criteria
s the main dataset), the predictive performance remained significant
 r (35) = 0.30, permutation p = 0.049, MAE = 201.3]. 

. Discussion 

Longstanding controversies and disparate theories regarding the
mergence of the sense of self have necessitated more neuroscien-
ific evidence. Here, we demonstrated how behavioral results in self-
rioritization could be predicted via correlations with spontaneous brain
esting-state activity, indicating readiness for self-related processes in
he brain at rest. The results demonstrated that the trained model was ro-
ust and that the identified predictive networks were SPE-specific. The
redictions were not confounded by covariates such as head movements
nd were consistent across different algorithms. Most importantly, the
eneralization ability of the predictive model was externally validated
n an independent dataset. Our results echo the expected manifestations
f the fundamental self hypothesis, thus providing preliminary evidence
or the fundamental self hypothesis. 

This study has significant theoretical implications in two aspects.
irst, we have provided direct evidence showing that self-specificity is
ndeed embedded within the brain’s spontaneous brain activities, sup-
orting the BMSS’s rest-self containment assumption instead of the rest-
elf overlap assumption. Second, we have used unbiased data-driven
echnologies to demonstrate the association between self-specificity
nd subcortical structures, which has not been thoroughly investigated
reviously. This, however, raises two inevitable questions regarding
he fundamental self hypothesis. On the one hand, how ‘fundamen-
7 
al’ can this self component be? In extreme cases, as Northoff and
anksepp (2008) suggested, the fundamental component of self might be
ossible to exist in species other than humans as humans and primates
hare similar subcortical structures ( Northoff and Panksepp, 2008 ) and
SNs ( Rilling et al., 2007 ). On the other hand, how does the fundamen-

al self associate with perhaps one of the highest-order brain functions,
amely self-consciousness? Given the complexity of the self, it should
e cautious when assuming that all self components operate at the fun-
amental connection level. 

Focusing on the self-processing aspects of the fundamental self, in the
ollowing subsections, we will discuss the neural characteristics revealed
n the current study and develop a novel neural model to explain the
undamental self hypothesis. 

.1. Brain region patterns of SPE-specific network 

A closer look at the consensus predictive network revealed that the
Cs of several nodes within the DMN, SN, and DAN over the frontal
nd temporal lobes, such as the SFG (including nodes of the bilateral
entromedial prefrontal cortex [vmPFC]), IFG, and STG, contributed
ignificantly to the model. The involvement of these regions in self-
elated cognition has been repeatedly reported (for meta-analyses, see
u et al., 2016 ; Murray et al., 2012 ). Our results confirmed these re-
ions’ predictive role in self-processing by echoing studies using mul-
ivoxel pattern analysis (MVPA) techniques to decode differences be-
ween self and others ( Wo ź niak et al., 2022 ; Yankouskaya et al., 2017 ).
n addition to these high-level cortices, the current findings highlight
he role of several subcortical structures or adjacent areas, especially
he FCs between the thalamus, insula, amygdala, and PhG. Although
ot traditionally recognized as neural substrates of the self, these re-
ions have been frequently observed in empirical self-processing stud-
es ( Murray et al., 2015 ; Qin et al., 2020 ; Sui and Gu, 2017 ). Re-
ently, Qin et al. (2020) conducted a meta-analysis to test a three-level-
elf model elucidating how the bodily interoceptive self is integrated
ithin the self, highlighting the role of these subcortical regions in

nteroceptive-self processing. Similarly, this integrative view was sup-
orted by another line of empirical work by Babo-Rebelo and colleagues
 Babo-Rebelo et al., 2019 ; Babo-Rebelo et al., 2016a , 2016b ), which re-
ealed functional couplings between self-processing (via higher-order
ortices) and visceral signal monitoring (via subcortical structures). 

However, the precise contributions of these subcortical regions
an vary from one another. For example, the insula may couple the
eural monitoring of cardiac signals to the self ( Babo-Rebelo et al.,
016 ), whereas the amygdala’s involvement may stem from individu-
ls’ affective-manner processing of self-related stimuli ( Rameson et al.,
010 ). The noteworthy negative connections of the PhG may be due to
ts episodic memory function ( Hayes et al., 2007 ). That is, similar to at-
entional network activation ( Humphreys and Sui, 2016 ), the brain may
equire more intense PhG activation in encoding and retrieving episodic
emories related to others. 

The thalamus, the subcortical structure with the most noticeable re-
ults, is sometimes noted ( Murray et al., 2015 ; Northoff et al., 2009 ), but
ts function remains largely unexplained. The thalamus has traditionally
een described as a machine-like relay station for cortical information
 Sherman, 2007 ). However, contemporary perspectives suggest that it
ay continue to play an essential role in subsequent sensory and mo-

or cortical processing through transthalamic corticocortical pathways
 Sherman, 2016 ; Worden et al., 2021 ). Shine (2021) even argued that
he thalamus might be responsible for integrating and regulating the
acrosystems of the brain. Correspondingly, we proposed that the tha-

amus may continuously be involved in the self’s readiness to regulate
ognitive processing. 

Unexpectedly, the LOcC also showed closed connections to other
egions. The involvement of visual cortices in self-related processing
as previously been reported ( Ferri et al., 2012 ; Hu et al., 2016 ;
urray et al., 2015 ). Using MVPA techniques, Yin et al. (2021) re-
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Fig. 5. The intrinsic self-processing network model. The fun- 
damental self is assumed to be topologically represented by the 
interactions among these five networks, three of which consti- 
tute the traditionally recognized core self circuit (i.e., DMN-SN- 
DAN). Visual or auditory stimuli are first transmitted through 
the thalamus to higher-order cortices. We speculate that the 
SMN serves as a bridge between the mental and bodily selves 
and is involved in generating observable self-biased behaviors. 
Sub, subcortical network; SMN, somatomotor network; DAN, 
dorsal attention network; DMN, default mode network; SN, 
salience network. 
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ently suggested that visual cortices embedded the degree of priori-
ization of self- or other-associated stimuli in working memory. An-
ther possibility for the widespread involvement of the LOcC may be
ttributed to its modulating role in the visual processing of shapes
 Cant and Goodale, 2007 ). However, despite these connections, the com-
utational lesion of the visual network did not significantly affect the
odel’s performance. We speculate that visual functions may not be
art of the fundamental self and thus serve as a fine but unnecessary
actor in SPE prediction. This view is consistent with a previous study
howing that patients with visual extinction still had an SPE ( Sui and
umphreys, 2017a ). 

.2. Functional system patterns and a novel neural model of the self 

When organizing the brain into large-scale functional systems, the
ontributing FCs are widely distributed among the brain’s canonical net-
orks. This was echoed by computational lesion analysis, which showed

hat six of the nine networks contributed significantly to the model’s
redictive performance. This widespread pattern of results has two im-
lications. First, although the triad of DMN-SN-DAN has been addressed
y previous theoretical models that account for the neural basis of the
elf ( Northoff, 2016 ; Sui and Gu, 2017 ), the contributions of the lim-
ic network, SMN, and subcortical network have been less frequently
iscussed. In our computational lesion analysis, the impact of the SMN
nd subcortical network on model performance was much greater than
hat of the DMN, SN, and DAN, indicating that they also play significant
oles in the self-prioritization process. 

To synthesize previous theoretical works ( Northoff, 2016 ; Qin et al.,
020 ; Sui and Gu, 2017 ), as well as the current findings, we propose
n intrinsic self-processing network model (see Fig. 5 ) that describes
he neural mechanism that gives rise to the self as object ( Sui and
u, 2017 ) and regulates other cognitive functions. Based on the BMSS
odel ( Northoff, 2016 ), it is believed that self-specificity is embedded in

he brain’s resting-state spontaneous activity. Corroborating this view-
oint, the findings have demonstrated that this intrinsic self-processing
etwork involves multiple neural couplings between three neural net-
orks and communications between these networks and sub-cortical

tructures. In particular, self-specificity is associated with the intrin-
ic positive couplings between DMN and SN and the intrinsic negative
ouplings between DAN and DMN/SN. These cortical network connec-
ions are consistent with the self-as-object model proposing that the self
merges from the interaction between the ’self’ network (e.g., vmPFC),
ognitive control network (e.g., dorsolateral PFC), and salience network
e.g., insula) ( Sui and Gu, 2017 ). On the other hand, the result in terms
f communications between cortical networks, subcortical network, and
MN is consistent with the three-level-self view ( Qin et al., 2020 ) that
bservable self-biased behaviors employ mental self-processing and rely
n endowing non-bodily external stimulus self-specificity and extensive
8 
rain involvement. The role of the SMN may reflect that the bodily
elf also derives from somatomotor experiences ( Ferri et al., 2012 ) and
erves as an essential component of self functions ( Legrand, 2006 ). 

.3. Implications of the intrinsic self-processing network model 

The intrinsic self-processing network model can be used to inter-
ret previous findings. On the one hand, according to this model, indi-
iduals with greater self-specificity in the brain’s spontaneous activity
ay have stronger connectivity between the DMN and SN. The DMN

s often linked to self-related processing owing to the anatomical over-
ap of brain regions ( Davey et al., 2016 ; Northoff et al., 2006 ; Qin and
orthoff, 2011 ). Similarly, representative regions of the SN, such as the

nsula and anterior cingulate, are consistently involved in self-related
rocessing ( Qin et al., 2020 ; Scalabrini et al., 2021 ). The broad involve-
ent of the SN can be attributed to the fact that the self is a salient stim-
lus ( Humphreys and Sui, 2015 ; Tacikowski and Nowicka, 2010 ). How-
ver, although DMN-SN interaction has been linked to many brain func-
ions ( Doll et al., 2015 ; Jilka et al., 2014 ), it has only recently been used
o characterize the self ( Sui and Gu, 2017 ). In line with their hypothesis
nd our model, Yankouskaya and Sui (2022) observed stronger DMN-SN
onnectivity activity during self-processing than other-processing. 

On the other hand, our model indicates that individuals with
tronger FC between the DAN and DMN or SN possess a weaker self-
rioritization tendency. Consistently, Sui et al. (2013) found that the
orsolateral PFC, a key node of the DAN, showed enhanced activa-
ion in other-reference processing compared to self-related processing.
ater, Sui et al. (2015) observed a hyperself-bias effect on the atten-
ional control network in a patient with lesions. They then proposed a
elf-attention network to explain the role of attention in social process-
ng ( Humphreys and Sui, 2016 ). Based on evidence from multiple do-
ains, they concluded that self-related stimuli are naturally salient and

ttention-attracting; therefore, individuals need to mobilize a top-down
ttentional system to suppress spontaneous self-bias when switching to
ther-related stimuli. This echoes our model that weaker self-bias may
lso stem from the stronger inhibitory capacity of the attention network.

.4. Limitations and future directions 

In summary, this study takes the first step in using a data-driven
achine-learning approach to predict individuals’ self-prioritization,

upporting the hypothesis that self-specific information is embedded
ithin the spontaneous activity of the brain ( Northoff, 2016 ). Although

t contributes to our knowledge of the neural substrate of the self, the
resent study has several limitations that need to be acknowledged.
irst, although our sample size was relatively large in neuroscience re-
earch, the prediction stability of machine learning improves signifi-
antly as sample size increases ( Jollans et al., 2019 ). Given the high
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ross-site similarity of rs-fMRI, the predictive power of the identified
etworks can be validated using more diverse samples. Second, we used
 perceptual matching task to measure self-bias because it excluded
he effect caused by differences in stimulus familiarity ( Wo ź niak and
noblich, 2019 ). One promising direction is to have participants com-
lete various self/other processing trait-like tasks and then refine the
ore self-representing brain regions by constructing multiple predic-
ive models. Another trend in machine learning-based neuroimaging
esearch is the use of multi-modal features for prediction, such as task-
MRI ( Rosenberg et al., 2016 ), dynamic FC ( Fong et al., 2019 ), and struc-
ural connectivity ( Yu et al., 2020 ). Future studies could incorporate
ulti-modal data into the model to determine whether better biomark-

rs can be identified. 
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