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Abstract: Predicting the performance of a subsurface oil field is a large, multivariant problem. Production is controlled and
influenced by a wide array of geological and engineering parameters which overlap and interact in ways that are difficult to
unravel in a manner that can be predictive. Supervised machine learning is a statistical approach which uses empirical learnings
from a training dataset to create models andmake predictions about future outcomes. The goal of this study is to test a number of
supervised machine learning methods on a dataset of oil fields from the United Kingdom continental shelf (UKCS), in order to
assess whether, (a) it is possible to predict future oil field performance and (b), which methods are the most effective. The study
is based on a dataset of 60 fields with 5 controlling parameters, (gross depositional environment, average permeability, net-to-
gross, gas–oil ratio and total number of wells) and 2 outcome parameters (recovery factor and maximum field rate) for each. The
choice of controlling parameters was based on a PCA of a larger dataset from a wider project database. Five different machine
learning algorithms were tested. These include linear regression, robust linear regression, linear kernel support vector
regression, cubic kernel support vector regression and boosted trees regression. Overall, 83% of the data was used as a training
dataset while 17% was used to test the predictability of the algorithms. Results were compared using R-Squared, Mean Square
Error, Root Mean Square Error and Mean Absolute Error. Graphs of predicted responses v. true (actual) responses are also
shown to give a visual illustration of model performance. Results of this analysis show that certain methods perform better than
others, depending on the outcome variable in question (recovery factor or maximum field rate). The best method for both
outcome variables was the support vector regression, where, depending on the kernel function applied, a reliable level of
predictability with low error rates were achieved. This demonstrates a strong potential for statistics-based prediction models of
reservoir performance.
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The efficiency of the hydrocarbon extraction process is largely
dependent on a host of interconnected factors, both intrinsic and
imposed. The goal of this study is to investigate the ability of
machine learning algorithms to produce a predictive tool which can
be applied to other datasets.

This paper forms part of larger project with a database that
comprises 424 fields on the UKCS. A subset of that database was
analysed using methods of feature selection including principal
component analysis (PCA) and best subset regression to determine
which variables were critical to predicting reservoir performance. In
this paper, those variables have been used to condition a number of
machine learning algorithms to determine which are the most
effective at predicting future field performance.

Variables that control reservoir performance have been subdivided
into geological, PVT (fluids and reservoir conditions) and engineer-
ing. A number of metrics that record reservoir performance were
identified, and for the purpose of this study two of these response
variables were selected (recovery factor and maximum field
production rate). The original project database included information
from 424 fields subsampled into smaller subsets for PCA and
regression analysis. A further subsampling has been undertaken here
for this analysis in a subset for Machine Learning. This subset of the
database includes information about 5 control and 2 outcome variables
from 60 fields. These fields and variables are an outcome of both the
PCA and a best subsets regression testing. The data were z-score
standardized and used to test five different machine learning methods.

The study area (shown in Fig. 1) was chosen for its wealth of
exploration and production data accumulated over fifty plus years as
a hydrocarbon producing region. Production data were obtained
from the UK Oil and Gas Authority, (www.ogauthority.co.uk) and
geological parameters were compiled from a variety of published
sources. A comprehensive list of references and data sources and
more detailed discussions on study area, data distribution and
petroleum system geology are provided in a separate publication
discussing the database building process and the spatio-temporal
distribution of that data.

Study area

Sixty oil fields were selected for this study from the wider database
of 424 oil, gas and condensate fields. These fields were randomly
chosen based on fluid phase (oil) and filtered for completeness of
data and to remove outliers and is representative of the region’s oil
fields spanning 4 separate basins. See Table 1 for a list of fields and
Figure 1 for a map showing the location and spatial distribution of
the fields used in this machine learning exercise.

The fields used in this study are from north of the Mid-North Sea
High. Half are located in the Northern North Sea basin, a quarter in
the Central North Sea basin and another quarter in the Moray Firth
basin. 26 of these fields are strictly shallow marine, 25 are deep
marine, 2 are continental and the remaining 7 contain a mix of
gross depositional environments (including Chanter, Claymore,
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Crawford, Dunbar, Fulmar, Highlander and Maureen). In instances
with multiple depositional environments the primary reservoir
accounting for over 70%–80% of in place and produced volumes
was used for the GDE classification. About 35 of these have further
sedimentological data that was not used directly in this machine
learning study (e.g. diagenetic impact, stratigraphic heterogeneity,
etc.) which were recorded as having low to moderate intensity.
Trapping mechanisms were mostly structural at reservoir depths
between 1335 and 3980 m. The hydrocarbons were light crudes
(mean of 38° API) in reservoirs with good porosities averaging
>20%. Reservoirs are predominantly Jurassic in age with a few
Triassic, Paleocene and other age.

This supervised learning experiment utilizes 5 predictor variables
including gross depositional environment (GDE), average perme-
ability, net-to-gross (NTG), gas–oil ratio (GOR) and total number of
wells. These parameters were chosen from a wider selection of
27 predictor variables based on PCA which were then put through
best-of-subset testing to assess minimum number of variables
needed for prediction and suitable permutations (combinations) to
achieve desired results. All variables applied here ranked among
those that were found to control 83% of the correlation in the
predictor variables of the PCA.

A summary of the feature selection process includes the
following steps

• Classification of input data into three groups (categorical,
ordinal and numerical variables); where categorical refers to
descriptive or qualitative data points such as gross deposi-
tional environment; ordinal refers to numerical data with no
order or magnitude such as structural complexity; and
numerical refers to data that are number and connote a
change in intensity with ascension such as permeability.

• Division of database into subsets of differing sample sizes
(38 v. 136 oil fields) with overlapping variables to determine
the impact of sample size on results. Results were seen to be
consistent across sample sizes.

• Preparation of data for statistical analyses including label
encoding of non-numerical data and standardization of
numerical data.

• Principal component analysis (PCA) for feature selection to
determine how variables interact with each other. PCA
works by projecting numbered data into lower dimensions
called principal components for the purpose of finding the
most succinct/effective expression of all input parameters
using a limited number of principal components (Lever et al.
2017). The main output of the PCA is expressed as a table of
eigenvalues from which to determine the suitable number of
principal components based on a cut-off at either the first
principal component to exceed the 80% cumulative
proportion threshold (Jolliffe’s rule) or principal compo-
nents with eigenvalues greater than 1 (Kaiser criterion)
(Jolliffe 2002). Selected variables for each principal
component are determined based on the magnitude of
eigenvectors.

The Eigenanalysis matrix (Table 2) and the table of results for
selected principal components (Table 3) are shown below. This
gives a sense of the wider selection of variables and the narrowing-
down enabled by the PCA exercise.

It is not the purpose of this selection of five variables to be made a
definitive recommendation on what parameters should be used to
predict recovery factor or any other oil production performance
measures. This is simply one permutation out of many, based on a

Fig. 1. Map of UKCS showing oil fields
used in machine learning with
sedimentary basins highlighted. (Created
with Google Earth Pro).

Table 1. List of fields used in machine learning exercise

Field list – machine learning

ALWYN NORTH CLAYMORE EIDER GANNET G MAGNUS ROB ROY
ANDREW CLYDE EMERALD GLAMIS MAUREEN SCAPA
ARBROATH CRAWFORD FIFE HAMISH MILLER SCOTT
ARKWRIGHT CURLEW FLORA HEATHER MOIRA STIRLING
BALMORAL CYRUS FOINAVEN HIGHLANDER MONTROSE STRATHSPEY
BEATRICE DEVERON FULMAR HUTTON MURCHISON TERN
BIRCH DON NORTHEAST GANNET C IVANHOE NELSON THELMA
BRAE CENTRAL DON SOUTHWEST GANNET D KINGFISHER NORTHWEST HUTTON THISTLE
BRAE SOUTH DUNBAR GANNET E KITTIWAKE OSPREY TIFFANY
CHANTER DUNLIN GANNET F MACCULLOCH PETRONELLA TONI
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limited dataset with a decision informed by the work carried out as
part of the larger project.

A brief discussion of the impact of these predictor variables on
reservoir performance is as follows:

• Gross Depositional Environment (GDE): the GDE of
reservoir sediments imparts well understood characteristics
that play a major role in controlling the level of productivity
of fluids fromwithin. The depositional environment controls
the architecture and geometry of both reservoir bodies and
baffles. It also affects the textural properties and the
mineralogy of the reservoirs (Lorenz et al. 1989; Ingles
and Anadon 1991; Reinson 1991; Hartmann and Beaumont
1999; Zhang et al. 2008; Armitage et al. 2010; Lai et al.
2015; Wang et al. 2018; Ärlebrand et al. 2021), pore-water
chemistry (Shaw et al. 1990; Hartmann and Beaumont 1999;
Toevs et al. 2008) and reservoir geometry/structural control
(Reinson 1991; Mode et al. 2017; Levell 2021). This
variable is categorical with three classes of Continental,
Shallow Marine and Deep Marine. This variable was also
selected because it ranked highly in the PCA, being one of
the variables that accounted for 47% of the correlation in the
predictor data.

• Net-to-Gross (NTG): refers to the proportion of the gross
reservoir volume that can hold and deliver hydrocarbons. As
a general rule, low net-to-gross reservoirs are associated with
poor recovery factors (e.g. Richards and Bowman 1998) but

this is not an explicit relationship as it does not capture
geometry or architecture of reservoirs or baffles. Net-to-
gross is a ratio between 0–1. Within the current dataset net-
to-gross ranged from 0.35 to 1 with an average value of 0.73.
This is one of the variables that accounted for 83% of
correlation in the predictor data.

• Average Permeability: permeability is the capacity of the
reservoir to transmit its fluid contents through the pore
network and internal fractures and fissures. This is a key
component of reservoir quality assessment metrics and has
great effect on the performance of the reservoir (Gunter et al.
1997). Discounting any flaws in production strategy,
permeability and its partner index (porosity) provide a fair
assessment of potential production efficiency. This metric
was recorded in milliDarcy (mD) and average permeabilities
were between <1 to 2000 mD, with a mean value over
500mD. This parameter ranked highly in the PCA being one
of the parameters that accounted for 55% of the correlation in
the data.

• Gas–Oil Ratio (GOR): this refers to the amount of gas in
solution relative to a unit volume of oil at reservoir
conditions. GOR as a predictive element has also played a
role in previous studies of reservoir performance prediction
including material balance equations. Ahmed and
McKinney (2005) and Ahmed and Meehan (2012) dissect
the intricacies of the topic in greater detail including
equations for determining GOR as well as the relevance of

Table 2. Eigenanalysis matrix showing eigenvalue and eigenvector distributions for the larger dataset

Eigenanalysis of the correlation matrix

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Eigenvalue 6.366 3.559 2.687 2.331 1.793 1.633 1.479 1.331 1.084
Proportion 0.236 0.132 0.100 0.086 0.066 0.060 0.055 0.049 0.040
Cumulative 0.236 0.368 0.467 0.553 0.620 0.680 0.735 0.784 0.825
Eigenvectors
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Gross. Dep. Environment 0.212 0.077 −0.358 0.101 0.224 0.096 −0.006 0.077 −0.061
Reservoir Depth (m) 0.234 0.229 −0.221 −0.130 0.195 −0.234 −0.013 0.094 0.249
Avg. Porosity (%) −0.155 0.282 −0.125 0.344 −0.163 0.198 0.065 −0.086 −0.088
Avg. Permeability (mD) −0.091 0.126 −0.219 0.365 −0.295 0.279 −0.053 −0.069 0.134
Pressure (bar) 0.251 0.267 −0.131 −0.144 −0.130 −0.003 −0.068 −0.182 0.261
Temperature (°C) 0.140 0.411 −0.103 −0.123 0.122 −0.178 0.115 0.027 0.086
Net:Gross −0.242 −0.165 −0.100 0.100 −0.181 −0.066 −0.219 0.051 0.443
Fault Compartments 0.244 −0.098 −0.137 −0.173 −0.130 0.028 −0.105 −0.393 −0.135
Structural Complexity 0.264 −0.163 −0.134 −0.197 −0.093 0.178 −0.114 −0.327 −0.064
No. of Fault populations 0.230 −0.073 −0.259 −0.111 0.084 0.164 −0.107 −0.059 0.128
API (°) −0.086 −0.228 0.050 0.105 0.265 −0.389 0.210 −0.130 0.324
Field Area (km2) 0.211 0.051 0.338 0.275 0.175 −0.033 −0.180 0.036 −0.050
Bulk Rock Volume (10⁶ m3) 0.295 −0.010 0.242 0.067 0.035 −0.045 −0.267 −0.063 0.081
Well Density (wells/km3) −0.113 −0.186 −0.324 0.106 0.084 0.118 0.056 0.160 0.085
No. of Production wells 0.291 −0.139 −0.023 0.270 −0.152 −0.078 0.221 0.051 −0.077
No. of Injection wells 0.277 −0.147 0.040 0.290 −0.039 −0.020 0.239 0.036 −0.040
Average GOR (m3 m−3) −0.123 −0.118 0.113 0.082 −0.073 −0.146 0.015 −0.657 0.008
Max. Thickness (m) 0.037 0.026 0.173 −0.178 −0.505 −0.121 0.177 0.101 0.418
Water Saturation (%) −0.045 0.370 0.214 −0.009 −0.080 −0.041 0.294 −0.198 −0.025
Production Strategy 0.136 −0.034 0.108 0.008 0.123 0.421 0.102 0.038 0.445
Trap Type 0.007 −0.064 0.187 −0.161 0.050 0.500 0.351 −0.058 0.081
Diagenetic impact −0.020 −0.058 0.081 −0.009 0.425 0.114 0.326 −0.166 0.121
Paleoclimate −0.044 0.349 −0.199 0.259 0.060 −0.116 0.146 −0.198 0.052
Stratigraphic Heterogeneity 0.209 0.089 0.109 −0.208 −0.252 −0.033 0.191 0.255 −0.180
Prod. well Spacing (km2/well) −0.062 0.308 0.307 0.048 0.142 0.229 −0.250 0.002 0.001
Total No. Wells 0.297 −0.147 −0.006 0.291 −0.126 −0.065 0.243 0.051 −0.062
OIP (Mill. Sm3) 0.239 0.005 0.218 0.270 0.012 −0.004 −0.313 0.027 0.190

Eigenvectors for selected variables per principal component are highlighted in green.
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GOR in predicting reservoir performance. Busahmin and
Maini (2010) also discuss how GOR affects recovery factor
and production rate in the context of heavy oil reservoirs,
observing a decrease in oil recovery with increasing GOR.
The unit of measurement applied here is standard cubic
meters per standard cubic meter (m3 m−3). GOR values were
between 15 to >500 m3 m−3 with a mean of >100 m3 m−3.
This parameter ranked highly in the PCA, being one of the
variables that contribute to 78% of the correlation in the data.

• Total Number of Wells: here we account for all well bores
(both producers and injectors) on the field. As a key element
of the production process, well related parameters greatly
affect overall field performance (Gurbanov et al. 2016). In
relation to field size, this parameter factors in well spacing
and well density while also being dependent on production
strategy (primary, secondary or tertiary) and chosen drive
mechanism. Total number of wells provides a singular
compound measure of external forces of extraction (pro-
duction wells) and input (injection wells) at play on the
reservoir. Total Number of wells for our experimental
dataset lies between 1 and 77 with an average of 18 wells.
This parameter was chosen because it was one of the
variables that accounts for the top 24% of correlation in the
control variable data.

For response variables, the two parameters chosen (Recovery Factor
and Maximum Field Production Rate) give a measure of reservoir
performance. These were selected from among other relevant
outcomes with completeness/abundance of data being a consider-
ation. Two parameters were assessed to gauge consistency of results
across models and to test if model results vary depending on
response variable, given the same predictors.

• Recovery Factor (RF): this is the percentage of in-place
volumes of hydrocarbon which is producible as per implicit

technicalities (including whether primary or enhanced
recovery techniques are applied) or recovered as at the end
of field life. Values recorded for this project were either
forecasted as indicated in existing literature or are coinci-
dental with present realized recovery at cease-of-production.
Recovery factors ranged from 6% to 77% with an average
value of 40%.

• Maximum Field Production Rate (MFPR): this is recorded
in thousands of barrels of oil per day (mbpd) and indicates
the ceiling of the achievable hydrocarbon extraction rate,
recorded over production time span, through flow testing or
during production. These rates are capped by a variety of
physical factors and field planning decisions. As fields in
this experiment are offshore fields, maximum flow rates are
generally on the higher side, as profitability in offshore fields
require higher production rates (Dake 1994). Larue and
Friedmann (2005) suggest that flow from a reservoir is
mostly influenced by the reservoir architecture which is
related to GDE. Values for this metric are between 2 mbpd
and 300 mbpd with a mean value of 58 mbpd.

Table 4 provides a summary of mean and range of values for each
predictor and outcome variable.

Previous work

Mustafiz and Islam (2008) suggested that there are three main types
of analysis that can be used for reservoir performance prediction.

• The Analogical Approach: a comparative and inferential
assessment of reservoir performance hinged on similarities
in characteristics between mature and early–stage zones or
pools. This approach can be strictly qualitative or employ
quantitative measures in the form of empirical statistics to
observe correlations and approximate production; for
example, as discussed in Meehan (2011) where analogues
of fractured reservoirs were compared for performance.

• The Experimental Approach: here PVT and other properties
are measured in labmodels and observed results are scaled to
the level of the actual reservoirs (Manzir et al. 2015).

• The Mathematical Approach: these methods apply math-
ematical equations to predict performance. Ertekin et al.
(2001) gives a comprehensive description of mathematical
methods including material balance equations, decline
curves, statistical and analytical methods. Okotie and
Ikporo (2018) also discuss material balance for performance
prediction.

Machine learning combines the analogical and the mathematical
approach. Here statistical equations are produced using requisite
amounts of data samples with established independent-dependent
(control-response) multivariate pairings. Derived equations are then
applied to control variables to predict responses. Ertekin and Sun
(2019), Pandey et al. (2020) and Sircar et al. (2021) also give broad
and up to date overviews on the concepts behind the application of

Table 3. Table of results for selected variables from PCA for larger dataset

Principal components Key variables

PC 1–24% Total Number of Wells
Bulk Rock Volume (10⁶ m3)

+ PC 2–37% Temperature (°C)
+ PC 3–47% Gross. Dep. Environment

Field Area (km2)
+ PC 4–55% Avg. Permeability (mD)

Avg. Porosity (%)
+ PC 5–62% Max. Thickness (m)
+ PC 6–68% Trap Type
+ PC 7–74% Diagenetic impact
+ PC 8–78% Average GOR (m3 m−3)
+ PC 9–83% Production Strategy

Net:Gross

Cumulative Percentages of variation accounted for by principal components is
indicated along with key variables of each principal component.

Table 4. Table of variables and data ranges for the predictor and outcome variables used in machine learning

Variables Min Max Mean

Predictor Permeability (mD) 0.68 2000.00 545.55
Net-to-Gross 0.35 1.00 0.73
Gas–Oil Ratio (m3 m−3) 14.60 511.30 137.78
Total Number of Wells 1.00 77.00 18.03

Outcome Recovery Factor (%) 6.00 77.00 39.60
Maximum Field Production Rate (kbpd) 2.61 300.51 58.27
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machine learning in forward and inverse reservoir performance and
reservoir quality modelling, although not specifically focusing on
any singular unique case studies.

A recent case study application of machine learning in
hydrocarbon reservoir performance prediction includes Niu et al.
(2021) where data from 172 gas wells from a single producing block
and a selection of 19 engineering and geological variables were
compiled. Following feature selection, 8 variables were chosen and
used to create an ultimate recovery prediction model based on
multiple regression.

Other examples of case study applications of various artificial
intelligence and machine learning techniques (such as genetic
algorithms, random forest, artificial neural networks and others)
over the last decade include Al-Fattah and Startzman (2001);
Mirzaei-Paiaman and Salavati (2012); Amirian et al. (2013);
Chithra Chakra et al. (2013a); Chithra Chakra et al. (2013b); Li
et al. (2013); Ahmadi et al. (2015); Choubineh et al. (2017);
Ghahfarokhi et al. (2018); Bhattacharya et al. (2019); Ghorbani
et al. (2019); Aliyuda et al. (2020); Liu et al. (2020); Al-Jifri et al.
(2021); and Han and Kwon (2021); Bhattacharyya and Vyas
(2022a); and Bhattacharyya and Vyas (2022b).

Approach

For this project, 5 different statistical models based on 3 modelling
techniques were developed using machine learning software –
MATLAB R2019b Update 5 (9.7.0. 1319299). This was done to
assess consistency in results and check potential biases that may
present from any one chosen methodology. These modelling
techniques broadly include:

• Linear regression
• Support vector regression
• Boosted trees regression

An overview of the technicalities of each method is provided below.
Machine learning is the development and implementation of

algorithms that improve automatically with experience. A widely
used description is provided by Mitchell (1997), defining it as
software being able to learn from experience (E) in application to a
specific set of tasks (T) and indicators of performance (P) ‘if its
performance at tasks in T, as measured by P, improves with
experience E’.

Various texts list a plethora of approaches to machine learning for
different purposes, including supervised, unsupervised, semi-
supervised, reinforcement, self, feature, sparse dictionary,
anomaly detection, robot learning, association rules, etc.

For this experiment, supervised machine learning is applied. This
form of machine learning model is trained with both input and
output data as opposed to unsupervised learning where the model is
trained to identify clusters and classes with no outcome variable
provided for training (Russell and Norvig 2010).

In supervised machine learning, models are trained with the
training dataset, where input and output variable pairings are
complete for model fitting. Prior to model fitting, a method of
model validation is selected. This effectively amounts to a portion
of the data used to assess the fit of the model. Options for
validation typically include k-fold cross validation, hold-out
validation or bootstrap (Kohavi 1995). For our purposes, holdout
validation was chosen. In this method of validation, a larger
percentage of the data is used to train the model, typically 66.6%;
while the remaining 33.3% is used for validation. In this case the
split was 83% train and 17% validate. This method was thought
best because the number of observations available (60) and the
number of independent variables (5) were enough to train a single
iteration, in any given instance of the model, to acceptable
standards of observations per variable, applying the ‘one-to-ten

rule’ (10 observations per variable). See Harrell et al. (1984);
Harrell et al. (1996); Peduzzi et al. (1996); Laupacis et al. (1997)
and Steyerberg et al. (2000) for more on this rule. Ultimately this
helps to avoid overfitting. A k-fold cross validation would have
split the data into two parts at least, thus creating unreliable
overfitted models with each iteration.

Altogether, with 5 input variables and 50 observations, models
could be trained with 10 observations left over for validation.
Running several model iterations with random train-validate splits
and assessing consistency, an idea of model accuracy was gotten.

Linear regression model

A linear regression model in the context of machine learning is one
which mathematically patterns the association between one or more
numerical predictors and a continuous response variable, for the
purpose of predicting the response variable to a reasonable degree of
accuracy, when applied to a set of non-modelled covariates.

A summary equation of the multiple linear regression model is:

yi ¼ b0 þ b1Xi1 þ b2Xi2 þ � � � þ bpXip þ 1i, i ¼ 1, . . . , n, (1)

where: yi is the ith response; βk is the kth coefficient, where β0 is the
constant term in the model; Xij is the ith observation on the jth
predictor variable, j = 1,…, p; εi is the ith noise expression,
referring to random error.

All this operating under the assumptions that:

• The noise expressions, εi, are uncorrelated.
• The noise expressions, εi, have independent and similarly

normal distributions with mean zero and constant
variance, σ2.

• The responses yiare not correlated.

Least squares linear regression and robust linear regression were
both explored.

In least squares regression, the coefficients are approximated to
minimize the mean squared divergence between the predicted and
actual response.

Equation for least squares linear regression;

byi ¼
Xn
k¼0

bkfk (Xi1, Xi2, . . . , Xip), i ¼ 1, . . . , n, (2)

where: byi is the response and bk is the fitted coefficient.
The robust linear regression method is less affected by outliers

than least squares regression and functions by assigning a weight to
each data point using a technique called iteratively reweighted least
squares (Barreto and Burrus 1994a, b; Burrus et al. 1994; Burrus
1998a, b). In the prime iteration of this process, every data point is
equally weighted, and coefficients are approximated using least
squares. In consequent iterations, weights are recalculated such that
points that highly deviate from model predictions in prior iterations
are assigned lower weighting. Model coefficients are then
recalculated, applying weighted least squares. This workflow is
repeated until resulting coefficients coincide around a prescribed
tolerance.

For a detailed examination of the modalities and technicalities of
linear regression modelling see Seber (1977); Neter et al. (1996);
Bingham and Fry (2010) and Chatterjee and Simonoff (2012).

An example of a similar work employing multiple regression
modelling for reservoir performance prediction is Oladeinde et al.
(2015). In that instance a multiple linear regression model was
created to forecast total production volume based on six predictors
including gas–oil ratio, number of wells and a few well performance
indices. The project was limited in scope but appeared to yield
positive results.
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Support vector regression (SVR) model

Support vector machine (SVM) analysis also referred to as
support vector networks is a tool in supervised machine learning
relevant to both classification and regression exercises (Gunn
1998). SVM typically refers to the use of support vectors for
classification while SVR refers to regression specific support
vectors (as used in this case). SVR here, as put forward by
Vladimir Vapnik (see Vapnik 1995), uses an epsilon (ε)-
insensitive loss function. ε referring to the distance of data
points from the hyperplane, which in SVM would be the
hyperplane of separation between groups of classes but in SVR
operates as the line of prediction (or more precisely the midpoint
of the margin of prediction). The best hyper-plane is the one with
the greatest margin of prediction (boundary slab) between classes,
which may not necessarily create a perfect distinction between
classes but separates a substantial amount of the points;
presenting what could be termed a soft margin.

In this form of regressionmodelling the raw data is mapped onto a
higher dimensional space based on the chosen Kernel Function
where the projected points closest to the boundary plane are termed
support vectors. It can be described as non-linear mapping of
projected input variables to create a linear predictive function (See
Fig. 2 for illustration).

The linear support vector function would be mathematically
expressed as:

f (x) ¼
XN
n¼1

(an � a�
n)(x

0
nx)þ b (3)

where: αn anda
�
n are Lagrangemultipliers; x terms represent support

vectors; b is the bias term.
Apart from the Kernel Function, another key optimizable

parameter in SVR is the box constraint. This parameter controls
the strictness of datapoint classification, and the penalization
imposed on misclassification; such that the higher the box
constraint, the higher the cost of misclassification – leading to the
designation of fewer support vectors and stricter data separation.
The Kernel scale mode can also be optimized when a radial basis
function kernel is applied. In this instance only the Linear and Cubic
kernel functions are applied and so the kernel scale is not relevant.

Various workers have applied SVR in similar and adjacent
contexts including Saffarzadeh and Shadizadeh (2012); Al-Anazi
and Gates (2010); Gholami and Moradzadeh (2011) and Gholami
et al. (2012) where it was applied to reservoir quality predictions
and Zhong et al. (2010) where it was applied to predict production
in high water cut fields.

For a thorough exploration of the operating concepts for SVM see
Steinwart and Christmann (2008).

Boosted regression tree model

Boosted regression tree modelling is a supervised learning
technique that aggregates several models into a single predictive
algorithm. This method specifically amalgamates the advantages of
two processes. Namely, regression trees which relate a dependent
(response) variable to its independent (control) variables by
iterative twofold splits (see Fig. 3); and boosting which is an
adaptive method for merging several uncomplicated models into
one with more complexity, to improve forecasting ability (Elith
et al. 2008).

Boosting is a stepwise process that seeks to minimize the loss
function by including, at each tier, a new tree that best mitigates
deviance.

Key user definable parameters for Boosted Tree Regression
include:

• TheMinimum Leaf Size: which equates to the complexity of
each individual tree, with smaller leaf sizes more prone to
recording noise in the data

• The Number of Trees: which equates to the number of
learners to be aggregated

• The Learning Rate (Shrinkage parameter): a value between 0
and 1 which refers to the contribution of each tree to the
model (the rate at which the model learns). Thus, the smaller
the Learning rate the greater the number of iterations
required (Hastie et al. 2009).

Elith et al. (2008) and Hastie et al. (2009) provide in-depth
explanations on this technique. In an adjacent context to this project,
Subasi et al. (2020) discuss the application of boosted trees to
reservoir quality prediction.

Results

As outlined above, 5 different models were implemented (linear
regression, robust linear regression, linear kernel support vector
regression, cubic kernel support vector regression and boosted trees
regression) using the aforementioned software. The outputs for
presentation include graphs showing validation/test results of
predicted responses v. actual (true) responses. These outputs are
the result of random train-test splits of the data and are consistent
regardless of split, with only slight variations observed across
multiple iterations (5 or 6).

Fig. 2. Illustration of SVM classification method showing Support
Vectors, data points from different classes (indicated by + or −), boundary
slab (margin) indicated by dashed lines and hyperplane represented by
solid line through the middle.

Fig. 3. A diagrammatic expression of a decision tree with a response Y,
and independent variables X1 and X2, with splits t1 to t4 (after Elith et al.
2008).
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Tables of model performance indicators are also shown below
(Table 5)<CE: Please check table citations are not in sequential
order>. These include:

• R-squared; a measure of the level of variation in the response
variable explicable by the predictor variables. This percent-
age value is meant to indicate the predictive ability of the
model. There is no universally agreed acceptable R-squared,
but an R-squared value over 50% would be deemed
acceptable (Bunge and Judson 2005).

• Mean Square Error (MSE) and Root Mean Square Error
(RMSE): MSE (also known as the Mean Squared Deviation)
is the average of the squares of the differences between the
predicted and true responses. The RMSE is the square root of
the MSE. These values are unit-less and provide a measure
of the model accuracy. Being an average, this value is
sensitive to outliers. To constrain RMSE values, both
response variables of maximum field production rate and
recovery factor were standardized based on maximum value
to rescale outputs between 0 and 1. For RF all values were
divided by 100, while values were divided by 300 for
maximum field production rate. Thus, RMSE values are all
<1.

• Mean Absolute Error (MAE): this is the average of the
differences between predicted and true responses.

No universal cut-offs are recommended for error readings
(RMSE, MSE and MAE). These values simply give a measure of
how much predicted responses differ from actual responses on
average.

Discussion

Values shown in Table 5 illustrate that there are readily observable
differences in the performance of the models for the two outcome
parameters.

For MFPR we observe that the least squares linear multiple
regression model performs quite poorly. However, with a robust
(iteratively reweighted least squares) multiple linear regression there
is a spike in all measures of performance for predictability and
accuracy, with over 80% R-squared and very low values of mean
squared (MSE and RMSE) and absolute errors (see Table 5). A
comparison of the predicted response v. true response graphs for
both models (Fig. 4a, b respectively) illustrates the difference in
predictive performance. The linear SVR also displays good
performance (as reflected in Fig. 4c) with over 70% R-squared
and RMSE less than 0.1 (Table 5). The cubic kernel SVR on the
other hand performed poorly as a model for MFPR with skewed
predicted response v. true response alignment (Fig. 4d). For the
boosted regression model with minimum leaf size of 8 and 30 trees,

model response of 65% R-squared and RMSE less than 0.1 was
returned with visibly good prediction output (Fig. 4e).

For recovery factors we see that the cubic kernel SVR shows good
R-squared of 65% and RMSE just under 0.1 and good correlation
for predicted response v. true response (Fig. 5d). For other models,
prediction of recovery factor was not as good as the Cubic SVR;
RMSE values were over 0.1 and predicted response v. true response
outputs (Fig. 5a–c and e) displayed more scatter.

Overall, it would appear MFPR is more easily predictable across
a wider range of models than RF given the same predictor variables.

A closely similar experiment was discussed in Aliyuda et al.
(2020). There, several predictive models were run on hydrocarbon
(oil and gas) field data from the Norwegian continental shelf.
Variables used in that study were mostly similar to the wider
selection from this paper. However, relative to this study, no feature
selection was applied there and hence 30 variables were processed
through each model as compared to the 5 variables selected here
based on PCA and subset testing. To compare results, three
parameters were used as outcome variables in that paper, two of
which match the two used here; specifically recovery factor and
maximum field rates. Model performance metrics in that paper were
also R-squared, RMSE and MSE.

In that study it was observed that support vector regression
produced the best results for both recovery factor and maximum
field rate (with maximum field rate also having a better R-squared
than recovery factor) as was observed here. That paper did not
explicitly state which kernel function (whether linear, cubic,
quadratic, etc.) was used in the SVRs for the testing of each
outcome variable.

Results from this study show that with the data used for training
the model, recovery factor could be predicted up to as high as 65%
R-squared using a cubic kernel support vector regression method
with very low absolute error equating to within single digit
percentages of recovery factor. Poorest performance in recovery
factor prediction is the linear regression model at −22% R-squared.
Maximum field production rate could also be predicted with a high
level of certainty with models producing up to 85% R-squared and
with low absolute errors (less than single standardized unit) in
models with good performance (above 50% R-squared). Observing
the results, a recommendation is made for the use of support vector
regression in reservoir/field performance prediction, with tuning of
kernel functions depending on the outcome variable being
predicted.

As to why the different algorithms produce different results,
simply put, it is like applying a mathematical function or constant to
the exact same data. A basic example of this concept would be
having an addition function (‘+’) and a multiplication function (‘x’)
and two numbers e.g. 4 and 7. Applying the multiplication function
to the two numbers would equate to 28 (4 × 7), while applying the
addition function would equate to 11 (4 + 7). Same data sample,

Table 5. Table of results showing resulting measures of accuracy and predictability for the supervised learning models of the two response variables of MFPR
and RF

Response variable Metric

Model

Linear Robust linear Linear SVR Cubic SVR Boosted regression

Maximum Field Production Rate R-Squared (%) −29 85 76 −42 65
RMSE 0.1587 0.0543 0.0692 0.1670 0.0824
MSE 0.0252 0.0030 0.0048 0.0279 0.0068
MAE 0.1228 0.0444 0.0587 0.1401 0.0584

Recovery Factor R-Squared (%) −22 −23 −16 65 27
RMSE 0.1708 0.1714 0.1663 0.0916 0.1321
MSE 0.0292 0.0294 0.0276 0.0084 0.0175
MAE 0.1412 0.1420 0.1380 0.0734 0.1078
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different processes applied to create different results. Even so on a
more complex level of algorithmic processes the model equations
take the same basic data and functionally wrangle them differently.

In this specific instance the key difference in the way SVR
processes the data and other regression methods do, is that SVR
creates a broad range of fit (as captured in the boundary slab
illustrated in Fig 4.2) in its predictive process resulting in what some
refer to as a ‘low bias and high variance’ model; while linear
regression methods create a single line of best fit through points thus

presenting a ‘high bias and low variance’ prediction. Where the
boosted regression thrives is that it aggregates multiple regressive
processes broadening the otherwise high bias low variance situation
presented by a singular linear regression.

The implication of this work is that with an abundance of legacy
data floating around in E&P industry and academia not only can
insights into the production process be acquired but with a small
number of variables production performance can reliably be
predicted.

Fig. 4. These figures show predicted v. response graphs for machine learning models of maximum field production rate: (a) Linear regression model; (b)
Robust linear regression model; (c) Linear support vector regression model; (d) Cubic support vector regression model; (e) Boosted tree regression model.

Fig. 5. These figures show predicted v. true response graphs for machine learning models of recovery factor: (a) Linear regression model; (b) Robust linear
regression model; (c) Linear support vector regression model; (d) Cubic support vector regression model; (e) Boosted tree regression model.
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Another paper dealing with prediction of reservoir performance
using other machine leaning methodologies is Panja et al. (2018)
where two machine learning models (least squares support vector
machine and artificial neural networks) were tested in the prediction
of oil recovery against a curve fitting model using simulated data
generated for 8 variables (permeability, initial dissolved GOR, rock
compressibility, gas relative permeability, slope of GOR, initial
pressure, flowing bottom hole pressure, and hydraulic fracture
spacing) with 114 observations to train and 30 observations to test.
Notably, the control variables somewhat intersect with the selection
used in this paper in terms of permeability and GOR. The data was
used to predict recovery factor (also similar to this study) as well as
produced gas–oil ratio. The results showed, in agreement with this
study, that SVM is quite accurate for predicting recovery factor.

Many other studies exist showing similarities and differences in
methodologies and variable selection to those used here to achieve
high coefficients of determination (R-squared), including Belazreg
et al. (2019) and Belazreg et al. (2021) where predictive models for
recovery factor were developed based on regression and group
method of data handling (GMDH) with positive results (R-squared
as high as 72%). An exhaustive rundown of all these studies and
their intricacies would not be feasible. The important thing to note is
that these various methods of machine learning prove to be
successful in these case studies, using few variables to predict
various measures of reservoir performance.

A few other papers dealing with the subject include Mohammadi
et al. (2014), Srivastava et al. (2016) and Daribayev et al. (2020).

In summary, numerous papers on machine learning application
for performance prediction exist (as referenced in the literature
review of this paper), each dealing with unique case studies and
employing a variety of artificial intelligence methodologies. This
paper is an addition to that ever-expanding library, with its detailing
of the application of real-world data for prediction algorithm
utilization.

Conclusion

From observations of results, we see that statistics based predictive
models can be used to provide accurate reservoir performance
forecasting. It is also apparent that depending on the outcome being
predicted (using the exact same predictor variables), the model
being applied might require adjustment of tuning parameters or the
use of a different model altogether.

Comparing results for the two responses (RF and MFPR) from
this study as well as previously published studies it would appear
that SVR is a good modelling technique for reservoir performance
prediction overall. For different response variables, a change in
kernel function (linear, cubic, gaussian, etc.) should produce high
R-squared and low error.

Future work would involve broadening the scope of data in terms
of number of observations, training reservoir data from different
hydrocarbon producing regions and assessing other response
variables to decipher empirically appropriate algorithms.
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