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Abstract
We study nonequilibrium steady states of a one-dimensional stochastic model, originally
introduced as an approximation of the discrete nonlinear Schrödinger equation. This model is
characterized by two conserved quantities, namely mass and energy; it displays a ‘normal’,
homogeneous phase, separated by a condensed (negative-temperature) phase, where a
macroscopic fraction of energy is localized on a single lattice site. When steadily maintained out of
equilibrium by external reservoirs, the system exhibits coupled transport herein studied within the
framework of linear response theory. We find that the Onsager coefficients satisfy an exact scaling
relationship, which allows reducing their dependence on the thermodynamic variables to that on
the energy density for unitary mass density. We also determine the structure of the nonequilibrium
steady states in proximity of the critical line, proving the existence of paths which partially enter
the condensed region. This phenomenon is a consequence of the Joule effect: the temperature
increase induced by the mass current is so strong as to drive the system to negative temperatures.
Finally, since the model attains a diverging temperature at finite energy, in such a limit the
energy–mass conversion efficiency reaches the ideal Carnot value.

1. Introduction

The characterization of non-equilibrium steady states (NESS) is an important research area, as Nature is
plenty of systems that steadily exchange physical quantities (e.g. energy, mass) with the surrounding
environment. In this area, linear response theory represents a cornerstone; it allows, in fact, expressing
transport coefficients in terms of equilibrium fluctuations, under the condition of weak currents. The
treatment of systems far from equilibrium is still a challenge although some progress has been recently made
thanks to the application of large-deviation theories [1, 2].

Anyway, even in the realm of regimes close to equilibrium, there are nontrivial open questions. For
instance, in low-dimensional systems, the long-range correlations which characterize NESS may be so
important as to induce anomalous (diverging) conductivity [3–5]. In this context, additional tools based on
fluctuating hydrodynamics [6] are required to account for the resulting scenario, and yet a few challenging
exceptions still need be explained (see the summary in [7]).

Another area concerns coupled transport phenomena in systems where two or more quantities are
simultaneously transported. For instance, identifying the conditions of an optimal thermoelectric conversion
is very important because of potential applications for energy production and storage [8]. A general answer
will likely require substantial progress on the basic mechanisms; for instance, in [9] it has been discovered
that combining coupled transport with anomalous transport may be a way to increase the efficiency.

Altogether, the analysis of simple models is potentially very useful because they allow both for the
development of analytical treatments and for the performance of detailed numerical investigations. In fact,
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the one-dimensional setup, where a chain of point-like elements is put in contact with two different
reservoirs at its ends, has attracted much attention [3]. The most paradigmatic example is perhaps the
asymmetric simple exclusion process [10], introduced to describe the transport of particles through a
channel, which revealed quite useful to describe molecular motors [11]. Another celebrated example is the
exactly solvable model proposed in 1982 by Kipnis, Marchioro and Presutti to describe energy diffusion in
one-dimensional systems [12]. Here, the presence of long-range correlations is explicitly accounted for and
the invariant non-equilibrium measure is exactly known. Linear oscillators accompanied by random elastic
collisions are another enlightening model, where the stochastic collisions mimic nonlinearities, destroying
the integrability of the harmonic chain. This model is indeed an archetypical system displaying anomalous
heat conductivity [13].

The above methodology turns out to be useful also in the context of coupled transport problems, as very
little is known on the thermodiffusive behavior of interacting systems from the statistical mechanical point of
view [8, 14, 15].

In this paper, we focus on a stochastic interacting system, which, roughly speaking, extends the model
proposed and solved in [12]. Here, there is a single set of microscopic-state variables ci, and two
positive-defined conserved quantities, formally identifiable with total mass and energy. This model can be
seen as a simplified stochastic version of the Discrete NonLinear Schrödinger (DNLS) equation, which arises
ubiquitously in nonlinear physics and displays important applications in cold-atoms physics and nonlinear
optics [16]. In this perspective, the variable ci has the physical meaning of the local norm of the DNLS
wavefunction on lattice site (see [17–21] for related studies and details on the derivation).

The model was originally introduced to investigate the spontaneous onset of energy localization in the
DNLS dynamics [17], but it has become a typical example of constraint-driven condensation [22–24]. In
fact, depending on the densities of the two conserved quantities, a finite fraction of energy may eventually
condense on a single site, a regime characterized by a negative absolute temperature [25, 26]. At equilibrium,
a critical line of infinite-temperature states separates the condensed region from a homogeneous one
displaying standard equipartition [27]. In this model, the energy localization mechanism is the direct
consequence of the existence of two conservation laws along with the positivity constraint, ci ⩾ 0. For this
reason, we refer to it as C2C (condensation with two conserved quantities); see the next section for a more
precise definition.

When a C2C chain is attached to two different reservoirs at its boundaries, the corresponding NESS can
be visualized as a path in the thermodynamic plane (characterized by either mass and energy density in the
microcanonical plane, or chemical potential and temperature in the grand canonical plane). Recently, it has
been found that such paths may spontaneously enter the condensed region even when the extrema lie in the
homogeneous region [28]4. In practice, energy can robustly localize within an internal portion of the chain,
while the boundaries of the system behave smoothly and display standard thermal fluctuations. These
examples reveal a novel type of condensation that takes place exclusively in out-of-equilibrium conditions
and in the presence of coupled transport.

The accessibility of such unusual nonequilibrium states is manifestly a relevant research subject in the
context of irreversible thermodynamics. Here, we thoroughly explore the NESS emerging in the C2C model
with the help of linear response theory, devoting a special attention to the behavior close to the critical line.
An exact scaling analysis shows that the two-parameter dependence of the thermodynamic states can be
reduced to the dependence on a single variable. This includes the coefficients of the Onsager matrix, whose
behavior is crucial to reconstruct NESS paths.

We find that the Onsager coefficients are well-defined and finite along the whole critical line of the
model, thus making it possible a novel and potentially useful kind of ‘infinite-temperature transport’. We
derive perturbative expressions of the corresponding paths and, more important, we identify the class of
paths which are due to enter the condensed phase. Qualitatively, this phenomenon can be seen as an extreme
version of a Joule effect: the mass current induced by the external reservoirs heats up the interior of the
system forcing it to go beyond the infinite-temperature line, i.e. to condense. Moreover, we show that in
proximity to the critical line, the thermodiffusive conversion performance reaches its maximum value (as
expressed in terms of the Carnot efficiency).

We are able to show that nonequilibrium correlations arising in NESSs play an important role in the
high-temperature limit, thus making the C2C transport substantially different from that of noninteracting
dilute gases. Approximate analytic expressions of the Onsager transport coefficients are obtained in the
opposite regime of small-temperatures, where spatial correlations are negligible. There, we also find that the

4 A similar scenario was previously observed also in simulations of the DNLS equation with a pure dissipation acting on one edge and a
standard reservoir on the other side [29].
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Seebeck coefficient, which quantifies the coupling between mass and energy currents, vanishes rather rapidly
when the ground state is approached.

The paper is organized as follows. In section 2 we introduce the model, its equilibrium and
out-of-equilibrium properties, and show that (local) equilibrium properties depend on one parameter only:
a suitable combination of mass and energy in the microcanonical ensemble; a combination of temperature
and chemical potential in the grand canonical ensemble. In section 3 we introduce and determine the
Onsager coefficients. Because of scaling properties, it is sufficient to determine them for a unitary value of
the mass density. In section 4 we evaluate spatial correlations and discuss their increasing importance when
temperature grows. In section 5 we estimate the steady-state paths in proximity of the critical line and
determine the condition for them to enter the negative-temperature region. In section 6 we discuss the
Seebeck coefficient and the conversion efficiency. Finally, in section 7 we provide some concluding remarks.
appendix A contains some technical details, and a slightly different model is presented in appendix B.

2. The model and its equilibrium and out-of-equilibrium properties

The C2C model is defined on a lattice whose nodes i host a non negative quantity ci ⩾ 0, here called (local)
mass. Its square is called (local) energy, ϵi ≡ c2i . Both the total mass (A=

∑
i ci) and the total energy

(H=
∑

i ϵi) are conserved and the model is microcanonically defined through the mass density a= A/N
and the energy density h=H/N, where N is the total number of sites.

The equilibrium properties are well understood [22, 25, 27, 28]. The system has a homogeneous phase
for a2 ⩽ h⩽ 2a2 and a condensed/localized phase for h> 2a2, characterized in the thermodynamic limit by a
single site hosting a finite fraction of the whole energy, equal to (h− 2a2)N. Finite-size effects provide an
interesting and unexpected scenario close to the critical line, hc = 2a2 [24]. When h varies between the
ground state h= a2 and the upper value of the homogeneous phase, h= hc, the temperature varies between
T= 0 and T=+∞. In the localized region, the temperature is constant and equal to T=+∞ but
subleading terms in the entropy (i.e. non extensive terms) show that finite-size systems are characterized by a
negative temperature when hc < h< hc + ξ(N), where ξ(N)≃ 11.05/N1/3, see [25]. In such a region the
system is effectively delocalized [27].

The grand canonical description is well defined in the homogeneous phase only, h⩽ hc, where there is
ensemble equivalence [25]. The grand canonical partition function reads

Z(β,µ) =

[ˆ +∞

0
dce−β(c2−µc)

]N
. (1)

As already detailed in [28], the inverse temperature β = 1/T and the chemical potential µ are related to the
mass density a and to the energy density h through the relations

a=
µ

2
+

1√
πβ

e−βµ2/4

1+ erf
(√

βµ
2

) , (2)

h=
1

2β
+

1

2
aµ. (3)

Equations (2) and (3) provide a mapping from grand canonical to microcanonical quantities. While
numerical simulations allow for a direct extraction of (a, h), the Onsager coefficients are better expressed in
terms of grand canonical quantities. It is therefore useful to invert the above mapping. We start introducing

m= µβ. (4)

as this also helps unveiling a general scaling dependence. If we further introduce the auxiliary variable

z=
m√
β
, (5)

relations (2) and (3) can be rewritten as

a=
1

m

[
z2

2
+

z√
π

e−z2/4

1+ erf(z/2)

]
≡ m̃(z)

m
(6)

h= a2 · z
2

2

(
1

m̃2(z)
+

1

m̃(z)

)
≡ a2h̃(z). (7)
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Figure 1. The dependence of z on the effective energy h̃ as determined by equation (7). As h̃ varies from 1 to 2, the temperature
increases from 0 to+∞, and z= µ

√
β varies between+∞ and−∞. The change of sign of z corresponds to a change of sign of

the chemical potential. The dashed lines represent the analytical approximations of equation (8), valid for vanishing and
diverging temperature.

Figure 2. Isothermal lines β = const in the (a, h̃) space (left panel) and in the (m, z) one (right panel). Dashed lines are examples
of curves at constant h̃ which are mapped to horizontal lines z= const by equations (6) and (7).

Equation (7) demonstrates that the specific energy h̃≡ h/a2 is a function of z only. Indeed, the invariance of
the model under a uniform rescaling of the ci’s implies that the mass density a is essentially a unit of measure
and that global and local equilibrium properties depend only on h̃, or equivalently on z.

In fact, h̃(z) plays a crucial role to understand the relationship between the microcanonical and grand
canonical representation. First of all, as shown in figure 1, this function is one-to-one and thus perfectly
invertible. In the same figure we plot also the limiting behavior determined via a perturbative analysis carried
out in appendix A,

z≃


√

2/(h̃− 1) h̃→ 1

−2/

√
2− h̃ h̃→ 2

. (8)

In practice, from the a and h values, the specific energy h̃ is first obtained and thereby the corresponding
z value. Afterwardsm can be obtained as m̃(z)/a and finally β =m2/z2. A schematic representation of the
mapping is presented in figure 2.

For h̃→ 1 (zero temperature), the chemical potential µ is finite and positive, whilem diverges to infinity;
For h̃→ 2 (infinite temperature) µ→−∞, whilem is finite and negative.
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Figure 3. The transport setup: a C2C chain steadily interacts with two reservoirs at its boundaries. Boundary thermal conditions
are specified by the couple of values β andm≡ βµ. ja and jh represent the mass and the energy current, respectively. A NESS is
characterized by equal currents at the boundaries, jLa,h = jRa,h. Bulk dynamics is implemented using the MMC algorithm (see text)
on random triplets of consecutive sites. Local conservation of energy and mass restricts the available states in the space
(ci−1, ci , ci+1) on the intersection between a plane (colored triangles) and a sphere (not shown), restricted to the positive octant
ci ⩾ 0. The resulting set of states is either a full circle (left triangle) or a union of three distinct arcs (right triangle): in both cases
the intersection is given by the red dashed lines.

The study of out-of-equilibrium properties requires the definition of some dynamical rule. The C2C
dynamics is actually simulated by a Monte Carlo Microcanonical (MMC) algorithm, where the two
conservation laws are implemented for randomly selected triplets of neighbouring sites (i− 1, i, i+ 1), so as
to satisfy detailed balance [18]5. In practice this amounts to pass from (ci−1, ci, ci+1) to (c ′i−1, c

′
i , c

′
i+1), in such

a way that (i) the sum of the three masses and of their squares is conserved and (ii) that the probability
of the transition {c}→ {c ′} is equal to the probability of the inverse transition, {c ′}→ {c}. Geometrically,
legal configurations of triplet states lie within the intersection between a plane and a sphere in a
three-dimensional space, which are representative of mass- and energy conservation, respectively. Since these
two constraints define a circle in a three dimensional space, detailed balance is ensured by picking a random
angle. Depending on the further constraint posed by the mass positivity, c ′i ⩾ 0, physically accessible states
consist of either a full circle, or the union of three disconnected arcs (see figure 3). Here, we have adopted the
rule that the new state should be restricted to the same starting arc, but in appendix B we also briefly consider
the case when such restriction is removed.

Out-of-equilibrium (grand canonical) simulations can be performed by attaching the two lattice ends to
thermal reservoirs. Customarily, a Monte Carlo grand canonical heat baths [28] are used. In this paper, we
directly impose the exact equilibrium distributions of masses, which allows sampling more efficiently the
NESS, especially in proximity of the critical line. In practice we extract at random an integer k ∈ [1,N]. If
k ̸= 1,N we update the triplet (k− 1,k,k+ 1) as explained here above. If k= 1 (k=N), we extract a random
mass c⩾ 0 according to the grand canonical distribution P(c)∼ exp(−β(i)c2 +m(i)c) and we assign it to the
chosen site. The parameters β(i),m(i) define the heat baths attached to the chain ends (i= L for k= 1 and
i=R for k=N), see figure 3. As usual in Monte Carlo simulations, time is measured in units of Monte Carlo
moves divided by the system size N.

Suitable definitions of mass and energy fluxes can be employed to measure the rate of exchange of these
two quantities from the reservoirs to the chain. For the left boundary, we define

j(L)a =
1

τ

∑
tk<τ

δc1(tk)

j(L)h =
1

τ

∑
tk<τ

δc21(tk) , (9)

where δc1(tk) and δc21(tk) represent respectively the variations of mass and energy on the first lattice site
produced by reservoir updates occurring at times 0⩽ tk ⩽ τ . An average over a sufficiently long time window

τ ≫ 1 must be considered. The definitions of−j(R)a and−j(R)h on the right boundary are readily obtained by
replacing c1 → cN in equation (9). According to these definitions, fluxes are positive when they flow from left
to right.

When a NESS is attained, the conditions j(L)a = j(R)a ≡ ja and j(L)h = j(R)h ≡ jh hold and stationary spatial
profiles of mass and energy are defined respectively as ai = ⟨ci(t)⟩ and hi = ⟨c2i (t)⟩, where the symbol ⟨·⟩

5 Three is the minimal number of sites allowing to satisfy conservation laws and letting the system evolve. When simulating the system
at equilibrium the three sites may not be neighbours, which speeds up the relaxation to equilibrium [24], but in an out-of-equilibrium
setup an update rule among distant sites would generate unphysical couplings between such sites.

5
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refers to an average over the NESS distribution. Once plotted parametrically in the plane (a, h) or in the
plane (m,β) (through the mapping in equations (6) and (7)) the above paths identify a ‘trajectory’
connecting the boundary conditions imposed by the reservoirs.

3. Onsager coefficients

The presence of two conservation laws in the C2C model implies the existence of mass- and energy currents,
which are time and site-independent once the system has reached a NESS. In the limit of small
thermodynamic forces, local equilibrium sets in and a linear response approach can be adopted. Using the
standard formulation in terms of the variables (m,β), we can write

ja =−Laamy + Lahβy (10)

jh =−Lhamy + Lhhβy, (11)

where Luv with u,v= {a,h} identify the coefficients of the Onsager matrix [10] and the subscript y denotes a
derivative with respect to the continuous spatial variable y= i/N.

A first important point worth discussing is that the form of the equilibrium equations (6) and (7) implies
a scaling form for the Onsager coefficients. In fact, ifm→ cm, then β → c2β in order to keep constant z.
Under the same transformation, see equations (6) and (7), (a, ja)→ (a, ja)/c and (h, jh)→ (h, jh)/c2.
Imposing that equations (10) and (11) must be invariant under such scale transformation, each term on the
RHS of equation (10) must rescale as 1/c and each term on the RHS of equation (11) must rescale as 1/c2.
Using the scaling assumption

Luv(m,β) = |m|γuvLuv(z) (12)

we obtain the following relations for the scaling exponents γuv,

1+ γaa =−1 2+ γah =−1

1+ γha =−2 2+ γhh =−2, (13)

so that

Laa(m,β) = |m|−2Laa(z)

Lah(m,β) = |m|−3Lah(z)

Lha(m,β) = |m|−3Lha(z)

Lhh(m,β) = |m|−4Lhh(z). (14)

According to equation (12), the dependence of the Onsager matrix on the thermodynamic parameters is
determined by the one-parameter functions Luv(z), with the additional condition Lah(z) = Lha(z) due to the
well known symmetry property of the Onsager coefficients [8, 10]. By recalling thatm= F1(z)/a and that z is
a function of h̃, equation (12) can be equivalently written in terms of the microcanonical variables (a, h),

Luv(a,h) = a−γuvL∗uv(h̃) , (15)

perhaps preferable, as a is by definition positive.
In order to test the above scaling, we have plotted Luvaγuv as a function of h̃ for different values of a, see

figure 4. Onsager coefficients were computed using equations (10) and (11) for given values of the
thermodynamic forces and inserting the corresponding values of stationary fluxes determined numerically.
Since there are four Onsager coefficients (three independent ones) it is necessary to analyze at least two
independent paths passing through the same reference point (m,β). The agreement between circles (a= 1)
and diamonds (a= 2) confirms the validity of equation (15). The curves plotted in figure 4 depend smoothly
on h̃ and there is no divergence for h̃→ 2. The behavior of Onsager coefficients in proximity of the critical
curve will be treated in more detail in section 3.2.

6
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Figure 4. Plots of the Onsager coefficients Laa (lower data), Lah (middle data), and Lhh (upper data) as functions of h̃. Circles have
been obtained for a= 1, diamonds for a= 2. Dotted lines are guides for the eye.

3.1. Low temperature limit
The stochastic move of our MMC algorithm does not allow for a straightforward interpretation of the mass
changes. This is because the three-arcs solution, see figure 3 and below equation (8), depends in a
complicated way on the initial triplet. This is no longer the case if the solution is a full circle: in this case, any
possible final triplet can be obtained by a random rotation θ, with 0⩽ θ < 2π [18]. Hence, the low−T, i.e.
h̃→ 1, limit can be treated analytically. In fact, the ground state of the system corresponds to equal masses,
ci ≡ a, and low−T configurations are characterized by weak spatial fluctuations of the local mass. Therefore,
in this limit the intersection between the plane of constant mass and the sphere of constant energy is a full
circle. As we are going to argue, this allows to obtain some analytical results.

In formulae, the update (c1, c2, c3)→ (c ′1, c
′
2, c

′
3) reads

(c ′1, c
′
2, c

′
3) = R(c1, c2, c3) (16)

where R is the rotation matrix around the (1,1,1) direction

R=

d f s
s d f
f s d

 , (17)

with

d=
1

3
+

2

3
cosθ

f=
1

3
(1− cosθ)− 1√

3
sinθ

s=
1

3
(1− cosθ)+

1√
3
sinθ. (18)

We now write the mass and energy fluxes as6

ja = 2⟨c ′1 − c1⟩ jh = 2⟨ϵ ′1 − ϵ1⟩ (19)

where the symbol · · · refers to the average over the distribution of θ for a given initial state (c1, c2, c3), while
⟨· · · ⟩ refers to the average over the distribution of the initial triplet, (c1, c2, c3). In the general case, not all θ
angles are allowed because of the constraint c ′i ⩾ 0. However, if the variance of the three masses is not large,
then all θ are allowed and the average over θ is trivial7.

6 The factor 2 comes from the fact that given any pair of consecutive sites, there are two different triplets which contribute to the flux.
7 More precisely this occurs if σ2 ⩽ c̄2/2, where c̄ and σ2 are the mean and the variance of the three initial masses.

7
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Let us first consider the expression of the mass flux ja. The average of the first of equation (19) over the
distribution of θ is easily computed and gives

ja = 2

(
1

3
⟨c1 + c2 + c3⟩− ⟨c1⟩

)

=
2

3
⟨−2c1 + c2 + c3⟩. (20)

We now suppose that a mass gradient is present in the triplet:

⟨c1⟩= ⟨c2⟩+∆m ≡ a+∆m

⟨c3⟩= ⟨c2⟩−∆m ≡ a−∆m. (21)

Inserting these expressions in equation (20) we finally obtain

ja =−2∆m. (22)

Analogous calculations can be performed for the energy flux jh. The first average over θ reads

ϵ ′1 − ϵ1 = [D(θ)c1 +M(θ)c2 + P(θ)c3]2 − ϵ1

=
1

3
(−2ϵ1 + ϵ2 + ϵ3). (23)

Then, by assuming an energy gradient

⟨ϵ1⟩= ⟨ϵ2⟩+∆ϵ ≡ h+∆ϵ

⟨ϵ3⟩= ⟨ϵ2⟩−∆ϵ ≡ h−∆ϵ , (24)

we obtain

jh =−2∆ϵ. (25)

Remarkably, in the low temperature limit both fluxes do not depend on spatial correlations between sites.
In a continuum representation we can summarize the above result by writing

ja = Caa ∂ya+Cah ∂yh

jh = Cah ∂ya+Chh ∂yh (26)

with

Caa =−2

Cah = Cha = 0

Chh =−2. (27)

Accordingly, in this representation the two currents are decoupled.
In order to determine the proper Onsager coefficients, we need to map equation (26) onto equation (10).

In practice, it is necessary to express the derivatives ∂ya and ∂yh in terms of the thermodynamic forces ∂yβ
and ∂ym. In formulae,

ja = (Caa∂ma+Cah∂mh)∂xm+(Caa∂βa+Cah∂βh)∂xβ

jh = (Cah∂ma+Chh∂mh)∂xm+(Cah∂βa+Chh∂βh)∂xβ.

By using the relations in equations (27) and (28) simplifies to

ja =−2∂ma∂xm− 2∂βa∂xβ

jh =−2∂mh∂xm− 2∂βh∂xβ

8
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Figure 5. Onsager coefficients versus h̃. Symbols refer to numerical simulations while solid lines are the analytic estimates
obtained from equation (28). Lower, middle and upper data refer respectively to Laa, Lah and Lhh. Dashed lines are obtained from
the low-temperature expressions in equation (29). Simulations were obtained for a= 1.

and we obtain

Laa = 2∂ma Lah =−2∂βa

Lha = 2∂mh Lhh =−2∂βh. (28)

The derivatives in equation (28) are completely determined by the ‘equation of state’ of the model,
equations (6) and (7). Moreover, the reciprocity property Lah = Lha is recovered by recalling the standard
grand canonical relations a= ∂m logZ and h=−∂β logZ, where Z is the partition function of the model, see
equation (1). Indeed, given the regularity of logZ, the equality of off-diagonal coefficients follows from
∂β∂m logZ= ∂m∂β logZ.

In figure 5 we compare the Onsager coefficients determined numerically in figure 4 (symbols) with the
analytical estimates of equation (28) (solid lines). In the limit of vanishing temperature, h̃→ 1, it is possible
to derive simple expressions of the coefficients by neglecting the exponential terms in equation (6). We find

Laa = 2a2
(
h̃− 1

)
Lah = 4a3

(
h̃− 1

)
Lha = Lah Lhh = 4a4

(
h̃2 − 1

)
, (29)

which show that all Luv vanish linearly as (h̃− 1) in this limit.
Figure 5 also shows the limits of our analytic approximation of the Onsager coefficients, based on the

hypothesis that the new state of a triplet can be always found on the full circle: this hypothesis starts to fail
when h̃≳ 1.2.

It is now interesting to discuss the origin of this discrepancy, because the passage from a full circle to
three arcs has two effects on our MMC algorithm. When the three masses of a triplet (c1, c2, c3) are
sufficiently heterogeneous, the intersection between the plane of constant mass and the sphere of constant
energy is the union of three disjoint arcs rather than a single connected circle [18]. For this class of moves,
the analytic result of equation (28) overestimates the stationary flux, as it assumes that the rotation angle θ in
equation (18) always varies in [0,2π). In appendix B we clarify that the main contribution to the observed
deviations derives from the pinning property of localized states imposed by the C2C dynamics, i.e. the fact
that a sufficiently large peak cannot jump to neighboring sites. When pinning is removed (see [28] for a
discussion of this modification of the model), we find a better agreement with the analytic estimate, which
extends to higher h̃ values.

3.2. High temperature limit
In this section we determine the Onsager coefficients for a point located in the critical curve at infinite
temperature, (m0,β0) = (−1,0), corresponding to a0 = 1 and h̃0 = 2. Such a critical point calls for caution

9



New J. Phys. 25 (2023) 063020 S Iubini et al

Figure 6. Different stationary paths in them, β plane. All curves terminate in the infinite-temperature point (m0,β0). The red
dashed line represents the analytic approximation of the path tangent to β= 0 inm=−1, see section 5.

because results obtained at finite T might not be valid and Onsager coefficients might have some nonanalytic
behavior.

For this reason we have performed a detailed numerical investigation in order to ensure significantly
accurate simulations. More precisely, we have generated several parametric curves, all starting in (m0,β0)
and terminating in different points (mi,βi). The resulting paths are plotted in figure 6. All simulations are
done in a system of length N = 160. A comparison with length N = 320 (not shown) confirms that these
results are asymptotic. In order to extract β andm from the numerical simulations, we have made use of
equations (6) and (7) with the help of the perturbative expansion in equation (8).

Fifteen curves are entirely located in the homogeneous β ⩾ 0 region and will be employed to determine
the coefficients Luv(−1,0). Note that three curves (the two leftmost ones and the rightmost one) cross the
critical line at infinite temperature thus entering the negative-temperature region of the model. We will
further investigate this phenomenon in section 5.

We proceed by first averaging equations (10) and (11) over all simulations, assuming that the coefficients
Lu,v(−1,0) do not depend on the slope of the path. The consistency of this assumption will be verified
a-posteriori. We therefore write

⟨ ja⟩=−Laa⟨my⟩+ Lah⟨βy⟩ (30)

⟨ jh⟩=−Lha⟨my⟩+ Lhh⟨βy⟩ (31)

obtaining

Lah =
⟨ ja⟩
⟨βy⟩

+
⟨my⟩
⟨βy⟩

Laa (32)

Lha =− ⟨ jh⟩
⟨my⟩

+
⟨βy⟩
⟨my⟩

Lhh. (33)

Then we replace these expressions in the original equations (10) and (11), now indexed by i = 1, . . . ,15 to
clarify that each one refers to a different parametric curve shown in figure 6,

−jia ⟨βy⟩+ ⟨ ja⟩βi
y = Laa

(
mi

y ⟨βy⟩− ⟨my⟩βi
y

)
(34)

−jih ⟨my⟩+ ⟨ jh⟩mi
y = Lhh

(
mi

y ⟨βy⟩− ⟨my⟩βi
y

)
. (35)

The two equations are of the type Zi = LuvXi, where Xi =mi
y ⟨βy⟩− ⟨my⟩βi

y. The resulting data are
reported in figure 7 in the space (X,Z). As expected, the data are well aligned along straight lines; their slopes
yield the two diagonal coefficients of the Onsager matrix. By then using the formulas (32) and (33) for the

10
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Figure 7. Inferring the diagonal elements of the Onsager matrix in the space (X,Z), see equations (34) and (35).

off-diagonal elements, we find that Lah ∼ 1.57± 0.03 and Lha ∼ 1.59± 0.03, compatible with the theoretical
expectation that they must coincide.

By now invoking the scaling form of the Onsager coefficients of equation (14), we can extend the above
result to the whole infinite-temperature line. Since the variable z=m/

√
β is constant along this line, and

equal to minus infinity, we obtain

Luv(m,β = 0) = |m|γuvLuv(−1,0), (36)

where the coefficients Luv(−1,0) have just been determined. We can therefore conclude that the Onsager
matrix remains finite and well-defined on the β= 0 line.

4. Spatial correlations

The analytic approach discussed in section 3.1 clarifies that in the low-temperature regime correlations do
not play any role for the determination of the Onsager coefficients. On the other hand, it is reasonable to
expect that for sufficiently high temperatures transport coefficients do depend on nonequilibrium
correlations. In this section we analyze the role of correlations and quantify their importance for the coupled
transport problem. For this purpose we focus on a regime close to β= 0 and consider the following setup.
The reservoir on the right boundary imposes βR = 0 andmR =−1, while the left reservoir imposesmL =mR

and βL =∆β, with∆β = 0.1 (this corresponds to a line approximately vertical in figure 6). To keep the
amplitude of finite-size effects under control, two lattice lengths N = 50 and N = 100 are here compared.

We compute the covariance matrix

Cij = ⟨ci cj⟩− ⟨ci ⟩⟨cj⟩ (37)

where ⟨·⟩ refers, as before, to the average over the nonequilibrium stationary measure. The diagonal elements
Cii = hi − a2i correspond to the local variance of the mass along the chain and do not provide information on
correlations.

Off-diagonal elements of Cij are expected to vanish as the gradient of β goes to zero. For this reason, it is
convenient to rescale the correlation matrix with the gradient of β,

C̃ij = NCij/∆β. (38)

In figure 8 we show the main features of C̃ij, as found from numerical simulations. In panel (a) we report the
nearest-neighbor correlations (located in the upper diagonal C̃i,i+1) as a function of the rescaled position
y= i/N. A nontrivial correlation pattern is obtained, characterized by an asymmetric distribution of positive
and negative correlations. In panel (b) we show the behavior of C̃k,i while moving along the entire row
corresponding to the central lattice site k= N/2. Similarly to other nonequilibrium models (see e.g. [30]),
long-range correlations are found of amplitude 1/N across the entire system.

11
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Figure 8. (a) Upper diagonal of the rescaled correlation matrix C̃ij for N= 50 (solid line) and N= 100 (dashed line). The dotted

line highlights the zero baseline. (b) Rescaled correlation matrix C̃N/2,i for the same lattice sizes.

Figure 9. Onsager coefficients versus h̃. Symbols refer to numerical simulations of the MMCmodel (same data of figure 4), while
solid lines are obtained for the fully uncorrelated dynamics, see text. Lower, middle and upper data series refer respectively to Laa,
Lah and Lhh.

To better understand the role of correlations for the Onsager matrix, we have considered a modified
MMC dynamics restricted to a triplet (N= 3) in which correlations are intentionally suppressed8. This can
be realized by imposing on each site of the triplet independent distributions of the local masses, where the
distribution on site i is defined by parameters (βi,mi) chosen in order to produce given constant gradients.
In figure 9 we compare the three Onsager coefficients for the full MMC model (symbols) with those
corresponding to the uncorrelated model (solid lines). As expected, in the low-temperature region
correlations are very small for the MMC dynamics and Lu,v are well described by the fully uncorrelated
model. On the other hand, for larger h̃ correlations tend to decrease the values of the Onsager coefficient
with respect to the uncorrelated limit. This effect is maximal for the infinite-temperature point h̃= 2 and
clarifies that the peculiar structure of Luv found in this limit depends at least in part on nonequilibrium
correlations.

8 In the absence of correlations there is no need to consider larger system sizes.
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5. Spontaneous emergence of negative temperatures

In [28], it was shown that nonequilibrium stationary paths can enter the negative-temperature region even
when the reservoirs at the chain boundaries impose positive temperatures. As a result, a new kind of
condensation phenomenon may arise, produced exclusively in nonequilibrium conditions. In this section,
we revisit this process from the point of view of Onsager theory, deriving a perturbative expression of the
limiting form of the paths and, accordingly, the condition for them to enter the negative−T region.

We start the analysis by focusing on the shape of the paths that are nearly tangent to the β= 0 line, see
e.g. the second rightmost curve in figure 6. Each stationary path is by definition characterized by constant
mass ( ja) and energy ( jh) currents. It is convenient to take their ratio ρ because we can get rid of the explicit
spatial dependence of β andm. In fact, from equations (10) and (11),

ρ=
ja
jh
=

Laa − Lahβm
Lha − Lhhβm

=
|m|Laa(z)−βmLah(z)

|m|Lha(z)−βmLhh(z)
|m| (39)

where βm = dβ/dm= βy/my.
A first relevant consequence of the above relation is that the isothermal line β(m) = 0 cannot correspond

to a stationary path. Indeed, along this line equation (39) would write

ρ=
Laa(−∞)

Lha(−∞)
|m| . (40)

Since the ratio of Onsager coefficients is finite along the critical line β= 0 (see equation (36)), the ratio ρ
would grow linearly with |m|, contradicting the physical condition of a constant ρ along a NESS path.

We now relax the condition β(m) = 0 and investigate the occurrence of tangent paths. More precisely we
assume

β(m) = g(m−m0)
2 ≡ gδ2 ; m=m0 + δ ; δ ≪ 1, (41)

where g is a coefficient determining the openness of the parabolic shape. In the vicinity ofm=m0, |βm| ≪ 1.
Under this approximation, equation (39) can be written as

ρ=
Laa(

√
β/m)

Lha(
√
β/m)

|m|+

(
Laa(

√
β/m)Lhh(

√
β/m)

L
2
ah(

√
β/m)

− 1

)
βm, (42)

where we have expressed the Onsager coefficients Luv as functions of w≡ 1/z=
√
β/m, rather than as

functions of z, which diverges in the limit β= 0.
By inserting the parabolic Ansatz for β(m) into equation (42) and retaining all terms up to order δ, we

obtain

ρ=
Laa(

√
gδ/m0)

Lha(
√
gδ/m0)

(|m0| − δ)+ 2g

(
Laa(0)Lhh(0)

L
2
ah(0)

− 1

)
δ, (43)

where we have made explicit that the ratio of Onsager coefficients multiplying (|m0| − δ) should be evaluated
in w= (

√
g/m0)δ. Equation (43) can be further simplified by considering the linear expansion

Luv(w) = Luv(0)+ L
′
uv(0)w. The derivative L

′
uv(0) is conveniently determined passing through the variable

∆= 2− h̃,

L
′
uv(w)

∣∣∣
w=0

= L
′
uv(∆)

∣∣∣
∆=0

d∆

dw

∣∣∣∣
w=0

(44)

= L
′
uv(∆)

∣∣∣
∆=0

2w|w=0 = 0, (45)

where the result follows from the combined numerical observation that: (i) all Onsager coefficients have a
finite derivative with respect to h̃ (i.e. with respect to∆); (ii) (d∆/dw)w=0 = 2w|w=0 = 0.

As a result, the δ−dependence of the Onsager coefficients can be neglected to this order and we obtain

ρ=
Laa(0)

Lha(0)
(|m0| − δ)+ 2g

(
Laa(0)Lhh(0)

L
2
ah(0)

− 1

)
δ. (46)
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Figure 10. Stationary paths starting from (m1,β1) can be of three types, depending on the region where they terminate. If the
second reservoir (m2,β2) is located in Ra (Rc), all the path is contained in Ra (Rc), and negative temperatures do not appear (red
dashed line). If the second reservoir is located in Rb, the path is initially contained in Rc , then it attains the condensed phase (grey
region), and finally it re-enters the positive−T region in Rb (black dashed line).m± are the values ofm where the limiting paths
starting from (m1,β1) are tangent to the critical line β= 0.

For this equation to be valid, it is necessary that ρ is independent of δ, therefore

ρ=
Laa(0)

Lha(0)
|m0| (47)

and

g=
1

2

Lah(0)Laa(0)

detL(0)
. (48)

The first condition determines the flux ratio along a path crossing tangentially the β= 0 line inm=m0. By
inserting the value of the coefficients determined from the simulations, we obtain that ρ≈−0.348 for
m0 =−1. This value is consistent with the ratio observed in eventually tangent paths, see the second leftmost
(orange) curve in figure 6, where ρ≈−0.344. The second condition determines the concavity of the path.
Interestingly, it is independent ofm0, meaning that the concavity is constant along the β= 0 line. More
precisely, we find that g≈ 0.58, in agreement with the concavity of the various paths, see the red dashed line
in figure 6.

We now focus our attention on the emergence of paths entering the T< 0 condensed phase. Let us
suppose that one end of the chain is thermalized at (m1,β1) (see figure 10). Two NESS paths depart from this
point, that are tangent to the infinite temperature line. If β1 is small, we can rely on the parabolic
approximation in equation (41) writing β± = g(m−m±)

2, where g, given by equation (48), is the same in
both curves. By imposing that the parabolas pass through (m1,β1), it follows thatm± =m1 ±

√
β1/g. It is

easily seen that these two curves partition the parameter space into three regions Ra, Rb, and Rc (see
figure 10). If and only if the other end of the system is located in the region Rb, the corresponding path enters
the negative temperature region; otherwise, the entire path is characterized by positive temperatures. This
property follows from the fact that the family of all stationary paths departing from (m1,β1) cannot cross the
two limiting parabolas. Indeed, upon calling (mc,βc) the point of intersection, this would imply the existence
of two distinct paths connecting (m1,β1) with (mc,βc). However, ergodicity implies the existence of a single
path, the one minimizing dissipation [31]9. Formally, if the two reservoirs are located in (m1,β1) and
(m2,β2), withm2 >m1, the path enters the condensed phase if

m2 >m1 +

√
β1

g
(49)

9 A path starting in (−1,0) is seen in figure 6(a) to cross the critical parabola, because the parabola is only an approximation valid for
vanishing β.
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and

β2 < g

(
m2 −m1 −

√
β1

g

)2

. (50)

These conditions are exact in the limit of large temperatures, i.e. for vanishing β1,2. In figure 10 we show
qualitatively a path entering the condensed region (black dashed line) and a path fully confined in the
positive-temperature region (red-dashed line). Similar considerations could be done in the microcanonical
parameter space (a, h), using equations (6) and (7). Here we limit to report the expression of the steady path
tangent to the critical curve h= 2a2 in the point (a0,2a20):

h(a) = 2a20 + 4a0(a− a0)+ (2− 4g)(a− a0)
2. (51)

Since g≃ 0.58, the coefficient of the quadratic term is negative and the curvature of the limiting path is
therefore opposed to the positive curvature of the critical line.

Non-monotonic temperature profiles are typically observed in one-dimensional Hamiltonian models in
the presence of thermomechanical forces [15, 32, 33]. Physically, it is a manifestation of the Joule effect,
i.e. the heating of a wire induced by the flow of an irreversible current of mass (or charge). Here, the effect is
extreme, as the inner temperatures become so large as to become negative. In more quantitative terms, the
local heat production rate Q̇ due to Joule heating can be expressed as (see equation (20) of [8])

Q̇=
j2a

βLaa
. (52)

In the vicinity of the critical line, still neglecting the dependence of Laa on δ, equation (52) rewrites as

Q̇=
j2a

Laa(0)

m2

β
, (53)

where ja andm are finite, therefore clarifying that Q̇ diverges with temperature. On the other hand, the
corresponding contribution to entropy production rate, Q̇β, remains finite.

For the sake of completeness it is worth mentioning that, as shown in [28], paths crossing the critical line,
may no longer be characterized by a stationary dynamics. This phenomenon, however, does not affect the
path shape in the positive-temperature region. Strictly stationary paths are, instead obtained, if the
unrestricted variant of the model described in appendix B is adopted [28].

6. Conversion efficiency

Coupled transport can be quantified in terms of the Seebeck coefficient defined as [8]

S≡ β
Lah
Laa

−m . (54)

By using the scaling relations for the Onsager coefficients, see equation (14), this expression can be rewritten
in the form

S=m

(
sign(z)

Lah(z)

z2Laa(z)
− 1

)
, (55)

therefore, in analogy with Luv, it is sufficient to study S/m as a function of z, or equivalently Sa as a function
of h̃.

In figure 11 we show the behavior of Sa(h̃) in the whole range 1⩽ h̃⩽ 2 as obtained from numerical
simulations (open symbols). We find that the Seebeck coefficient is positive and monotonically increasing
with h̃.

We also show as a solid line the analytic estimate obtained from section 3.1 valid in the low-energy limit.
From this result, we find that Sa(h̃) vanishes as h̃→ 1. The deviations observed in the numerical data in this
regime are mostly due to numerical uncertainties in the determination of Laa and Lah, which are amplified by
the large value of β in the definition (54), as highlighted by the increasing error bars with decreasing h̃. In the
opposite limit h̃→ 2, Sa(h̃) converges to 1, as immediately found from equation (54) for β→ 0 and
ma→−1, see equation (7).
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Figure 11. Scaled Seebeck coefficient Sa versus h̃. Symbols refer to numerical simulations performed at a= 1 while the solid line
shows the low-energy analytic prediction obtained from equation (28). Vertical bars are an estimate of numerical errors, see the
main text.

Figure 12. (a) figure of merit ZT; (b) conversion efficiency; (c) determinant of the Onsager matrix versus h̃. Symbols refer to
numerical simulations while solid curves illustrate the analytic prediction obtained from equation (28).

In the presence of coupled transport, a measure of the efficiency of conversion of one current into
another is provided by the dimensionless figure of merit

ZT=
(Lah − m

β Laa)
2

detL
(56)

and by the related conversion efficiency

η

ηC
=

√
ZT+ 1− 1√
ZT+ 1+ 1

, (57)

where ηC is the Carnot efficiency, see [8] for details. The ratio η/ηC increases from 0 for ZT≪ 1 to 1 for
ZT≫ 1.

The parameter ZT is readily rewritten as a function of the sole variable z, namely

ZT=

(
sign(z)Lah(z)− z2Laa(z)

)2
detL(z)

. (58)

The dependence of ZT and η on h̃ are reported in figure 12 (see the open symbols in panels (a) and (b)); the
solid lines correspond to the low-energy analytic estimates.
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ZT diverges in the infinite-temperature limit where, consequently, the efficiency reaches the Carnot limit.
This behavior is not due to the vanishing of the determinant of L in equation (56), as found for delta-energy
filtering [34]. As it can be easily inferred from equation (56), the divergence of ZT is related to: i) the
finiteness of Luv and of its determinant (see figure 12(c)) ii) the divergence of µ=m/β.

We can argue that this behavior originates from the fact that infinite-temperature states are attained
for a finite energy density (h̃= 2). Let us, in fact, consider the expression of the energy current,
jh ≃ Lhh∇β ≃−∇h, where, for simplicity, we neglect the off-diagonal term due to the gradient ofm= µβ
and assume a direct proportionality with the energy density gradient∇h. From the boundedness of h for
vanishing β, (2− h)≃ β in the C2C model, one obtains∇β ∼−∇h. Accordingly, a finite current requires
Lhh to be finite. Conversely, for standard systems where the energy density diverges with temperature, e.g.
h∼ Tα with α> 0,∇β ∼ βα+1∇h and a finite current implies a diverging Lhh ∼ 1/βα+1.

7. Conclusions and perspectives

In this paper we conducted a fairly detailed study of the transport properties of a simple one-dimensional
model with two conserved quantities: the mass density a and the energy density h. This model is known to
display an equilibrium localization transition when h passes through the critical value hc = 2a2 and an
out-of-equilibrium localization transition if the system is boundary-driven by suitable reservoirs attached to
its ends.

Because of a scaling relation, the dependence of all thermodynamic variables on a and h can be reduced
to the dependence on a single quantity, typically identifiable with the relative energy density h/a2. This
includes the Onsager coefficients that we have thoroughly explored in the homogeneous region, h⩽ hc.

One of the main outcomes of our study is that a linear-response description of irreversible transport
processes may apply even for arbitrarily large temperatures. Indeed we prove that Onsager coefficients have a
smooth behavior up to the critical curve T=∞, along which they exhibit a simple power-law dependence
onm= µβ. Moreover, we have shown that their behavior along the critical line is such that there exists a
class of NESS paths in the (m,β) plane that must enter the condensed region. Negative temperatures are
therefore naturally attained by an out-of-equilibrium setup employing reservoirs at positive temperature.
This mechanism suggests a novel effective protocol for the generation of negative-temperature states, which
deserve further studies. In fact, one of the main experimental difficulties in this field concerns the ability to
thermalize a system at negative temperature (see [26] for a review on the topic and [35] for a recent
experiment).

We have also provided a direct evidence that the Onsager coefficients do depend on nonequilibrium
correlations and we have identified the largest contribution in correspondence of the critical line of the
model. Some peculiarities occurring for T→∞, like the divergence of the figure of merit ZT, are due to the
finiteness of Onsager coefficients in such limit, a property that is strictly related to the finiteness of the energy
density when T diverges.

Last but not least, in the low-temperature limit we have obtained an analytic description of the
nonequilibrium thermodynamic observables which compares successfully with the numerical results,
especially if the dynamical rule allows peaks to diffuse. To our knowledge, this is one of the few examples in
which the whole Onsager matrix is exactly computable for an interacting model. We have shown that in this
limit, spatial correlations are absent. Nevertheless, coupled transport is still present, with a positive Seebeck
coefficient.

Concerning the perspectives of our work, we expect that several features observed in the nonequilibrium
C2C model are relevant also for the DNLS equation and its applications. Two important distinctions,
however, should be emphasized. First of all no exact scaling properties hold in the DNLS equation because its
total energy is made of two terms which scale differently with the mass [36]. The presence of an interaction
(hopping) term is particularly relevant at low-temperatures, where we expect substantial differences between
the two models. As an example, the Seebeck coefficient was found to change sign in the homogeneous region
of the DNLS equation [15, 33], while in the C2C model it is always positive, see figure 11. Secondly, the
Hamiltonian character of the DNLS dynamics is certainly richer than the stochastic MMC dynamics
employed for the C2C model. In particular, we expect that dynamical effects will be relevant in the localized
region of the DNLS model, where the existence of an adiabatic invariant freezes the macroscopic dynamics
when high peaks appear in the system [37]. Because of that, the investigation of NESS profiles and Onsager
coefficients in such a region is computationally very demanding. There are, however, reasons to think that it
would be worth investigating their behavior.

More specifically, it is reasonable to expect that, similarly to the C2C model, DNLS profiles can cross the
critical line when driven by reservoirs in the homogeneous region. In fact, in [29] some of us studied the
DNLS equation in a nonequilibrium setup analogous to that used later in [28]: the DNLS chain was attached
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to a standard reservoir on one boundary and to a dissipator on the other boundary. The dissipator, called
sink in the title, steadily removes mass and energy from the lattice and it can be thought of as a boundary
condition imposing a= h= 0. Within such set-up the system enters the localized region accompanied by a
complicated dynamics.
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Appendix A. Perturbative analysis

In this appendix, we derive the limiting expressions (8), using equations (6) and (7) or, more precisely,

m̃(z) =
z2

2
+

z√
π

e−z2/4

1+ erf(z/2)
, (A.1)

h̃(z) =
z2

2

(
1

m̃2(z)
+

1

m̃(z)

)
. (A.2)

In the limit T→ 0, h̃→ 1 and z→+∞, therefore m̃(z)≃ z2/2 and h̃(z)≃ 1+ 2/z2, i.e.

z=

√
2

h̃− 1
, for h̃→ 1. (A.3)

In the limit T→∞, h̃→ 2, z→−∞ and calculations are more lengthy. By accurately expanding the error
function,

erf(z/2) =−1+
2e−|z|2/4

|z|
√
π

[
1− 2

|z|2
+

12

|z|4
− 120

|z|6

]
, (A.4)

we find that m̃(z)≃−1+(4/z2)− (40/z4) and h̃(z)≃ 2− 4/z2, i.e.

z=− 2√
2− h̃

, for h̃→ 2. (A.5)

Appendix B. Evolution without pinning

As explained in the main text and sketched in figure 3, the new state in each MMCmove must be chosen
within the intersection between a sphere and a plane with the constraint of positive masses; this means either
within a full circle or within three disconnected arcs. In the latter case, there are two selection options: within
the same arc as in the original configuration; within any of the three arcs with equal probability.

Since the three-arcs solution appears when one mass is significantly larger than the other two, these two
options correspond to either pin a peak, or to allow it diffusing. All of our simulations in the main text have
been made following the former option. This choice originates from the DNLS equation, where peaks are
dynamically pinned [37]. Here below we consider the second option as it helps singling out the role of
diffusion at higher temperatures.

In fact, when T increases and the three-arcs solution is increasingly likely, the low-T approximation fails
in two respects: (i) it averages over angles corresponding to unphysical negative masses; (ii) it allows
diffusion to the neighboring arcs. If we adopt a no-pinning evolution, only (i) applies. In figure B1 we
compare the low-T approximation with the numerical outcome of the unpinned model. The agreement
extends to significantly larger energy densities; in fact, allowing peaks to diffuse, the Onsager (transport)
coefficients are now significantly larger.
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Figure B1. Onsager coefficients versus h̃ for the unpinned MMC dynamics. Continuous lines are analytic estimates obtained from
equation (28), symbols refer to numerical simulations. Lower, middle and upper data refer respectively to Laa, Lah and Lhh.
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