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Abstract

Audio-visual speech recognition (AVSR) pro-
vides a promising solution to ameliorate the
noise-robustness of audio-only speech recogni-
tion with visual information. However, most
existing efforts still focus on audio modality
to improve robustness considering its domi-
nance in AVSR task, with noise adaptation tech-
niques such as front-end denoise processing.
Though effective, these methods are usually
faced with two practical challenges: 1) lack
of sufficient labeled noisy audio-visual train-
ing data in some real-world scenarios and 2)
less optimal model generality to unseen testing
noises. In this work, we investigate the noise-
invariant visual modality to strengthen robust-
ness of AVSR, which can adapt to any testing
noises while without dependence on noisy train-
ing data, a.k.a., unsupervised noise adaptation.
Inspired by human perception mechanism, we
propose a universal viseme-phoneme mapping
(UniVPM) approach to implement modality
transfer, which can restore clean audio from vi-
sual signals to enable speech recognition under
any noisy conditions. Extensive experiments
on public benchmarks LRS3 and LRS2 show
that our approach achieves the state-of-the-art
under various noisy as well as clean conditions.
In addition, we also outperform previous state-
of-the-arts on visual speech recognition task1.

1 Introduction

The world surrounding us involves multiple modal-
ities, including vision, audio, text, etc., which com-
plement each other and jointly comprise human per-
ception (Baltrušaitis et al., 2018; Zhu et al., 2021b).
Audio-visual speech recognition (AVSR) leverages
both audio and visual modalities to understand hu-
man speech, which provides a promising solution
to ameliorate the noise-robustness of audio-only
speech recognition with noise-invariant lip move-
ment information (Sumby and Pollack, 1954).

1Code is available at https://github.com/YUCHE
N005/UniVPM.
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Figure 1: Illustration of noisy audio-visual speech
recognition. (a) Mainstream AVSR approaches with
noise adaptation. (b) Our framework constructs viseme-
phoneme mapping for modality transfer, which restores
clean audio from visual signals to enable speech recog-
nition under any noisy conditions.

However, most existing efforts still focus on au-
dio modality to improve noise-robustness consid-
ering its dominance in AVSR, where audio modal-
ity contains much richer information to represent
speech content than visual modality (Sataloff, 1992;
Ren et al., 2021). Current mainstream approaches
introduce noise adaptation techniques to improve
robustness2, inspired by robust speech recogni-
tion (Wang et al., 2020). Most of them leverage
noise-corrupted training data to strengthen robust-
ness (Afouras et al., 2018a; Ma et al., 2021b; Song
et al., 2022), and recent works extend it to self-
supervised learning scheme (Shi et al., 2022b; Hsu
and Shi, 2022). Based on that, latest works intro-
duce speech enhancement as front-end to denoise
before recognition (Xu et al., 2020; Hong et al.,
2022). Despite the effectiveness, these methods are
usually faced with two practical challenges. First,
they require abundant labeled noisy audio-visual
data for network training, which is not always avail-
able in some real-world scenarios (Lin et al., 2021;
Chen et al., 2022a). Second, the well-trained model
may not adapt to new-coming noise scenes in prac-
tical applications2, resulting in less optimal model

2Experimental analysis are in §A.1 and §4.2.
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generality (Meng et al., 2017). Therefore, our re-
search idea in this paper is leveraging visual modal-
ity to develop a general noise-robust AVSR system
while without dependence on noisy training data.

We may gain some inspirations from human per-
ception mechanism of noisy audio-visual speech.
Neuroscience studies (Nath and Beauchamp, 2011)
find that human brain will unconsciously rely more
on the lip movement to understand speech under
noisy conditions (a.k.a., McGurk Effect, McGurk
and MacDonald, 1976). During this process, in-
stead of directly recognizing lip movement, human
brain will first transfer it to speech signal in audi-
tory cortex for further understanding (Bourguignon
et al., 2020; Mégevand et al., 2020). With prior
knowledge of lip-audio mapping, human brain can
restore informative clean audio from lip movement
under any noisy conditions to aid in speech under-
standing (Bernstein et al., 2004; Aller et al., 2022).

Motivated by above observations, we propose
a universal viseme-phoneme3 mapping approach
(UniVPM) to implement modality transfer, which
can restore clean audio from lip movement to en-
able speech recognition under any noisy condi-
tions. We first build two universal memory banks to
model all the visemes and phonemes via online bal-
anced clustering. Based on that, an adversarial mu-
tual information estimator is proposed to construct
strong viseme-phoneme mapping, which enables
final lip-to-audio modality transfer via retrieval. As
a result, our system can adapt well to any testing
noises while without noisy training data. Empirical
results show the effectiveness of our approach. Our
contributions are summarized as:

• We present UniVPM, a general noise-robust
AVSR approach investigated on visual modal-
ity, which can adapt to any testing noises
while without dependence on noisy training
data, a.k.a., unsupervised noise adaptation.

• We build two universal banks to model all the
visemes and phonemes via online balanced
clustering, followed by an adversarial mutual
information estimator to construct strong map-
ping between them, which enables modality
transfer to restore clean audio from lip move-
ment for speech recognition under any noises.

• Our UniVPM outperforms previous state-of-
the-arts on LRS3 and LRS2 benchmarks. Ex-

3Phoneme is the phonetic base unit (from clean audio),
and viseme is the visual equivalent of phoneme.

tensive experiments also show its superiority
on visual speech recognition (VSR) task.

2 Related Work

Audio-Visual Speech Recognition. AVSR pro-
vides a promising solution to noise-robust speech
recognition with the noise-invariant visual modal-
ity (Afouras et al., 2018a). However, most existing
efforts still focus on audio modality to improve
robustness considering its dominance in AVSR
task (Sataloff, 1992; Ren et al., 2021). Mainstream
approaches introduce noise adaptation techniques
to strengthen robustness, where most of them lever-
age noise-corrupted data to improve network train-
ing (Afouras et al., 2018a; Ma et al., 2021b; Pan
et al., 2022; Shi et al., 2022b; Hsu and Shi, 2022),
and recent works further introduce speech enhance-
ment as front-end to denoise before recognition (Xu
et al., 2020; Hong et al., 2022). Despite the effec-
tiveness, these methods require abundant labeled
noisy audio-visual training data that is not always
available in some real scenarios, and they may not
adapt to the new-coming noise scenes in practical
applications. In this work, we investigate the visual
modality to develop a general noise-robust AVSR
approach while without dependence on noisy train-
ing data, a.k.a., unsupervised noise adaptation.
Memory Network. Memory network (Weston
et al., 2014) presents a long-term memory com-
ponent that can be read from and written in with
inference capability. Miller et al. (2016) introduces
key-value memory structure where key memory is
used to address a query and the retrieved output
is obtained from value memory using the address.
Since this scheme can remember selected informa-
tion, it is effective for augmenting features in many
tasks, including video prediction (Lee et al., 2021),
cross-modal retrieval (Song et al., 2018; Chen et al.,
2020a), lip reading (Kim et al., 2021a, 2022) and
talking face generation (Park et al., 2022). Despite
the advances, the memory network is prone to over-
fitting when handling imbalanced distributed data,
a.k.a., long tail4 (Liu et al., 2019), which may fail
to model the minority classes well. In this work,
we propose to build two memory banks via online
balanced clustering to model all the visemes and
phonemes equally, i.e., universal.
Viseme-Phoneme Mapping. Viseme-phoneme
mapping is important to many visual-audio learn-
ing tasks, including speech recognition (Chan et al.,

4Phoneme distribution in English is a long tail, see §A.4.
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Figure 2: Illustration of our proposed UniVPM. (a) Training on clean audio-visual data to construct universal
viseme-phoneme mapping. (b) Inference on any noisy data with restored clean audio from modality transfer.

2022), lip reading (Ren et al., 2021) and lip-to-
speech synthesis (Prajwal et al., 2020). Among
them, cross-modal distillation is a popular tech-
nique to transfer knowledge from viseme to
phoneme (Afouras et al., 2020; Zhao et al., 2020;
Ren et al., 2021). Other works design specific neu-
ral networks to learn their mapping (Qu et al., 2019;
Kim et al., 2021b). Recent studies introduce self-
supervised learning to capture correlations between
visemes and phonemes (Qu et al., 2021; Ma et al.,
2021a). Though effective, these methods are often
challenged by the ambiguity of homophenes (Bear
and Harvey, 2017) where one lip shape can produce
different sounds. To this end, we propose an ad-
versarial mutual information estimator to construct
strict viseme-phoneme mapping with the strong
distinguishing ability of adversarial learning.

3 Methodology

3.1 Overview
The overall framework of proposed UniVPM is il-
lustrated in Fig. 2. During training, we first send
the input video and clean audio streams into two
front-ends for processing, which generates modal-
ity sequences fv, fa ∈ RT×D, where T is number
of frames and D is embedding dimension. These
frames are sent into two memory banks to model

all the visemes and phonemes, using an online bal-
anced clustering algorithm where each cluster cen-
ter represents a specific viseme or phoneme. Then,
we propose an adversarial mutual information es-
timator to construct strong mapping between cor-
responding visemes and phonemes. Based on that,
we finally implement modality transfer via retrieval
to restore clean audio from visual signals, which en-
ables speech recognition under any testing noises.

3.2 Online Balanced Clustering

Clustering is a widely used knowledge discovery
technique to partition a set of data points into homo-
geneous groups, which has a variety of applications
such as data mining (Fayyad et al., 1996). Among
them, K-Means algorithm (MacQueen, 1967) is
the most well-known and popular one. However,
it cannot be directly applied for our viseme and
phoneme clustering due to imbalanced data distri-
bution (see §A.4). This may challenge K-Means
clustering according to uniform effect (Xiong et al.,
2006). As shown in Fig. 3 (a), most cluster centers
gather in the majority data class (i.e., over-fitting),
leaving the minority class not well modeled.

To this end, we propose an Online Balanced
Clustering algorithm in Alg. 1 to model all the
visemes and phonemes equally from input frames.



Algorithm 1 Online Balanced Clustering.

Require: Streaming data D, number of clusters N , maxi-
mum cluster size Smax.

1: Initialize an empty memory bank B and a list of empty
cluster banks {B1,B2, ...,BN}.

2: while len(B) ≤ N do
3: Receive new batch data d from D
4: Append all frame samples in d to bank B
5: end while
6: Initialize a list of cluster centers {c1, c2, ..., cN} from B

using K-MEANS++ Algorithm (2006)
7: for batch data d ∈ D do
8: Append all frame samples in d to bank B
9: {B1, ...,BN} = RE-ALLOCATE(B, {c1, ..., cN})

10: {c1, ..., cN} = RENEW-CENTERS({B1, ...,BN})
11: Calculate average cluster size Savg = len(B)/N
12: Threshold cluster size Sthr = min(Savg, Smax)
13: for i = 1, 2, ..., N do
14: if len(Bi) > Sthr then ▷ UNDERSAMPLING
15: Maintain the Sthr-nearest samples to ci in Bi

16: Update B accordingly
17: else ▷ OVERSAMPLING
18: Set a random weight α ∈ (0, 1)
19: Find the nearest sample dnear to ci in Bi

20: dnew = dnear · α+ ci · (1− α)
21: Bi.append(dnew)
22: Update B accordingly
23: end if
24: end for
25: end for

First, we set the number of clusters N to 40, follow-
ing the amount of English phonemes (Phy, 2022).
Then, we set a maximum cluster size Smax (i.e.,
number of samples in each cluster) to control the
total memory. We also initialize an empty bank B
as an overall cache, as well as a list of empty banks
{B1,B2, ...,BN} to cache each cluster.

The proposed algorithm is executed in three
steps, center initialization, K-Means clustering and
re-sampling. First, we collect the first few batches
of data frames into B to initialize N dispersed clus-
ter centers {c1, c2, ..., cN}, using K-Means++ al-
gorithm (Arthur and Vassilvitskii, 2006). Second,
we add the current batch data to bank B and em-
ploy vanilla K-Means algorithm to re-allocate each
sample in the bank to the nearest cluster center, af-
ter that the new cluster centers would be updated.
Finally, we propose a re-sampling strategy to bal-
ance the size of different clusters as well as control
the total memory of bank B, by setting a thresh-
old cluster size Sthr (line 12 in Alg. 1). For those
clusters with more than Sthr samples (i.e., majority
cluster), we perform undersampling by only main-
taining the Sthr nearest samples to cluster center.
In contrast, for the minority clusters with less sam-
ples than threshold, we propose oversampling to
interpolate a new sample between center and the

(a) Online clustering (b) Online balanced clustering

Figure 3: t-SNE visualization of clustered phonemes
from (a) online clustering (with random pruning to keep
fixed cluster size, details are in §C.3), and (b) our pro-
posed online balanced clustering. We randomly select
six clusters for visualization, and black triangle denotes
the cluster center. Dashed ellipses highlight the real
phoneme classes, which are confirmed by pre-trained
phoneme recognition model (Phy, 2022).

nearest sample with a random weight, inspired by
SMOTE algorithm (Chawla et al., 2002). In this
way, as illustrated in Fig. 3 (b), the resulted clusters
would be balanced-sized and separated to better
represent each of the visemes and phonemes.

3.3 Adversarial Mutual Information
Estimator

After clustering visemes and phonemes in banks,
we propose an Adversarial Mutual Information Es-
timator (AMIE) to construct strong mapping be-
tween them. Mutual Information (MI) is a com-
monly used measure to explore the coherence be-
tween two distributions, which is, however, histori-
cally difficult to estimate. Recently, Belghazi et al.
(2018) propose a Mutual Information Neural Esti-
mation (MINE) approach to approximate MI lower
bound with neural network. Based on that, we pro-
pose an adversarial learning approach to maximize
the MI between visemes and phonemes, in order
to construct strict mapping between them and thus
alleviate the ambiguity of homophenes.

3.3.1 Preliminary Theory of MINE
Mutual information measures the mutual depen-
dency between two probability distributions,

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the joint probability distribution
of X and Y , and p(x) and p(y) are the marginals.

Therefore, the mutual information can be written
in terms of Kullback-Leibler (KL-) divergence:

I(X,Y ) = DKL(p(x, y) ∥ p(x)p(y)), (2)

where DKL is defined as:

DKL(p ∥ q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (3)



Furthermore, the KL-divergence admits the
Donsker-Varadhan (DV) representation (Donsker
and Varadhan, 1983; Belghazi et al., 2018):

DKL(p ∥ q) = sup
T :Ω→R

Ep[T ]− log(Eq[e
T ]),

(4)
where the supremum is taken over all functions T
on Ω ⊂ Rd to guarantee two finite expectations.
Therefore, we have the MI lower bound:

I(X,Y ) ≥ IΘ(X,Y ), (5)

where IΘ is the neural information measure,

IΘ(X,Y ) = sup
θ∈Θ

Ep(x,y)[Tθ(x, y)]

− log(Ep(x)p(y)[e
Tθ(x,y)]),

(6)

and Tθ denotes a trainable neural network.

3.3.2 Proposed AMIE
Based on MINE, we propose an Adversarial Mu-
tual Information Estimator to explore and max-
imize the mutual information between clustered
visemes and phonemes. As illustrated in Fig. 2
and 4, given a visual sequence fv, we send each
frame of it into viseme bank to find the nearest
cluster center cv, which forms the viseme sequence
sv ∈ RT×D. Similarly, we obtain a phoneme se-
quence sa to represent audio features fa. The neu-
ral network Tθ then feeds {sv, sa} to output a scalar
for MI estimation, where Tθ is a 3-layer classifier
with output as a 1-dimensional scalar. Furthermore,
since we do not concern the accurate value of MI
when maximizing it, we employ Jensen-Shannon
(JS) representation (Hjelm et al., 2018) to approx-
imate KL-divergence in Eq. 4, which has been
proved with more stable neural network optimiza-
tion. Therefore, the mutual information between
clustered visemes and phonemes is estimated as:

IJSΘ (sv, sa) = sup
θ∈Θ

Ep(sv ,sa)[−sp(−Tθ(sv, sa))]

−Ep(sv)p(sa)[sp(Tθ(sv, s̃a))],
(7)

where s̃a is the shuffle-ordered version of sa that
subjects to the marginal distributions of phonemes,
and sp(z) = log(1 + ez) is the softplus function.

As stated in Belghazi et al. (2018), the neural net-
work Tθ can be used to estimate MI between gener-
ated data (sv, sa in our case) by directly trained on
them. However, this will suffer a lot from the poor
quality of generated data at early training stage.
One feasible scheme (Zhu et al., 2021a) is to train

Viseme Bank

Phoneme Bank

AMIE

Phoneme Bank

address weighted
sum

AMIE

(a)

(b)

Figure 4: Illustration of (a) viseme-phoneme mapping
via AMIE, and (b) modality transfer via retrieval.

Tθ on real data (fv, fa in our case) and then esti-
mate MI on generated data, but this suffers from the
ambiguity of homophenes (see Fig. 8). To this end,
we propose AMIE with adversarial learning to esti-
mate and maximize the MI between corresponding
visemes and phonemes, which can construct strict
viseme-phoneme mapping without ambiguity.

Inspired by GAN (Goodfellow et al., 2014), we
design the AMIE as discriminator and the viseme-
phoneme banks as generator. Based on that, the
adversarial loss is defined as:

LGAN = LD + LG

= IJSΘ (fv, fa) + [−IJSΘ (sv, sa)],
(8)

Our framework employs an adversarial learning
strategy for optimization, where D and G play a
two-player minimax game as detailed in Alg. 2.
As a result, the estimated MI between correspond-
ing visemes and phonemes would be maximized
to construct mapping relationships. The strong dis-
tinguishing ability of adversarial learning enables
strict viseme-phoneme mapping to overcome the
ambiguity of homophenes, as shown in Fig. 5.

3.4 Modality Transfer
With constructed viseme-phoneme mapping, we
can finally implement modality transfer to restore
clean audio from lips. As shown in Fig. 4, given the
visual sequence fv and clustered phoneme centers
{c1a, c2a, ..., cNa }, we calculate an addressing score
Ai,j to indicate the probability that the i-th visual
frame corresponds to the j-th phoneme cluster:

Ai,j =
exp(⟨f i

v, c
j
a⟩/τ)∑N

k=1 exp(⟨f i
v, c

k
a⟩/τ)

, (9)

where ⟨ ·, · ⟩ denotes cosine similarity, τ is tempera-
ture weight. The restored clean audio frames are:

f̂ i
a =

N∑
j=1

Ai,j · cja, (10)



Method
PT FT Babble, SNR (dB) = Speech, SNR (dB) = Music + Natural, SNR (dB) = Clean

Type Type -10 -5 0 5 10 avg -10 -5 0 5 10 avg -10 -5 0 5 10 avg ∞

RNN-T (2019) - Clean - - - - - - - - - - - - - - - - - - 4.5
Hyb-AVSR (2021b) - Noisy - - - - - - - - - - - - - - - - - - 2.3
TM-seq2seq (2018a) - Noisy - - 42.5 - - - - - - - - - - - - - - - 7.2
EG-seq2seq (2020) - Noisy 38.6 31.1 25.5 24.3 20.7 28.0 - - - - - - - - - - - - 6.8
u-HuBERT (2022) Noisy Noisy - - 4.1 - - - - - - - - - - - - - - - 1.2

AV-HuBERT (2022b)
Clean

Clean 72.6 30.9 9.8 2.9 2.1 23.7 93.4 71.6 22.1 6.1 2.7 39.2 24.1 10.9 3.6 2.4 1.9 8.6 1.42
Noisy 30.0 15.2 5.9 2.7 1.9 11.1 15.9 7.5 3.9 2.4 1.9 6.3 12.1 5.9 3.1 2.2 1.8 5.0 1.40

Noisy
Clean 39.4 14.5 5.2 2.7 2.0 12.8 18.8 5.1 3.1 2.3 1.9 6.2 11.4 5.0 2.8 2.2 1.8 4.6 1.54
Noisy 28.4 13.4 5.0 2.6 1.9 10.3 11.4 4.6 2.9 2.2 1.8 4.6 9.7 4.7 2.5 1.9 1.8 4.1 1.40

UniVPM (ours)
Clean

Clean 37.5 17.1 6.9 2.6 1.9 13.2 20.4 9.6 4.9 3.6 2.3 8.2 14.2 6.8 3.1 2.1 1.8 5.6 1.31
Noisy 28.1 13.8 5.1 2.2 1.7 10.2 14.5 6.7 3.3 2.1 1.7 5.7 10.7 5.2 2.7 1.9 1.6 4.4 1.22

Noisy
Clean 32.6 12.6 4.4 2.3 1.7 10.7 17.0 4.4 2.7 2.1 1.6 5.6 10.1 4.3 2.4 1.9 1.6 4.1 1.25
Noisy 26.8 12.1 4.0 2.1 1.6 9.3 10.4 4.1 2.5 2.0 1.6 4.1 8.7 4.1 2.1 1.7 1.5 3.6 1.18

Table 1: WER (%) of proposed UniVPM and prior works on LRS3 benchmark. “PT Type” / “FT Type" denote
pre-training / finetuning data type. “SNR” is signal-to-noise ratio. All the noisy data contains MUSAN (2015) noise.

Method
PT FT Babble, SNR (dB) = Speech, SNR (dB) = Music + Natural, SNR (dB) = Clean

Type Type -10 -5 0 5 10 avg -10 -5 0 5 10 avg -10 -5 0 5 10 avg ∞

TM-seq2seq (2018a) - Noisy - - - - - - - - - - - - - - - - - - 8.5
Hyb-RNN (2018) - Noisy - - - - - - - - - - - - - - - - - - 7.0

LF-MMI TDNN (2020) - Clean - - - - - - - - - - - - - - - - - - 5.9
Hyb-AVSR (2021b) - Noisy - - - - - - - - - - - - - - - - - - 3.7
MoCo+w2v2 (2022) - Noisy - - - - - - - - - - - - - - - - - - 2.6

AV-HuBERT (2022b)
Clean

Clean 65.2 33.6 10.9 5.6 3.8 23.8 88.2 57.8 20.6 7.5 4.0 35.6 27.3 13.3 6.7 4.0 3.4 10.9 2.57
Noisy 33.2 16.3 7.6 4.6 3.7 13.1 14.9 9.5 6.2 4.5 3.8 7.8 13.9 9.0 4.9 3.9 3.2 7.0 2.38

Noisy
Clean 36.9 18.6 8.1 4.8 3.5 14.4 24.6 9.7 4.8 3.6 3.4 9.2 15.2 8.4 5.1 3.8 3.1 7.1 2.44
Noisy 32.7 14.9 6.4 4.5 3.4 12.4 9.0 5.9 3.9 3.5 3.0 5.1 12.5 6.0 4.4 3.5 3.0 5.9 2.33

UniVPM (ours)
Clean

Clean 38.3 19.0 9.2 5.0 3.5 15.0 21.1 12.2 7.8 5.4 3.9 10.1 16.3 10.4 5.6 3.6 3.2 7.8 2.30
Noisy 30.4 14.4 6.6 4.1 3.4 11.8 12.4 8.3 5.5 4.2 3.6 6.8 12.4 7.9 4.3 3.4 3.0 6.2 2.17

Noisy
Clean 33.7 16.2 6.7 4.2 3.2 12.8 19.8 7.6 4.0 3.2 3.1 7.5 13.4 7.3 4.5 3.4 2.9 6.3 2.24
Noisy 30.1 13.7 5.7 4.1 3.2 11.4 7.5 5.1 3.4 3.1 2.8 4.4 10.9 5.0 3.8 3.1 2.8 5.1 2.16

Table 2: WER (%) of proposed UniVPM and prior works on LRS2 benchmark.

To supervise the quality of restored audio f̂a =
{f̂ i

a}Ti=1, we first employ AMIE to maximize the
MI between f̂a and fv, where Eq. 8 is rewritten as:

LGAN = IJSΘ (fv, fa) + [−IJSΘ (sv, sa)− IJSΘ (fv, f̂a)],

(11)
along with a reconstruction loss Lrec = ∥f̂a−fa∥2
to enable restoration of high-quality clean audio.

3.5 Optimization
The UniVPM is optimized in an end-to-end manner
(see Alg. 2), with the final training objective as:

L = LASR + λGAN · LGAN + λrec · Lrec + λvar · Lvar,

(12)
where LASR denotes the downstream speech recog-
nition loss. Lvar is a variance regularization term
to disperse the clustered viseme and phoneme cen-
ters, which aims to ease their mapping construction.
λGAN , λrec and λvar are weighting parameters.

4 Experiments

4.1 Experimental Setup
Datasets. Our experiments are conducted on two
large-scale public datasets, LRS3 (Afouras et al.,
2018b) and LRS2 (Chung et al., 2017). LRS3

dataset collects 433 hours of transcribed English
videos from TED & TEDx talks. LRS2 contains
224 hours of video speech from BBC programs.
Configurations and Baselines. The proposed Uni-
VPM is implemented based on AV-HuBERT with
similar configurations, which are detailed in §B.3.
We also select some mainstream AVSR approaches
as baselines for comparison, e.g., u-HuBERT (Hsu
and Shi, 2022), and details are presented in §B.7.

4.2 Main Results
Audio-Visual Speech Recognition. Table 1 com-
pares the AVSR performance of our UniVPM
with prior methods on LRS3 benchmark. Under
clean training data, the proposed UniVPM (in pur-
ple shades) significantly outperforms AV-HuBERT
baseline, and it achieves comparable performance
to the AV-HuBERT trained on noisy data, where
the restored clean audio plays the key role and
implements our original motivation of unsuper-
vised noise adaptation. Based on that, available
noisy training data further improves the robust-
ness5, where our best results achieve new state-of-
the-art in various noisy as well as clean conditions.
Furthermore, we can also observe similar results

5Noisy training pipeline of UniVPM is shown in Fig. 9.



Method
PT FT Meeting, SNR (dB) = Cafe, SNR (dB) = Resto, SNR (dB) = Station, SNR (dB) =

Type Type -10 -5 0 5 avg -10 -5 0 5 avg -10 -5 0 5 avg -10 -5 0 5 avg

Finetuned on DEMAND Noise

AV-HuBERT (2022b)
Clean

Clean 33.2 11.7 4.3 3.1 13.1 26.0 8.5 2.9 2.0 9.9 63.5 30.4 11.0 3.9 27.2 20.1 7.0 4.7 2.5 8.6
Noisy 10.6 5.2 2.9 2.5 5.3 10.1 4.3 2.3 1.8 4.6 27.8 14.4 4.9 2.6 12.4 7.6 4.5 2.9 2.0 4.3

Noisy
Clean 17.7 7.1 4.0 2.9 7.9 16.0 5.8 2.7 1.9 6.6 49.5 19.5 6.2 3.1 19.6 11.8 5.9 3.7 2.2 5.9
Noisy 10.2 4.8 2.7 2.4 5.0 9.4 4.0 2.2 1.8 4.4 23.5 13.2 4.4 2.4 10.9 7.2 4.3 2.9 1.8 4.1

Finetuned on MUSAN Noise

AV-HuBERT (2022b)
Clean

Clean 33.2 11.7 4.3 3.1 13.1 26.0 8.5 2.9 2.0 9.9 63.5 30.4 11.0 3.9 27.2 20.1 7.0 4.7 2.5 8.6
Noisy 13.9 6.3 3.3 2.8 6.6 13.6 5.1 2.6 1.9 5.8 36.1 17.5 5.7 2.9 15.6 9.9 5.3 3.5 2.1 5.2

Noisy
Clean 17.7 7.1 4.0 2.9 7.9 16.0 5.8 2.7 1.9 6.6 49.5 19.5 6.2 3.1 19.6 11.8 5.9 3.7 2.2 5.9
Noisy 13.2 5.5 3.2 2.7 6.2 12.4 4.8 2.3 1.8 5.3 33.7 16.1 5.1 2.6 14.4 9.8 5.1 3.5 1.9 5.1

UniVPM (ours)
Clean

Clean 12.8 5.3 3.1 2.7 6.0 12.1 4.9 2.3 1.7 5.3 32.8 15.8 5.0 2.8 14.1 9.5 5.0 3.6 2.1 5.1
Noisy 10.0 4.7 2.7 2.4 5.0 9.6 4.0 2.2 1.6 4.4 24.9 13.3 4.7 2.6 11.4 7.0 4.3 2.9 1.8 4.0

Noisy
Clean 11.9 5.1 3.0 2.6 5.7 10.8 4.6 2.2 1.7 4.8 27.4 14.8 4.9 2.6 12.4 8.3 4.7 3.2 1.8 4.5
Noisy 9.7 4.6 2.6 2.3 4.8 9.0 3.8 2.1 1.6 4.1 22.6 12.9 4.3 2.4 10.6 6.9 4.3 2.8 1.7 3.9

Table 3: WER (%) on unseen testing noises with LRS3 benchmark. Testing noises “Meeting”, “Cafe”, “Resto”
and “Station” are from DEMAND dataset (2013). Pre-training noise are from MUSAN dataset.

Method
Finetune Unlabeled Labeled

WER (%)
Mode Data (hrs) Data (hrs)

TM-seq2seq (2018a) AV - 1,519 58.9
EG-seq2seq (2020) AV - 590 57.8
Hyb-AVSR (2021b) AV - 590 43.3

RNN-T (2019) AV - 31,000 33.6
Distill-PT (2022) V 1,021 438 31.5

u-HuBERT (2022) AV 2,211 433 27.2

AV-HuBERT (2022a)
AV 1,759 433 34.7
V 1,759 433 28.6

+ Self-Training V 1,759 433 26.9

UniVPM (ours) AV 1,759 433 26.7

Table 4: WER (%) results of visual speech recognition
(VSR) on LRS3 benchmark. “Finetune Mode” denotes
the input modality during finetuning stage.

on LRS2 dataset as shown in Table 2.
Table 3 further compares the performance of Uni-

VPM with AV-HuBERT on unseen testing noises,
which are sampled from DEMAND (Thiemann
et al., 2013) dataset. First, when AV-HuBERT is
finetuned and tested both on DEMAND noise, good
WER performance can be achieved. However, if it
is finetuned on MUSAN noise and then tested on
unseen DEMAND noise, the performance would
degrade a lot. In comparison, our UniVPM fine-
tuned on clean data (purple shades) achieves signif-
icant improvement and surpasses the AV-HuBERT
finetuned on MUSAN noise, which further verifies
the strong generality of our model. Furthermore,
when finetuned on MUSAN noise, our UniVPM
even outperforms the AV-HuBERT finetuned on
in-domain DEMAND noise, which highlights the
superiority of our approach on unseen test noises.

Visual Speech Recognition. To further verify the
effectiveness of UniVPM, we evaluate its VSR per-
formance by discarding the input audio modality
during inference, as shown in Table 4. In this case,
with restored clean audio from lip movements, the
proposed UniVPM significantly outperforms AV-

Method B S M N Clean VSR

AV-HuBERT (2022b) 23.7 39.2 10.7 6.4 1.42 34.7

Effectiveness of Online Balanced Clustering
Memory Network (2022) 20.6 29.5 9.2 6.1 1.39 32.0

Online Clustering 19.3 22.9 8.7 5.9 1.37 31.2
Online Balanced Clustering 13.2 8.2 6.1 5.1 1.31 26.7

Effectiveness of AMIE
None 22.3 35.4 10.4 6.0 1.39 31.8

Contrastive Learning 21.5 29.2 9.7 5.8 1.37 30.1
MINE (2018) 18.6 20.1 8.3 5.5 1.34 28.8

AMIE w/o Adv. Learning 17.0 17.9 7.7 5.4 1.33 28.2
AMIE 13.2 8.2 6.1 5.1 1.31 26.7

Analysis of Adversarial Learning
LGAN w/ I(sv, sa) 15.4 14.6 7.2 5.3 1.32 27.8
LGAN w/ I(fv, f̂a) 17.7 22.0 8.8 5.6 1.36 29.2

LGAN w/ I(sv, sa) + I(fv, f̂a) 13.2 8.2 6.1 5.1 1.31 26.7

Analysis of Regularization
None 17.2 20.4 8.0 5.7 1.36 30.3

UniVPM w/ Lrec 14.3 11.5 6.5 5.3 1.33 27.4
UniVPM w/ Lvar 15.6 14.6 7.2 5.4 1.33 28.5

UniVPM w/ Lrec + Lvar 13.2 8.2 6.1 5.1 1.31 26.7

Table 5: Ablation study. ‘B’, ‘S’, ‘M’, ‘N’ denote
average-SNR results on four MUSAN noises in Table 1.
“Adv.” denotes “Adversarial”. The four ablations are all
based on full UniVPM and independent with each other.

HuBERT baseline (34.7%→26.7%). Although the
visual-only training and self-training strategies im-
prove AV-HuBERT’s results, our UniVPM still de-
fines new state-of-the-art on LRS3 benchmark.

4.3 Ablation Study

Table 5 presents the ablation study of components
in UniVPM. The four parts of ablation are inde-
pendent, i.e., each study is conducted where other
three components are kept same as full UniVPM.
Effect of Online Balanced Clustering. In Uni-
VPM, our online clustering baseline outperforms
the memory network with learnable embeddings,
indicating the superiority of clustering technique
in representing visemes and phonemes. Based
on that, our proposed online balanced clustering
achieves significant improvement by modeling all
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Figure 5: Left panel: t-SNE visualization of clustered viseme and phoneme centers (ellipses highlight the undesirably
gathered centers). Right panel: confusion matrix of phoneme matching and viseme-phoneme mapping. In (g)-(i), the
vertical axis indicates phoneme center IDs and the horizontal axis indicates real phonemes predicted by pre-trained
model (Phy, 2022), while in (j)-(l) the horizontal axis indicates viseme center IDs.

the visemes and phonemes equally without over-
fitting, which is further shown in Fig. 5.

Effect of AMIE. As presented in Table 5, AMIE
plays the key role in the promising performance of
UniVPM by constructing strong viseme-phoneme
mapping. As a comparison, the contrastive learn-
ing baseline only provides limited improvement,
and MINE performs better by maximizing the esti-
mated MI between visemes and phonemes. Based
on that, our proposed AMIE introduces JS repre-
sentation to stabilize system optimization, which
improves performance but still suffers from the am-
biguity of homophenes. To this end, our adversarial
learning approach achieves further improvement
by constructing strict viseme-phoneme mapping
without ambiguity, as shown in Fig. 8.

Analysis of Adversarial Learning. As illustrated
in Eq. 11, there are two key components in adversar-
ial learning, i.e., I(sv, sa) that constructs viseme-
phoneme mapping and I(fv, f̂a) that supervises the
quality of restored clean audio. Results in Table 5
indicate that viseme-phoneme mapping is the most
important, and the supervision on restored clean
audio also improves the AVSR performance.

Analysis of Regularization. According to Eq. 12,
Lrec and Lvar are two auxiliary terms for regular-
ization, where the former supervises the quality of
restored audio, and the latter disperses clustered
viseme and phoneme centers to ease their mapping

construction. Both of them are proved with positive
contributions to the gains of performance.
Visualizations. Fig. 5 presents t-SNE visualization
and confusion matrixes to further verify the effec-
tiveness of UniVPM. First, the online clustering
baseline generates gathered viseme and phoneme
centers due to over-fitting, where only several ma-
jority phonemes are modeled as shown in (g). Our
proposed online balanced clustering alleviates such
over-fitting issue and generates separated phoneme
centers, which can cover most of the real phonemes
as illustrated in (h). However, we can still observe
gathered viseme centers due to homophenes, and
the ambiguity of viseme-phoneme mapping is also
shown in (k). To this end, our proposed AMIE
effectively alleviates the ambiguity of homophenes
thanks to the strong distinguishing ability of ad-
versarial learning, which constructs strict viseme-
phoneme mapping in (l). Meanwhile, we also ob-
serve dispersed viseme centers in (c), which can
distinguish the same visemes that correspond to
different phonemes. In addition, real phonemes are
also better modeled by clustering as shown in (i).
Evaluation of Modality Transfer. Table 6 further
reports phoneme match accuracy to evaluate the
quality of restored clean audio. We observe that
online clustering baseline can hardly restore cor-
rect phonemes, and the proposed online balanced
clustering improves the accuracy but still limited
by the ambiguity of homophenes. Furthermore, our



Method
VSR Phoneme

WER (%) Match Acc. (%)

AV-HuBERT (2022a) 34.7 -
+ Online Clustering 33.5 14.2
+ Online Balanced Clustering 31.8 31.0

+ AMIE (UniVPM) 26.7 67.5

Table 6: Evaluation of restored clean audio in terms
of phoneme match accuracy on LRS3 test set. It is
calculated with predicted phonemes for restored audio
and real clean audio by pre-trained model (Phy, 2022).

proposed AMIE significantly improves the quality
of restored clean audio with strict viseme-phoneme
mapping, which also yields better VSR result.

5 Conclusion

In this paper, we propose UniVPM, a general robust
AVSR approach motivated from visual modality via
unsupervised noise adaptation. UniVPM constructs
universal viseme-phoneme mapping to implement
modality transfer, which can restore clean audio
from visual signals to enable speech recognition un-
der any noises. Experiments on public benchmarks
show that UniVPM achieves state-of-the-art under
various noisy as well as clean conditions. Further
analysis also verifies its effectiveness on VSR task.

Limitations

We state two points of limitations and future work
in this section. First, the UniVPM combines both
restored clean audio and original input audio for
downstream speech recognition, while without any
trade-off to weight them. For example, under ex-
tremely noisy conditions the restored clean audio
plays a more important role, while in less noisy sce-
narios the original audio may provide more valid
information. Some weighting strategies to select
the most effective audio information could benefit
the downstream speech recognition. Second, the
proposed clustering and viseme-phoneme mapping
are actually unsupervised schemes, so that it could
be promising to extend our UniVPM to the popu-
lar self-supervised learning framework, in order to
make full use of the abundant unlabeled data.
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A Supplementary Experimental Analysis

A.1 Analysis of the Noise-Robustness of AVSR

Table 7 presents the performance of AV-HuBERT
to analyze the noise-robustness of AVSR system.
First, as the original motivation of AVSR, the vi-
sual modality significantly improves the audio-
only speech recognition performance under var-
ious noisy as well as clean testing conditions, espe-
cially the low-SNR environments. However, most
existing efforts still focus on audio modality to
improve robustness considering its dominance in
AVSR task. The reason is the inherent informa-
tion insufficiency of visual modality to represent
speech content. Mainstream approaches introduce
noise adaptation techniques (Hu et al., 2022b,a;
Chen et al., 2022b, 2023a,b; Hu et al., 2023a,c,b;
Zhu et al., 2023a,b) to strengthen robustness, where
most of them leverage noise-corrupted data to im-
prove network training (Afouras et al., 2018a; Ma
et al., 2021b; Pan et al., 2022; Shi et al., 2022b;
Hsu and Shi, 2022; Chen et al., 2022c; Hu et al.,
2023d; Zhu et al., 2023c). As shown in Table 7,
available noisy training data significantly improves
the AVSR performance in different testing condi-
tions. However, this strategy is usually faced with
two practical challenges. First, it requires abundant
labeled noisy audio-visual training data, which is
not always available in some real-world scenar-
ios (Meng et al., 2017; Long et al., 2017; Lin et al.,
2021; Chen et al., 2022a). For instance, in scenar-
ios like theatre, it is valuable to develop a AVSR
system but costly to obtain sufficient training data.
Second, as it is impossible to cover all the real-
world noises in training data, when some unseen



Mode
PT FT Babble, SNR (dB) = Speech, SNR (dB) = Music + Natural, SNR (dB) = Clean

Type Type -10 -5 0 5 10 avg -10 -5 0 5 10 avg -10 -5 0 5 10 avg ∞

A
Clean

Clean 99.3 89.6 43.9 11.0 3.7 49.5 102.5 93.8 63.5 24.1 10.7 58.9 58.6 35.9 13.9 5.4 2.6 23.3 1.55
Noisy 98.2 65.6 17.0 5.3 2.7 37.8 94.3 73.8 46.3 22.9 9.7 49.4 43.4 18.0 6.5 3.2 2.1 14.6 1.50

Noisy
Clean 98.3 77.6 23.0 7.3 2.9 41.8 87.3 62.9 41.0 22.2 8.9 44.5 43.4 19.3 7.1 3.4 2.5 15.1 1.62
Noisy 97.5 62.3 15.7 5.1 2.6 36.6 81.7 56.2 37.3 19.0 8.3 40.5 38.7 15.1 5.7 3.1 2.3 13.0 1.60

AV
Clean

Clean 72.6 30.9 9.8 2.9 2.1 23.7 93.4 71.6 22.1 6.1 2.7 39.2 24.1 10.9 3.6 2.4 1.9 8.6 1.42
Noisy 30.0 15.2 5.9 2.7 1.9 11.1 15.9 7.5 3.9 2.4 1.9 6.3 12.1 5.9 3.1 2.2 1.8 5.0 1.40

Noisy
Clean 39.4 14.5 5.2 2.7 2.0 12.8 18.8 5.1 3.1 2.3 1.9 6.2 11.4 5.0 2.8 2.2 1.8 4.6 1.54
Noisy 28.4 13.4 5.0 2.6 1.9 10.3 11.4 4.6 2.9 2.2 1.8 4.6 9.7 4.7 2.5 1.9 1.8 4.1 1.40

Table 7: WER (%) of AV-HuBERT on LRS3 benchmark. “Mode” denotes the input modality during both finetuning
and inference stages, “PT Type" denotes the pre-training data type, “FT Type" denotes the finetuning data type, and
“avg” denotes the average performance on all SNRs.

noises appear in practical testing scenarios, the
well-trained model may not perform well as shown
in Table 3, resulting in less optimal model gener-
ality (Meng et al., 2017). Above two challenges
motivate this work. With unsupervised noise adap-
tation investigated on visual modality, our proposed
UniVPM improves the AVSR performance under
clean training data to a comparable level to the
state-of-the-art AV-HuBERT trained on noisy data
in various noisy as well as clean testing conditions,
as shown in Table 1, 2, and 3. Moreover, available
noisy training data can further improve the robust-
ness of UniVPM and yield new state-of-the-arts on
both LRS3 and LRS2 benchmarks.

A.2 Analysis of Limited In-domain Noisy
Audio-Visual Data

According to §1 and §A.1, the first challenge of au-
dio modality-based robust AVSR is the limited in-
domain noisy audio-visual data, which leads to do-
main mismatch between training and testing (Meng
et al., 2017; Long et al., 2017; Lin et al., 2021; Chen
et al., 2020c, 2022a). Actually there are two meth-
ods of obtaining such data, i.e., collection and simu-
lation. First, we can collect and transcribe amounts
of noisy audio-visual data under real-world scenar-
ios, but that is extremely time-consuming and labo-
rious, and to our best knowledge there is currently
no such public dataset. Second, as there is suffi-
cient clean transcribed audio-visual data (Afouras
et al., 2018b; Chung et al., 2017), we can collect in-
domain noise to simulate noisy audio-visual data.
However, this data augmentation method can only
partially alleviate but not resolve the domain mis-
match problem (Zhang et al., 2022). What is worse,
the in-domain noise data is also not always avail-
able in all the real-world scenarios (Meng et al.,
2017; Long et al., 2017; Chen et al., 2020c, 2022a).

As presented in Table 1, in case of no available
in-domain noise, our UniVPM achieves compara-

ble performance to previous state-of-the-art trained
on in-domain noise. When in-domain noise is avail-
able, our UniVPM directly outperforms previous
state-of-the-art, which breaks out the limit of data
augmentation and moves one step forward to the
real noisy data training setting (i.e., oracle). In addi-
tion, Table 3 further investigates the cases with out-
of-domain training noise, where our UniVPM even
surpasses previous state-of-the-art trained on in-
domain noise. As a result, our proposed approach
effectively alleviates the limitation of in-domain
noisy data in audio modality-based robust AVSR.

A.3 Analysis of UniVPM from Meta-Learning
Perspective

The main idea of our proposed UniVPM can also be
explained from meta-learning perspective (Raghu
et al., 2019), i.e., learn how to learn. In AVSR task,
considering the inherent information sufficiency of
visual modality to represent speech content (Sat-
aloff, 1992; Ren et al., 2021), the key factor of its
robustness is still the informative audio modality.
However, audio is usually interfered by background
noise during practical inference. Therefore, the key
of improving robustness is to gain sufficient knowl-
edge from clean audio in training stage, and meta-
learning exactly tells AVSR how to learn from the
clean audio. Motivated by this idea, we leverage
clean audio-visual data to train the core modules of
UniVPM, i.e., viseme and phoneme banks, where
video serves as “prompt” and clean audio serves as
“meta”. In particular, our UniVPM learns the map-
ping between visemes and phonemes, which then
enables modality transfer to restore clean audio
against testing noises. Here the viseme-phoneme
mapping defines how to learn from clean audio.
Therefore, we only need video “prompt” during
inference to access the clean audio “meta”, which
enables UniVPM to adapt to any testing noises.



Figure 6: Phoneme distributions in LRS3 and LRS2
datasets. Pre-trained phoneme recognition model (Phy,
2022) is used for statistics, where speech is recognized
into 44 phonemes, with 39 of them visualized in figures
and another 5 special phonemes eliminated (i.e., ‘|’,
‘[UNK]’, ‘[PAD]’, ‘<s>’, ‘</s>’).

A.4 Analysis of Phoneme Distribution in
LRS3 and LRS2 Datasets

Fig. 6 presents the phoneme distribution in LRS3
and LRS2 datasets. We can observe that in both
datasets, the phoneme obeys a long-tail distribu-
tion (Liu et al., 2019) with head classes including
‘h#’, ‘ih’, ‘n’, ‘l’, ‘s’, ‘ah’, etc. For better visual-
ization, Fig. 7 removes the dominant phoneme ‘h#’
and also presents a long-tail distribution. Therefore,
the neural network trained on these data is prone to
over-fitting to head phoneme classes, resulting in
less satisfactory performance on tail classes.

LRS3 and LRS2 are both large-scale English
reading speech datasets recorded with thousands
of speakers from a wide range of races, so that
they can be roughly representative of the phoneme
distribution of English language.

B Experimental Details

B.1 Datasets
LRS36 (Afouras et al., 2018b) is currently the
largest public sentence-level lip reading dataset,
which contains over 400 hours of English video
extracted from TED and TEDx talks on YouTube.
The training data is divided into two parts: pretrain
(403 hours) and trainval (30 hours), and both of
them are transcribed at sentence level. The pretrain
part differs from trainval in that the duration of its

6https://www.robots.ox.ac.uk/~vgg/dat
a/lip_reading/lrs3.html

Figure 7: Phoneme distributions without ‘h#’.

Viseme Centers

Online Balanced Clustering + AMIE (w/o Adv. Learning)

Ph
on

em
e 

C
en

te
rs

+ AMIE

(a) (b) (c)

Viseme Centers Viseme Centers

Figure 8: Confusion matrix of viseme-phoneme map-
ping in (a) Online Balanced Clustering, (b) Online Bal-
anced Clustering + AMIE (without adversarial learning)
and (c) Online Balanced Clustering + AMIE.

video clips are at a much wider range. Since there is
no official development set provided, we randomly
select 1,200 samples from trainval as validation set
(∼ 1 hour) for early stopping and hyper-parameter
tuning. In addition, it provides a standard test set
(0.9 hours) for evaluation.
LRS27 (Chung et al., 2017) is a large-scale pub-
licly available labeled audio-visual (A-V) datasets,
which consists of 224 hours of video clips from
BBC programs. The training data is divided into
three parts: pretrain (195 hours), train (28 hours)
and val (0.6 hours), which are all transcribed at
sentence level. An official test set (0.5 hours) is
provided for evaluation use. The dataset is very
challenging as there are large variations in head
pose, lighting conditions and genres.

B.2 Data Preprocessing

The data preprocessing for above two datasets
follows the LRS3 preprocessing steps in prior
work (Shi et al., 2022a). For the audio stream,
we extract the 26-dimensional log filter-bank fea-

7https://www.robots.ox.ac.uk/~vgg/dat
a/lip_reading/lrs2.html
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ture at a stride of 10 ms from input raw waveform.
For the video clips, we detect the 68 facial key-
points using dlib toolkit (King, 2009) and align the
image frame to a reference face frame via affine
transformation. Then, we convert the image frame
to gray-scale and crop a 96×96 region-of-interest
(ROI) centered on the detected mouth. During train-
ing, we randomly crop a 88×88 region from the
whole ROI and flip it horizontally with a proba-
bility of 0.5. At inference time, the 88×88 ROI
is center cropped without horizontal flipping. To
synchronize these two modalities, we stack each
4 neighboring acoustic frames to match the image
frames that are sampled at 25Hz.

B.3 Model Configurations

Front-ends. We adopt the modified ResNet-18
from prior work (Shi et al., 2022a) as visual front-
end, where the first convolutional layer is replaced
by a 3D convolutional layer with kernel size of
5×7×7. The visual feature is flattened into an 1D
vector by spatial average pooling in the end. For
audio front-end, we use one linear projection layer
followed by layer normalization (Ba et al., 2016).

UniVPM. The viseme and phoneme banks con-
tain N = 40 clusters, following the amount of
English phonemes (Phy, 2022), i.e., 39 regular
phonemes and one special phoneme ‘[PAD]’ that
indicates silence. It is worth mentioning that the ac-
tual amount of visemes is less than phonemes due
to homophene phenomenon, i.e., one-to-many lip-
audio mapping (Bear and Harvey, 2017), but in this
work we set same number of clusters to construct
a strict one-to-one viseme-phoneme mapping, as
shown in Fig. 5 and Fig. 8. The cluster capacity
Smax in Alg. 1 is set to 20, and the temperature τ
in Eq. 9 is set to 0.1.

Speech Recognition. The downstream speech
recognition model follows AV-HuBERT (Shi et al.,
2022b) with 24 Transformer (Vaswani et al., 2017)
encoder layers and 9 decoder layers, where the
embedding dimension/feed-forward dimension/at-
tention heads in each Transformer layer are set to
1024/4096/16 respectively. We use a dropout of
p = 0.1 after the self-attention block within each
Transformer layer, and each Transformer layer is
dropped (Fan et al., 2019) at a rate of 0.1.

The total number of parameters in our UniVPM
and AV-HuBERT baseline are 478M and 476M.

B.4 Data Augmentation

Following prior work (Shi et al., 2022b), we use
many noise categories for data augmentation to sim-
ulate noisy training data. We select the noise cat-
egories of “babble”, “music” and “natural”
from MUSAN noise dataset (Snyder et al., 2015),
and extract some “speech” noise samples from
LRS3 dataset. For experiments on unseen testing
noises (see Table 3), we also select the noise cat-
egories of “Meeting”, “Cafe”, “Resto” and
“Station” from DEMAND noise dataset (Thie-
mann et al., 2013). All categories are divided into
training, validation and test partitions.

During training process, we randomly select one
noise category and sample a noise clip from its
training partition. Then, we randomly mix the sam-
pled noise with input clean audio, at signal-to-noise
ratio (SNR) of 0dB with a probability of 0.25.

At inference time, we evaluate our model on
clean and noisy test sets respectively. Specif-
ically, the system performance on each noise
type is evaluated separately, where the testing
noise clips are added at five different SNR levels:
{−10,−5, 0, 5, 10}dB. At last, the testing results
on different noise types and SNR levels will be
averaged to obtain the final noisy WER result.

B.5 Training and Inference

Training. The noisy training data is synthesized
by adding random noise from MUSAN (Snyder
et al., 2015) or DEMAND (Thiemann et al., 2013)
of 0dB at a probability of 0.25. We load the pre-
trained AV-HuBERT8 for front-ends and down-
stream speech recognition model, and then follow
its sequence-to-sequence (S2S) finetuning configu-
rations (Shi et al., 2022b) to train our system. We
use Transformer decoder to decode the encoded
features into unigram-based subword units (Kudo,
2018), where the vocabulary size is set to 1000.
The weighting parameters λGAN/λrec/λvar in
Eq. 12 are set to 0.1/0.2/0.5, respectively. The en-
tire system is trained for 60K steps using Adam
optimizer (Kingma and Ba, 2014), where the
learning rate is warmed up to a peak of 0.001
for the first 20K updates and then linearly de-
cayed. The training process takes ∼ 2.5 days on 4
NVIDIA-V100-32GB GPUs, where in comparison
the AV-HuBERT finetuning takes ∼ 1.3 days on 4
NVIDIA-V100-32GB GPUs.

8https://github.com/facebookresearch/
av_hubert
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Inference. As shown in Table 1, the testing noises
“Babble”, “Music” and “Natural” are sam-
pled from MUSAN, and “Speech” is drawn from
LRS3, following prior work (Shi et al., 2022b). No
language model is used during inference. We em-
ploy beam search for decoding, where the beam
width and length penalty are set to 50 and 1 re-
spectively. All hyper-parameters in our systems
are tuned on validation set. Since our experimental
results are quite stable, a single run is performed
for each reported result.

B.6 Details of UniVPM Optimization

As detailed in Alg. 2, we design a two-step adver-
sarial learning strategy for UniVPM optimization,
where the discriminator and generator play a two-
player minimax game. First, we maximize LGAN

to update the discriminator, where generator is de-
tached from optimization. According to Eq. 11,
maximizing the first term of LGAN increases the
MI between visual and audio sequences, while max-
imizing the second term is actually decreasing the
MI between visemes and phonemes, as well as the
MI between visual and restored audio sequences
(this is opposite to our desired viseme-phoneme
mapping and modality transfer). Second, we freeze
discriminator and update the rest network, where
minimizing LG increases the MI between visemes
and phonemes, as well as MI between visual and
restored audio sequences. In addition, LASR opti-
mizes the downstream speech recognition model,
Lrec supervise the quality of restored clean audio,
and Lvar disperses the viseme and phoneme cen-
ters to ease their mapping construction. The entire
system is trained in an end-to-end manner.

In actual experiments, to save computation cost,
we update Bv and Ba once every 10 epochs, which
has been proved with no affect on the system per-
formance. One can refer to our attached code for
more implementation details.

B.7 Baselines

In this section, we describe the baselines for com-
parison.

• TM-seq2seq (Afouras et al., 2018a): TM-
seq2seq proposes a Transformer-based AVSR
system to model the A-V features separately
and then attentively fuse them for decoding,
and uses cross-entropy based sequence-to-
sequence loss as training criterion.

Algorithm 2 UniVPM Optimization.

Require: Training data Dtrain that contains visual-audio pairs
(xv, xa) and the text transcription y. The UniVPM net-
work θ that consists of visual front-end θvf , audio front-
end θaf , viseme bank Bv , phoneme bank Ba, AMIE
θAMIE and speech recognition model θASR. Hyper-
parameter weights λGAN , λrec, λvar .

1: Load pre-trained AV-HuBERT for θvf , θaf and θASR,
randomly initialize θAMIE .

2: Initialize empty banks Bv and Ba.
3: while not converged do
4: for (xv, xa) ∈ Dtrain do
5: FORWARD-PROPAGATION:
6: fv = θvf (xv), fa = θaf (xa) ▷ front-ends
7: Update Bv and Ba according to Alg. 1
8: Obtain viseme sequence sv from fv and Bv

9: Obtain phoneme sequence sa from fa and Ba

10: Generate restored audio f̂a in Eq. 9 and 10
11: ŷ = θASR(fv ⊕ fa ⊕ f̂a) ▷ recognition
12: TRAINING OBJECTIVES:
13: LGAN (LD and LG) in Eq. 11
14: Lrec = ∥f̂a − fa∥2
15: Lvar = Var(c1v, ..., cNv ) + Var(c1a, ..., cNa )
16: LASR = CrossEntropy(ŷ, y)
17: BACK-PROPAGATION: ▷ adversarial learning
18: UPDATE AMIE: ▷ unfreeze θAMIE

19: argmax
θAMIE

LGAN

20: UPDATE REST NETWORK: ▷ freeze θAMIE

21: argmin
θ\θAMIE

LASR+λGAN ·LG+λrec ·Lrec+

λvar · Lvar

22: end for
23: end while

• TM-CTC (Afouras et al., 2018a): TM-CTC
shares the same architecture with TM-seq2seq,
but uses CTC loss (Graves et al., 2006) as
training criterion.

• Hyb-RNN (Petridis et al., 2018): Hyb-RNN
proposes a RNN-based AVSR model with hy-
brid seq2seq/CTC loss (Watanabe et al., 2017),
where the A-V features are encoded separately
and then concatenated for decoding.

• RNN-T (Makino et al., 2019): RNN-T adopts
the popular recurrent neural network trans-
ducer (Graves, 2012) for AVSR task, where
the audio and visual features are concatenated
before fed into the encoder.

• EG-seq2seq (Xu et al., 2020): EG-seq2seq
builds a joint audio enhancement and multi-
modal speech recognition system based on
RNN (Zhang et al., 2019), where the A-V fea-
tures are concatenated before decoding.

• LF-MMI TDNN (Yu et al., 2020): LF-MMI
TDNN proposes a joint audio-visual speech
separation and recognition system based on



time-delay neural network (TDNN), where
the A-V features are concatenated before fed
into the recognition network.

• Hyb-AVSR (Ma et al., 2021b): Hyb-
AVSR proposes a Conformer-based (Gu-
lati et al., 2020) AVSR system with hy-
brid seq2seq/CTC loss, where the A-V input
streams are first encoded separately and then
concatenated for decoding.

• MoCo+w2v2 (Pan et al., 2022): MoCo+w2v2
employs self-supervised pre-trained audio and
visual front-ends, i.e., wav2vec 2.0 (Baevski
et al., 2020) and MoCo v2 (Chen et al., 2020b),
to generate better audio-visual features for
fusion and decoding.

• AV-HuBERT (Shi et al., 2022a,b): AV-
HuBERT employs self-supervised learning
to capture deep A-V contextual information,
where the A-V features are masked and con-
catenated before fed into Transformer encoder
to calculate masked-prediction loss for pre-
training, and sequence-to-sequence loss is
then used for finetuning.

• u-HuBERT (Hsu and Shi, 2022): u-HuBERT
extends AV-HuBERT to a unified framework
of audio-visual and audio-only pre-training.

• Distill-PT (Ma et al., 2022): Distill-PT pro-
poses a Conformer-based VSR framework
with additional distillation from pre-trained
ASR and VSR models.

C Clustering Algorithms

C.1 Uniform Effect in K-Means

K-Means (MacQueen, 1967) is the most popular
and successful clustering algorithm, where sample
re-allocation and center renewal are executed al-
ternatively to minimize the intra-cluster distance.
However, Xiong et al. (2006) points out that K-
Means algorithm tends to produce balanced cluster-
ing result, a.k.a., uniform effect. This preference
seriously degrades the performance when the clus-
ters are imbalanced-sized. The consequence is that
the center of minority clusters will gradually move
to the territory of majority cluster, as illustrated in
Fig. 3 (a). In other words, the K-Means algorithm
will be over-fitted to majority clusters, leaving the
samples in minority clusters not well modeled.

C.2 K-Means++
The performance of K-Means clustering relies
on the center initialization, where the vanilla al-
gorithm initialize cluster centers randomly. K-
Means++ (Arthur and Vassilvitskii, 2006) is an
improved version with dispersed initial centers. It
determines cluster centers one by one, and each
newly initialized center is pushed as distant as pos-
sible to the existed centers. As a result, the K initial
cluster centers would separate from each other and
benefit the subsequent clustering process.

C.3 Details of Online Clustering Baseline
For comparison, we build an Online Clustering
algorithm as baseline. It is similar to Alg. 1 but
employs a vanilla random pruning strategy, instead
of re-sampling, to control the total memory of the
bank. Our strategy is to randomly keep Sthr sam-
ples in the cluster if its number of samples exceeds
Sthr. Compared to the proposed Online Balanced
Clustering algorithm, this baseline also controls
memory size but ignores the imbalanced clusters,
as indicated by the dashed ellipses in Fig. 3 (a).

C.4 Principles of Online Balanced Clustering
According to Alg. 1, the main idea of proposed
Online Balanced Clustering is the re-sampling op-
eration to balance cluster sizes. For majority clus-
ters, we perform undersampling to maintain the
Sthr nearest samples to cluster center, so that the
gathered clusters in Fig. 3 (a) can be separated.
For minority clusters, we introduce oversampling
to interpolate a new sample near the center, so
that the minority clusters are highlighted. As a
result, all the clusters are balanced-sized and sep-
arated from each other as shown in Fig. 3 (b), so
that the over-fitting problem is resolved. As a re-
sult, all of the visemes and phonemes can get well
represented, which enables the subsequent viseme-
phoneme mapping construction.
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Figure 9: Illustration of noisy training pipeline of UniVPM. Both clean and noisy audio are used for training,
where the clean audio is employed for phoneme clustering and the noisy audio is used to improve the system
noise-robustness. Compared to Fig. 2, there is an extra data stream of noisy audio to improve robustness.


