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Abstract 

Considering a piecewise linear oscillator with quasiperiodic excitation, we uncover the route 

of the double grazing bifurcation of quasiperiodic torus to strange nonchaotic attractors (i.e., SNAs). 

The maximum displacement for double grazing bifurcation of the quasiperiodic torus can be 

obtained analytically. After the double grazing of the quasiperiodic orbits, the smooth quasiperiodic 

torus wrinkles increasingly with the continuous change of the parameter. Subsequently, the whole 

quasiperiodic torus loses the somoothness by becoming everywhere non-differentiable, which 

indicates the birth of SNAs. The Lyapunov exponent is adopted to verify the nonchaotic property of 

the SNA. The strange property of SNAs is characterized by the phase sensitivity, the power spectrum, 

the singular continuous spectrum, and the fractal structure. Our detailed analysis shows that the 

SNAs induced by the double grazing may exist in a short parameter interval between 1T 

quasiperiodic orbit and 2T quasiperiodic orbit, or between 1T quasiperiodic orbit and 4T 

quasiperiodic orbit, or between 1T quasiperiodic orbit and chaotic motion. Noteworthy, SNAs may 

also exist in a large parameter interval after double grazing, which does not lead to any quasiperiodic 

or chaotic orbits. 
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1. Introduction 

Grazing bifurcation leads to various kinds of nonclassical bifurcations in the vibro-impact 

systems, such as typical period-adding bifurcation, period-adding bifurcation with bands of chaos 

and creation of an intermittent chaos. Whiston [1-2] firstly adopted singularity theory to study the 

non-differentiability of the Poincaré mapping near the grazing point, and analyzed the reason for 

the singularity generated by the breaking of stable manifolds. Shaw et al. [3] considered a class of 

elastically constrained impact vibration systems, and found that the zero-velocity impact is the cause 

of the singularity of the Poincaré map. Based on Whiston's work, Chillingworth [4-5] proposed a 

discontinuous geometric analysis method for a generic one degree of freedom impact oscillator, and 

systematically discussed degenerate (cubic) grazing. Jiang et al. [6] used the discontinuous geometric 

method and a numerical simulation method to discuss in detail the existence conditions of periodic 

solutions of an impact oscillator with one-sided elastic constraint. Kryzhevich et al. [7] studied a 

second-order differential equation with periodic coefficients from the topological perspective and 

proved that chaotic invariant set occurs when the system parameters are changed continuously at 

the grazing bifurcation point. By means of numerical stability analysis and experimental verification, 

Banerjee et al. [8] discovered a narrow band of chaos close to the grazing condition for a simple soft 

impact oscillator. In Ref. [9], GPU parallel computing technology was used to study the two-

parameter dynamics problem in the vicinity of grazing bifurcation points. 

Nordmark [10] considered rigidly constrained impact oscillator with periodic excitation, and 

introduced the concept of discontinuity map to study the singularity of the system caused by grazing 

bifurcations by virtue of analytical methods. In Ref. [11], Nordmark analyzed the universal limit 

mapping of a kind of impact oscillator when the eigenvalues are real numbers, and converted the 

system into the form of interval mapping. He proved that there is no periodic orbit when the 

maximum eigenvalue is greater than two-thirds, and the limit mapping for any parameter is in 

chaotic state. Chin et al. [12] studied a simple sinusoidally forced oscillator system in the presence of 

friction and a hard wall, and identified three kinds of codimension one bifurcations when the 

eigenvalues are complex. Considering a class of micro-driven devices, Dankowicz et al. [13] 

proposed three types of co-dimension one bifurcation, and predicted the dynamic characteristics by 



 

3 

 

using discontinuous mapping method. By means of the sequence limit theory, Zhang [14] derived the 

discontinuous maps of a rub-impacting rotor system to analyze the bifurcation situation induced by 

grazing. Feng [15] adopted the graph cell mapping theory to study the global dynamics of the grazing-

induced crisis of the Duffing system. Brzeski [16] studied the grazing bifurcation problem of a kind 

of church pendulum model with clearance, and revealed a new grazing bifurcation phenomenon 

different from the period adding motion, namely, “impact adding” phenomenon. 

In 1984, Grebogi et al. [17] uncovered a new attractor which owns both strange and nonchaotic 

properties, and named it “strange nonchaotic attractor”(i.e., SNA), and gave the dynamical 

definition of SNA. SNAs has been extensively investigated theoretically, numerically and 

experimentally. Both SNAs and chaotic attractors have the strange property [18]. Although SNAs are 

geometrically strange (i.e., fractal), they exhibit no sensitive dependence on initial conditions, and 

have non-positive maximum Lyapunov exponents (i.e., nonchaotic) [19]. Moreover, SNAs have 

sensitive dependence on initial phase, which can be characterized by the phase sensitivity, indicating 

the strange property [20]. In recent years, the generation mechanism of SNAs has attracted the 

attention of many scholars. Mitsui et al. [21] discussed the existence of SNAs generated by the 

intermittent path in a particular non-skew-product map related to quasiperiodically driven 

continuous dynamical systems. By means of nonlinear dynamical analysis and numerical evidence, 

Zhang et al. [22] found SNAs in the periodically driven noisy FHN neuron model. Li et al. [23] 

considered a periodically forced nonsmooth system and found that noise-induced SNAs can be 

generated by periodic attractors near the boundary crisis. Shen et al. [24] studied the mechanisms for 

the creation of strange nonchaotic attractors in a quasiperiodic forced piecewise logistic system, and 

uncovered the Heagy-Hammel routes, fractalization route and intermittent routes after the two 

coexisting tori collide. Zhang et al. [25] initially identified an unusual route for the creation of a SNA 

in a quasiperiodic forced interval map at the grazing bifurcation point, and then compared the 

difference between the grazing bifurcation route and the fractalization route path. 

The present study aims at uncovering the routes of the double grazing bifurcation of 

quasiperiodic torus to SNAs in a quasiperiodic forced piecewise linear oscillator. The remaining of 

this paper is organized as follows. In Sec. 2, the model of the piecewise linear oscillator is introduced 

and the maximum displacement of the double grazing bifurcation of the quasiperiodic torus is 
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obtained. Then the piecewise linear system is transformed into a three-dimensional Poincaré map 

by selecting a suitable Poincaré section. In Sec. 3, dynamical measures are represented to 

characterize SNAs, including maximal Lyapunov exponent, phase sensitivity, power spectrum, and 

singular continuous spectrum. In Sec. 4, various SNAs induced by double grazing bifurcation of 

quasiperiodic orbits are obtained by numerical simulations. In Sec. 5, the strange property of the 

SNAs is characterized by its phase sensitivity, power spectrum, singular continuous spectrum, as 

well as fractal structure. Finally, we give the conclusions in Sec. 6. 

2. The piecewise linear oscillator with quasiperiodic excitation 

The physical model of the piecewise linear oscillator is shown in Fig. 1. The mass m is attached 

to a linear damper with damping coefficient c, and two linear springs with stiffness coefficients 1K  

and 2K  , respectively. Figure 2 describes the restoring force of the spring 2K   by means of a 

piecewise linear function. The interval between the mass and the spring 2K   is G, which is 

symmetric. The quasiperiodic excitation 1 2cos( ) cos( )A t B tΩ Ω+  is applied to the mass, where the 

ratio of 1Ω  over 2Ω  is an irrational number. 

 

Fig. 1. Piecewise linear oscillator. 

The differential equation of motion is 

  1 21 cos( ) cos( )( ) ,A t B tmy cy K y R y Ω Ω++ + + =   (1)  

where the restoring force ( )R y is piecewise linear, which is written as: 
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Fig. 2. Piecewise linear function ( )R y . 

and is shown in Fig. 2. The non-dimensional form of Eq. (1) is given as 
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As shown in Fig. 3, the double grazing bifurcation of quasiperiodic orbit means that the 

quasiperiodic torus have contacts with the two constraints A and B with zero velocity, which 

corresponds to the bottom and the top of the pothook contacts of the spring 2K  with zero velocity, 

respectively. 
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Fig. 3. Double grazing bifurcation of the quasiperiodic torus. 

The quasiperiodic orbit can be determined analytically, and the maximum displacement for 

double grazing is obtained as 
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Let 1tθ ω= and 2tφ ω= , Eq. (3) can be transformed into the following state equations: 
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If φ   is selected as the angle variable, we obtain the three-dimensional Poincaré map as 

follows: 

 { }1

: :

( , , ) mod 2 0 ,x v R R Sθ φ π

Π Σ → Σ

Σ ≡ ∈ × × =∣
 (7) 
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which takes the form 
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where x  represents the displacement, and v  denotes the velocity. In this paper, 2ω  takes the 

inverse of the golden mean value ( 5 1) / 2− . Then the dynamics of the system is ergodic in the θ

-axis. That is, the θ -axis is covered densely by the trajectory starting from any initial condition, 

which means that the Lyapunov exponent corresponding to the variable θ  is always 0. 

3. Characterization of SNAs 

SNAs can be characterized by the Lyapunov exponents, phase sensitivity exponents, and power 

spectra [18,19].  

Firstly, in order to describe the nonchaotic property of the SNAs, the Lyapunov exponents 

(i=1,2,3) is adopted as an effective method, which is given by 

 
1

0

1
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−
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=

′= ∂∑ f x  (9) 

For convenience, the maximum Lyapunov exponent is denoted by the symbol Λ  in the following 

text. Then the attractor can be characterized as chaotic ( 0Λ > ) or nonchaotic ( 0Λ ≤ ). If the value 

of Λ   is non-positive, then the attractor is nonchaotic, which means that there is no sensitive 

dependence on initial conditions. It should be mentioned that the Lyapunov exponent corresponding 

to θ  is always 0 due to the ergodicity in the θ -axis. 

Secondly, the strange property of SNAs should be identified. Phase sensitivity is an effective 

tool to determine whether the attractor is strange or not, based on the sensitivity of the attractor to 

the phase of the external force [18,19]. There are some special tangent bifurcation points in SNAs, 

where the derivative of these bifurcation points with respect to the phase is infinite, indicating that 

the attractor is nonsmooth. The derivative of the attractor with respect to phase can be expressed as  

 ,NS
θ
∂

=
∂

f
 (10) 

where N is the number of iterations. If NS tends to be infinite for N → +∞ , the attractor is nonsmooth 



 

8 

 

and nondifferentiable, indicating that the attractor is strange [19] . For any smallε , we can select 

some 0n  to satisfy the phase difference condition 
00 0nε θ θ ε= − < , then the derivative of the 

attractor with respect to phase can be expressed approximately as 

 ( )
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where 0k n N+ ≤ , and ( )kf  denotes the kth iteration of f . The maximum value of NS  after 

N  iterations is the phase sensitivity function represented by  

 { }max ,N NSτ =   (12) 

which denotes the phase sensitivity index. If Nτ increases and tends to infinity with N →∞ , the 

attractor has infinite derivative with respect to the external phase, demonstrating the strange 

property (i.e., non-smoothness). On the contrary, if Nτ increases but tends to a stable finite value 

with N →∞ , then the attractor has no strange property due to the boundedness.  

The strange property of the attractor can also be characterized by the power spectrum. When 

the orbit is periodic or quasiperiodic, the corresponding power spectrum is discrete, which is 

represented by δ-peaks at certain frequencies. The power spectrum is continuous if a system exhibits 

chaotic or random motions. However, for SNAs, a strange continuous spectrum appears between 

discrete and continuous spectrum [27]. The power spectrum given by iteration of the Poincaré map

}{ nx  is defined by the discrete Fourier transform 

 2

1

( , ) .
N

i n
n

n

X N x e π ωω
=

= ∑  (13) 

Then, the power spectrum of the attractor is defined as [26] 

 2( , )lim | | .
N

X NP
N
ω

→∞
=  (14) 

In addition, the power-law relation of ( , )X Nω can be adopted to describe the strange property 

of SNAs. If the attractor is periodic or quasiperiodic, there is 2 2| ( , ) | ~X N Nω . For chaotic attractor,  

the relation 12| ( , ) | ~X N Nω  stands. If the attractor is an SNA, then the relation is described as [28]  

 2| ( , ) | ~ ,X N N βω  (15) 

where1 2β< < .  
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Moreover, the fractal structure of the attractor can be observed in the complex plane (ReX, 

ImX), indicating the strange property of SNAs [26, 29]. 

4. SNAs induced by double grazing of quasiperiodic orbits  

In section 4 as to be discussed next, two cases of excitation are discussed. Firstly, in 

2cos( )b ω τ , the value of b is small (i.e., b a ). In these cases, 2cos( )b ω τ can be considered as a 

small perturbation. We show that in these cases SNAs may exist in a short parameter interval 

between 1T quasiperiodic orbit and 2T quasiperiodic orbit and between 1T quasiperiodic orbit and 

4T quasiperiodic orbit, which are shown in section 4.1 and 4.2 respectively. However, if the value 

of b is zero, the SNAs cannot occurs.  

Secondly, for larger b (i.e., general quasiperiodic excitation), SNAs induced by the double 

grazing may exist in a large parameter interval, between quasiperiodic orbit and chaotic motion, 

which are shown in section 4.3 and 4.4 respectively. 

4.1 SNAs between 1T torus and 2T torus after double grazing bifurcation 

The system parameter combination (1): 0.3a =  , 61 10b −= ×  , =0.5ξ  , 1 =5ω  , 1 1k =  , 

2 200k =  is selected, and clearance e   is chosen as the control parameter. The maximum 

displacement for double grazing bifurcation of quasiperiodic orbit is computed as 

* -21.2238 10e ≈ ×   according to Eq. (5). As shown in Fig. 4, the bifurcation diagram and the 

maximum Lyapunov exponent can be obtained numerically (the zero Lyapunov exponent in the θ

-direction is removed). The maximal Lyapunov exponent is negative in the whole parameter interval, 

which denotes that no chaos is present in the interval. As the parameter value is *e e≥ , the system 

exhibits quasiperiodic 1T orbit, corresponding to the blue area in Figs. 4 (a) and (b). If e  is smaller 

than the critical value *e   (i.e., 1 *e e e< <  ), the torus become nonsmooth due to the double 

grazing bifurcation, corresponding to the red area in Figs. 4 (a) and (b). As the parameter e  

decreases further (i.e., 2 1e e e< < ), the SNAs appear, in correspondence with the gray area in Figs. 

4 (a) and (b). However, as the value of the parameter e  decreases further (i.e., 3 2e e e< < ), SNAs 

evolve into nonsmooth 2T quasiperiodic torus, which is in correspondence with the red area of Figs. 
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4 (a) and (b). Finally, when the parameter is decrease to 3e  , the system exhibits smooth 2T 

quasiperiodic torus, corresponding to the green area in Figs. 4 (a) and (b). In summary, in this case, 

double grazing-induced SNAs exist in a short parameter interval between 1T quasiperiodic orbit 

and 2T quasiperiodic orbit. 

 
(a)                                    (b) 

Fig. 4. SNAs between 1T torus and 2T torus after double grazing. (a) Bifurcation diagram. (b) The 

maximal Lyapunov exponent diagram with the variation of e . The labels S-T and N-T denote a 

smooth torus and a nonsmooth torus, respectively. 

The phase diagrams are shown in Fig. 5, indicating the transition from quasiperiodic attractors 

to SNAs through the double grazing bifurcation route. As -21.224 10e = × , the system exhibits a 

smooth quasiperiodic smooth 1T torus in the coordinate plane ( , )n nx v  of the Poincaré section, as 

shown in Fig. 5 (a). When e   decreases to * -21.2238 10e ≈ ×  , the double grazing bifurcation 

occurs on the torus. Subsequently, the smooth 1T torus becomes wrinkled and “non-differentiable”, 

whose onset is shown in Fig. 5 (b). As the value of the parameter e  decreases to -21.222 10e = × , 

the 1T torus exhibits the loss of smoothness even further as an SNA, as shown in Fig. 5 (c). Finally, 

when the parameter decreases to -21.219 10e = × , SNAs settle into the 2T quasiperiodic torus, as 

shown in Fig. 5 (d). 
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(a)                                    (b) 

 

(c)                                    (d) 

Fig. 5. Phase diagrams of the Poincaré section for parameter combination (1). 

 (a) -21.224 10e = × : smooth 1T torus; (b) -21.2235 10e = × : nonsmooth 1T torus;  

(c) -21.222 10e = × : SNA; (d) -21.219 10e = × : 2T torus. 

4.2 SNAs between 1T torus and 4T torus after double grazing bifurcation 

As a second system parameter combination (2): 0.3a = , 62 10b −= × , =0.525ξ , 1 =7.25ω , 

1 1k = , 2 200k = is selected, and clearance e  is chosen as the control parameter. The maximum 

displacement for double grazing bifurcation of the quasiperiodic orbit is computed as 

* -35.758 10e ≈ × . The bifurcation diagram and the maximum Lyapunov exponent are shown in Fig. 

6. Chaos does not appear in the whole parameter interval as the maximal Lyapunov exponent 

converges to negative values. When the parameter value is *e e≥  , the system exhibits the 

quasiperiodic 1T torus, corresponding to the blue area in Figs. 6 (a) and (b). However, if e  is 
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smaller than the critical value *e  (i.e., 1 *e e e< < ), the torus begins to wrinkle and to lose its 

smoothness due to double grazing bifurcation , corresponding to the red area in Figs. 6 (a) and (b). 

As the parameter e   decreases further (i.e., 2 1e e e< <  ), the torus loses its smoothness 

completely and evolves into SNAs, which is in correspondence with the gray area in Figs. 6 (a) and 

(b). However, as the value of the parameter e  decreases further (i.e., 3 2e e e< < ), SNAs evolve 

into the nonsmooth 4T torus, which is in correspondence with the red area of Figs. 6 (a) and (b). 

Finally, when the parameter is decrease to 3e , the system settles into 4T torus corresponding to the 

green area in Figs. 6 (a) and (b). In this case, double grazing-induced SNAs exist in a short parameter 

interval between 1T quasiperiodic torus and 4T quasiperiodic torus. 

 

(a)                                    (b) 

Fig. 6. SNAs between 1T torus and 4T torus. (a) Bifurcation diagram. (b) The maximal Lyapunov 

exponent diagram with the variation of e . 

The phase diagrams changing with the values of e  are shown in Fig. 7. Fig. 7 (a) shows the 

smooth 1T torus as -3. 105 76e ×= . As the parameter e reaches the critical value * -35.758 10e ≈ × , 

the smooth 1T torus begins to fold and becomes nonsmooth because of the double grazing 

bifurcation. As the parameter e  decreases to -3. 105 75e = × , the smooth 1T torus becomes a non-

smooth 1T torus, as shown as Fig. 7 (b). As the parameter e  decreases to -3. 105 7e = × , the SNA 

is generated and is shown as Fig. 7 (c). Finally, when the parameter decreases to -3. 105 63e = × , 

the system settles into the 4T quasiperiodic torus, as shown in Fig. 7 (d). 
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(a)                                    (b) 

 
(c)                                    (d) 

Fig. 7. Phase diagrams of the Poincaré section for parameter combination (2). (a) -3. 105 76e ×= : 

smooth 1T torus; (b) -3. 105 75e = × : nonsmooth 1T torus; (c) -3. 105 7e = × : SNA; (d) 

-3. 105 63e = × : 4T torus. 

4.3 SNAs between 1T torus and chaos after double grazing bifurcation 

The third system parameter combination (3): 5a b= = , =0.01ξ , 1 =1ω , 1 0.3k = , 2 100k = is 

selected, and the clearance e   is again chosen as the control parameter. The maximum 

displacement for the double grazing bifurcation of the quasiperiodic orbit is obtained as

* 67.4588e ≈ . The bifurcation diagram and the maximal Lyapunov exponent Λ  varying with the 

parameter e  are shown in Figs. 8 (a) and (b) respectively. When the parameter *e e≥ , the system 

exhibits quasiperiodic 1T torus, which corresponds to the blue area of Figs. 8 (a) and (b). As shown 

in Fig. 8 (b), the maximal Lyapunov exponent Λ  converges to a negative value. However, after the 
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double grazing bifurcation ( 1 *e e e< <  ), the 1T torus begins to wrinkle, losing its smoothness 

gradually. As the value of the parameter e  decreases further (i.e., 2 1e e e< < ), the torus loses its 

smoothness completely and becomes an SNA, the maximal Lyapunov exponent is still negative 

which is in correspondence with the gray area of Figs. 8 (a) and (b). Finally, when the parameter is 

decreased to 2e  , the system exhibits chaotic motion, and the maximal Lyapunov exponent is 

positive, as shown in the black area of Figs. 8 (a) and (b), respectively. In summary, in this case, 

double grazing-induced SNAs exist in a short parameter interval between the quasiperiodic 1T torus 

and chaotic attractor. For the SNAs, the nonchaotic property is determined by means of the maximal 

Lyapunov exponent in Fig.8 (b), and the strange property will be verified in the next section. 

   

   (a)                                      (b) 

Fig. 8. SNAs between 1T torus and chaos. (a) Bifurcation diagram. (b) The maximal Lyapunov 

exponent diagram with the variation of e . 

The phase diagrams in the Poincaré section are shown in Fig. 9. As 67.46e = , the system 

exhibits a smooth torus in the Poincaré section, as shown in Fig. 9 (a). When e   decreases to 

* 67.4588e ≈ , the double grazing bifurcation occurs on the torus. Subsequently, the smooth 1T 

torus becomes wrinkled and nonsmooth, as shown in Fig. 9 (b). As the value of the parameter e  

decreases further, more and more nonsmooth points appear, as shown in Fig. 9 (c). Finally, when e

decreases to 67.407e =  , the 1T torus becomes extremely wrinkled and loses the smoothness 

completely, evolving into SNAs, as shown in Fig. 9 (d). 
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                  (a)                                  (b) 

 

(c)                                  (d) 

Fig. 9. Phase diagrams of the Poincaré section for parameter combination (3). 

 (a) 67.46e = : smooth 1T torus; (b) 67.44e = : nonsmooth 1T torus;  

(c) 67.42e = : nonsmooth 1T torus; (d) 67.407e = : SNA. 

4.4 SNAs in a long parameter interval after double grazing bifurcation 

As the fourth system parameter combination (4): = =4a b , =0.02ξ , 1 =1ω , 1 0.4k = , 2 32k =  

is selected, and e  is chosen as the control parameter. The maximum displacement of quasiperiodic 

orbit is obtained as * 137.37e ≈ , indicating the critical value of the double grazing bifurcation. As 

shown in Fig. 10, the bifurcation diagram and the maximum Lyapunov exponent can be obtained 

numerically. When the parameter value is *e e≥  , the system exhibits quasiperiodic 1T torus, 

corresponding to the blue area in Figs. 10 (a) and (b). If e   is smaller than the critical value 

* 137.37e ≈   (i.e., 1 *e e e< <  ), the 1T torus becomes nonsmooth due to the double grazing 

bifurcation, corresponding to the red area in Figs. 10 (a) and (b). As the parameter e  decreases 

further (i.e., 1e e< ), the SNAs are generated, in correspondence with the gray area in Figs. 10 (a) 
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and (b). Here the process from a quasiperiodic attractor to an SNA is similar to the third parameter 

combination, however, the difference is that the SNA does not lead to chaos as parameter is changed. 

Consequently, the maximal Lyapunov exponent converges to a negative value in the whole 

parameter interval, as shown in Fig. 10 (b). In the interval 1e e< ，the strange property will be 

verified in the next section. 

  

（a）                                    （b） 

Fig. 10. SNAs induced by double grazing bifurcation. (a) Bifurcation diagram. (b) The maximal 

Lyapunov exponent diagram with the variation of e . 

In the case of parameter combination (4), the phase diagrams of the Poincaré section are shown 

in Fig. 11. Figure 11 (a) shows the quasiperiodic attractor for 137.4e = . As the parameter e  goes 

slightly across the critical value * 137.37e ≈  , the smooth torus begins to fold and becomes 

nonsmooth after double grazing bifurcation, as shown in Fig. 11 (b). As the parameter e  decreases 

to 136.9e = , a SNA is generated as shown in Fig. 11 (c). When the bifurcation parameter is far from 

the grazing bifurcation point *e , the attractor is still strange and has nonchaotic properties, as shown 

in Fig. 11 (d). Here, SNAs induced by double grazing bifurcation exist in a large parameter range 

after grazing. 
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(a)                                   (b)                

 

(c)                                   (d) 

Fig. 11. Phase diagrams of the Poincaré section for parameter combination (4).  

(a) 137.4e = : smooth 1T torus; (b) 137.2e = : nonsmooth 1T torus; (c) 136.9e = : SNA; (d) 

135.5e = : SNA.                                                                                             

5. Characterizing the Strange Property of SNAs 

The strange property can be effectively characterized by the phase sensitivity [18,19]. For SNAs, 

the derivate of the dynamics on the attractor with respect to phase tends to infinite, indicating the 

nondifferentiability of the attractor. Further, the attractor is not strange. In the case of parameter 

combination (3), Fig. 12(a) presents the diagram of phase sensitivity functions for both SNA and 

torus. For the SNA shown in Fig. 9 (d), as the number of iterations increases, the value of Nτ  tends 

to infinity, which corresponds to the red curve in Fig. 12 (a). For the quasiperiodic torus shown in 

Fig. 9 (a), as the number of iterations increases, the value of Nτ   tends to a bounded value, 

corresponding to the blue curve in Fig. 12 (a). For the parameter combination (4), Fig. 12 (b) 

presents the phase sensitivity functions for both SNA and torus. For the SNA shown in Fig. 11 (c), 

with increasing the iteration number, the value of Nτ tends to infinity, corresponding to the red 

curve in Fig. 12 (b), indicating the strange property of the attractor. However, the value of Nτ is 

bounded for the torus shown in Fig. 11 (a), as exhibited by the blue curve in Fig. 12 (b).  
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(a)                                 (b) 

Fig. 12. Phase sensitivity functions of the torus and the SNA; (a) corresponding to Fig. 9 (a) 

and Fig. 9 (d); (b) corresponding to Fig. 11 (a) and Fig. 11 (c). 

The power spectrum plays an important role in characterizing SNAs. Because SNAs exhibit a 

dynamical property between regular and irregular, the power spectrum of the SNA is a mixture of 

both discrete and continuous spectra. Taking the SNA in Fig. 9 (d) as an example, Fig. 13 (a). shown 

that the power spectrum is continuous, and that it has δ  peaks at some frequencies, indicating that 

the attractor has both strange and nonchaotic characteristics. The scaling exponent 1.77β ≈  can be 

obtained by calculating the power-law relation according to Eq. (14). The exponent β  satisfies the 

power-law relation ( 1 2β< <  ) for large N, as shown in Fig. 13 (b). Additionally, the spectral 

trajectory in the complex plane of (ReX, ImX) exhibits the fractal structure as in Fig. 13 (c), which 

also characterizes the strange property of SNA.  

 

(a)                                  (b)    
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                        (d) 

Fig. 13. Characterizing the strangeness of the SNA in Fig. 9 (d). (a) The power spectrum. (b) 

Singular continuous spectrum. (c) The fractal structure of trajectories in the complex plane (ReX, 

ImX). 

Now the strange property of the SNA in Fig. 11(c) is verified by the power spectrum, singular 

continuous spectrum, and fractal graph, as shown in Fig. 14. Numerous δ  peaks can be seen in 

the power spectrum diagram in Fig. 14 (a), exhibiting an appearance which is both discrete and 

continuous semblance. On the other hand, the power-law relation in Fig. 14 (b) is 1.562| ( , ) | ~X N Nω , 

which means that the attractor is strange. Furthermore, the fractal structure of the trajectories in 

complex plane (ReX, ImX) is exhibited in Fig. 14 (c), indicating the strange property of the attractor. 

    

(a)                                      (b)    
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                        (c) 

Fig. 14. Characterizing the strange of the SNA in Fig. 11 (c). (a) The power spectrum. (b) Singular 

continuous spectrum. (c) The fractal structure of trajectories in the complex plane (ReX, ImX). 

6. Conclusions 

A piecewise linear oscillator with quasiperiodic excitation is considered in this work. It led to 

a new bifurcation, the creation of SNAs through the double grazing bifurcation route of 

quasiperiodic torus. Firstly, the expression of the maximum displacement of the quasiperiodic torus 

is given to determine the double grazing bifurcation point. Subsequently, we obtain the bifurcation 

diagram, maximal Lyapunov exponents diagram, and the phase diagram of Poincaré section. The 

nonchaotic property of SNAs is characterized by the maximal Lyapunov exponent, and the strange 

property is verified by phase sensitive function, power spectrum, singular continuous spectrum, and 

fractal graph. The results show that the SNAs induced by double grazing may exist in a short 

parameter interval between 1T quasiperiodic orbit and 2T quasiperiodic orbit, or between 1T 

quasiperiodic orbit and 4T quasiperiodic orbit, or between 1T quasiperiodic orbit and chaotic motion. 

In addition, SNAs may also exist in a large parameter interval after double grazing without leading 

to any quasiperiodic motion or chaos. 
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