TABLE S1: Summaries of the plots included in the analyses. The total numbers of trees and species given for each plot are the numbers after secondary stems and those with missing or inaccurate data are excluded. Rainfalls and temperatures are approximate and are more accurate for some plots than for others (see referenced information). Disturbance levels are also approximate.

Plot	Location	Size	Mean	Elevation	Rainfall	Temp. range	No.	Forest type	Disturbance	Census
(references)		(ha)	elevation	range	(annual	(monthly	trees;			year
			(m)	(m)	mean;	averages,°C)	no.			
					monthly		species			
					range,		(nos. m			
					mm)		mann analysis)			
Pasoh (1)	Malaysia	50	97	25	1571:	21.9 - 34.6	378.186:	lowland mixed	Low: small	1995
ruson (1)	2°58'N.	20		20	94-224	21.0 01.0	822	dipterocarp	(<1ha)	1770
	102°18'E						(309,088;	forest; closed	windthrows	
							439)	canopy 35-60		
								m		
Yasuni (2)	Ecuador	25	228	32	3081;	21.2 - 36.6	173,172;	evergreen	low;	1999
	00°41'S,				174-412		1088	lowland wet	occasional	
	76-23 W						(79,672;	iorest, closed	wind storms	
							289)	m		
BCI(3)	Panama	50	144	40	2551:	22.8 - 23.7	208.387:	semideciduous	low: rare	2010
(-)	9°9'N,				23-364		299	lowland moist	windstorms,	
	79°51'W						(197,954;	forest, canopy	droughts	
							147)	20-40 m.	-	
Palanan (4)	Philippines	16	98	50	~5000	18.7-33.6	74,747;	evergreen	medium;	2010
	17°02'N,				129-525		324	dipterocarp	regular	
	122°22′E						(67,314;	forest	storms &	
T	Duanta	16	279	02	2510.	19.7 22.0	129)	tuonical	typhoons	2000
Luqumo (5)	Puerto Rico:	10	5/0	73	203,401	10.7 - 22.0	140	montane /	neurum; regular	2000
	18°19'N				203-401		(66.418)	subtropical	windstorms	
	65°49'W						62)	wet: partially	& hurricanes	
	00 19 11						02)	open canopy ~	ce nurreales	
								20m		
Mo Singto (6)	Thailand:	30	762	93	2120;	18.0 - 29.0	129,238;	moist	low	2005
	14°26'N;				5-340		262	evergreen		
	101°22'E						(122,968;	forest; canopy		
		25	17 7	100	1051	11.0.01.0	97)	15-30m		2002
Fushan (7)	Taiwan,	25	675	133	4271;	11.8 - 24.0	114,354;	moist	high;	2003
	24 45 N 121022'E				149-008		(110 502)	subiropical	turnhoone	
	121 33 E						(110,393,	evergreen	wind damage	
							56)	forest: canopy	& landslides	
								15-20m,		
								partially open		
Mudumalai (8)	India;	50	1035	130	1200;	14.2 - 20.1	30,786;	dry/moist	medium;	1988
	11°35'N,				7-170		73	deciduous	fires,	
	76°31'E						(24,255;	forest; canopy	browsing and	
							17)	10-25m	some	
Lambir (9)	Malaysia	52	180	139	2664	22 1-31 4	149 953	mature	medium:	2005
Lamon ())	4°11'N	52	100	157	153-322	22.1-51.4	1303	lowland mixed	large	2005
	114°00'E						(122,207;	dipterocarp	landslips and	
							375)	forest	regular	
								canopy 40-	droughts	
	a	1 25	451	150	501.5	10.0.0.0	050 10 1	60m		2007
Sinharaja (10)	Sri Lanka:	25	471	150	5016;	19.3 - 26.8	378,186;	diptorocom	low;	2002
	0°24 N,				1/1-695		200	forest: conony	evidence of	
	80 24 E						(200,080,	$\sim 30 \text{m}$	substantial	
								2011	wind damage	
Xishuangbanna	China:	20	765	150	1493	15.6-25.3	95,940;	tropical	low	2007
(11)	21°36'N				20-320		469	seasonal		
	101°34' E						(86,430;	rainforest		
.				150			129)			
Lienhuachih	Taiwan,	25	762	178	2285	14.8-25.2	135,268;	subtropical	medium;	2008
(12)	23°54′N,				21-483		144	evergreen	typhoons &	
	120°52′E						(149,771;	forest	landslides	
							(7)	canopy ~ 20m		
Dinghushan	China,	20	338	246	1985	12.6 - 28.0	71,617;	subtropical	medium;	2005
(13)	23°09'N,				40-320		210	evergreen	regular	-
	112°30′ É						(67,321;	broadleaved	storms &	
							60)		typhoons	
Gutianshan	China,	24	580	269	1787	4.7–27.6	140,700;	subtropical	medium; rare	2005
(14)	29°15'N,				70-330		159	evergreen	but	
	118°07′E						(15/,561;	proadleaved	destructive	
1	1	1	1	1	1	1	69)	1	storms	1

References used in table:

[1] Manokaran N, et al (2004) in Tropical forest diversity and dynamism: findings from a large-scale plot network, eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 585-598.

[2] Valencia R, et al (2004) in Tropical forest diversity and dynamism: findings from a large-scale plot network, eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 609-620.

[4] Leigh EGJ, et al (2004) in Tropical forest diversity and dynamism: findings from a large-scale plot network, eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 451-463.

[5] Co LL, et al (2004) in Tropical forest diversity and dynamism: Findings from a large-scale plot network, eds Losos EC & Leigh EGJ (University of Chicago Press, Chicago), pp 574-584.

[6] Thompson J, et al (2004) in Tropical forest diversity and dynamism: findings from a large-scale plot network, eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 540-550.

[7] Brockelman, W. Y., Nathalang, A. & Gale, G. A. 2011 The Mo Singto forest dynamics plot, Khao Yai National Park, Thailand. *Natural History Bulletin of the Siam Society*. **57**, 35-55.

[7] Su, S. H., Chang-Yang, C. H., Lu, C. L., Tsui, C. C., Lin, T. T., Lin, C. L., Chiou, W. L., Kuan, L. H., Chen, Z. S. & Hsieh, C. F. 2007 Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns.

[8] Sukumar R, Suresh HS, Dattaraja HS, John R, Joshi NV (2004) in *Tropical forest diversity and dynamism: findings from a large-scale plot network,* eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 551-563.

[9] Lee HS, et al (2004) in Tropical forest diversity and dynamism: Findings from a large-scale plot network, eds Losos EC, Leigh EG (University of Chicago Press, Chicago), pp 527-539.

[10] Gunatilleke CVS, et al (2004) in Tropical forest diversity and dynamism: findings from a large-scale plot network, eds Losos EC, Leigh EGJ (University of Chicago Press, Chicago), pp 599-608.

[11] Cao, M., Zou, X., Warren, M. & Zhu, H. 2006 Tropical Forests of Xishuangbanna, China. *Biotropica*. **38**, 306-309.

[12] Lu, S. Y., Hwang, L. S., Tang, K. J. & Huang, H. H. 2008 Soil temperature regimes in the Lienhuachih area of central Taiwan. *Taiwan journal for science*. **23**, 145-153.

[13] Zhou, G. Y. & Yan, J. H. 2001 The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. *Acta ecologica Sinica*. **21**.

[14] Du, Y., Mi, X., Liu, X., Chen, L. & Ma, K. 2009 Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. *For. Ecol. Manage.* **258**, 1147-1152.

FIGURE S1: Topographies (above) and cross-pair overlap distributions (below) for all plots. Cross-pair overlap distributions are calculated with a dbh threshold of 1cm and an abundance threshold of 100 individuals. Scales on the *y*-axes of the topographic plots are identical, but the colour scale extends over the range of elevation data in each, and these values are shown in the plots.

FIGURE S2: Relationships between xPOD standard deviations and elevation range in each plot with dbh and abundance thresholds of (a) 1 cm and 100 individuals, (b) 1 and 500, (c) species-specific adult dbh thresholds (see methods) and abundance of 100. Fitted regression lines and their associated p-values are shown.

BCI = Barro-Colorado Island; Di = Dinghushan; Fu = Fushan; Gu = Gutianshan; La = Lambir; Li = Lienhuachih; Lu = Luquillo; MS = Mo Singto; Mu = Mudumalai; Pa = Pasoh; Pal = Palanan; Si = Sinharaja; Xi = Xishuangbanna; Ya = Yasuni

FIGURE S3: Relationships, fitted regression lines and their associated p-values for each of the environmental metrics against standard deviation of cross-pair overlap distributions with a species abundance threshold of 100.

BCI = Barro-Colorado Island; Di = Dinghushan; Fu = Fushan; Gu = Gutianshan; La = Lambir; Li = Lienhuachih; Lu = Luquillo; MS = Mo Singto; Mu = Mudumalai; Pa = Pasoh; Pal = Palanan; Si = Sinharaja; Xi = Xishuangbanna; Ya = Yasuni

FIGURE S4: Standard deviations of cross-pair overlap distributions against biogeographical variables; (a) latitude, (b) dominant aspect (the aspect of the majority of 20 x 20 m sub-plots), (c) maximum monthly temperature difference, (d) average annual rainfall, (e) species density (ha^{-1}), (f) stem density (ha^{-1}), (g) mean elevation, (h) maximum monthly rainfall difference. No significant relationships were found to exist.

BCI = Barro-Colorado Island; Di = Dinghushan; Fu = Fushan; Gu = Gutianshan; La = Lambir; Li = Lienhuachih; Lu = Luquillo; MS = Mo Singto; Mu = Mudumalai; Pa = Pasoh; Pal = Palanan; Si = Sinharaja; Xi = Xishuangbanna; Ya = Yasuni

	1 cm, 100 individuals	1 cm, 500 individuals	adult*, 100 individuals
Pasoh	439	171	132
	309,088	243,665	33,303
Yasuni	289	50	57
	79,672	46,123	11,680
BCI	147	71	69
	197,954	181,861	35,500
Palanan	129	38	33
	67,314	47,670	8,920
Luquillo	62	24	27
	66,418	58,366	17,922
Mo Singto	97	52	46
	122,968	113,758	20,370
Fushan	58	33	31
	110,593	103,784	20,402
Mudumalai	17	10	15
	24,255	22,688	14,601
Lambir	375	55	42
	122,207	52,511	6,631
Sinharaja	127	63	46
	200,080	187,226	22,761
Xishuangbanna	129	33	30
	86,430	67,842	13,220
Lienhuachih	79	45	45
	149,771	140,755	25,495
Dinghushan	60	29	32
	67,321	58,699	15,078
Gutianshan	69	40	44
	137,561	127,794	31,131

Table S2: The number of species (top) and individuals (bottom) included in the analysis for each plot at each of the different diameter and abundance thresholds used.

*'adult' refers to the variable diameter threshold defined in the text, designed to isolate the signals of adult trees

Text S1

To avoid edge effects without the need to discard data or impose additional correction terms, we develop the cross-pair overlap distribution (xPOD) here to take account of the area over which its constituent data are gathered. The estimated cross-pair correlation function for species *i* and *j* at radius *r*, $\hat{g}_{ij}(r)$, is a ratio of the observed number of members of species *j* within annuli of areas a(r) around the members of species *i* to the number expected given the total area of these annuli and the average density λ_j of individuals of species *j* per unit area. Here we use only the fraction of each a(r) that falls within the plot in the calculations. This ensures that apparently empty areas beyond the plot boundaries do not influence the result, while all of the data within the plot is used and given equal weighting:

$$\hat{g}_{ij}(r) = \frac{\sum_{k=1}^{s} n_{j_{a_k(r)}}}{\lambda_j \sum_{k=1}^{s} a_k(r)}$$

Where s is the number of individuals in species i, and $n_{ja_k(r)}$ is the number of individuals of species j found within the annulus of area $a_k(r)$ at radius r around the k_{th} member of species i.

Text S2: Funding details

The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell: DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Small World Institute Fund, and numerous private individuals, and through the hard work of over 100 people from 10 countries over the past two decades. The plot project is part the Center for Tropical Forest Science, a global network of large-scale demographic tree plots.

The Fushan and Lienhuachih plots were established with the support of the Taiwan Forestry Research Institute, the Taiwan Forestry Bureau, the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute, and granting agencies the National Science Council of Taiwan and the Council of Agriculture of Taiwan.

Support for Gutianshan plot, Dinghushan plot and Xishuangbanna plot from Biodiversity Committee, Chinese Academy of Sciences, and Key innovation projects of Chinese Academy of Sciences. The Dinghushan plot was funded by the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-Z). The Xishuangbanna plot was established with the support of Xishuangbanna Station of Tropical Rainforest Ecosystem Studies (National Forest Ecosystem Research Station at Xishuangbanna). In this study, LL and MC acknowledge the support of the National Natural Science Foundation of China (31000201, 31061160188).

The Luquillo Forest dynamics Plot work was supported by NSF grants BSR-9015961 and DEB-0516066 and funds from the Mellon Foundation. Our work was also supported by NSF funds (BSR-8811902, DEB-9411973, DEB-008538, DEB-0218039, and DEB-0620910 to the Luquillo Long-Term Ecological Research Program, a collaboration between the Institute for Tropical Ecosystem Studies, University of Puerto Rico, and the International Institute of Tropical Forestry, USDA Forest Service. The U.S. Forest Service and the University of Puerto Rico provided additional direct support.

The Mo Singto plot in Thailand has received support from the Thailand Research Fund (TRF), Biodiversity Research and Training Program (BRT), and National Center for Genetic Engineering and Biotechnology (BIOTEC).

The Mudumalai plot was established with support from the Ministry of Environment and Forests, Government of India and the Center for Tropical Forest Science of the Smithsonian Tropical Research Institute. Permissions to carry out long-term research in Mudumalai were granted by the Tamilnadu Forest Department.

The Yasuní plot was financed by the generous support of the Pontifical Catholic University of Ecuador, donaciones del impuesto a la renta of the government of Ecuador, the US National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Tropical Research Institute, and the University of Aarhus (Denmark).