
Using a BDI Agent to Represent a Human on
the Factory Floor of the ARIAC 2023 Industrial

Automation Competition⋆

Leandro Buss Becker1,5, Anthony Downs2, Craig Schlenoff2, Justin Albrecht2,
Zeid Kootbally2, Angelo Ferrando3, Rafael Cardoso4, and Michael Fisher1

1 University of Manchester, Manchester, UK
{leandro.bussbecker,michael.fisher}@manchester.ac.uk
2 National Institute of Standards and Technology, MD, USA

{anthony.downs,craig.schlenoff,justin.albrecht,zeid.kootbally}@nist.gov
3 University of Genova, Genova, Italy

angelo.ferrando@unige.it
4 University of Aberdeen, Aberdeen, UK

rafael.cardoso@abdn.ac.uk
5 Federal University of Santa Catarina, Florianópolis, Brazil

Abstract. The “Agile Robotics for Industrial Automation Competi-
tion” (ARIAC) is an international robotic competition carried out in a
simulated factory floor using ROS 2 (Robot Operating System)/Gazebo.
Competitors control one gantry robot, four AGVs, and many other ele-
ments/devices, overcoming a range of agility challenges in this simulated
environment, and are provided with a scoring system to evaluate their
performance during the tasks. This paper describes one of the agility
challenges in ARIAC 2023, which pertains to a simulated human opera-
tor on the factory floor. In undertaking manufacturing tasks, competitors
must avoid close proximity between the gantry robot and the human not
to get penalized. The human operator is implemented as a Belief-Desire-
Intention (BDI) agent in Jason. It is provided with a range of different
potential types of behaviour in what concerns with how such human re-
acts when in proximity to the gantry robot. Three different personalities
are presented, ranging from a minimally intrusive up to a very intru-
sive one. A preliminary analysis was conducted to evaluate the impact
of using the developed Jason agent in the ARIAC 2023 competition.

Keywords: Robots in human environments · BDI agents · Jason/ROS

1 Introduction

Organised by the National Institute of Standards and Technology (NIST) since
2017, the Agile Robotics for Industrial Automation Competition6 [5] (ARIAC)

⋆ This work was supported by NIST in the USA and the UK’s Royal Academy of
Engineering through its Chair in Emerging Technologies scheme.

6 https://www.nist.gov/ariac

https://www.nist.gov/ariac

2 L.B. Becker et al.

is an annual simulation-based competition which brings together researchers and
practitioners to tackle challenges related to agile robotics that industry is facing.

ARIAC 2023 uses version 2 of the Robot Operating System (ROS 2), an
open-source framework that offers a comprehensive set of libraries and tools to
develop robot software, in conjunction with Gazebo, a physics-based simulator.
Together, ROS 2/Gazebo provide a flexible and efficient platform for designing,
testing, and deploying robotics applications.

One of the main goals of ARIAC is to provide real-life manufacturing scenar-
ios where humans and robots share a low-volume high-mix workload in a collab-
orative environment. As such, a new challenge has been introduced in ARIAC
2023, which consists of avoiding close contact between a human operator that
moves around the factory floor making inspections and the robots present in the
workcell. The workcell contains the following robots: (i) four AGVs that move
forward or backward within a given straight lane, and (ii) one gantry7 robot
that consists of a manipulator mounted onto an overhead system that allows it
to move along the entire factory floor.

It is our aim that the human operator can have different types of behaviours
(from now on we refer to these types as personalities), varying the level of inter-
ference caused by the human operator to the gantry robot. The human operator
must also attempt not to collide against the AGVs while they move within the
factory floor. Figure 1 depicts the ARIAC 2023 simulation scenario.

It is required for the gantry robot not to get closer to the human operator
than established in the ISO/TS 15066:2016 standard “Robots and robotic de-
vices – Collaborative robots”, which addresses the safety issue of robot speed
and separation monitoring [6]. A similar restriction also applies for the AGVs.
Competitors get penalized if such restrictions are not properly followed.

This paper concerns the implementation of the movement control strategy
for the human operator. Given that Belief-Desire-Intention (BDI) agents [9] can
emulate the cognitive reasoning of humans in a very natural way, this paradigm
was selected to be used for controlling our human operator. More specifically,
the implementation of our BDI agent is done in Jason [1], a well-known BDI
programming language [2]. The challenge that we face is this work relates not
simply with implementing the Jason agent, but also with how to properly inte-
grate it within the complex ARIAC 2023 simulation environment. Moreover, it
is also a challenge how to guide competitors so that they can properly deploy
all the tools needed to run our agent within the simulation environment.

The main contributions of this paper can be summarized are as follows: (i) we
describe how to integrate the Jason BDI agent for controlling the human operator
within the complex ARIAC 2023 simulation scenario; (ii) we detail how such
agent is in fact programmed in Jason and how it interfaces with ROS 2/Gazebo.
(iii) we analyze the impact of using such Jason agent in ARIAC 2023 from the
final user (competitors) perspective, in what concerns the deployment and usage
difficulties and also the impact in respect to the CPU utilization.

7 Gantry robots are also called Cartesian or Linear robots. In the ARIAC 2023 docu-
mentation it will be also referred to as ceiling robot.

Using Agents to Represent Humans in ARIAC 3

The remaining parts of this paper are organised as follows. Section 2 describes
the ARIAC competition. Section 3 presents the software architecture of our
solution. The developed Jason agent is detailed in Section 4. Our conclusions
are presented in Section 5.

Fig. 1. The ARIAC 2023 scenario. The red square in the top left (safe zone) is the
starting position of the human operator. The four blue squares below the tables are
the workstations. AGV-1 is moving and the other three are stationary. The human
operator is facing the gantry robot, but from the image it is not possible to guess its
current personality: if antagonistic or indifferent it will move towards the gantry; if
helper it will turn around and move back to the workstation-2.

2 Agile Robotics for Industrial Automation Competition

ARIAC is an annual competition which aims to tackle challenges that industry
is facing in agile robotics. The main goal of ARIAC is to test the agility of
industrial robot systems and to enable industrial robots on shop floors to be more
productive, more autonomous, and to require less time from shop floor workers.
In ARIAC, agility is defined broadly to address: (1) task failure identification and

4 L.B. Becker et al.

recovery by robots, (2) automated planning to minimise (or eliminate) the up-
front robot programming time when a new task is introduced, and (3) operation
in fixtureless environments, where robots can sense the environment and perform
tasks on parts that are not in predefined locations. The competition participants
are required to develop a robot control system for a gantry robot in order to
perform kitting operations in a simulated environment.

Prior to designing ARIAC in 2017, NIST explored existing robotics compe-
titions to ensure none of them already addressed industrial robotics agility. The
Amazon Picking Challenge [4] was one of the competitions related to challenges
addressed in ARIAC. The competition assessed the capability of robots to per-
form some of the common pick and place operations that are currently performed
by humans. The Robot Perception Challenge [7] was another competition which
was relevant to agility challenges. The goal of this competition was to drive im-
provements in sensing and perception technologies for next-generation robots.
ARIAC was designed to test and measure Industrial Robot Agility in a holistic
sense, because no other competitions were covering that niche.

Figure 1 depicts the simulated environment where the ARIAC 2023 competi-
tion takes place. The gantry can move in the simulated environment to interact
with objects in order to perform kitting for assembly tasks (announced dynam-
ically during the simulation). A kit is an order for specific items, which can be
found on shelves, on the conveyor belt, and in bins. The robot builds kits by pick-
ing up all the required items and placing them into one of the trays located on
the automated guided vehicles (AGVs). When an order is completed, the AGV
delivers the kit and a final score is given to the participants’ systems. The final
score takes into account many aspects, such as if the type/colour of the selected
item matches the type/colour required by the order; the accuracy of products’
pose in the tray; and the time taken by the control system to complete a kit
(measured in simulation seconds).

The ARIAC 2023 competition has eight “agility challenges”8. They repre-
sent extra difficulties that competitors may face while performing kitting tasks.
For example, competitors could face faulty and/or flipped parts to assemble.
Challenges are sampled together in different “trials” that the competitors must
overcome during the qualification and final rounds of the competition. Within
the scope of this paper we focus on the “human operator” agility challenge.

2.1 Human Operator Agility Challenge

This challenge consists of inserting a human operator that navigates through the
factory floor (workcell). In Figure 1, it is possible to observe the presence of the
human operator (on the right) facing the gantry robot (on the left). The goal
of this challenge is to test the ability of the competitors’ control system for the
gantry robot to avoid collisions with the human operator, otherwise it will incur
a penalization.

8 https://ariac.readthedocs.io/en/latest/competition/challenges.html

https://ariac.readthedocs.io/en/latest/competition/challenges.html

Using Agents to Represent Humans in ARIAC 5

The simulated human operator will take one of the three personalities in a
given trial. Note that, once a personality has been selected for a trial, it will
not change during that trial. Even though the development and integration of
changing a personality at runtime in ARIAC would be feasible, to simplify the
evaluation of the competitor’s controller, we opted for a static agent’s personality.
Regardless of the personality that the agent adopts, it was decided to avoid
random moves and to make simplistic, predefined, movement patterns along the
four workstations that simulate working/inspection tasks, something common
for humans to do within a factory floor. The human operator agent will keep
travelling to these workstations and working until the trial ends.

If the human operator and one of the robots get closer than a minimum safety
distance (details for the calculation are provided in the next section), then the
human is teleported to a safe zone (the top left position shown in Figure 1).
Exceptionally, the human operator is not teleported if it gets close to a non-
moving (static) AGV. Moreover, if the teleport operation is caused for being too
close to the gantry robot, then the competitor team gets penalised, which also
implies disabling the gantry robot for 8 seconds; afterwards, the normal operation
is resumed. In such case the human operator is teleported away purely to give
time to the competitors to recover and to avoid situations where the human can
behave too aggressively and keep the gantry in a deadlock.

The agent’s personalities are as following:

1. Indifferent : The human operator follows a predetermined path, regardless of
the location of the robots in the environment.

2. Antagonistic: The human operator purposefully moves towards the gantry
robot to interfere with the robot’s current task.

3. Helpful : The human operator will move to another workstation (changing
direction to avoid the gantry) once the gantry robot is detected to be at a
certain distance (safety distance× 2).

The helpful agent was designed to be minimally intrusive, and should rarely
interfere the competition. On the other hand, the antagonistic agent is intended
to be very intrusive, and is likely to frequently cause penalization to the com-
petitors. We foresee that the indifferent agent is the one that will better judge
the competitors’ skills to avoid contact with the human operator.

2.2 Safety Distance Calculation

The safety distance between the human operator and the robots (gantry robot
and AGVs) is derived from the ISO/TS 15066:2016 standard - “Robots and
robotic devices - Collaborative robots”, which addresses the safety issue of robot
speed and separation monitoring [6]. ISO/TS 15066:2016 specifies that the min-
imum allowable distance between a robot and a human is

dmin = kH(t1 + t2) + kRt1 +B + δ

where t1 is the maximum time between the actuation of the sensing function
and the output signal switching devices to the off state, t2 is the maximum

6 L.B. Becker et al.

response time of the machine (i.e., the time required to stop the machine), δ is
an additional distance, based on the expected intrusion toward the critical zone
prior to actuation of the protective equipment, kH is the speed of the intruding
human, kR is the speed of the robot, and B is the Euclidean distance required
to bring the robot to a safe, controlled stop.

3 Simulation Software Overview

Figure 2 illustrates the elements within the simulation scenario that are of inter-
est for the developed BDI agent: the human operator, the four AGVs, and the
gantry robot. The relevant related information about such elements – mainly
location and speed – must be constantly updated within the agent, which can
only actuate towards the human operator. The additional elements in the scene
(shown in Figure 1) are treated simply as obstacles that should be avoided by
the navigation control algorithm running in ROS 2.

Agent

Gantry Robot

Human operator

Update position
Retrieve information
about environment

Internal reasoning
Is gantry in proximity of human?
What the human should do?
...

Share environment

AGVs

Simulated Environment

Fig. 2. Overview of the simulation environment from the BDI agent perspective.

A relatively complex software architecture was built to support this simu-
lation environment. Such software architecture is composed of several elements
that include, mostly, artifacts from ROS 2 (nodes, topics, services, actions, plug-
ins) and the Jason agent. Figure 3 depicts the elements of the proposed solution9.

9 Source code available at https://github.com/usnistgov/ARIAC

https://github.com/usnistgov/ARIAC

Using Agents to Represent Humans in ARIAC 7

human_control
node (Python)

human-
agent

(Jason)

/ariac_human/unsafe_distance
std_msgs/Bool

/ariac/agv{n}_status
ariac_msgs/msg/AGVStatus

/ariac_human/go_home
std_msgs/Bool

/ariac_human/go_home_agv
std_msgs/Bool

/ariac_human/navigate_to_pose
nav2_msgs/NavigateToPose

task_manager
plugin (cpp)

/ariac/start_human
std_msgs/Bool

nav2
stack

teleport
plugin (cpp)

/ariac_human/teleport
std_srvs/Trigger

ROS topic
ROS service
ROS action
ROS node

gazebo plugin
java process

Key HumanState
geometry_msgs/Point human_position
geometry_msgs/Point robot_position
geometry_msgs/Vector3 human_velocity

geometry_msgs/Vector3 robot_velocity

/ariac_human/state
ariac_msgs/HumanState

/ariac_human/stop
std_msgs/Bool

/ariac_human/goal_position
geometry_msgs/Point

Fig. 3. Software architecture artifacts that support the adopted simulation scenario.

Analysing Figure 3 from left to right, first there is the task manager Gazebo
plugin. It is in charge of initialising all the components that constitute the com-
petition scenario. It is also in charge of publishing the /ariac/start human topic
to start our Jason’s human–agent, which was already launched but remains idle
until a message on this topic is received. Continuing to the right of the figure,
the agent can publish to the three topics at the bottom and subscribe to the
two topics at the top, which are all related to the human control ROS 2 node.
This node also interacts with the teleport Gazebo plugin and with the navigation
stack (part of the ROS 2 distribution).

4 The Human Agent

The Jason agent is in charge of the high-level control of the human operator. In
the simulation, the human is represented as a robot with a human mesh on top
of it. Representing the human as a robot allows the human to easily interact with
other ROS elements in the simulation. The agent is responsible for controlling the
movements of the human, calling ROS 2 functions such as move(x, y) and stop().
It must also be constantly updated about the position of the gantry robot and
the AGVs, so that it can properly reason about the actions to be taken. It was
decided that the human behaviour should be simple and predictable to a certain
extent, i.e., there should be no random moves. Therefore, in general terms, the
human operator must move around four predefined points of interest within the
virtual factory’s shop floor (the workstations). The default movement occurs in
a clockwise basis starting at workstation 4 (4 > 2 > 1 > 3 > 4 > . . .).

Jason programs are implemented separately into agent and environment pro-
grams. Agent programs consist of (in this order): initial beliefs and rules; ini-
tial goals; and plans. Plans are written with traditional AgentSpeak syntax [8]
triggering_event : context <- body. wherein the triggering_event can be the
addition/deletion of a belief or a goal, the context are the preconditions of the

8 L.B. Becker et al.

plan, and the body is a sequence of operations (actions or addition/deletion of
beliefs/goals). Environment programs are written in Java and define the se-
mantics of the actions that agents can execute, as well as providing the agent
with environment perceptions.

4.1 Initial Beliefs and Initial Goal

The initial lines of code from the agent define a set of static beliefs that are used
for orientation purposes. For instance, it defines the (x, y) coordinates of the four
target positions (workstations 1 to 4), the first position for the robot to visit, and
the order in which such positions should be visited (for either counterclockwise
and clockwise movement directions).

Two beliefs can change at runtime: working(Loc) and counterClockWise. The
first keeps track of the current station, so that the agent can derive the next tar-
get position; while the latter, if present in the agent’s belief, indicates a counter-
clockwise movement direction (otherwise the agent adopts clockwise movement).
The agent has one initial goal to wait for the human start message.

4.2 Plans for Movement Control

The agent’s main task is to keep the human operator moving through the pre-
defined points. We implement this with two plans, with triggering events +!work
and +work_completed, as shown in Listing 1.1. The first has a context used only
to find the coordinates of the desired destination (ln.1)10. It then removes the
belief that indicates the previous target location (ln.2), and sets the belief with
the current target location (ln.3). Finally, it calls an external action in charge of
activating the movement at the ROS node (ln.4). The +work_completed is trig-
gered when the ROS node indicates that the human operator reached the target
position. Its context is used to find the next location to be visited. There is an
analogous version of this plan for the counterclockwise movement.

1 +!work(Loc) : location(Loc , X, Y, Z) <-

2 -working(_);

3 +working(Loc);

4 move(X, Y, Z).

6 +work_completed(_) : working(Loc) & next_loc(Loc ,Next) &

counterClockWise <- !work(Next).

Listing 1.1. Main plans to move the human operator.

In the plan on Listing 1.2, the +gantry_disabled(_) belief is added when
the gantry is disabled due the fact that the distance between the gantry and
the human operator is violating the safety distance. This belief is added with a
parameter for debugging purposes. Note the use of as in Prolog, which indicates
that the term can be unified with anything (i.e., we do not care about its contents

10 ‘ln.’ will be used as abbreviation for line throughout the paper.

Using Agents to Represent Humans in ARIAC 9

in this plan). A similar plan was created for when the human operator is too
close to an AGV. The difference in the AGV case is that it calls a teleport service
that does not penalise the competitor.

1 +gantry_disabled(_) : firstStation(ST) <-

2 .drop_all_desires;

3 teleport_safe; // stop + teleport to safe zone

4 .wait (8000);

5 !!work(ST).

Listing 1.2. Plan for when the Gantry is disabled.

In such a plan, the agent drops its own desires (ln.2) using an internal action
(Jason predefined actions that do not interact with the environment). This is
done to stop all goals currently executed by the agent (e.g., moving to a work-
station). Then, we call an external action (implemented in the environment)
to teleport the human operator to the safe location (ln.3). This is obtained on
the Gazebo side by means of a custom plugin (developed as part of the human
challenge integration in ARIAC). After that, the agent waits a fixed amount of
time (ln.4); the latter is domain specific and has been decided to give time to the
gantry’s controller to restore its own tasks. At the end, the plan concludes by
calling the !work once more, and restoring the standard movement of the human
operator in the simulation by going to the first workstation.

4.3 Implementing Personalities

The human personality defines how it behaves in respect to the gantry position.
This role is defined upon the agent’s initialisation based on the parameter spec-
ified in a particular trial (we expect that in ARIAC 2023 there will be at least
one trial with each personality). As mentioned in section 2, the three possible
personalities are Indifferent, Antagonistic, and Helpful.

In order to implement these three different personalities within the Jason
agent, we provide three distinct implementations for the +gantry_detected per-
ception. Each implementation lies in a different agent program file (asl exten-
sion), which is loaded according to the agent initialisation parameter. This per-
ception is triggered when the human operator and the gantry get “too close”.
This distance, which is computed in Jason’s Environment class, is defined as
being twice the safety distance (calculated as shown in Section 2.2).

The implementation for the indifferent personality is proforma, as in fact
it has no condition and does not take any action (it is just an empty plan).
Therefore we only discuss here the implementations for the antagonistic and the
helpful personalities, as follows.

The core part of antagonistic agent behavior is shown in Listing 1.3.

10 L.B. Becker et al.

1 +gantry_detected(_) :

2 working(Loc) & next_loc(Loc ,Next) <-

3 stop_movement;

4 .drop_all_desires;

5 move_to_gantry;

6 .wait("+work_completed(_)");

7 !!work(Next).

Listing 1.3. Jason code for the agent with the antagonistic personality.

It has a context that will always be true since it uses beliefs that are always
supposed to be present in the belief base, but it is needed in order to allow iden-
tifying the destination that the human is currently moving to (ln.2). It first stops
and cancels any navigation goal (ln.3), then it drops all desires (ln.4) and trig-
gers an external action requiring the human to move towards the gantry (ln.5).
Afterwards the plan remains blocked until it reaches the target position (ln.6).
When this holds, it resumes moving to the the next station (ln.7).

The core part of the helpful agent implementation is shown in Listing 1.4.
It requires two distinct plans because it can be moving in either clockwise or
counterclockwise directions. The agent keeps the internal belief counterClockWise
, which is used in the plan contexts to reason about the current direction. If this
belief is present (condition in ln.2), then the movement is counterclockwise, and
the plan in ln.1–6 is triggered. Otherwise, if it is absent (condition in ln.9), the
movement is clockwise, triggering the plan in ln.8–13. Besides having different
contexts, each of them adjusts the direction in a different way (ln.5 versus ln.12)
and resumes the movement towards a different destination (ln.6 versus ln.13).

1 @detected[atomic]

2 +gantry_detected(_) : working(Loc) & previous_loc(Loc ,Prev)

& counterClockWise <-

3 stop_movement;

4 .drop_all_desires;

5 -counterClockWise;

6 !!work(Prev).

8 @detectedCounter[atomic]

9 +gantry_detected(_) : working(Loc) & next_loc(Loc ,Next) &

not counterClockWise <-

10 stop_movement;

11 .drop_all_desires;

12 +counterClockWise;

13 !!work(Next).

Listing 1.4. Jason code for the agent with the helpful personality.

The plans for the helpful agent are implemented as atomic, a predefined plan
annotation available in Jason (@id[atomic] where id is a unique plan identifier)
to stop considering concurrent intention stacks (i.e., only the intentions related
to this plan can be selected). This is required because we do not want these

Using Agents to Represent Humans in ARIAC 11

plans to be interrupted while executing, otherwise the agent could lose track of
its current movement direction.

4.4 The Environment Class

Jason’s Environment class is responsible for performing the agents’ interaction
with the external world. In this case, the Environment class is responsible for
subscribing to the ROS topics of interest and transforming the messages within
them into perceptions for the agent. It is also responsible for implementing the
agent’s external actions, which in this case means publishing on ROS topics. The
previous Figure 3 presented the topics-of-interest for our human agent.

Our implementation is based in the ROS-A interface11 [3] which makes use
of the ROSBridge12 library. Listing 1.5 shows our RosEnv class definition and
its init() method, where subscriptions to ROS topics are defined (e.g., ln.8–26)
and, when received, are transformed into perceptions for the agent (ln.21–23).
In total, the agent subscribes to four ROS topics, as depicted in the Figure 3.

The method executeAction() is responsible for decoding the required exter-
nal action, as presented in ln.1–11 of Listing 1.6. An example of ROS–topic
publication is given in ln.12–15. In total, the agent publishes four different ROS
topics, as also depicted in the Figure 3.

4.5 Results and Additional Remarks

This section presents the preliminary analysis conducted to evaluate the impact
of using the developed Jason agent in the ARIAC 2023 competition – a com-
plete analysis should be done once the competition is finished. Such analysis is
performed in terms of deployment and usage difficulties – from the final users
(competitors) perspective – and also in respect to the impact on the computing
resources utilization.

The metric used to evaluate the users difficulties regards the number of re-
lated issues opened in the competition’s Github 13. From a total of 256 issues
opened until the present moment, only 3 (1.2%) were related with the “human
operator” agility challenge: #221, #229, and #245. The first issue was related
with installation problems of two required artifacts, Java and ROS 2: (i) wrong
JDK version, and (ii) missing ROS 2 nav2-simple-commander package. The issue
#229 addressed the effects the human in proximity with the AGVs, and trig-
gered some internal parameters tuning in our software. The last issue addressed
difficulties for running the system within a Docker package.

11 https://github.com/rafaelcaue/jason-rosbridge
12 http://wiki.ros.org/rosbridge suite
13 https://github.com/usnistgov/ARIAC/issues?q=is%3A+issue

https://github.com/rafaelcaue/jason-rosbridge

12 L.B. Becker et al.

1 public class RosEnv extends Environment{

2 RosBridge bridge = new RosBridge ();

3 ...

4 @Override

5 public void init(String [] args) {

6 super.init(args);

7 bridge.connect("ws:// localhost :9090", true);

8 bridge.subscribe(SubscriptionRequestMsg.generate("

9 /ariac_human/state")

10 .setType("ariac_msgs/msg/HumanState")

11 .setThrottleRate (1)

12 .setQueueLength (1),

13 new RosListenDelegate () {

14 public void receive(JsonNode dt, String st) {

15 MessageUnpacker <HumanState > unpkr = new

MesageUnpacker <HumanState >(HumanState.class);

16 HumanState m = unpkr.unpackRosMessage(dt);

17 gpX = m.robot_position.x; // store Gantry position

18 ... //same to y,z

19 double dis_robotHuman = calcDistanceRH(m);

20 double safe_dis = calcSafeDistance(m);

21 if(dis_robotHuman >2* safe_dis){

22 Literal gDet=new LiteralImpl("gantry_detected");

23 gDet.addTerm(new NumberTermImpl(ctrDt ++));

24 addPercept("human",gDet);

25 } } }

26); // END subscribe "/ ariac_human/state"

27 ... // continue subscription to other ROS topics

28 } // END init()

Listing 1.5. RosEnv Jason’s Environment with ROS–topics subscription.

Performance tests were conducted to evaluate the impact of the developed
BDI-agents in respect to the computing resources utilization. Such tests were
executed using a Linux Ubuntu 20.04 workstation with an Intel Core i9-10920X
CPU with 24 cores at 3.50 GHz, 64 GiB of memory, and the NVIDIA GeForce
RTX 3080 graphics card. ROS 2 Galactic was used. The ps command at 2 s
intervals was used to log CPU utilization. The performance data was collected by
running a 275 s long experiment. As the experiment script is launched it spawns
27 processes related with ROS 2/Gazebo and one process related with the Jason
agent. For the ROS 2/Gazebo processes, the average CPU utilization was 510%
(five cores entirely plus 10% of a sixth core). For the Jason process, the average
CPU utilization was 6.5%. The Jason CPU usage decreased slightly over time.
Overall, Jason required only 1.27% of the CPU portion used by ROS 2/Gazebo,
which shows that it does not provide a significant overhead when observing the
complete simulation system.

Using Agents to Represent Humans in ARIAC 13

1 public boolean executeAction(String ag, Structure ac){

2 if (ac.getFunctor ().equals("move")) { //

3 ... //get x,y,z "terms" from ac

4 move(x,y,z);

5 } else if (ac.getFunctor ().equals("stop_movement"))

6 stop_moving ();

7 ... // continue with other ext. actions

8 else return false;

9 informAgsEnvironmentChanged ();

10 return true; // action successfully executed

11 } ... //here starts the method ’s implementation

12 public void stop_moving () {

13 Publisher pub = new Publisher("/ariac_human/stop",

"std_msgs/Bool", bridge);

14 pub.publish(new Bool(true));

15 }

Listing 1.6. External actions and ROS topic publishers.

We recorded videos demonstrating the three different human personalities in
action in the competition environment.14 As the gantry is stopped close to the
station 1, only the indifferent human will in fact reach this station – and then
will continue moving up to the point that it gets teleported. The antagonistic
human will change its direction towards the gantry before reaching station 1, and
shortly after it will also get teleported. The helpful human will turn around as
it gets close to the station 1 and will continue moving in the opposite direction.

5 Conclusions and Future Work

This paper presented what is considered to be the first use of BDI agents in the
ARIAC competition. Amongst the challenges that we faced when implement-
ing this agent, we highlight the high-level of complexity involving the software
architecture of the ARIAC 2023 competition. Our Jason agent was required to
interact with different components of the simulation environment, so that it
could properly control the human operator in the simulation. Besides the Jason
agent, including its environment, it was necessary to implement a couple of addi-
tional ROS 2/Gazebo components, such as the Python ROS node for movement
control and the CPP Gazebo plugin to support the teleport operation.

The conducted analysis presented evidences that using BDI technologies did
cause significant overhead to the final users in terms of complexity for properly
putting the system to run. More importantly, it did not lead to a significant
overhead in terms of CPU utilization.

Even though the currently developed movement control for the human oper-
ator is simplistic if considering the full capacities of a BDI application, it serves
as basis for more sophisticated/complex versions that will come in the future.

14 Indifferent: https://youtu.be/5pqm5WSQNTw. Helpful: https://youtu.be/

7CH4skoOs8c. Antagonistic: https://youtu.be/TQh9GQ1BbFw.

https://youtu.be/5pqm5WSQNTw
https://youtu.be/7CH4skoOs8c
https://youtu.be/7CH4skoOs8c
https://youtu.be/TQh9GQ1BbFw

14 L.B. Becker et al.

This can, therefore, be seen as a successful initiative, which can also be observed
as a pedagogical action towards evangelising the use of cognitive/BDI agents
within non-agents developer communities, such as the robotics one, which is the
community mostly involved with the ARIAC competition. We also understand
this to be an initial seed towards spreading the use of cognitive agents within
industrial automation environments.

As future work, we aim to analyse the practical effects (consequences) on
competitors in the human challenge after ARIAC 2023 takes place, in especial
in what concerns the impact of the three different personalities of the human
operator.

References

1. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley & Sons (2007)

2. Cardoso, R.C., Ferrando, A.: A Review of Agent-Based Programming for Multi-
Agent Systems. Computers 10(2), 16 (2021)

3. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An Interface for Program-
ming Verifiable Autonomous Agents in ROS. In: Multi-Agent Systems and Agree-
ment Technologies. pp. 191–205. Springer (2020)

4. Correll, N., Bekris, K.E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada,
K., Rodriguez, A., Romano, J.M., Wurman, P.R.: Analysis and Observations from
the First Amazon Picking Challenge (2016)

5. Harrison, W., Downs, A., Schlenoff, C.: The Agile Robotics for Industrial Automa-
tion Competition. AI Magazine 39(4), 73–76 (2018)

6. Marvel, J.A.: Performance Metrics of Speed and Separation Monitoring in Shared
Workspaces. IEEE Trans. on Automation Science and Eng. 10(2), 405–414 (2013)

7. Marvel, J.A., Hong, T.H., Messina, E.: 2011 solutions in perception challenge per-
formance metrics and results. In: Proc. of the Workshop on Performance Metrics
for Intelligent Systems. p. 59–63. ACM, New York, NY, USA (2012)

8. Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In: Agents Breaking Away, MAAMAW 1996. LNCS, vol. 1038, pp. 42–55.
Springer (1996)

9. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: Lesser, V.R.,
Gasser, L. (eds.) Proceedings of the First International Conference on Multiagent
Systems. pp. 312–319. The MIT Press, United States (1995)

	Using a BDI Agent to Represent a Human on the Factory Floor of the ARIAC 2023 Industrial Automation Competition

