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A B S T R A C T

We present our novel deep multi-task learning method for medical image segmentation. Existing multi-task
methods demand ground truth annotations for both the primary and auxiliary tasks. Contrary to it, we propose
to generate the pseudo-labels of an auxiliary task in an unsupervised manner. To generate the pseudo-labels,
we leverage Histogram of Oriented Gradients (HOGs), one of the most widely used and powerful hand-crafted
features for detection. Together with the ground truth semantic segmentation masks for the primary task and
pseudo-labels for the auxiliary task, we learn the parameters of the deep network to minimize the loss of both
the primary task and the auxiliary task jointly. We employed our method on two powerful and widely used
semantic segmentation networks: UNet and U2Net to train in a multi-task setup. To validate our hypothesis, we
performed experiments on two different medical image segmentation data sets. From the extensive quantitative
and qualitative results, we observe that our method consistently improves the performance compared to the
counter-part method. Moreover, our method is the winner of FetReg Endovis Sub-challenge on Semantic
Segmentation organised in conjunction with MICCAI 2021. Code and implementation details are available
at:https://github.com/thetna/medical_image_segmentation.
1. Introduction

Medical image segmentation (Lei et al., 2020b; Milletari et al., 2016;
Sharma and Aggarwal, 2010; Pham et al., 2000) is an important and
active research problem. The usage of semantic segmentation in sev-
eral biomedical applications such as computer-assisted diagnosis (Zhao
et al., 2019), robotic surgery (Colleoni et al., 2020), radiotherapy
planning and follow-ups (Nemoto et al., 2020), etc., is growing day
by day. Due to this reason, the research community has witnessed an
unprecedented growth of research interest in this domain. There are
several types of semantic segmentation problems in medical imaging.
Broadly, the existing semantic segmentation tasks can be grouped into
four major categories viz. organ segmentation (Hu et al., 2017), robotic-
instrument segmentation (Pakhomov et al., 2019; Shvets et al., 2018),
vessels segmentation (Fraz et al., 2012), and cellar and sub-cellular
segmentation (Rizk et al., 2014), etc.

After the seminal work of Krizhevsky et al. (2012) on large-scale
image classification using deep convolutional neural networks, the
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use of deep architectures has not been limited only on computer
vision (Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al.,
2016); it is equally popular in medical image analysis (Suzuki, 2017;
Lee et al., 2017). With the usage of deep learning algorithms, the
accuracy of computer vision tasks such as classification, segmentation,
and detection is improving significantly (Rawat and Wang, 2017). A
similar trend has been observed on medical image analysis too (Anwar
et al., 2018). We obtain the performance gain at the cost of many
annotated examples (e.g. Imagenet consists of 1M annotated examples).
It is evident that deep learning algorithms are data voracious and
demand millions of training examples. Collecting data, in general, is
time-consuming, needs experts and is also expensive. Moreover, in
medical imaging, it is not only about collecting annotations as they
come from highly trained experts, e.g. radiologists (e.g., MRI or CT
scanner), but due to growing concerns on privacy, it is difficult to get
the unlabelled examples (Peng et al., 2021).
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Fig. 1. This Figure shows an input image (left) and its ground truth semantic segmentation map (left) for the primary task and the Histogram of Oriented Gradients map of the
input image (right). In the HOG map, we can observe the boundary between the organs and the instruments that belong to different semantic categories. Zoom in for a better
view.
To improve the generalization of a model from a fixed amount
of training examples, sharing the parameters between main task and
auxiliary tasks (Caruana, 1997) is popular for a long time. The choice of
an auxiliary task directly influences the performance of the main task.
We are dealing with semantic segmentation. One of the previous studies
on semantic segmentation and detection by Dong et al. (2014) explains
that semantic segmentation and detection are highly correlated tasks
and often complementary in nature. MaskRCNN (He et al., 2017), one
of the most popular networks in recent time, shares the parameters
between detection and segmentation networks. Similarly, Takikawa
et al. (2019) proposed to predict contour as an auxiliary task while
training a network for semantic segmentation as the primary task. The
major drawback of these methods is a need of annotated examples for
both the primary and the auxiliary tasks. Collecting such a heteroge-
neously labelled set of training examples is even more challenging in
the medical image domain.

To tackle the problem of collecting training examples with the
heterogeneous set of labels, we propose to generate pseudo-labels for
the auxiliary task from the hand-crafted features instead. As one can
extract hand-crafted features in an unsupervised manner, generating
pseudo-labels of any type of images for an auxiliary task can be done
easily. To this end, we leverage the Histogram of Oriented Gradients
(HOGs) (Dalal and Triggs, 2005) to generate pseudo-labels. Demar-
cation of the organs and surgical instruments parts belonging to a
common category from unrelated ones would play a significant role in
their accurate segmentation. Auxiliary tasks focusing on such aspects
would help the network to learn the robust representation for semantic
segmentation. Thus, we chose HOGs to generate pseudo-labels for the
auxiliary task as these features are carefully designed state-of-the-art
hand-crafted features for object detection (Dalal and Triggs, 2005).
However, any other type of hand-crafted features can be employed in
our pipeline to extract the pseudo-labels. Fig. 1 shows the HOGs map
of eye anatomy and surgical instrument. In the Figure, we can see
the demarcation of a surgical instrument from eye anatomies made by
the map of the Histogram of Oriented Gradients. Once, we extract the
HOG features, we consider these representations as annotations of the
auxiliary task and the ground truth semantic map as annotations of the
primary task. We extended existing popular architectures for semantic
segmentation: UNet (Ronneberger et al., 2015) and U2Net (Qin et al.,
2020) to minimize the loss of both the auxiliary and primary tasks and
train the network in a multi-task manner.

Use of image feature representations as a pseudo-label is growing
these days. Recently, Gidaris et al. (2020) trained a deep network to
predict Bag of Visual Words (BoWs) for image classification. Unlike
ours, this method relied on the learned features extracted from a
network trained to minimize the image rotation angle loss. In medical
imaging, organs such as the eye bulb, pupils, colons, etc., are either
hollow and cylindrical or rotationally invariant. Hence, the pipeline is
not directly applicable in medical imaging. In addition, they trained
their method to minimize the objective function of a single task,
whereas we train our pipeline in a multi-task set-up. We summarize
our contributions in the following points:
2

• We investigated the Histogram of Oriented Gradients to generate
pseudo-labels of images and exploited these representations as
labels of an auxiliary task.

• We extended existing semantic segmentation networks to train in
a multi-task framework.

• We applied our method on two challenging medical semantic
segmentation datasets: CaDIS (Grammatikopoulou et al., 2021)
and Robotic Instrument Segmentation (Allan et al., 2019). Our
extensive experiments demonstrate that our pipeline consistently
outperforms the counter-part single task networks.

2. Related works

Our work falls into the category of deep multi-task learning with
pseudo labels, self-supervised learning. In this Section, we summarize
some of the important past works closely related to our method.

Deep Multi-task Learning and Auxiliary-task Learning for Semantic
Segmentation: Both multi-task learning and auxiliary learning methods
are explored in medical image segmentation. The subtle difference
between these approaches lies in the presence or absence of a secondary
task during inference time. However, these two terms are often used
interchangeably in the literature. We first list some of the important
multi-task works followed by auxiliary tasks.

UNet (Ronneberger et al., 2015) is one of the earliest and the most
widely used deep architectures for medical image segmentation. This
architecture is a supervised learning architecture and can handle only
semantic maps as the ground-truth annotations. Another work on pan-
creas segmentation (Roth et al., 2018) trains deep learning architecture
in a multi-stage manner. It predicts the bounding box to localize the
pancreas followed by fine-tuned semantic segmentation. Unlike our
approach, this method uses ground truth annotations on both stages.
In contrast, we rely on HOG features computed unsupervised and
trained the model to minimize the losses jointly. Another work on brain
lesion segmentation (Kamnitsas et al., 2017) employs 3D Convolutional
Neural Network with a fully connected Conditional Random Field.
Similarly, Lei et al. (2020a) employ self co-attention to improve the
performance of anatomy segmentation in whole breast ultrasound.
However, these methods consider only semantic segmentation maps for
ground truth. One of the recent works on tumours segmentation in 3D
breast ultrasound images (Zhou et al., 2021) proposed to train CNN in
multitasking fashion. Wang et al. (2018) modified UNet architecture
to jointly minimize the segmentation and classification loss in ultra-
sound images. Xie et al. (2018) trained multi-stage multitask learning
framework for breast tumour segmentation in ultrasound images. Song
et al. (2020) learns the parameters of network to minimize the loss
for skin lesion detection, classification, and segmentation. Chakravarty
and Sivswamy (2018) trained a multi-task learning CNN for semantic
segmentation and image level glaucoma classification. Another work
on histopathology image analysis (Qu et al., 2019) trained a multi-
task network for nucleus classification and segmentation. All of these
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Fig. 2. Diagram showing the pipeline to extract the Histogram of Oriented Gradients (HOGs). Zoom in for better view.
methods need ground truth annotations for both the main task (seman-
tic segmentation) and auxiliary tasks. Whereas, in our case, we have
annotations for the primary task and generate pseudo-labels for the
auxiliary task.

We present here some of works on auxiliary task. Zhang et al. (2014)
proposed to estimate head pose as an auxiliary task for improving
the facial landmark identification. Similarly, in detecting indoor ob-
jects, Mordan et al. (2018) leveraged the effectiveness of scene labels
prediction and depth and surface orientation evaluation at pixel level.
For semantic segmentation of medical images, Feyjie et al. (2020)
added an auxiliary task of image denoising. In a recent work to di-
agnose COVID-19 from other pneumonia and normal control, Li et al.
(2021) trained the model with an auxiliary task of contrastive learning
to learn transformation invariant representations. The addition of sub-
sidiary task has been proven effective in boosting the performance of
the network for the main task.

Self-supervised Learning: In Self-supervised learning, the annotations
for the pre-text tasks are generated in an unsupervised manner. In
general, the parameters of a CNN are learned to minimize the loss
of pre-text tasks followed by fine-tuning of the parameters for the
downstream tasks. Several different ways are investigated in the past
years to generate the annotations of pre-text tasks. These includes,
image rotation angle (Gidaris et al., 2018), colourization (Zhang et al.,
2016), image-patch context (Pathak et al., 2016), in-painting (Pathak
et al., 2016), etc. These methods mostly pivot on the geometric trans-
formations of the images. What kind of pre-text task is going to be
the most useful for the end-task is still an open research problem.
Recently, Gidaris et al. (2020) proposed to learn the representations by
predicting the visual Bag of Words (BoW). This method, closest to ours,
rely on visual features to generate the pseudo-labels. As we mentioned
before, they compute BoWs from the visual representations extracted
from model trained to minimize the rotation angle of an image. Thus,
this approach is not directly applicable to our applications as most of
the organs such as eyes, eye-bulb exhibit rotationally invariant shape.
Unlike most of the self-supervised pipeline, we propose to minimize the
loss of end-task and pre-text task jointly.

3. Proposed method

In this Section, we present our pipeline in detail. We start with the
description of HOGs followed by the generation of pseudo-labels for the
auxiliary task. Afterwards, we explain our approach to extend a single-
task semantic segmentation network to a multi-task network. Finally,
we explain the overall objectives.

We have a scenario × where  represents input image space and
 represents output semantic map space. Our goal is to learn a function
𝑓 ∶  →  with a given training examples 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… (𝑥𝑖, 𝑦𝑖)
… (𝑥𝑁 , 𝑦𝑁 )} ⊂  ×  . In the training set 𝑇 , 𝑁 is total number of
training examples, 𝑥 ∈ R(𝑊 ×𝐻×𝐶), 𝑦 ∈ R(𝑊 ×𝐻), where, 𝑊 ,𝐻,𝐶
3

𝑖 𝑖
represents width, height, and total number of channels in an image
respectively. Our contribution lies in generating extra annotations of
the images in an unsupervised way and extending the single task
semantic segmentation network to train in a multi-task manner to
improve the performance of semantic segmentation. We make use of
HOGs to extract the pseudo-annotations of an image.

3.1. Histogram of oriented gradients as pseudo labels

It is proven that the HOGs (Dalal and Triggs, 2005) were one of the
most powerful hand-features on computer vision and medical image
analysis especially for detection before the advent of data driven feature
extraction methods such Alexnet (Krizhevsky et al., 2012), ResNet (He
et al., 2016), and UNet (Ronneberger et al., 2015). In this paper,
we use HOGs for a novel cause i.e. to extract the pseudo-labels of
the images. To compute HOGs from an image, first of all, we crop
and resize the images to the desired dimensions of width, 𝑊 and
height, 𝐻 . We further divide the images into a non-overlapping image
patches of width 𝑤, and height ℎ, resulting the total number of patches
of ⌊𝑊 ∕𝑤⌋ × ⌊𝐻∕ℎ⌋. For each of the patches, we run 1-D discrete
derivative masks centred around a pixel in both the horizontal and
vertical directions. 𝑑𝑥 = [1, 0,−1] and 𝑑𝑦 = [1, 0,−1]𝑇 are horizontal
and vertical filtering kernels respectively. We run these filters on all
the pixels of every image patches as shown in Fig. 2.

After applying the kernels centred on every pixels, we compute the
histogram of gradients for all the patches and append them together.
Gradients are computed as arctan( 𝑑𝑦𝑑𝑥

), and the gradients are assigned
to the nearest bin. The histogram can have 𝑘 number of bins with
angle ranging from 0 to 180 degrees. The magnitude of the gradient
is computed as

√

𝑑2𝑥 + 𝑑2𝑦 . This magnitude of the gradients encodes the

frequency of a bin of the gradient taken into consideration. In this
manner, we estimate the histogram of oriented gradients in every patch.
The number of the bins and the patches determine the dimension of
the HOGs and are the hyper-parameters in our study. We present their
studies in Experimental Section in depth. We concatenate the HOGs for
all the patches of an image, and the final representations of HOGs are
the pseudo-label, 𝑦𝑝𝑙 of the image. We augment the pseudo-label on
the given training set. Thus, the training set with augmented pseudo-
labels become {(𝑥𝑖, 𝑦𝑖, 𝑦

𝑝𝑙
𝑖 )}

𝑖=𝑁
𝑖=1 which we use to train the semantic

segmentation network in multi-task setup.

3.2. Multi-task semantic segmentation with pseudo labels

For an input image 𝑥 with the ground truth semantic segmentation
map 𝑦 and its pseudo-label 𝑦𝑝𝑙, we train a semantic segmentation
network in a multi-task learning fashion. The primary task for us
is to predict the semantic map and the secondary task is to regress
the Histogram of Oriented Gradient (HOG) features. To predict the
semantic map we employ categorical cross-entropy loss and minimize
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Fig. 3. This diagram shows the overall proposed framework. In the Figure, the main network corresponds to semantic segmentation network (e.g. U2Net), while the auxiliary
network is our contribution to extend the single task network to a multi-task network. Training examples in triplet, i.e. input image, ground truth semantic map and pseudo-label
computed from HOGs, are fed into the network and train the network jointly.
Table 1
Architecture of the auxiliary task network to regress HOGs.

Input shape Operations

(3, ℎ, ℎ) Conv(3,3,1), ReLU(), MaxPool2d(2,2)
(3, ℎ

2
, ℎ
2
) Conv(3,3,1), ReLU(), MaxPool2d(2,2)

(3, ℎ
4
, ℎ
4
) Flatten()

(3 × ℎ
4
× ℎ

4
) Linear(504)

mean squared loss to predict the HOG features. As mentioned before,
UNet and U2Net are two most popular and the powerful semantic seg-
mentation networks in medical imaging. However, these networks are
originally designed to support semantic map as only ground truth. Thus,
these networks cannot readily handle our heterogeneously labelled
training examples. To enable them to handle pseudo-labels and share
the parameters between these tasks, we proposed to add a regression
unit with two convolutional layers and a fully connected layer on every
layers of the decoder side on U2Net as shown in Fig. 3. On UNet,
we added only one such unit on bottleneck. It is because, UNet has
relatively less parameters compared to U2Net. In Fig. 3, the lower
block depicts the U2Net architecture and the upper block shows the
regression units we introduced in the architecture. The regression units
learn the parameters predicts HOGs correctly. In the similar manner, we
plugged in regression units on UNet. Compared to UNet, U2Net is also
an hourglass architecture where each layer consists of a UNet. We learn
the parameters of the whole architecture to minimize the following
objective (see Table 1).

𝐿 = 1
𝑁

𝑖=𝑁
∑

𝑖=1
𝛼𝐿𝑐𝑒(𝑥𝑖, 𝑦𝑖) + 𝛽𝐿𝐻𝑂𝐺(𝑥𝑖, 𝑦

𝑝𝑙
𝑖 ) (1)

In Eq. (1), 𝐿𝑐𝑒 is the primary task loss i.e. minimization of cross-
entropy loss to predict the ground truth mask correctly. Whereas, 𝐿𝐻𝑂𝐺
is loss of secondary task to predict the HOGs of the input image. We
minimize the mean squared error between the predicted and ground
truth HOG features. 𝛼 and 𝛽 are two hyper-parameters to weight the
contributions of each of the losses to best generalize the model pa-
rameters on unseen data for semantic segmentation. We fine-tune these
parameters by doing cross-validation on validation set. The details are
on Section 4.
4

4. Experiments

4.1. Datasets

We evaluated our methods on two different publicly available chal-
lenging data sets with diverse characteristics. CaDIS data set (Gram-
matikopoulou et al., 2021) was released in MICCAI 2020 in one of
the EndoVis challenges. It consists of 25 surgical videos. Each video
frame is annotated broadly into eye anatomies, surgical instruments,
and miscellaneous categories. Based on the granularity of the seg-
ments, Grammatikopoulou et al. (2021) designed the challenge into
three different tasks. Task 1 consists of 8 different segments: four eye
anatomies, three misc objects, and one instrument category. In Task
2, the instrument category is further split into nine classes, resulting
in 17 different categories. Finally, in Task 3, there is an increase in
granularity on the handles of the surgical instrument. This further
increase in granularity resulted in 25 different categories to segment.
There are 3550 annotated frames in train set, 534 in validation set, and
586 are in test set.

Another data set on which we evaluated our method is Robotic
Instrument Segmentation (Allan et al., 2019). This data set is publicly
available for research since MICCAI 2017 challenge. The main task on
this data set is to segment surgical instruments from the background.
Based on the granularity of segmentation of the parts of the surgical
instruments, three tasks were designed in the challenge. Task 1 is to
segment the instruments as a whole from the rest of the background.
Similarly, the challenge in Task 2 is to segment the instruments parts
into wrist, jaw, and shaft and distinguish the instrument from the
background. Finally, Task 3 further segments the instrument into seven
types and segregates it from the background. There are 10 different
folds of videos in total. Following the evaluation protocol described
on Allan et al. (2019), we report performance on folds 9 and 10 and
train on rest of the videos.

4.2. Baselines architectures

We took UNet (Ronneberger et al., 2015) and U2Net (Qin et al.,
2020), two representative architectures, for semantic segmentation and
employed our method on these two architectures. Since our method is
generic in nature, we can easily extend to other architectures. UNet is
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Table 2
Summary of quantitative performance comparison on CaDIS data set.
Task # Classes Validation set mIoU Test set mIoU

MICCAI’21 U2Net +HOG (Ours) MICCAI’21 U2Net +HOG (Ours)

1 8 86.7 84.9 85.5 83.7 80.2 81.4
2 18 72.7 83.8 84.1 70.6 77.8 80.2
3 26 66.6 82.1 83.0 59.2 78.2 78.4
Table 3
Summary of quantitative performance comparison on Robotic Instrument Segmentation data set.
Task # Classes mIoU on test video 9 mIoU on test video 10

MICCAI’17 U2Net +Contour +HOG𝑏𝑛 +HOG MICCAI’17 U2Net +Contour +HOG𝑏𝑛 +HOG

1 2 87.7 94.2 95.0 95.0 95.6 91.7 96.0 96.15 95.7 96.2

2 4 73.6 70.8 74.3 74.1 75.8 80.7 84.1 83.9 83.9 84.4

3 8 35.7 57.9 66.2 56.3 65.4 79.1 89.4 92.9 90.6 91.3
Fig. 4. Performance comparison with varying sizes of training data on test dataset of CaDIS Task 2 segmentation.
o
1
r

m
t
o

4

ne of the most widely used architectures in medical image segmenta-
ion. It is a lightweight architectures consisting of encoder and decoder.
ncoder consists of convolutional and pooling layers that map high-
imensional images into low-dimensional latent space. Decoder feeds
n the latent representations of the image and learns the parameters
o predict the correct semantic maps. There are skip connections from
ncoder layers to decoder layers.

U2Net is another recently proposed architecture with state-of-the-
rt performance on multiple computer vision semantic segmentation
enchmarks. Similar to UNet, this is an hourglass architecture with
kip connections between the encoder and decoder layers. Compared to
Net, U2Net consists of UNet like structures in every layer of encoders
nd decoders and also known as UNet inside UNet. Thus, the learning
arameters in this architecture are much higher than UNet.

.3. Evaluation metrics

We used mean Intersection of Union (mIoU) to compare the quanti-
ative performance. Intersection of Union (IoU) is computed as follows:

oU =
true positive

true positive + false positive + false negative
In addition to this, we also present extensive qualitative analysis to
make the comparisons.

4.4. Implementation details

To compute HOGs from the images, inspired from the original
paper on HOG (Dalal and Triggs, 2005), we resized the image to the
5

p

Table 4
Ablation study on weights of losses. The number inside the bracket represents the
dimension of HOG features. The mIoU reported for UNet network is on CaDIS
segmentation task 2 validation dataset and that for U2Net network is on Robotic
Instrument segmentation task 1 test video sequence 9.

Weight of losses mIoU

𝛼 𝛽 UNet(504) U2Net(504)

0.01 1.0 81.2 94.7
0.1 1.0 82.1 95.4
1.0 1.0 82.3 95.6
1.0 0.1 81.7 94.8
1.0 0.01 81.4 94.5

dimension of (64 × 128). Other parameters that determine the size of
HOG features are the number of histogram bins and patch size. We set
the number of bins of the histogram (𝑘) to 6 to set each bin with an
angle range of 30. Initially, we took a patch of size 16 × 16, which
utputs a vector of dimension 504. Similarly, setting the patch size to
2 × 12 and 8 × 8 gives us HOG features of dimensions 864 and 2520,
espectively.

We implemented our algorithms on PyTorch framework. For opti-
ization, we employ Adam Optimizer. We set the initial learning rate

o 2e–4 and scaled it by a factor of 0.5 in every 50k iteration. We train
ur algorithms for 150k iterations and validate every 1k iterations.

.5. Hyper-parameters selection

There are two critical sets of hyper-parameters in our proposed
ipeline. The first one is the weights of the primary loss (𝛼) and
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Fig. 5. Performance comparison with varying dimensions of HOG features.
Fig. 6. Qualitative comparison between the proposed method with its counter-part architecture U2Net on three different tasks. First two rows represent examples from Task 1,
the middle two rows, and the last two rows are examples from Task 2 and Task 3 respectively.
the secondary loss (𝛽) as shown in Eq. (1). Another hyper-parameter
is the dimension of HOG features. We estimated the values of these
hyper-parameters by doing cross-validation on Validation Set. As the
detection and segmentation tasks are highly co-related (Dong et al.,
2014), we set the 𝛼 and 𝛽 to 1.0 to give them equal importance. Fig. 11
summarizes the minimization of both losses. From the Figure, we can
infer that the correct prediction of HOG features is equally important
6

to that of semantic segmentation for the overall performance. Then,
we fine-tune the dimension of HOG features. We observe the highest
performance when the dimension HOG features is 504. Afterwards,
we fix the dimension to 504 and vary the weights of losses. Table 4
summarizes the cross-validation for weighing the contributions of the
proposed losses on CaDIS and Robotic Instrument datasets. We ob-
served that setting equal contribution to the losses gives the optimal
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Fig. 7. Qualitative comparison between before and after applying our method on U2Net in the Task 1 of robotic instrument segmentation challenge held in MICCAI 2017.
Table 5
Category-wise mIoU on Robotic Instrument Segmentation dataset for parts based
segmentation.

Instrument parts Methods

U2Net +contour +HOG𝑏𝑛 +HOG (Ours)

Shaft 85.7 90.4 89.8 90.0
Wrist 68.9 71.5 71.6 72.2
Jaw 60.9 63.9 64.8 65.5

performance. We observed a similar trend on another benchmark too.
This outcome also highlights the significance of the proposed auxiliary
loss in our pipeline. We set the values of 𝛼 and 𝛽 equal to 1 in the rest
of the experiments. Similarly, Fig. 5 shows the performance on CaDIS
Validation Set with varying the dimension of the HOGs. We can see the
highest performance with the dimension of 504, which we set for the
rest of the experiments.

4.6. Quantitative evaluations

Here, we present the outcomes from our extensive experiments on
two different data sets: CaDIS and Robotic Instrument Segmentation.
As mentioned before, each of the benchmarks consists of three tasks
resulting in six different tasks from two data sets. We extended our
method on two popular baseline architectures: UNet and U2Net. We
evaluate the empirical performance on the mean Intersection of Union
(mIoU).
Comparison on varying training data size: Compared to U2Net, UNet
is more efficient but is less accurate. We evaluate both the architectures
on CaDIS Task 2. We choose this task due to the good trade-off of
7

Table 6
Comparison of categorical performance for Task 2 on CaDIS dataset.

Classes Methods

U2Net +HOG (Ours)

Pupil 94.2 94.3
Surgical Tape 82.6 87.0
Hand 84.6 86.0
Eye Retractors 84.6 85.3
Iris 85.1 84.3
Skin 64.7 69.5
Cornea 92.9 92.8
Cannula 43.5 45.5
Cap. Cystotome 36 47.6
Tissue Forceps 62.9 69.9
Primary Knife 80.1 81.8
Ph. Handpiece 77.7 79.2
Lens Injector 73 73.5
I/A Handpiece 70.4 71.0
Secondary Knife 52.3 63.0
Micromanipulator 57.7 52.8
Cap. Forceps 16.3 14.4

granularity and the number of training examples per category. In
this experiment, UNet and U2Net obtained 81.9% and 83.75% mIoU,
respectively on full training data. We also took a different proportion
of training examples and compared the performance of both UNet and
U2Net with/out the auxiliary task to predict HOGs. Fig. 4 summer-
izes our experiments. Our techniques to extend both the networks to
multi-task networks improve the performance consistently. This gain in
performance also shows that our method equally generalizes on varying
sizes of training examples. For experiments on the remaining tasks
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Fig. 8. Qualitative comparison between before and after applying our method on U2Net in the Task 2 of robotic instrument segmentation challenge held in MICCAI 2017.
from both the data sets, we decided to choose U2Net as our baseline
architecture as its performance is clearly superior to UNet.

Comparison on CaDIS dataset: Table 2 summarizes the performances
of three different tasks on CaDIS data set. We have compared our
performance with the winner of the MICCAI 2021 challenge and U2Net.
From the Table, we can see that our method consistently outperforms
the U2Net on both the validation set and the set. The class-wise mIoU
reported in Table 6 further validates the significance of the proposed
pipeline over its counterpart. Similarly, out of 6 different scenarios,
our method obtained the highest mIoU on 4 cases, slightly lagging
behind the winner of MICCAI’21 challenge on Task 1. Compared to
Task1, on Task 2 and Task 3, the mIoU of the winning method on
MICCAI’21 dropped by a large margin (−20%). In contrast, our cases
have a slight drop in performance (−2.0%). This shows the robustness
of the proposed pipeline over the increase in the granularity of the
segmentation tasks.
Comparison on Robotic Instrument Segmentation dataset: Table 3
details the performance comparison on Robotic Instrument Segmenta-
tion. We followed the evaluation protocol presented on the challenge
paper and compared our performance with the winner model. In every
task, our method obtained the highest mIoU surpassing the winning
team’s performance and our baseline U2Net by a large margin. With
the increase in the granularity in the segmentation task, the mIoU
of the winner method drops by up to −50%. At the same time, the
drop in our method is only up to −30.2%. Again, this is yet another
evidence for our method being robust compared to the contemporary
methods. Similarly, our method and the baseline predicting contour
8

as an auxiliary task outperform in 4/6 and 2/6 cases, respectively.
The empirical performance between these methods looks comparable.
Compared to predicting contour, the advantage of our approach is that
we can generate pseudo labels in an unsupervised manner, but the
contour-based method demands ground truth semantic segmentation.
Further looking into the class-wise performance in Task 2, our method
outperforms the competitive baseline in 2/3 cases (see Table 5).

Comparisons with the State-of-the-art Methods:
In Table 7, we report the mIoU of different methods on the Robotic

Instrument Segmentation dataset for instrument type segmentation.
UNet (Ronneberger et al., 2015), the popular benchmark network for
medical image segmentation, achieved 46.1%. The winner of the 2017
Robotic Instrument Segmentation Challenge, TernausNet (Iglovikov
and Shvets, 2018), which has similar architecture to UNet but em-
ploys a VGG16 network as an encoder, obtained a mean score of
56.4%. The mIoU score of DeepLabV3+ (Chen et al., 2018) is 64.2%.
This network implements atrous convolution, which provides the ben-
efit of long-range contextual information. Likewise, mIoU scores of
LinkNet (Chaurasia and Culurciello, 2017), PAN (Li et al., 2018),
PAANet (Ni et al., 2020), and DANet (Fu et al., 2019) are 56.0%,
64.1%, 64.2%, and 63.1% respectively. SurgiNet (Ni et al., 2022) is
the state-of-the-art method on Robotic Instrument Segmentation to
date. is SurgiNet (Ni et al., 2022). This method proposed to train
neural network architecture with a double attention module. The mIoU
obtained by this method is 66.3%. Our method obtains 70.2% attaining
the new state-of-the-art (see Table 8).
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Fig. 9. Qualitative comparison between before and after applying our method on U2Net in the Task 3 of robotic instrument segmentation challenge held in MICCAI 2017.
Fig. 10. Violin plot showing the distribution of IoU of test images (sequences 9 and 10) on all three tasks of the Robotic Instrument Segmentation dataset. A small white dot on
each violin represents the median IoU.
4.7. Qualitative evaluations

We did not limit our experiments to quantitative evaluations only.
To deeper understand our method’s role in improving the performance
of existing architecture such as U2Net, we performed an extensive
9

qualitative analysis. Fig. 6 shows the qualitative comparisons of Task 1,
Task 2, and Task 3 on CaDIS data set. The bounding boxes locate some
of the representative regions on the eye and the surgical instrument
where U2Net fails, but our method correctly segments it. From these
locations, we can see that the characteristics of HOGs to identify the
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Fig. 11. Training curve of our method on CaDIS task 3.
Table 7
Performance comparison of our proposed method with SurgiNet and various methods
of EndoVis 2017 Robotic Instrument Segmentation Challenge on instrument type
segmentation. We report the results from Ni et al. (2022).

Methods mIoU

UNet (Ronneberger et al., 2015) 46.1
TernausNet (Iglovikov and Shvets, 2018) 56.4
LinkNet (Chaurasia and Culurciello, 2017) 56.0
PAN (Li et al., 2018) 64.1
PAANet (Ni et al., 2020) 64.2
DANet (Fu et al., 2019) 63.1
DeepLabV3+ (Chen et al., 2018) 64.2
SurgiNet (Ni et al., 2022) 66.3
U2Net+HoG (Ours) 70.2

Table 8
Performance comparison of our proposed method TernausNet on 10 test sequences of
instrument type segmentation.

TernausNet Ours

Dataset 1 53.8 42.3
Dataset 2 74.3 75.4
Dataset 3 67.6 83.9
Dataset 4 89.2 61.7
Dataset 5 43.3 54.8
Dataset 6 60.6 61.8
Dataset 7 49.4 64.3
Dataset 8 31.4 52.6
Dataset 9 46.2 65.4
Dataset 10 52.9 91.3

organs and tools boundary play a crucial role in correctly segmenting
the organs and the semantic parts of the surgical tools.

Similarly, Figs. 7–9 show the qualitative comparison of Task 1, Task
2, and Task 3 on robotic instrument segmentation. In these qualitative
analyses, we observe the similar trends that were seen on CaDIS data
set. As we can see from these analysis, U2Net struggles quite a lot
on boundary regions. Our method enables correct segmentation on
such regions that we can see in our qualitative comparisons. The red
bounding boxes on the Figures locates the failed cases by the baseline,
whereas the green bounding boxes show the correction made by our
method.

In order to observe the distribution of IoU of individual test images,
we show violin plots in Fig. 10 on all the tasks for Robotic Instrument
Segmentation. From left to right, the figure shows the violin plots
of Tasks 1, 2, and 3, respectively. These plots also demonstrate the
10

robustness of our method over the counter-part baseline. The median
mIoU(represented by a white dots in 10) of our method is higher than
that of the counter-part in each task.

5. Conclusions and future works

In conclusion, we present a novel multi-task deep learning frame-
work for medical image segmentation. We generate the annotations
of the auxiliary task in an unsupervised manner by leveraging the
Histogram of Oriented Gradients features of images as their labels. We
train the deep network jointly to minimize the losses of both the pri-
mary task, semantic segmentation, and the auxiliary task. Our extensive
qualitative and quantitative results on two challenging medical image
segmentation benchmark datasets, CaDIS and EndoVis 2017 Robotic
Instrument Segmentation, show that the proposed pipeline’s perfor-
mance is superior to its counterpart single task network. The inclusion
of HOG feature prediction as an auxiliary task enforces the network
to learn more meaningful representations to distinguish boundaries
among different classes in the shared layer. Experiments with different
baseline architecture like UNet and U2Net validate the generalizability
of our approach. Moreover, our proposed method achieved the best
performance in most segmentation tasks of two benchmark datasets.

As we can obtain HOG features in an unsupervised way, its applica-
bility in medical image analysis, where annotating images is both costly
and time-consuming, can be further extended, which we aim to inves-
tigate in the future. Furthermore, we plan to explore the higher-order
statistics of hand-crafted features such as Fisher Vectors as annotations
of images to train the multi-task deep semantic network.
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