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ABSTRACT
Background: Physical activity may be a way to increase and
maintain fat-free mass (FFM) in later life, similar to the prevention
of fractures by increasing peak bone mass.
Objectives: A study is presented of the association between FFM
and physical activity in relation to age.
Methods: In a cross-sectional study, FFM was analyzed in relation
to physical activity in a large participant group as compiled in
the International Atomic Energy Agency Doubly Labeled Water
database. The database included 2000 participants, age 3–96 y, with
measurements of total energy expenditure (TEE) and resting energy
expenditure (REE) to allow calculation of physical activity level
(PAL = TEE/REE), and calculation of FFM from isotope dilution.
Results: PAL was a main determinant of body composition at all
ages. Models with age, fat mass (FM), and PAL explained 76% and
85% of the variation in FFM in females and males < 18 y old, and
32% and 47% of the variation in FFM in females and males ≥ 18 y
old, respectively. In participants < 18 y old, mean FM-adjusted FFM
was 1.7 kg (95% CI: 0.1, 3.2 kg) and 3.4 kg (95% CI: 1.0, 5.6 kg)
higher in a very active participant with PAL = 2.0 than in a sedentary
participant with PAL = 1.5, for females and males, respectively. At
age 18 y, height and FM–adjusted FFM was 3.6 kg (95% CI: 2.8,
4.4 kg) and 4.4 kg (95% CI: 3.2, 5.7 kg) higher, and at age 80 y
0.7 kg (95% CI: −0.2, 1.7 kg) and 1.0 kg (95% CI: −0.1, 2.1 kg)
higher, in a participant with PAL = 2.0 than in a participant with
PAL = 1.5, for females and males, respectively.
Conclusions: If these associations are causal, they suggest physical
activity is a major determinant of body composition as reflected
in peak FFM, and that a physically active lifestyle can only partly
protect against loss of FFM in aging adults. Am J Clin Nutr
2021;114:1583–1589.

Keywords: physical activity level, age, energy expenditure, body
composition, doubly labeled water
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Introduction
Physical activity provides a variety of health benefits. Phys-

ically active individuals sleep better and function better (1). In
addition, physical activity can be an effective lifestyle behavior
to maximize fat-free mass (FFM), as a proxy for muscle mass,
during growth. Youth physical activity is positively associated
with bone mass accrual and bone structure (2, 3). Physical activity
may be a way to increase and maintain FFM to prevent sarcopenia
in later life, similar to the prevention of fractures by increasing
peak bone mass (4–6).

Skeletal muscle accounts for about half of FFM. Muscle mass
and bone mass are closely related throughout life, and FFM is
the strongest determinant of whole-body bone mineral content.
Modeling and remodeling processes that regulate bone strength
potentially explain these relations, depending on the forces acting
on the bones (7, 8). Physical activity positively affects FFM
accretion from birth onwards (9). Physical activity during adoles-
cence has been associated with greater FFM in both sexes (10).
Habitual physical activity has been shown to have a significant
independent effect on the growth of FFM during adolescence
(11). These results support recommendations for sustained
physical activity participation during the growing years (12).

FFM peaks in early adulthood (13). A cross-sectional analysis
of a large multiethnic sample, ranging in age from 18 to 110 y,
resulted in a quadratic model for FFM in relation to age with a
peak FFM at similar ages for Caucasians, African Americans,
Hispanics, and Asians. The estimated turning point, where
growth ended and FFM started to decline, was in the mid-40s for
females and mid-20s for males (13). Physical activity is likely to
have a role in preventing FFM loss at later ages. A cross-sectional
study showed that higher physical activity was associated with
higher FFM in participants aged 60–64 y (14). A longitudinal
study in participants aged 65–84 y showed that greater physical
activity retained a greater FFM over 5 y of observation (15).
On the other hand, a cross-sectional study in 529 participants
aged 18–96 y suggested that greater physical activity was not
associated with higher FFM (16). Two longitudinal studies,
the first in 904 participants aged 67–84 y and the second in
302 participants aged 70–82 y, also showed that changes in FFM
over 5 y were not associated with physical activity level (PAL),
when controlled for potential confounding variables (17, 18).
Thus, there is still controversy on the relation between physical
activity and FFM at later ages.

Here, the focus is on physical activity and FFM accrual during
early and later life. A cross-sectional analysis was performed in a
large participant group, deriving physical activity from doubly
labeled water–measured energy expenditure. Thus, physical
activity was quantified with a criterion measure (19).
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Assessed for eligibility 
(n = 6787)

Excluded  (n = 4787)
Measured total energy expenditure , no 
measurement of resting energy expenditure 

Age < 18 y (n = 162)
Females (n = 84); males (n = 78)

Age > 18 y (n = 1838)
Females (n = 1098); males (n = 740)  

Enrollment

FIGURE 1 Participant flowchart.

Methods
The analysis included daily total energy expenditure (TEE)

measurements as compiled in the International Atomic Energy
Agency Doubly Labeled Water database (established to pool
doubly labeled water data across multiple studies), version 3.1.2
(20). All data were recalculated with the same standard method-
ology for human doubly labeled water studies as published
recently (21). The analysis was restricted to TEE measures
accompanied by measurements of resting energy expenditure
(REE), to allow calculation of PAL (TEE/REE). REE was mea-
sured under postabsorptive, thermoneutral, and resting conditions
with a ventilated hood, or during an early morning resting
interval, directly after waking up and before having breakfast, in
a respiration chamber.

The database included 2000 participants (1182 females and
818 males) with measurements on TEE and REE to allow
calculation of PAL (Figure 1). The age range of the participants
was 3–96 y. The data analysis did not include participants with
muscle wasting or participants with diseases affecting REE.
All TEE measurements were performed under habitual daily
life conditions, neutral energy balance, and before any study
intervention. FFM was derived from total body water as measured
with isotope dilution, a method directly derived from carcass
analysis and thus 1 of the 2 single-indirect methods for body
composition (22).

Associations between physical activity and FFM can be
confounded by fat mass (FM) because gains or losses in fat
typically lead to respective gains or losses in FFM (23). Changes
in body weight and body composition are primarily a function
of energy balance. Consequently, changes in FM and FFM
are not independent (24). Energy balance–related body mass
changes are generally assumed to consist of 75% as FM and
25% as FFM, which is known as the “quarter FFM” rule (25).
Refinements of the quarter FFM rule were developed for specific
situations like diet-induced weight change in extremely lean
participants or participants with obesity (26, 27). Whatever
rule applies for the relation between energy balance–induced
changes in FM and FFM, FM should be included as an
independent variable in an analysis on physical activity and
FFM.

Data analysis was performed separately for participants
< 18 y old and for participants ≥ 18 y old. For participants

< 18 y old, the relation between FFM and PAL was assessed
in a multiple regression model accounting for FM and age.
To allow body composition comparisons between participants
≥ 18 y old, FFM and FM were expressed as indexes, the fat-
free mass index (FFMI) and fat mass index (FMI), respectively,
where FFMI = FFM/height2 and FMI = FM/height2 (FFM
and FM in kg and height in m). In this way we corrected for
differences in height, in analogy with the BMI of Quetelet:
BMI = FFMI + FMI (28). Unfortunately, the index fails to
adjust for height differences in participants during growth (29).
Thus, data analysis was performed separately for participants
< 18 y old, using unadjusted FFM and FM as measures
for body composition. Models were generated separately for
females and males. In participants ≥ 18 y old, 4 models were
applied in a top-down procedure, with FFMI as the outcome
variable:

• Model 1: age, FMI, PAL.
• Model 2: age, FMI, PAL, age2.
• Model 3: age, FMI, PAL, age2, age∗PAL.
• Model 4: age, FMI, PAL, age2, age∗PAL, age2∗PAL.

Because the linearity assumption for age was violated,
a quadratic term (age2) needed to be included. The model
explaining most variation in FFM from age-, FM-, and PAL-
differences between participants was model 3. For females,
model 3 was better than model 2, and model 4 was not better
than model 3. For males, model 3 was as good as model 2, and
model 4 was not better than model 3. Thus, model 3 was chosen
for both sexes. Model 3 was checked for (multi)collinearity after
centering for age, resulting in the same model fit and in condition
indexes <30 (18.2 for females, 16.6 for males), indicating there
was no collinearity problem.

Results
FFM was highest, around age 30 y, in females and males

(Figure 2). The mean of peak FFM was 47 kg in females and
60 kg in males. Females showed a higher mean FM than males
already at early ages. Mean PAL was similar in females and
males at all ages (Table 1). The typical mean PAL value was
∼1.5 in the youngest (age < 10 y) and oldest (age > 80 y)
participants (Figure 2). At adult age, from 18 to 80 y, PAL values
generally ranged between a minimum of 1.1 and a maximum
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FIGURE 2 FFM, FM, and PAL, plotted as a function of age. Values for 2000 participants—1182 females (left) and 818 males (right)—with a 4th-order
polynomial curve fit. FFM, fat-free mass; FM, fat mass; PAL, physical activity level.
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TABLE 1 Participant characteristics1

Characteristics Females Males

<18 y old
n 84 78
Fat-free mass, kg 26.7 ± 10.9 26.9 ± 10.2
Fat mass, kg 10.8 ± 10.4 9.2 ± 7.7
PAL 1.61 ± 0.30 1.62 ± 0.29

≥18 y old
n 1098 740
Fat-free mass index, kg/m2 16.2 ± 2.3 18.5 ± 2.2
Fat mass index, kg/m2 10.3 ± 4.9 7.4 ± 3.6
PAL 1.71 ± 0.26 1.78 ± 0.30

1Values are mean ± SD unless otherwise indicated. PAL, physical
activity level.

of 2.5 with a mean ± SD value of 1.71 ± 0.26 for females and
1.78 ± 0.30 for males.

In participants < 18 y old (n = 162), FFM was significantly
higher in individuals with an older age, higher FM, and higher
PAL (Table 2):

• Females, FFM (kg) = −1.53 + 1.90 Age (y) + 0.21 FM
(kg) + 3.34 PAL, R2 = 0.85;

• Males, FFM (kg) = −7.42 + 2.00 Age (y) + 0.39 FM (kg)
+ 6.90 PAL, R2 = 0.76.

Thus, mean FM-adjusted FFM was 1.7 kg (95% CI: 0.1, 3.2 kg)
and 3.4 kg (95% CI: 1.0, 5.6 kg) higher in a very active participant
with PAL = 2.0 than in a sedentary participant with PAL = 1.5,
for females and males, respectively.

In participants ≥ 18 y old (n = 1838), FFMI was significantly
higher in participants with a higher FMI and PAL for both sexes
(Table 3):

• Females, FFMI (kg/m2) = 7.15 + 0.094 Age (y) − 0.001
Age2 (y) + 0.312 FMI (kg/m2) + 3.214 PAL − 0.033
Age∗PAL (y), R2 = 0.47;

• Males, FFMI (kg/m2) = 9.084 + 0.141 Age (y) − 0.001
Age2 (y) + 0.308 FMI (kg/m2) + 3.557 PAL − 0.036
Age∗PAL (y), R2 = 0.32.

At age 18 y, mean FMI-adjusted FFMI was 1.3 kg/m2 (95%
CI: 1.0, 1.6 kg/m2) and 1.4 kg/m2 (95% CI: 1.0, 1.8 kg/m2) higher

TABLE 2 Sources of variation in FFM in participants <18 y old1

Unstandardized
coefficient (B) 95% CI for B P

Females
(constant) − 1.53 −6.21, 3.14 0.516
Age 1.90 1.63, 2.16 <0.001
FM 0.21 0.10, 0.31 <0.001
PAL 3.34 0.21, 6.47 0.037

Males
(constant) − 7.42 −14.45, −0.39 0.039
Age 2.00 1.57, 2.44 <0.001
FM 0.39 0.22, 0.57 <0.001
PAL 6.90 2.66, 11.15 0.002

1Values are coefficients and P values from a multiple regression model
of FFM (kg) as a function of age (y), FM (kg), and PAL, in females (n = 84,
R2 = 0.85) and males (n = 78, R2 = 0.76). FFM, fat-free mass; FM, fat
mass; PAL, physical activity level.

TABLE 3 Sources of variation in FFMI in participants ≥ 18 y old1

Unstandardized
coefficient (B) 95% CI for B P

Females
(constant) 7.150 5.466, 8.838 <0.001
Age 0.094 0.049, 0.140 <0.001
FMI 0.312 0.290, 0.334 <0.001
PAL 3.214 2.379, 4.050 <0.001
Age2 − 0.001 −0.001, 0.000 <0.001
Age∗PAL − 0.033 −0.050, −0.017 <0.001

Males
(constant) 9.084 6.674, 11.494 <0.001
Age 0.141 0.080, 0.201 <0.001
FMI 0.308 0.267, 0.349 <0.001
PAL 3.557 2.442, 4.671 <0.001
Age2 − 0.001 −0.001, −0.000 <0.001
Age∗PAL − 0.036 −0.056, −0.016 <0.001

1Values are coefficients and P values from a multiple regression model
of FFMI (kg/m2) as a function of age (y), FMI (kg/m2), PAL, and
interactions with age (y), in females (n = 1098, R2 = 0.47) and males
(n = 740, R2 = 0.32). FFMI, fat-free mass index; FMI, fat mass index; PAL,
physical activity level.

in a very active participant with PAL = 2.0 than in a sedentary
participant with PAL = 1.5, for females and males, respectively.
The differences in FFMI imply, for a typical female with height
1.65 m and male with height 1.75 m, a mean FM-adjusted FFM
difference of 3.6 kg (95% CI: 2.8, 4.4 kg) and 4.4 kg (95% CI:
3.2, 5.7 kg), respectively. The positive association between FMI-
adjusted FFMI and PAL was smaller the older the participant
(Table 3). Thus, at age 80 y, the differences in FFM between a
sedentary and very active female and male were 0.7 kg (95% CI:
−0.2, 1.7 kg) and 1.0 kg (95% CI: −0.1, 2.1 kg), respectively.

Participants with a higher FM had a higher FFM. The mean
of the coefficient was 0.21 and 0.39 kg FFM/kg FM, or 17%
and 39% FFM/kg body mass, in females and males < 18 y old,
respectively. At later ages (>18 y old), the mean of the coefficient
was 0.312 and 0.308 kg FFM/kg FM in females and males,
respectively, or 24% FFM/kg body mass.

Discussion
The data showed that physically active participants have higher

FM-adjusted FFM already during growth under age 18 y. Thus,
physical activity is a major determinant of body composition as
reflected in FFM in this cross-sectional analysis. However, older
age counteracted the positive association of physical activity with
FFM. Peak FFM was observed around age 30 y, in females and
in males (Figure 2).

Age of unadjusted peak FFM is clearly higher than age of
peak bone mass, in females at 19–20 y and in males at 20–24 y,
independently of race (5). The higher age for unadjusted peak
FFM than for peak bone mass is probably explained by FM-
associated FFM. FM was highest in females around age 50 y and
in males around age 75 y (Figure 2). Thus, FM-associated FFM
dominated the decrease in physical activity–associated FFM in
participants with a higher FM.

A previous study found the age of unadjusted peak FFM to
be in the mid-40s for females and mid-20s for males (13). In the
current study, peak FFM was at ∼30 y old for both males and
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females, a difference possibly explained by differences in FM and
thus in FM-associated FFM between the populations of study.

In adults, larger FFM in participants with a larger FM follows
the quarter FFM rule (25). On average, 24% of the higher
body mass was FFM. Factors confounding the quarter FFM
rule, including an extreme imbalance between energy intake
and energy expenditure and effects of differences in physical
activity, were excluded in the model as presented. All participants
were observed under neutral conditions of energy balance, and
measured PAL was included in the model as an independent
variable. Unfortunately, the quarter FFM rule still lacks a
mechanistic explanation (27).

The controversy on FFM maintenance through physical
activity at later age seems to be at least partly explained with
inclusion of differences in FM between participants, in the
model as presented. FFM adjusted for differences in FM was
significantly higher in participants with a higher PAL, for females
and males at younger age. The mean difference of 3.6 kg (95%
CI: 2.8, 4.4 kg) and 4.4 kg (95% CI: 3.2, 5.7 kg) FFM at age
18 y and 0.7 kg (95% CI: −0.2, 1.7 kg) and 1.0 kg (95% CI: −0.1,
2.1) FFM at age 80 y, as calculated from the model presented,
between a female and male with PAL = 1.5 and 2.0, respectively,
is in line with an earlier cross-sectional analysis. Manini et al.
(18) observed (mean ± SD) 2.0 ± 1.2 kg and 2.9 ± 1.3 kg greater
FFM in older females and males, respectively, in participants in
the first than in those in the third tertile of doubly labeled water–
assessed activity energy expenditure. Differences in FM between
participants in the first and third tertiles of activity energy
expenditure were nonsignificant. However, despite a greater FFM
in participants with a higher PAL, the age-related decline in FFM
might not be prevented by a higher PAL.

In a 5-y follow-up of the participants 70–82 y old observed by
Manini et al. (18), changes in physical activity did not affect the
age-related change in body composition.

The average difference between peak FFM and FFM at age
80 y, an age interval where PAL remained the same, was −8 kg
(Figure 2). The 8-kg difference between peak-FFM and FFM
at age 80 y is similar to an earlier identical cross-sectional
comparison resulting in −7.5 kg and −8.8 kg difference for
females and males, respectively (30, 31). The mean difference
in FM-adjusted FFM between a sedentary and a very active
participant over the same age interval was between 3 and 4 kg. At
older age, despite a greater routine physical activity, the inverse
association of age∗PAL counteracts the positive association of
PAL with FFM.

Although aerobic exercise does not completely prevent the
lower FFM in aging participants, resistance exercise may be
more helpful (32). However, although resistance exercise elicited
an ∼1-kg increase in FFM among older adults, this is modest
compared with the differences with healthy young adults and
with the 8-kg difference aforementioned (33). Exercise training
in adults at older age has little or no effect on muscle
mass but is important for physical fitness and performance
(34). Physical activity and exercise training increase functional
capacity, allowing individuals to maintain their independence
with increasing age and participate in activities associated with
daily living (35).

One major cause of muscle mass loss with aging appears
to be the alteration in hormonal activity involved in muscle
regeneration and protein synthesis (36). Hormone replacement

therapy in women is shown to diminish age-associated muscle
loss and to raise the synthesis rate in skeletal muscle after
exercise training (37). Thus, age-associated hormonal activity
is one explanation for the age-associated interaction between
physical activity and FFM.

From a longitudinal point of view, physical activity during
growth may provide lifelong benefits by reaching higher peak
FFM, as shown for physical activity and lifelong bone health (38,
39). Development of FFM and bone mass may be coordinated
(40). The growth phase is a window of opportunity for achieving
higher peak FFM to maximize bone mass, through a physically
active lifestyle (41). If longitudinally confirmed, early-life
physical activity may contribute to prevention of disease in old
age (42).

The study has several strengths. It was conducted in a large par-
ticipant group (i.e., 2000 participants) covering early to late life,
obtaining physical activity from doubly labeled water–measured
energy expenditure and FFM from total body water as measured
with isotope dilution, both considered gold-standard methods.
An obvious limitation is the observational design. In addition,
the use of the 2-compartment model of body composition cannot
discern the difference in changes of separate components of FFM,
including muscle mass and FM-associated FFM.

In conclusion, physically active participants show higher FM-
adjusted FFM, especially after growth at age 18 y. Thus, physical
activity seems to be a major determinant of body composition
as reflected in peak FFM. Older age counteracts the positive
association of physical activity with FFM.
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