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Bimodal Camera Pose Prediction for Endoscopy

Anita Rau, Binod Bhattarai, Lourdes Agapito, and Danail Stoyanov

Abstract— Deducing the 3D structure of endoscopic
scenes from images remains extremely challenging. In ad-
dition to deformation and view-dependent lighting, tubular
structures like the colon present problems stemming from
the self-occluding, repetitive anatomical structures. In this
paper, we propose SimCol, a synthetic dataset for cam-
era pose estimation in colonoscopy and a novel method
that explicitly learns a bimodal distribution to predict the
endoscope pose. Our dataset replicates real colonoscope
motion and highlights drawbacks of existing methods. We
publish 18k RGB images from simulated colonoscopy with
corresponding depth and camera poses and make our
data generation environment in Unity publicly available.
We evaluate different camera pose prediction methods and
demonstrate that, when trained on our data, they generalize
to real colonoscopy sequences and our bimodal approach
outperforms prior unimodal work. Our project and dataset
can be found here: www.github.com/anitarau/simcol.

Index Terms— 3D reconstruction, camera pose estima-
tion, endoscopy, SLAM, surgical Al

|. INTRODUCTION

Reliably reconstructing the colon during colonoscopy from
raw endoscopic images could improve cancer screening quality
and substantially impact patient outcomes. A 3D model could
help endoscopists navigate and determine surfaces of the colon
wall that were not sufficiently screened for polyps. Detecting
and removing all polyps can prevent colorectal cancer from
developing and is a crucial predictor of survival rates [1]. In
regions lacking well-trained colonoscopists, such a technology
can increase the amount of cancer screening services and
their quality. Yet, there is a vast gap between the ability
to predict 3D structures from images of generic scenes ver-
sus endoscopic scenes. Feature-based Structure-from-Motion
(SfM) or Simultaneous Mapping And Localization (SLAM)
are standard approaches for reconstructing outdoor or indoor
scenes offline [2] or online [3]. Such methods detect features,
establish correspondences, and estimate the relative camera
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Fig. 1.
camera poses. We show a virtual environment; an example virtual
endoscope trajectory travelling through it; and representative images
with their depth maps below them, where blue represents far surfaces.

Our proposed dataset provides ground truth depth maps and

motion and the 3D scene mutually and accurately. How-
ever, the application of feature-based systems to colonoscopic
scenes suffers significant limitations that inhibit practical use
in computer-assisted interventions (CAI). CAI systems have
to address self-occlusion, camera-pose-dependent lighting and
shadows, reflective surfaces, and a general lack of texture [4].
Reconstructing the colon based on features thus remains (even
in offline applications) an unsolved and challenging problem
[5]. Learning methods do not necessarily rely on features
and therefore have great potential to further 3D reconstruction
during colonoscopy. Accurately predicted camera pose and
scene depth can be an initial estimate within an SfM or SLAM
pipeline, provide information about certainty, or, downstream,
enable the direct regression of scene coordinates and camera
locations in an end-to-end fashion [14], [15]. Depth prediction
during colonoscopy has already been studied and can be con-
sidered robust [16]-[18]. However, predicting camera poses in
this context remains challenging.

Working toward a learning-based system requires vast
amounts of training data. However, labels for real colonoscopy
are not readily available: depth and pose sensors cannot fit
into a standard colonoscope. Therefore, existing methods have
focused on surrogate data with ground truth (simulated or
porcine) or self-supervised approaches. Unfortunately, existing



TABLE |
AN OVERVIEW AND COMPARISON OF COLONOSCOPY OR GASTROSCOPY DATASETS

Dataset | Description | R/V/P | Public | Depths | Camera pose | Intrinsics | Tubularl # Frames | # Trajectories
Ozyoruk et al. [6] | Ex-vivo porcine 3D scanned colon R some s v v X =8k 18
Ozyoruk et al. [6] | Simulated capsule endoscope in Unity Vv some s v v v 22k 1
Armin et al. [T] Simulated colonopscoy video Vv ? v ? v 30k >15
Turan et al. [8] Ex-vivo porcine stomach R X X v v X 12k >4
Ma et al. [9] COLMAP labels from colonoscopy video R X X X ? v 1.2m 60
Widya et al. [10] Stomach with real meshed texture RV X ' s v * ? 7
Freedman et al. [11] | Rendered synthetic dataset v X ' ? ? v 187k

Fulton et al. [12] Colon phantom magnetic tracker dataset P v X v v v 24k 7
Bae et al. [13] SIM labels from colonoscopy video R X X X ? v >34k 51
Ours Simulated colonoscope in Unity Vv v s v v v 18k 15

R = Real, V = Virtually simulated, P = Physical phantom, 7 = Could not be

simulated and porcine datasets are only partially publicly
available. Further, ex-vivo porcine does not look similar to
in-vivo human colonoscopy, and simulated datasets do not
account for the authenticity of the simulated camera move-
ment. We argue that for pose estimation, not only must the
appearance of a synthetic dataset be realistic, but the simulated
camera movements also must replicate the movements of a real
colonoscope during colonoscopy.

One might argue that self-supervised methods are the rem-
edy: They do not require labels at all as they instead mutually
train a depth and a pose network [6] using warping losses.
However, we show that such methods are not guaranteed
to converge to accurate depths and poses. When poses are
bimodally distributed, we show that self-supervised methods
can learn a distribution with one maximum, instead of two.

We, therefore, introduce a new, fully publicly available
benchmark dataset that will enable the development and
benchmarking of supervised camera pose prediction and 3D
reconstruction methods during colonoscopy. The simulated
camera poses replicate real camera movement during screening
more closely than existing data and help networks generalize
to real data. Additionally, we propose a novel supervised pose
regression network that explicitly models a bimodal distribu-
tion through a combined classification-regression framework.
The classification network classifies the camera movement into
insertion or withdrawal, and the regression network predicts
the difference from the respective class mean.

To work toward more accurate relative camera pose predic-
tions during colonoscopy in this paper we:

o create and publish an extensive synthetic dataset of
over 18,000 images with rendered RGB images, depth
information, camera poses, camera intrinsics, and detailed
documentation;
explain why unsupervised methods are not readily appli-
cable to infer relative camera poses accurately;
propose a bimodal approach that more accurately predicts
our dataset’s bimodally distributed camera movement.

II. RELATED WORK

The availability of real colonoscopy training data with cam-
era poses and scene depths is limited. Existing convolutional

verified, > could be partially verified but it appears there are more.

neural nets (CNNs) thus focus mainly on synthetic data, labels
from ex-vivo porcine, or unsupervised methods.

Unsupervised depth and pose prediction: Sclf-supervised
methods require neither ground truth nor pseudo labels. They
depend instead on carefully designed loss functions. Turan et
al., Ozyoruk et al., Yao et al., and Widya et al. all employ
warping errors to supervise a depth and pose prediction
network in gastroscopy or colonoscopy [6], [8], [19], [20].
Though an unsupervised approach enables training in an
environment where it is near impossible to obtain good ground
truth, we identify several shortcomings of existing approaches
in this work. One drawback is that unsupervised methods can
predict unimodal distributions even though the underlying data
is bimodally distributed. We discuss this phenomenon in detail
in Section ITI-A.

Integrated CNN & SfM pipelines: Sub-tasks of the tradi-
tional SfM pipeline can be learned with CNNs; vice-versa,
SIM outputs can drive CNNs. In both scenarios, the method
heavily relies on SfM pseudo labels. However, standard SfM
fails more often than not in colonoscopy, and methods that rely
on their outputs can only learn to be as good as these pseudo
labels. Ma et al. [9] incorporate the output of a depth network
into their SfM pipeline and predict an initial pose using a
recurrent neural net that is refined within a traditional SLAM
pipeline. Their CNN is trained on sparse SfM-depth. Bae at
al. [13] propose a multi-view stereo algorithm for dense depth
that is able to match patches between images but depends on
an initial SfM camera pose and sparse depth estimation.
Pose regression with CNNs: When simulated data or ex-vivo
porcine data is available, networks can learn in a supervised
manner. Armin et al. [7] train a CNN on synthetic data to
directly output the 6DoF vector describing the relative rotation
and translation between two cameras during colonoscopy. The
back-propagated error is a weighted sum of squared translation
and rotation error. Turan et al. [21] incorporate information
from entire video sequences of the upper Gl-tract using
recurrent neural networks to enable time-consistent camera
pose predictions. Their network directly regresses a 6DoF
vector from two consecutive RGB images and their estimated
corresponding depth maps. While supervised approaches tend
to be accurate, they require data that is not widely available.



world space

camera 1

image plane 2 image plane 1

Fig. 2. lllustration of image warping. The orange point is occluded in
image 2 and would not appear in warped image 1.

Datasets for camera pose estimation in colonoscopy: Dif-
ferent works have used a variety of datasets, but only a few
published them. Table I enumerates the datasets referenced
in relevant papers. To the best of our knowledge, the only
fully available dataset for colonoscopy is based on a phantom
[12] and investigates the effects of deformation. It was created
using an electro-magnetic tracker attached to an endoscope
that provides 6DoF poses. However, the structures are so
repetitive that any forward movement could be interpreted
as a backward movement looking at the previous fold rather
than the next fold. Ozyoruk et al. created a real and a simu-
lated dataset and made some trajectories publicly available
[6]. While it is the first of its kind for real data and is
immensely helpful, its usefulness to the research community
could be limited. Creating the real dataset required a porcine
colon to be mounted to scaffolding. The mounting prevented
the visualization of the typical shape of the colon and the
camera’s pointing towards the lumen. As a result, the published
trajectories consist mostly of colon wall images. A virtual
capsule endoscope generated the simulated dataset in Unity
while a user “steered” the camera through a colon mesh. While
this may replicate a colonoscopy with a magnetic pill-shaped
capsule, the data does not reflect the movement of a standard
colonoscope. Only 0.004% of consecutive frame pairs in the
published trajectory have a non-zero rotation [22]. A fully
documented benchmark dataset based on the movement of a
standard colonoscope with a clear distinction between training
and test data is still missing.

[1l. METHODS
Our motivation is based on a prominent prior work on self-
supervised depth and pose prediction [6]. We develop and
make available a novel dataset and describe the data generation
process and properties of our data. Then we propose a novel,
bimodal approach to camera pose estimation that is better
suited to learning bimodally distributed data. Our model,
the full dataset, the documentation, and the data generation

environment will be publicly available.

A. A study on the limitations of self-supervised depth
and pose prediction in colonoscopy.

Ideally, a network can learn reliable depth and pose esti-
mates from image pairs. Depth and pose are inherently related
through the geometry of the scene. Self-supervised approaches
are based on the idea that predicted depth and relative pose
between two cameras could be used to warp an image to

a nearby frame. A loss function then compares the warped
image to the target image. We define the pose of a camera in
a reference world space at time 7 as a 4 x 4 matrix

P, = [RT IT} .
0 1|’
where R is a 3 x 3 rotation matrix and t is a 3 x 1 translation
vector. We can project a pixel into the respective camera frame
using the camera intrinsics.

As illustrated in Figure 2, we can warp pixels between
images. We project a pixel to its camera space using the
intrinsic matrix K. The camera’s pose in the world space
can then project a point h = [r,y,z,1] in homogenecous
coordinates into world space. The inverse of a second pose
lets us project the point into the new camera space from where
K maps it to the new image plane. We summarize:

h' = P Pyh =: Qh, (1)

where A’ is the image of a point A in a new camera frame
and 2 is a 4 x 4 projection matrix. It is important to note
that world points occluded by structures in one image can not
be retrieved through warping. For a thorough discussion of
projective geometry, we refer to Hartley and Zisserman [23].

Similarly to projecting points between camera spaces, we
can map a camera pose to a new pose in the world space. In
other words, we rotate and translate a camera. To map camera
I to the pose of camera 2, we write

Py = {1111)1—1)1)2 =P (Pflf’z) _ 1”15-2- 2)

In the context of mapping camera poses we refer to {1 as
the relative camera pose. Self-supervised methods technically
learn the warping parameter €2, but it can be interpreted as the
relative camera pose.

To understand how self-supervised methods learn (2, we
define the relevant losses that compare a target image to the
predicted warped frame. Let Images I, .., be two nearby
RGB images that are k frames apart. For synthetic data, let
D, D, be the corresponding ground truth depth maps and
let €2, _, . be the projection matrix that projects points from
camera frame 7 to camera frame 7+ k. Further, let hats denote
the predictions of a network: DT and Q,__,T_;,.. Note that
networks can parameterize camera translations and rotations
differently, but other representations can be mapped to 4 x 4
projection matrices [24].

Then image [, can be warped to look like 1,
and the warped image is denoted through a tilde as
IT_;;(SIT_F;;_,T,DTH,IT), based on the inverse projection,
target depth, and reference image used. For dense warping,
we use inverse warping; that is, we warp the target image
back to the reference image rather than warping the reference
to the target. The reprojection loss for an image pair (£, [, 1)
is defined as

Le= Y 3 |Mrsi— Lsi(Qrsinr, Dosi L)1 3)

i=—kk T

Other relevant losses are the geometric consistency loss L¢ [6]
that compares the warped depth D4 to the projected depth
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Fig. 3. Projecting ground truth depth and camera poses into world space replicates the colon mesh. Left: Every tenth frame of one test trajectory
is projected info the same world space. Right: Every twentieth frame of a smaller section in the same test sequence is projected into world space
together with the respective camera poses. Each camera and its point cloud have the same random color, and clouds are subsampled for better

visualization.

D,’r+k, and the structural similarity index measure (SSIM),
here referred to as Lg, as defined in [25].

But due to the geometry of the colon, and the related char-
acteristic camera movement, mapping between image plane
and 3D world is ambiguous (and certainly not bijective):
Hlumination inconsistency: Camera-pose-dependent lighting
interferes with warping losses: The same surface can look
very different from slightly different positions. Adjusting for
illumination inconsistency by scaling the intensity values of an
image pair to have the same mean [6] only lincarly approx-
imates the illumination differences. It neglects, for instance,
that colon folds throw shadows and block light from reaching
farther parts of the lumen. Illumination is an important cue
for understanding geometry in the mostly textureless colon.
Its inconsistency challenges the applicability of warping-based
methods in the colon.

Smoothness inertia: Networks tend to predict smooth depth
maps when trained with naive warping loss, and this is often
even reinforced by a smoothness loss [26]. While this might
be a reasonable approach for smooth surfaces like bronchi, the
geometry of the colon is characterized through folds and thus
sharp steps in depth.

Back-projection ambiguity: Due to self-occlusion warping
errors and geometric inconsistency often are not minimized by
the ground truth depth and pose—the network converges to a
local minimum.

Wide field of view: The wide frustum of colonoscopes
emphasizes nearby structures over-proportionally in the image.

We show experimentally how these drawbacks can lead to
a sub-optimal accuracy of the predicted camera pose.

B. SimCol: A new dataset

We propose a new public dataset that will enable pose
and depth prediction in colonoscopy. Following the pipeline
introduced in [17] we use a Unity simulation environment;
however, we also generate ground truth camera poses. Our
data is based on a computer tomography scan of a human
colon from which a textured mesh was created in [6].

We define a path in the center of the colon mesh defined
through 18 WayPoints which the virtual colonoscope fol-
lows, simulating a traversal through a colon. Our dataset aims

to reflect typical camera movements during colonoscopy. Dur-
ing withdrawal in a real-world procedure, the scope is slowly
pulled backwards along the colon’s centerline. When folds
present themselves, the tip is flexed and rotated to observe the
entire mucosa. Reinsertion and re-withdrawal often occur [27].
Similarly, the virtual camera follows the centerline of the colon
while rotating around it. The camera outputs images with size
475x475 and replicates the intrinsics of a real colonoscope.
Two virtual light sources are attached to the left and the
right of the camera. Each time a user renders images along
the trajectory, the WayPoints are independently offset by a
random translation of up to 2mm, and a rotation of up to 20
degrees, which we chose experimentally.

When generating new data, a user can change the rotation,
position, randomization, and number of Waypoints arbitrarily.
The user can also adjust the interpolation parameters between
Waypoints. Adjusting a Waypoint will affect all frames’ cam-
era poses between the previous and the following Waypoint.
The camera intrinsics, image resolution, and light sources can
also be adjusted in our Unity project. Given all poses as 4x4
projection matrices describing the camera’s pose in the world
reference frame, we assume the first camera (7) of each pair to
be at the origin. Thus we learn the projection 0, = P71P, 4y,
that describes the position of camera 2’s (7 + k) origin as
seen from camera 1. Accordingly, a positive z-coordinate of
1 indicates that camera 2 is in front of camera 1. As Unity
uses a left-handed system, while the Python package Scipy
uses a right-handed system, we transform the Unity camera
poses during training and testing using the projection P79t —
MP"J'M, where M is a 4 x 4 identity matrix with —1 as
the second diagonal element. After transformation, the z-axis
points forward from the optical center, while the y-axis points
upward and the x-axis to the right. Figure 1 shows example
images, depths, and trajectories next to the colon mesh in its
Unity environment. The Figure shows the camera path in green
and the WayPoints in yellow. Algorithm 1 gives an overview
of the data generation process. Furthermore, we show how the
depth maps and poses can be used to project RGB images
into 3D space in Figure 3(a), and we visualize the ground
truth camera poses of a smaller section and their respective
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Fig. 4. Histograms of relative -, y-, and z- franslations () in millimeters
and rotations (r) in degrees between image pairs in our dataset that are
k = 5 frames apart. The translation along the z-axis is clearly bimodal.
This observation corresponds to the endoscope’s predominant forward
and backward movement within the colon.

Algorithm 1 Data generation in Unity
for wayPoint in WayPoints do
randomize wayPoint pose
time = 0
while time < timePerWayPoint do
cam.position < GetPosition(wayPoint, time)
cam.rotation «— GetRotation(wayPoint, time)
render RGB image
render depth map
update time
end while
end for

point clouds in (b). Lastly, we plot histograms of the x-, y-
, and z-rotations and translations for consecutive frame pairs
in Figure 4. It is important to note that the translation along
the z-axis is clearly bimodal, as we would expect in a real
scenario. Further, the rotations range in an interval of about
[-2,2] degrees. Our dataset is therefore the first public dataset
with verified ground truth depths and poses, both training and
testing data, and a wide variety in rotation.

C. A new approach to predict bimodal camera pose

Inspired by [28] we propose the use of an explicitly bimodal
model to learn bimodally distributed camera pose.

Our model uses a ResNet-18 architecture as encoder and, for
comparability with [6], a 4-layer convolutional pose decoder.
The bimodal approach is visualized in Figure 5 and explained
in the following.

Class net: We propose a classification network that classifies
relative poses into insertion #. > (0 or withdrawal #. < 0
movements, where 7. denotes the translation along the z
axis based on the projection matrix Q, = PP ;. In
other words, the translation along the z-axis is classified into
two bins. Our network first embeds each image of a pair
(I-, I+ +1) into a 256 x 16 x 16 feature vector using a ResNet-
18 architecture referred to as f. The embedded images are then
concatenated along the feature dimension and passed into both
the classification net C and a regression net R. The class net
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Fig. 5.  Architecture of our bimodal model. Top: Overview of the
proposed approach. Lower left: Outputs of the Pose Net and Class Net
constitute the predicted relative pose €. lower right: lllustration of the
correlation layer.

is a simple 3-layer fully concatenated network with dropout
layers with high dropout probability (0.5) as proposed in [28].
It outputs a 2D vector that is passed through a softmax layer
and can be interpreted as the probability [P that the input image
is from bin B; or bin By, respectively:

C(F(L). F(L+x)) = [B(t: < 0) B(t. > 0)]
- []P(Q'r € Bl) ]P(Q'r € BQ)]?

where BI and B2 represent two sets of relative poses P2, such
that P € By <= P~!' € Bs. As we assume that each class
is normally distributed we train the classification network with
cross entropy loss

L(,‘Iu.‘m - Z P(BT,) l(}g P(Bt)_ (4)

Representation of relative pose: There are different ways to
represent camera poses. As a rotation matrix has many almost
zero entries, it is not a good representation for a network to
learn. Therefore, we use the logarithms of unit quaternions in
this work. They are represented as a 3D vector that can be
mapped to the 4D unit quaternion as proposed in [29]. The
pose error

-8

Lyose = |f —tlexp™" +6 4+ |log G — logg|lexp™ +v  (5)

is a weighted sum of rotation error and translation error,
where the weights 3 and + are learned as proposed in [30]
and adapted to log quaternions in [31] with initial values 0
and —3, respectively. The final pose output of our network
is a 6D vector representing the 3D translation and the 3D
log quaternion. For convenience, we continue to refer to the
relative pose in the new representation as €.

Regression net: The regression net R is a simple 4-layer
fully convolutional layer with Relu activations as used in [6].
R outputs a 6D pose estimate for each of the two classes
relative to each of the two bins as proposed in [28]. Let bin/,
bin2 be the approximate centers of By and B describing the
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Fig. 6. Visualization of the correlation layer: The argmax let's us
illustrate the pixels with the highest correlation in the other image.

translation along the z-axis and b; = [0,0, bin1,0,0,0/7.
Then R predicts the difference between the ground truth
pose in 6D representation and both b; and bs. We denote
the differences as wp, o and @y, 0. The regression net R
outputs

R(f(‘{T)?f(IT'i'k)) - [d}bl_)Sl'J

Final prediction: The final pose prediction is a weighted sum
of the probabilities from the class net and the regressed pose
differences

Why 2, |- (6)

P(Q, € B, )] ' [hl + a}b.ﬁu_,] .

Q, = : -
[IP(QT € By) by + n, -,

Correlation layer: Crucial to the performance of the class
net is the correlation layer. As introduced in [32] and used for
pose regression in [33], the down-sampled images are passed
through a layer in which the correlation between each feature
pair is computed. The output is a 16> 16 x 16 x 16 correlation
volume. The volume is flattened and normalized along the
first two dimensions to indicate matches of I, in I, and
along the last two dimensions for the opposite case. Unlike
[32], [33] our correlation layer has no learnable weights. Yet,
it is crucial for the convergence of the classification net as
it decouples the features for pose regression from the class
net: The class net does not depend on the learned features
but only on the similarity across images. The correlation layer
matches features between an image pair, and although they are
too noisy to be useful for direct pose estimation, their signal
helps distinguish between forward and backward movements
easily. In fact, the class net has reached an accuracy of 99% on
the validation set after the first epoch. For visualization only,
we return the argmax along the feature dimension and receive
a 16x16 grid with the location of the most similar feature in
the other image in each pixel. We upsample the grid matches
to the centers of their respective patches in the 475 x 475
image and show the 15 matches with the highest correlation
in Figure 6. Experimenting with the argmax as input to the
class net, we found the volume more useful.

Target function: Let w,. be the weight for the class loss. Then
our network is trained minimizing the target function

L= Lpu:ae: + TU(:L(:Iu.em- (8}

IV. EXPERIMENTS

In this section, we first observe the drawbacks of self-
supervised pose networks. We then show that models trained
on our data can better generalize to real colonoscopy se-
quences. Moreover, we show that supervised methods, too, can
generalize to real data, making them suitable to be used for
real procedures and lending themselves to domain adaptation
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Fig. 7. Examples for predicted and ground truth (GT) depth maps using
the self-supervised baseline. Scales are omitted as depths are predicted
up to scale. Blue corresponds to a higher depth.
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Fig. 8. Predicted camera trajectories using the self-supervised baseline
are worse for the backward traversal than for the forward traversal. RTE
is color coded in the ground truth trajectory.

methods. Lastly, we show that our novel bimodal method
outperforms the unimodal baseline and is better suited to
learning the camera movement during real colonoscopy.

A. Minima of self-supervised target functions are not
guaranteed to minimize depth and pose errors

We train the method proposed and published in [6] on our
own data with all hyper-parameters set to their default values.
To obtain the full trajectory of absolute poses, we multiply the
relative poses. The pose of a camera 7T in world space can be
computed as P, = P, -...-Q,_,, where each Q projects the
initial pose /7 sequentially to the subsequent camera pose. As
the network predicts pose up to scale we measure the accuracy
of the scaled trajectory using the Absolute Translation Error
(ATE), the Relative Translation Error (RTE), and the ROTation
error (ROT). The losses are defined as

RTE = p.(||trans(Q, 7' Q,)|]), (9)
ATE = p,(|[trans(P;) — trans(P;)||), (10)
trace(Rot(Q71Q,)) — 1 180

5 : ?J; (1D
where p. denotes the median over all steps 7, trans and Rot
denote the translation and rotation components of a projection
matrix, and ||.|| denotes the 2-norm. The ATE measures
drift and the overall consistency of the predicted trajectory;
however, it is prone to outliers. More robust than the ATE is
the RTE. It measures the magnitude of the difference between

and

ROT = p(
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ABSOLUTE TRANSLATION ERRORS, RELATIVE TRANSLATION ERRORS, AND ROTATION ERRORS ON OUR TEST TRAJECTORIES

Test trajectory 1 2 3
Total trajectory length 105.1 ecm 103.6 ¢cm 102.2 ¢m
Mean step size 4.4 mm 4.3 mm 4.3 mm
Mean rotation per step 4.6° 4.8° 4.8°

ATE(em) RTE(mm) ROT(") Acc(%) | ATE(cm) RTE(mm) ROT(") Acc(%) | ATE(cm) RTE(mm) ROT(") Acc(%)
COLMAP [2] 0.01 0.07 0.18 8 0.02 0.10 0.28 6 0.37 0.68 1.42 7
EndoSLAM [6] 149/17.8 3.10/426 1.3/5.7 100/41 | 18.0/15.3 3.50/4.28 1.8/5.0 100/35 | 14.9/15.7 3.24/4.16 1.6/55 100/37
Ours unimodal 7.08/12.5 0.75/0.79  1L3/1.3  100/99 | 2.79/2.63 0.76/0.76 1.5/1.5 100/100 | 7.56/10.0 0.87/0.90 1.5/1.6  100/99
Ours bimodal 8.86/13.3 0.72/0.72 1.5/1.5 100/99 | 2.83/6.03 0.69/0.71 1.7/1.7 100/100 | 6.17/9.62 0.85/0.89 1.6/1.6  99/99
QOurs bimodal w/L. 8.81/9.79 0.690.72 1.5/1.5 100/99 | 235/5.23 0.67/0.70 1.6/1.6 100/100 | 3.78/9.00 0.82/0.85 1.6/1.5 100/99
Ours bimodal w/L. w/o Corr | 14.0/13.9 0.77/0.76 1.7/1.6 99/99 |832/546 0.73/0.71 2.1/20 9998 |8.70/8.10 0.93/098 1.9/1.8 99/98

ATE & RTE, ROTation error, and accuracy for our test trajectories’ forward/backward traversal. COLMAP performs global optimization and thus direction does
not matter (only one value reported). The accuracy for regression methods (Ours and EndoSLAM) denotes the percentage of correctly predicted directions.
The accuracy for COLMAP reports the percentage of frames from the trajectory that COLMAP was able to reconstruct. Note that although COLMAP yields
the smallest errors, the method successfully reconstructs only a small fraction of each trajectory. Bold indicates the best result as the sum of forward and
backward errors. W/o Corr refers to our model without the correlation layer in the classfication net.

the predicted and actual relative pose per step and reflects
translation and rotation errors on a local level. As we do not
apply global optimization or loop-closure, and all methods in
this work predict each relative pose independently, the RTE
has more significance for us. Lastly, the ROT measures only
the magnitude of the rotation of the local errors.

The scaling factor is defined as

o trans(P;)T - trans(P;)
5= R o
> trans(P)T - trans(P;)

(12)

where P, denotes absolute camera poses. A different approach
would be to compute an alignment projection for the pre-
diction, as in [34]. However, as we investigate the ability
to predict correct directions, we only scale the predicted
trajectory but refrain from translating or rotating it. If a
network were to predict the exact opposite of the ground truth,
a rotation of 180° could compensate for the error, which is not
informative in our case. We compute independent scales for
the forward and backward trajectories.

In Figure 7, we show that the network has learned to
predict smooth yet sensible depth maps. Because the network
is trained based on the self-supervision of warped RGB and
depth images, one might assume that the network must have
learned both depth and camera pose. Investigating the resulting
trajectory as shown in Figure 8, we find that the network pre-
dicts the insertion movement considerably better than the op-
posite movement. The forward movement successfully predicts
the three half-loops, though with drift. Predicting the motion
in the opposite direction does not lead to a sensible trajectory.
Further evidence that the performance of the algorithm varies
depending on direction is presented in Figure 9. The histogram

of predicted z-values is not aligned with the ground truth
values leading to a bias towards a positive translation along the
z-axis. Finally, also Table IT (EndoSLAM method) underlines
our findings, where we quantitatively evaluate the performance
of the self-supervised approach on three different trajectories
within our dataset. Most notably, the RTE and rotation errors
are higher for the withdrawal than for the insertion for all
trajectories.

Dissecting insertion vs. withdrawal: We use the terms insert
and withdraw when speaking of direction relative to the struc-
ture rather than forward/backward because the latter can be
defined arbitrarily. So what is the difference between inserting
and withdrawal movements? During training, the network pre-
dicts the forward and backward movement between an image
pair (1, 1;1;). We show warped images in both directions
based on ground truth depth and pose vs. warped images
based on predicted (7) depth and pose in Figure 10. We also
show error maps and the resulting training losses. Observe that
column (viii) is minimized during training to look like column
(vii). Moreover, column (viii) should look like column (ix) if
the predicted depth and pose were correct. Note that even when
using the ground truth values, the training losses are non-zero.
Visually, there are significant differences between the ground
truth warp and the predicted warp, especially along steps in
the structure. Investigating the resulting errors in column (xii)
shows high errors for geometry consistency losses (D).

For the opposite movement, the images in columns (ii) and
(iii) should look like column (i). We observe that the ground
truth warped images have many artifacts that originate in the
self-occlusion of the scene and the sharp differences in depth.
These artifacts lead to high warping errors for the ground truth,
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Fig. 10. Training losses of a self-supervised depth and pose network are not necessarily minimized at ground truth. Each row shows an image
pair (I, I-4) and its induced training losses. The first six columns visualize the errors of warping -y to I+, while the last six rows show the

opposite case: (i) + (vii) original |mages (i), (i),
using ground truth depth and pose; (iv)

(viii), (ix) warped images 11.+k_,1. and I, using predicted depth and camera pose vs.
. (v), (x), (xi) error maps for the Reprojection loss L g, where dark areas represent low errors; and (vi), (xii)

Lr.Ls and L¢ for the predicted and ground fruth inputs. If depth and pose were correcily learned we would expect (ii) to equal (iii), and (viii) to
equal (ix). However, especially (viii) fails to represent the correct camera movement. Further, we would expect that using ground truth depth and
camera pose leads to lower warping errors in (vi) and (xii) than using the predictions; yet, the errors induced by the ground truth are often higher
(green bars larger than corresponding blue bars). In all examples the camera moves in negative z-direction between frames + and = + k.

as shown in columns (vi). The predicted warpings visually
replicate nearby structures well, resulting in minor reprojection
errors, although wrong poses are predicted. Every example in
column (vi) has a higher reprojection error for the ground
truth (green) than for the prediction (blue). The network has
converged to a wrong optimum. We found that the network
predicts higher reprojection losses for the ground truth than
for the predictions in 63% of the test images. We observed a
similar, though weaker, behavior using warp errors based on
HSV color model or depth. However, we found the RGB-based
reprojection loss to be crucial for the convergence.

We conclude that, due to the geometry of the colon, depth
prediction and pose prediction do not necessarily improve or
help each other. The different properties of the insertion and
the withdrawal warping lead to different performances for the
pose prediction. As a result, the unsupervised network learns
a unimodal distribution of the z-translation shifted towards
positive z-translations. The model in this case was not able to
predict both forward and backward movements of the camera.
Because these are the main relative movements to be expected
during colonoscopy, the bimodality needs to be accounted for.

B. Our data helps generalize to real data

In this section, we show that methods trained on our SimCol
data better gencralize to real trajectories. We evaluate the
results of three methods on six real colonoscopy sequences.
We hand-select sequences that were successfully reconstructed
with COLMAP [2]. Upon visual examination, we found most
reconstructed sequences to produce flat or noisy point clouds
indicating errors in the reconstruction. We picked sequences
that reflected a reasonable and coherent 3D structure of the

TABLE IlI
ROBUSTNESS AND GENERLIZABILITY TO UNSEEN REAL DATA
| [@ [ ® [ © [ @ [ ® [ ® ]
Til* 12.0 14.6 1.6 11.9 11.1 15.0
Mss* 0.7 0.4 0.9 0.7 0.6 0.8
Mrs 2.1 1.5 2.1 1.6 23 2.0
ATE —|1.23579(1.46284{1.31.811.|1.6 1.6 5.6/12.6 233.2(1.56.57.5
ATE +|1.03.223|1.21.83.6(0.7 1.2 2.1|1.1 6.6 6.5/1.1 11.9.6[1.1 6.56.3

RTE —|0.3 0.4 1.0{0.2 0.3 0.6(0.2 0.3 1.7]10.2 0.3 0.5]0.3 0.4 0.5/0.2 0.5 0.7
RTE +|0.3 0.4 0.5(0.2 0.1 0.2(0.3 0.3 0.6/0.3 0.5 1.1]0.2 1.0 1.0(0.3 0.4 0.5
ROT —|2.0 1.72.0{1.2 1.0 .'.3&2_4 1.01.51.429242.0/1.1 1.§1.2
ROT +|2.0 0.9 2.7|1.1 3.11924{1.02819(3.22526(131.51.1

Ttl = Total trajectory lcngth,_ Mss = Mean step size, Mrs = Mean rotation
per step in degrees. Best method underlined.

Comparison of three methods evaluated on six real sequence: (i) Our proposed
method trained on our proposed dataset, (ii)) EndoSLAM method trained on
our dataset SimCol, and (iii) EndoSLAM method trained on EndoSLAM
data . ATE & RTE in unknown scale and Rotation error in degrees for the
forward (—+) and backward (<) traversal. Errors relative to COLMAP labels.
* Absolute scale unknown.

observed surface. Because we rely on visual inspection, the
COLMAP results are not considered ground truths; however,
they are a useful baseline.

In Table III, we compare three different algorithms: (i)
our proposed bimodal method trained on our new dataset,
(i1) the EndoSLAM algorithm using the publicly available
network weights that were trained on EndoSLAM data, and
(iii) the EndoSLAM algorithm trained on our data. We show
the predicted poses in Figure 11. We scale trajectories resulting
from the poses according to Equation 12. The errors in Table
IIT describe the difference between COLMAP results and
scaled predicted results.

Let us first compare the EndoSLAM (ES) method trained
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Fig. 11. Comparison of different methods with COLMAP on three withdrawal sequences (a-c), two insertion sequences (d-e), and one withdrawal
followed by insertion (f). Top: Predicted and COLMAP trajectories. Botiom: Ten images from each sequence. The self-supervised methods (green
and red) fail to predict most withdrawal trajectories and predict insertions instead. If trained on our data, the self-supervised method correcily
predicts withdrawal sequence (c). Our method (orange) robustly predicts the direction along the z-axis in all cases, even when the camera changes

direction as in (f).

on two different datasets; we will discuss the performance of
our novel bimodal approach in the next section. In Table III,
we can observe that ES trained on our data yields a smaller
RTE in eleven out of twelve cases compared with the same
method trained on the ES dataset. More importantly, in three
cases, ES trained on ES fails when the same method trained
on our method does not. On sequences (a), (b), and (c), the
RTE produced by ES on ES is larger than the respective
mean step size (Mss). That means that the error per step is
larger than the step itself on average. ES trained on our data
better generalizes to the camera movement in the real sequence
than the same method trained on the ES data. Although the
domains are different, our data provided the network with
more realistic camera poses to learn. Nonetheless, both ES
methods fail to consistently predict the camera movements in
both the original and the reverse direction. In the withdrawal
sequences (a)-(c), RTE — is especially large. Inversely, in
the insertion sequences (d) - (e), RTE < is particularly large.
We plot the corresponding trajectories in the original direction
in Figure 11. The first three sequences show withdrawals.
While ES trained on ES fails to predict the correct direction

in all three cases, ES trained on our data correctly interprets
the movements as a withdrawal in sequence (c). Sequences
(d) and (e) show insertions. All methods suffer from drift,
which we expect as we predict poses sequentially. However,
ES trained on ES produces sharp direction changes in (d)
when COLMAP’s reconstruction is smooth. The last sequence
shows a withdrawal followed by an insertion. Again, both ES
baselines fail to predict the correct direction and the change
in direction.

At first glance, it might be surprising that a synthetic dataset
helps generalize to real data. Indeed, there is a domain gap
between the appearance of real images and our synthetic
data. However, our data has closed the gap between camera
movements in existing datasets and camera movements in real
colonoscopy videos. Our data allows a model to learn a correct
prior for relative poses that is robust to the appearance gap.

C. Bimodal distributions are more accurately learned
with bimodal models

We previously observed how EndoSLAM performs if
trained on two different datasets. Let us now observe how our
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Fig. 12. Histograms of z-translations in cm for our bimodal model,

unimodal model, and ground truth (GT) on test trajectory 1.

TABLE IV
MANHATTAN (L1-) ERRORS FOR Z-TRANSLATION PREDICTED BY
DIFFERENT MODELS ON OUR THREE TEST TRAJECTORIES

| [T [2]3]
Bimodal, class supervision 132 1122|154
Unimodal, no supervision 168 | 152|162
Bimodal, no supervision 118 | 142|170

bimodal method performs on real data. Our bimodal method
trained on our dataset (orange) in Table III yields the smallest
RTE and ATE in almost all cases. Unlike ES, our method
yields a similar RTE for the forward and backward directions.
Our model robustly predicts the trajectories in Figure 11.
Especially in sequences (a), (b), and (f), where ES fails,
our method accurately follows the withdrawal and even the
subsequent insertion of the camera in the last case. Also, on
the insertion sequences (d) and (e), the bimodal model predicts
accurate trajectories.

Let us next evaluate our method on our proposed bi-
modally distributed synthetic data. In contrast to real data,
our dataset provides labels for training and testing, which
would make it unfair to compare a supervised method to
a self-supervised one. We, therefore, compare our method
to COLMAP. We apply COLMAP with standard settings to
our data and report its performance in Table II (COLMAP).
COLMAP only reconstructs a small subsection of images (14-
18 images per trajectory corresponding to 6-8% of frames).
Accordingly, the ATE reflects only a small subsection, and
we should not compare it to the ATE of other methods. The
RTE and rotation error on reconstructed subsections of test
sets 1 and 2 are extremely small. The RTE and rotation
error on test trajectory 3 is comparable to ours, though our
approach is robust and predicts the entire trajectory. CNNs
for pose prediction in colonoscopy can thus be considered
a practical alternative where feature-based methods fail to
initialize. Next, we evaluate the usefulness of a bimodal
model compared to a unimodal approach in two experiments.
We compare three different versions: (1) a bimodal model
with class supervision; (ii) a unimodal model that passes the
ResNet-output to the regression net only; and (iii) a bimodal
model that is not trained with class labels. We implemented
all models in PyTorch. For the bimodal models, we use the
hyper-parameters binl = 0.1 -k, bin2 = —0.1 - k, w, = 0.1,
and k£ = 5, where w,., and k£ were chosen based on grid search.
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Fig. 13. Comparison of predicted trajectories produced by unimodal
and our bimodal model and ground truth (GT) on fest set 1. Please see
supplementary material for videos.

The unimodal and bimodal models have the same number of
weights in the regression net. To compare the three methods,
we compare the resulting histograms and pose errors.:
Firstly, we plot histograms of the predicted poses in Figure
12. Table IV evaluates the similarity of the ground truth and
predicted histograms using the Manhattan (L1-) loss

Lfanhation = Z \h(7) g1 — h(i) preal- (13)
T

From Table IV we gather that the bimodal model supervised

with cross-entropy more accurately learns the distribution of

z-translations in the test set than a unimodal model for all three

test trajectories. All three models, however, closely replicate

the true distribution (see Figure 12).

Secondly, we evaluate the RTE, ATE, and ROT as defined in
Equations 10-11 on three test trajectories in Table II. However,
we do not rescale the results according to Equation 12, as
we expect the network to learn the absolute scale. As we
estimate the pose between a frame pair that is £ = 5 frames
apart, we calculate the errors for the five trajectories that
begin with step 0, or 1, 2, 3, 4, respectively, and report the
average. For each trajectory, we predict poses in forward and
backward directions. The bimodal approach with supervision
yields the smallest RTE for each test trajectory and, therefore,
the most accurate local camera poses. However, even the
bimodal approach without class supervision yields smaller
RTEs than the unimodal approach on all scenes. The network
learns to distinguish bins without supervision, speaking to the
ability of the correlation layer to distill information about
relative movements and its potential applicability to unsuper-
vised methods. The higher error for our bimodal approach
with class supervision but without correlation layer further
supports the claim. Lastly, RTEs are similarly accurate in
both forward and backward directions. To visualize the ATE,
we plot whole trajectories for our bimodal model and the
unimodal counterpart in Figure 13. The total length of the
trajectory is roughly 1 meter, so drift can and should be
expected.

D. Limitations
We propose a dataset that replicates the movement of a
colonoscope during real colonoscopy and observe that methods



trained on this data more robustly generalize to real video. Our
bimodal approach further improves supervised methods that
regress relative camera pose directly. Yet, the applicability to
real colonoscopy is still limited. For a full 3D reconstruction,
not only accurate poses and depths are required, but also global
optimization and loop closure. Drift is universal when using
local methods to predict global structures. Computational
limitations are yet to be overcome to allow an on-the-fly
reconstruction to give immediate feedback to colonoscopists
for a higher clinical impact.

V. CONCLUSIONS

Relative camera pose prediction during colonoscopy re-
mains exceptionally challenging. This work explains the lim-
itations of self-supervised methods based on warping losses
for camera pose prediction. We propose using supervised
methods trained on synthetic data and show that the explicit
modeling of a bimodal model, rather than a unimodal model,
can improve the accuracy of relative camera pose methods.
Supervised methods have the additional benefit of being more
robust than standard feature-based SfM methods. With our
published dataset, we close the domain gap between real and
synthetic relative camera poses. Future work will solve the
domain gap between real and synthetic colonoscopy images,
for instance, with generative adversarial networks. An exciting
direction for further work could also be the investigation of
bimodality within a self-supervised framework.
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