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1. Introduction

The first theory of gravity with a scalar gravitational potential |Φ̂| was that of

Newton (1687)1,2. This naturally prompted others, including Einstein to attempt to

incorporate the scalar field into Special Relativity3,4. Although futile, it nevertheless

paved the way for the modern theory of gravitation, General Relativity (GR)5.

Motivated by searches for a unification of gravity with electromagnetism, Kaluza

and Klein (1925)6,7 succeeded in providing an aesthetically appealing geometrical

theory explaining the origin of the cosmological scalar field due to the presence of

extra spatial dimensions in a vacuum, higher dimensional GR.
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The idea of a time-dependent gravitational constant G, dates back to Mach

(1906)8 who focussed on the expression G ∼ Rv/Mv, where Rv and Mv are the

radius and mass of the visible universe respectively. This implied that G varied

with the distribution of matter in the universe. It is similar to the expression of the

critical density of the universe: 3H2 = 8πGρcr where the Hubble parameter H is

defined as H = ȧ/a with the scale factor a(t), varying as a power of t if one assumes

Rv ∼ t−1. However, the observed density is much smaller than the critical density

and the deficit is now called dark matter and dark energy respectively9−12.

Dirac (1938)13−16 proposed that ratios between fundamental constants should be

of the order of unity. He was convinced that combinations of fundamental constants

were related in a natural way if one of the constants was allowed to vary with

time. He pursued this idea by taking the ratio of two fundamental forces of nature,

electrical and gravity on a standard atomic particle: γ = e2

κm2 ≈ 1040. He later

related the ratio of the present mass of the universe to that of the standard atomic

mass: µ ≡ Mu/m ≈ 1080. Finally by using µ ≈ t2 and γ = t, he developed a

cosmological model in which µ and γ varied with the age of the universe. Later as a

preface to inflationary cosmology, these large number coincidences led to remarkable

results: µ/tγ ≈ 100 and κ/Mu ≈ 100 respectively.

Jordan(1947)7,17 started by taking Kaluza’s unified field theory in five-

dimensional space with its fifth variable, the constant scalar field, as a function

to replace the gravitational constant κ. He extracted the scalar field from the orig-

inal five-dimensional gravito-electromagnetic theory and replaced it with a new

four-dimensional interpretation in which the field equations involving a scalar field

related to Newton’s gravitational constant can be interpreted.

Brans and Dicke (1960)18,19 were impressed by Mach’s idea which implied that

κ was a function of the mass distribution in the universe. By introducing the scalar

field Φ which takes on the role of κ as the reciprocal of Newton’s gravitational

constant and taking some motivation from 1/κ =M/R, it is possible that 1/κ is a

field variable that satisfies a field equation with mass density ρ as its primary source.

For a comprehensive review of the history of scalar tensor theories, the reader is

referred to refs: [7][13][19][20][21].

Interest in Brans-Dicke theory and scalar tensor theories in general dwindled

in the 1970s due to the more and more stringent constraints imposed on them by

Solar System experiments. The observational limits can only be satisfied by assum-

ing large values of |ω| where ω was a free parameter contained in the theory and

therefore expected to be of order unity. The lower bound on |ω| kept getting larger

and larger as the experiments became more and more accurate18. By the mid 1980s,

scalar tensor theories regained a surge of interest mainly due to the importance of

scalar fields in modern unified field theories and inflationary cosmology7,21.

In the astrophysical context, Damour and Esposito-Farèse (1993)22−24 reported

that neutron star models within scalar tensor theories may undergo a phase tran-

sition that consists of the appearance of a non-trivial configuration of the scalar

field Φ in the absence of sources complete with vanishing asymptotic value. This
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phenomena dubbed spontaneous scalarization, arises under certain conditions where

the appearance of the scalar field gives rise to a configuration that minimizes the

star’s energy (its ADM mass) with fixed baryon number. It appears even when the

parameters of the theory satisfy the stringent bounds placed by the solar system

experiments or uniquely even when the Brans-Dicke parameter of the theory is

arbitrarily large. This suggests ultimately that weak field effects cannot constrain

the effects of the scalar field in the strong field regime and prompts for alternative

measurements.

Sotani and Kokkotas (2005)25,26 showed that the presence of a scalar field in

a neutron star affects its equilibrium configuration and consequently its oscillation

spectrum. These carry clear imprints of the presence of the scalar field. Observations

of the neutron star’s oscillation spectrum via gravitational waves or electromagnetic

signals emanating from or around its surface will not only probe the existence of

the scalar field but it might also provide a measurement of its asymptotic value.

Finally Wang, Bonifacio, Bingham and Mendonça(2009)27,28 proposed a new

strong-field effect due to the relaxation of a more general function a(Φ) to its local

minimum during the cosmological evolution. It occurs in extreme conditions with

strong time-varying gravity such as the interior of a newly-born neutron star. In

this case the scalar gravitational field may be simulated according to parametric

instability (§5) and therefore provides an initial estimate of the effect that can be

extended for further investigation with realistic stars, including the possible energy

transfer from a collapsed star core to stalled shock waves in supernova formations

and other astrophysical problems 29,30. A further motivation is to seek a possi-

ble source of conformal fluctuations of spacetime as a result of background scalar

gradational waves 27.

This review is organized as follows: In §2. we discuss the dynamical elements of

the theory giving the actions and field equations in two conformal frames complete

with an overview of the basic components of the analysis. In §3. we discuss the

post-Newtonian limit along with tests for gravity in the weak field regime before

commenting on the conditions necessary for spontaneous scalarization to occur in

neutron stars. In §4 and §5. we derive the field equations for a spherically symmetric

neutron star and approximate the quasi normal modes of the scalar field to that of

a damped harmonic oscillator. In §6. we adopt the method used by Wang et al.28 to

simulate the parametric excitation of scalar fields in a proto-neutron star inducing

strong field effects which we later analyze using stability methods.

2. The Equations of Scalar Tensor Theory

Jordan-Brans-Dicke theory (BD hereafter) is the prototypical Scalar Tensor Theory

of gravity7,21. The action in the Jordan frame takes the form

SBD =
1

16π

∫

d4x
√−g

[

ΦR− ω(Φ)

Φ
gab∇aΦ∇bΦ− V (Φ)

]

+ Sm (1)
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where

Sm =

∫

d4
√−gLm (gab,Ψ) . (2)

The gravitational field is described by the Jordan frame metric gab and the BD scalar

Φ which along with matter variables Ψ describes the field dynamics. R is the Ricci

curvature scalar formed from gab and the BD parameter ω is rendered dimensionless

by the denominator Φ in the second term in the action. The Lagrangian density Lm
does not depend on Φ minimally coupling to matter, instead Φ is directly coupled

to the Ricci curvature scalar R. The scalar field potential V (Φ) generalizes the

cosmological constant and is often used in inflationary theories of the early universe

and present-day quintessence31−33. We work with dimensionless units (G = c = 1)

and adopt the metric signature (− + ++). We rewrite the generalized Einstein

equations in the Jordan frame by varying SBD with respect to gab obtaining

δ
(√−g

)

= −1

2

√−ggabδgab (3)

and

δ(
√−gR) = √−g

(

Rab −
1

2
gabR

)

δgab ≡ √−gGabδgab (4)

leading to

Gab =
1

Φ

(

∇a∇bΦ− gabg
cd∇c∇dΦ

)

− V

2Φ
gab+

ω

Φ2

(

∇aΦ∇bΦ− 1

2
gab∇cΦ∇cΦ

)

+
8π

Φ
Tab

(5)

where

Tab ≡
−2√−g

δ

δgab
(
√−gL) (6)

is the energy-momentum tensor for ordinary matter Ψ. Varying the action with

respect to the scalar field Φ yields:

2ω

Φ
gcd∇c∇dΦ+R− ω

Φ2
∇cΦ∇cΦ− dV

dΦ
= 0. (7)

By taking the trace of the Einstein equation in the Jordan frame we obtain

R =
−8πT

Φ
+

ω

Φ2
∇cΦ∇cΦ +

3gcd∇c∇dΦ

Φ
+

2V

Φ
(8)

and by eliminating R we derive the scalar field equation in the Jordan frame

�Φ =
1

2ω + 3

[

8πT +Φ
dV

dΦ
− 2V

]

(9)

where �Φ = gcd∇c∇dΦ is the Laplace-Beltrami operator of gcd. The conservation

equation ∇aT
ab = 0 regulating the dynamics of this matter is conformally invariant

and T + gabTab represents the trace of the vanishing energy momentum tensor.

Converting from the Jordan frame to the Einstein frame is equivalent to converting

from a frame in which the scalar field is non-minimally coupled to the metric tensor
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over to a frame where the scalar field is minimally coupled to the metric tensor34−36.

To make the conversion, consider a spacetime (M, gab) were M is a smooth D-

dimensional manifold and gab is a Lorentzian metric on M. The following conformal

transformations

g̃ab = A2(Φ)g∗ab (10)

g̃ab = A−2(Φ)gab∗ (11)

√

−g̃ = A4(Φ)
√−g

∗
(12)

T̃ab ≡ A2(Φ)T ∗

ab (13)

R̃ = A−2(Φ)

[

R∗ − 2(D − 1)
�A
A − (D − 1)(D − 4)gab∗

A,aA,b

A2

]

(14)

�̃Φ = A−2(Φ)

(

�∗Φ + (D − 2)gab∗
A,a

A Φ,b

)

(15)

are derived where A(Φ) is a smooth, non-vanishing function of the spacetime point

in a point-dependent rescaling of the metric. It is called a conformal factor and

must have values which lie within the range 0 < A <∞ (a, b, k, l=0, 1, 2....D). All

starred quantities represent components in the conformally transformed Einstein

frame while quantities with tilde are components in the Jordan frame. These trans-

formations may stretch or shrink distances between points described by the same

coordinate system on the manifold but the angles between the vectors is always

preserved leading to a conservation of the global causal structure. Computations

presented in the literature are performed in the Einstein frame, because it leads

to well posed Cauchy problems (that is elliptic and/or hyperbolic equations with

a set of initial conditions) with perfectly regular dynamics37,38. The cosmological

evolution resulting from these computations can be later expressed in the Jordan

frame, where the interpretation of the observable quantities is easier. Conformal

transformations are simply localized scale transformations where A = A(x). In con-

formally flat spacetimes of the form g̃abA2 = ηab, we obtain the flat Minkowski

metric corresponding to a value of η. For an authoritative account on conformal

transformation in theories of gravity, the reader is referred to refs:[39][40][41].

Finally the general action for the scalar gravitational field in the Einstein frame

takes the form

S =
c4

16πG∗

∫

d4x

c

√
g∗R∗ + SΦ + Sm (16)

where R∗ is the Ricci curvature scalar in the new frame. The specific action for

the scalar field SΦ in terms of a potential function V (Φ) together with the specific

action for the matter field Sm in terms of a coupling function A2(Φ) is written as

S = − c4

4πG∗

∫

d4x

c

√
g∗

[

1

2
gab∗ Φ,aΦ,b + V (Φ)

]

+ Sm
[

Ψ,A2(Φ)g∗ab
]

. (17)
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All quantities with asterisks are related to the Einstein two-spin metric g∗ab. They

are the bare gravitational constant G∗ and the scalar field Φ with its self-interaction

term V (Φ) and its coupling to matterA(Φ). The functional Sm
[

Ψ,A2(Φ)g∗ab
]

stands

for the action of any field Ψm that contributes to the energy content of the universe.

It expresses the fact that all these fields couple universally to a conformal metric

g̃ab = A2(Φ)g∗ab implying that the weak equivalence principle (the local universality

of free fall for non-gravitationally bound objects) holds in this class of theories. The

effective energy momentum tensor for Φ is derived from (17) and has the form

T abΦ + 2c
√−g∗

δSΦ

δg∗ab
=

c4

8πG

[

2gac∗ g
bd
∗ Φ,cΦ,d − gab∗ (gcd∗ Φ,cΦ,d + 2V (Φ))

]

. (18)

The field equation for the scalar field can be obtained by varying the total action

in (16) which leads to

�∗Φ− ∂V (Φ)

∂Φ
= −4πG∗

c2
a(Φ)T∗. (19)

The cosmological scale factor a(Φ) and the field derivatives α(Φ) and β(Φ) are

related to the conformal factor A(Φ) by

a(Φ) = lnA(Φ) (20)

α(Φ) =
dlnA(Φ)

dΦ
(21)

β(Φ) =
d2lnA(Φ)

dΦ2
. (22)

In this review we are interested in values where Φ is near a local minimum of

a(Φ). Thus up to an additive constant, equivalent to a re-scaling constant for the

metric gab, we have approximately a(Φ) = 1
2βΦ

2 for some constant β > 0. For

simplicity we adopt the quadratic potential V (Φ) = 1
2µ

2
0Φ

2 which gives the effective

mass m0 = µ0~/c of the scalar field Φ in vacuum28. The scalar field equation thus

becomes

�∗Φ− µ2
0Φ = UΦ (23)

where

U + −4πG∗β

c4
T∗ (24)

3. Strong-field effects and spontaneous scalarization

A key motive for studying scalar tensor theories of gravity is the strong desire to

embed GR into a class of consistent alternatives. However, there is an increasing

need to test certain features of the theory for consistency, completeness and to

check for agreement with past experiments42. Recall that the action of geometry

on matter in scalar tensor theories is the same as in GR, but that the dynamics of
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geometry and the action of matter on it is modified because of the presence of the

scalar field.

In the post-Newtonian formalism (PN), the analysis of Solar System tests in the

weak field regime for any metric theory of gravity can be simplified using an expan-

sion of the small parameters: |Φ̂|, Π, v2 and |Tjk|/ρ0 respectively 43. |Φ̂| represents
the Newtonian potential and Π is the internal density per unit baryon mass density.

The parameter v2 is the square of the velocity relative to the Solar System centre of

mass while |Tjk|/ρ0 is the stress per baryon mass density. The baryon mass density

is simply a measure of the number density of baryons n. Such corrections give the

Newtonian treatment of the Solar System in first order and the post-Newtonian

corrections to the Newtonian treatment in second order44.

The parameterized post-Newtonian formalism (PPN) is a calculational tool used

for all metric theories of gravity to explicitly express the parameters in which a

theory of gravity can differ from Newtonian gravity. One set of values for these pa-

rameters makes the PPN formalism identical to the PN limit for GR, while another

set of values makes the formalism identical to BD theory etc. Metric theories of

gravity only differ from each other in the way their laws generate the metric.

It is widely acknowledged that GR breaks down at the limit of strong gravita-

tional fields7,43. Consequently, when one considers the theory as a classical geometric

description of spacetime, it yields predictions of infinite densities and curvatures in

the formation of blackholes with a singularity at its centre. This situation persists

even when integrating backwards in time in the evolution of a uniform and isotropic

universe. Quantum gravity prohibits such unphysical solutions that occur at the

limit of infinitely strong gravitational fields. Recent developments that promise to

test the strong-field regime can allow us to place constraints on deviations from GR

that are as large as ∼ 10 orders of magnitude more stringent compared to existing

tests which have all been done on the Solar System45,46. The strongest gravita-

tional field in the Solar System is that of the Sun which corresponds to a spacetime

curvature of

GM⊙

R3
⊙c

2
≃ 4× 10−28cm−2 (25)

and a gravitational redshift of

z⊙ ⋍
GM⊙

R⊙c2
≃ 2× 10−6. (26)

These are substantially weaker fields compared to that found in the vicinity of

neutron stars and stellar mass blackholes which have a spacetime curvature of

≃ 2× 10−13cm−2 and a gravitational redshift of ∼ 1. In light of this, there is no

reason why the equations of GR must be chosen over alternatives. A self-consistent

metric theory of gravity can be constructed for any other action as long as it can

reproduce the Minkowski spacetime in the absence of matter fields and the cos-

mological constant. It must also be constructed from only the Riemann curvature

tensor and metric and must follow the symmetries and conservation laws of the
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energy momentum tensor of matter. Finally, it must be able to produce Poisson’s

equation in the Newtonian limit43.

The strength of a gravitational field at a distance r away from an object of mass

M is measured by the parameter

ǫ ≡ GM

rc2
(27)

which is proportional to the Newtonian gravitational potential and is directly related

to the redshift45. Infinitesimal gravitational fields correspond to the limit ǫ → 0,

leading to the Minkowski spacetime of special relativity. Weak gravitational fields

correspond to ǫ ≪ 1, leading to Newtonian gravity. Finally, strong gravitational

fields are characterised by ε→ 1 at which point the blackhole horizon of an object

of mass M is approached.

At higher post-Newtonian orders 1/c2, any deviation from GR involves at least

two factors and has the form

Z = α2
0 ×

[

λ0 + λ1
Gm

Rc2
+ λ2(

Gm

Rc2
)2 + ....

]

(28)

where Z is the deviation from GR and α0 is a constant related to the BD parameter

ωBD by α2
0 = (2ωBD + 3)−1. The most stringent bound on ωBD was provided by

the Cassini Spacecraft suggesting that ωBD > 40000 implying that the larger ωBD
gets, the weaker the scalar field coupling. R and m denote the radius and mass of

the the body under consideration and α0, α1......are known constants built from the

coefficients α0, β0 from the expansion

lnA(Φ) ≡ α0(Φ− Φ0) +
1

2
β0(Φ− Φ0)

2 +O(Φ− Φ0)
3 (29)

derived at the background value Φ0 of the scalar field:

γPPN − 1 = − 2α2
0

1 + α2
0

(30)

βPPN − 1 =
1

2

α0β0α0

(1 + α2
0)

2
. (31)

The Eddington parameters(γ and β) are related by βPPN = γPPN = 1 for GR

but these parameters can differ for scalar tensor theories46. The factor α2
0 is exper-

imentally known to be small and expected to be close to GR at any order44. It is

obtained from the exchange of a scalar particle between two bodies, whereas α0β0α0

comes from a scalar exchange between three bodies. For a comprehensive review of

the PN approximation for relativistic compact binaries, the reader is referred to

refs:[47][48][49].

Some non-perturbative effects may occur in strong field conditions if the com-

pactness Gm/Rc2 of a body is greater than a critical value Φc. This is notable for

neutron stars whose compactness are of order Gm/Rc2 ∼ 0.2, compared to 2×10−6



September 18, 2013 0:15 WSPC/INSTRUCTION FILE ws-mpla-abdn

Parametric Instability in Scalar Gravitational Fields 9

for the Sun. There is no deviation from GR at any order in a perturbative expansion

in powers of 1/c. Using a simple parabolic function of the form

Aβ(Φ) ≡ exp

(

1

2
β0Φ

2

)

, (32)

the scalar field at the centre of a static body takes a particular value Φc which

decreases as 1/c outside. Harada (1998)50 reported that when the condition

β0 ≡ ∂2lnA(Φ0)

∂Φ2
0

≤ −4 (33)

is satisfied, the function Φc has the shape of a Mexican hat46 giving the value

Φc = 0. This represents a local maximum where it is energetically favourable for the

compact object to create a non-vanishing scalar field and thereby a non-vanishing

scalar charge. The coupling strength α(Φ) = ∂lnA(Φ)/∂Φ = β0Φc generates non-

perturbative strong field effects in the compact object which induces order-of-unity

deviations from GR. This phenomena is known as spontaneous scalarization51,52

in analogy with the spontaneous magnetization arising in ferromagnets below the

Curie temperature53.

4. Coordinates and metric for a static, spherically symmetric

neutron star

The metric describing a non-rotating, unperturbed, spherically symmetric neutron

star modeled as a self-gravitating fluid of cold degenerate matter at equilibrium

takes the form

ds2 = −e2ψdt2 + e2Λdr2 + r2
(

dθ2 + sin2 θdφ2
)

(34)

where ψ = ψ(r) and Λ = Λ(r). The solution to the BD field equation below is one

of four solutions and is most frequently used in the literature as it is valid for all

values of ωBD.

eψ = eψ0

[

1− B
r

1 + B
r

]k

(35)

eΛ = eΛ0

(

1− B

r

)2
[

1− B
r

1 + B
r

]

(k−1)(k+2)
k

(36)

φ = φ0

[

1− B
r

1 + B
r

]

(1−k
2)

k

(37)

where k2 = (4+2ω)
(3+2ω) and B, ψ0, Λ0, φ0 are constants. For an authoritative account

on the structure of neutron stars in scalar tensor theory see refs:[25][26].
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We adopt the equation of state used by Morganstein et al(1967)54 for the con-

tracted stress energy tensor

T∗ = −c2ρ+ 3p (38)

where ρ is the density and p the pressure in a star of radius R. We assume the

inequality c2ρ≫ p so that (24) reduces to

U =
4πG∗β

c2
ρ. (39)

For simplicity, we approximate to a flat spacetime corresponding to the Minkowski

metric ηab leading to the scalar field equation in the form

∂2Φ−△Φ+ µ2
0Φ + UΦ = 0 (40)

where △ is the 3-dimensional Laplace operator. The density fluctuations of the star

become ∂20ρ− (v/c)2△ρ = 0 where v is the speed of the pressure/density wave and

the surface density for a single mode radial oscillation is r = R. Fluctuations of the

form

ρ = ρ0[1− ǫχm(r) cos(Ωmt)] (41)

are generated where

Ωm =
mπv

R
(42)

is the mode index, ǫ the amplitude parameter and the function

χn(r) ≃
R

r
sin(κnr) (43)

contains κn = nπ/R which is the wave number when n=1, 2,.... The orthogonality

relation is
∫ R

0

drr2χn(r)χm(r) =
R3

2
δnm, (44)

and when substituted into U = 4πG∗β/c
2ρ, the density fluctuations yield

U = U0[1− ǫχm(r) cos(Ωmt)]. (45)

The scalar field equation now takes a new form

∂2Φ−△Φ+ µ2
0Φ− ǫU0χm(r) cos(Ωmt)Φ = 0 (46)

where U0 ≃ 4πG∗βρ0/c
2 ≥ 0 and µ2 ≃ µ2

0 + U0. Finally the scalar field potential

becomes

V (Φ) =
1

2
µ2Φ2 (47)

and

V (Φ) =
1

2
µ2
0Φ

2 (48)

inside and outside the star respectively.
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5. Normal modes of the scalar field inside the neutron star

The scalar field inside the star can be approximated to a standing wave subject to

the boundary conditions Φ(R, t) = 0 due to the surface r = R behaving like an

anti-phase reflector for outgoing Φ. Under the conditions µ/µ0 ≫ 1 and ǫ = 0, the

normal mode of the scalar field becomes

Φ ≈
∑

n

Φn +
∑

n

ϕn(t)χn(r). (49)

Each n represents a normal mode as

ϕnt = ℜϕn0e−iωnt (50)

where ϕn0 is the modal amplitude constant giving the energy of Φn as

En = 4π

∫ R

0

drr2u =
c2

2G∗

R3ϕ2
n0ω

2
n (51)

where u = c4

8πG∗

[(Φ, 0)2 + (Φ, r)2 + µ2Φ2] is the energy density of Φ inside the star

in spherical coordinates.

Under certain conditions, the star’s surface does allow some scalar wave to prop-

agate through it. When µ/µ0 > 1, there is a loss of energy in which case Φn is ap-

proximated to quasi-normal modes. We assume that (49) is valid over a few circles

of oscillation at angular frequency ωn. Exterior to the star (r > R), this yields

ϕnt = ℜϕn0
κn
kn

R

r
ei(knr−ωnt+θn) (52)

where θn is a constant phase and

k2n =
ω2
n

c2
− µ2

0 (53)

while

κ2n
k2n

=
κ2n

κ2n + U0.
(54)

The power carried by the outgoing waves at r ≫ R is

Pn = 4πr2|fβ | = c4

G∗

κ2n
k2n
R2ϕ2

0ωnkn (55)

from equation (18) where fβ + cT 0β
Φ = − c5

4πG∗

Φ,0Φ,β is the flux density of Φ. At

this stage the damping factor

dn =
Pn
En

=
2c2k2n
Rωnkn

(56)

can be obtained for ϕn and a quasi-normal mode satisfying the damped oscillator

equation is described by

d2ϕn
dt2

+ dn
dϕn
dt

+ ω2
nϕn = 0. (57)

For an authoritative account of quasi-normal modes in scalar tensor theory the

reader is referred to refs:[25][55][56].
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6. Parametric excitation of normal modes

Non-linear oscillating systems consist of two or even more subsystems, where one

of them is excited; the primary system and the other ones are coupled through

non-linear terms and are forming the secondary or excited system. The primary

system is an oscillator which can be excited externally, parametrically or by self-

excitation, while the secondary system is excited indirectly through the non-linear

coupling. In the presence of the density oscillation: ρ = ρ0[1 − ǫχm(r) cos(Ωmt)]

with ǫ 6= 0 and neglecting mode coupling while incorporating the damping factor,

parametric instability can be simulated. We adopt the method used by Wang et al28

by applying (49) with a single mode for some n into (46) and then extracting the

equation for ϕn using χn as a test function for each quasi-normal mode. Applying

the orthogonality relation
∫ R

0

drr2χn(r)χm(r) =
R3

2
δnm (58)

for any m, n = 1, 2,...... we obtain
∫ R

0

drr2χn[(∂
2
0ϕn)χn − ϕn △ χn + ϕnµ

2χn − ǫU0χm(r)cos(Ωmt)ϕnχn] = 0 (59)

which yields

d2ϕn
dt2

+ dn
dϕn
dt

+ ω2
nϕn − ǫc2U0χmn cos(Ωmt)ϕn = 0 (60)

where

χnm +
2

R3

∫ R

0

drr2χ2
nχm. (61)

These oscillatory modes can be further scrutinized by recasting them into the

damped canonical Mathieu equation

d2ϕn
dτ2

+ 2ζ
dϕn
dτ

+ aϕn − 2q cos(2τ)ϕn = 0 (62)

where their stability can be analysed according to the relations

τ =
Ωm
2
t (63)

ζ =
2c2κ2n

RΩmωmkn
(64)

a =
4c2

Ω2
m

(κ2n + µ2
0 + U0) (65)

q =
2ǫc2U0χmn

Ω2
m

. (66)
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Recall that the stability domain near the principal parametric excitation fre-

quency of the scalar wave equation takes the form of (46):

∂2Φ−△Φ+ µ2
0Φ− ǫU0χm(r) cos(Ωmt)Φ = 0

by setting a ≈ 1 and q ≈ 0 respectively. However when a = 1 or Ωm = 2ωn,

instability occurs for ϕn if the condition

∣

∣

∣

∣

q

2ζ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ǫχmnR

4

U0

√

κ2n + U0

κ2n

∣

∣

∣

∣

∣

& 1 (67)

is satisfied. This comes directly from

U0 =
4πG∗β

c2
ρ0 & 0 (68)

for sufficiently large β and ǫ.

As an example, consider a neutron star with amplitude parameter ǫ = 1/3,

equilibrium density ρ0 = 1015gcm−3 which is radially pulsating with density wave

speed v = 0.75c, mode index m = 12, frequency Ωm/2π = 90kHz and radius

R = 15km. (41)(42). Using (53), this frequency is twice the frequency of the lowest

quasinormal mode of a massless scalar field with µ0 = 0, n = 1 and ωn/2π = 45kHz.

From (61) it then follows that χnm = 7.5× 10−4, therefore the estimated unstable

β values using (67) yields β & 1400.
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