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Abstract
In this paper we give a general construction of symmetric monoidal categories that
generalizes Deligne’s interpolated categories, the categories introduced by Knop, and
the recent TQFT construction of Khovanov, Ostrik, and Kononov. The categories we
will consider are generated by an algebraic structure. In a previouswork by the author a
universal ring of invariantsU for algebraic structures of a specific typewas constructed.
It was shown that any algebraic structure of this type in VecK gives rise to a character
χ : U → K . In this paper we consider algebraic structure in general symmetric
monoidal categories, not only inVecK , and general characters onU. Fromany character
χ : U → K we construct a symmetric monoidal category Cχ , analogous to the
universal construction fromTQFT.We thengive necessary and sufficient conditions for
a given character to arise from a structure in an abelian categorywith finite dimensional
hom-spaces. We call such characters good characters. We show that if χ is good
then Cχ is abelian and semisimple, and that the set of good characters forms a K -
algebra.We also show that the categoriesCχ contain all categories of the formRep(G),
where G is reductive. The construction of Cχ gives a way to interpolate algebraic
structures, and also symmetricmonoidal categories, in away that generalizesDeligne’s
categories Rep(St ), Rep(GLt (K )), and Rep(Ot ). We also explain how one can recover
the recent construction of 2 dimensional TQFT of Khovanov, Ostrik, and Kononov, by
the methods presented here. We give new examples, of interpolations of the categories
Rep(AutO(M)) where O is a discrete valuation ring with a finite residue field, and M
is a finite module over it. We also generalize the construction of wreath products with
St , which was introduced by Knop.
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1 Introduction

In [7]Deligne interpolated the categoriesRep(Sn) and introduced the celebrated family
of categories Rep(St ) where t ∈ K is any element in a characteristic zero field K .
He also presented several other families of symmetric monoidal categories, such as
Rep(GLt ),Rep(Ot ) and Rep(Spt ). These categories were studied and generalized by
many different authors. See for example [4, 8, 10, 12] for a study of algebras inside
Rep(St ); and [11, 13] for the relation to topological quantum field theories.

In this paper we present a generalization of Deligne’s construction, which general-
izes the families presented by Deligne, Knop, and Khovanov, Ostrik, and Kononov, in
[7, 12, 13] respectively. All the categories in this paper can be seen as generalizations
of categories of the form Rep(Aut(W )), whereW is some algebraic structure.We con-
struct interpolations of symmetric monoidal categories by interpolating the algebraic
structure W , which we shall do by interpolating the scalar invariants of the structure,
following [16]. In this setting, the categories Rep(Sn) can be understood as Rep(Kn),
where Kn has the canonical commutative separable algebra structure (see Sect. 8)

We recall here the definitions. Fix ((pi , qi )) ∈ (N2)r . An algebraic structure of
type ((pi , qi )) on a finite dimensional vector spaceW is given by specifying structure
tensors xi ∈ W pi ,qi := W⊗pi ⊗ (W ∗)⊗qi for i = 1, . . . , r . These can specify, for
example, multiplication, comultiplication, counit, endomorphisms ofW et cetera. For
example, a unital algebra has type ((1, 2), (1, 0)), where the first tensor specifies the
multiplication and the second tensor specifies the unit. We assume throughout the
paper that the type of the algebraic structure is fixed. In Sect. 8 we give examples of
algebraic structures of various types.

Fixing the vector spaceW = Kd , the set of structure tensors (xi ) can be considered
as a point in the affine space Ud = ⊕

i W
pi ,qi . However, this point is not uniquely

defined by the isomorphism type of the structure (W , (xi )). The group GLd(K ) acts
on Ud , and two points in Ud define isomorphic structures if and only if they are in
the same GLd(K )-orbit. The ring of invariants K [Ud ]GLd (K ) arises naturally in this
context, as the characters K [Ud ]GLd (K ) → K are in one to one correspondence with
closed GLd(K )-orbits in Ud . In [16] a universal ring of invariants U was introduced.
This ring captures simultaneously algebraic structures for different values of d in the
sense that for every d there is an ideal Id ⊆ U such thatU/Id ∼= K [Ud ]GLd (K ). The ring
Uwas also shown to be a Hopf algebra with some additional structure (see Section 8 of
[16]). It is a polynomial algebra generated by the set P of closed connected diagrams
arising from the structure tensors.

An algebraic structure (W , (xi )) of dimension d induces a character K [Ud ] → K
and by restriction also a character K [Ud ]GLd (K ) → K . By pulling back we get a
character χ(W ,(xi )) : U → K . We call this character the character of invariants of
(W , (xi )). If the GLd(K )-orbit of (W , (xi )) in Ud is closed then the isomorphism
class of (W , (xi )) can be reconstructed from its character of invariants (see Sect. 5).

This raises the question: what about all the other characters of U, which do not split
via one of the quotients U → U/Id? We answer this question by studying algebraic
structures in general symmetric monoidal categories, and not only in VecK .

If D is a rigid K -linear symmetric monoidal category we can consider algebraic
structures of type ((pi , qi )) inside D. Similarly to the case of structures in VecK ,
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such a structure (A, (yi )) will induce a character U → EndD(1). In particular, if
EndD(1) = K we get a character χ : U → K . We will say that (A, (yi )) affords the
character χ .

For any character χ : U → K we will construct in Sect. 4 a symmetric monoidal
category Cχ that is tensor-generated by a structure that affords the character χ , and its
dual. This categorywill be K -linear, rigid, additive,Karoubi closed, but not necessarily
abelian. It holds that EndCχ

(1) = K .
To construct the categoryCχ wewill first construct in Sect. 3 a categoryCuniv , which

is the universal category freely generated by a structure (W , (xi )) of type ((pi , qi )). In
Section 5 of [16] we constructed for every p, q ∈ N a vector space Conp,q of formal
linear combinations of formal compositions of the structure tensors. We will use these
spaces to construct the hom-spaces in Cuniv .

The endomorphism ring EndCuniv (1) is U. The trace pairing in Cuniv gives a pairing
pairp,q : Conp,q ⊗ Conq,p → U (see Definition 7.5. in [16]). We can compose this

pairing with the character χ to get a pairing pairp,qχ : Conp,q ⊗ Conq,p → U
χ→ K .

We then form the categoryCχ by dividing out by the negligiblemorphismswith respect
to this pairing, and taking the Karoubian envelope. We call a morphism T in Cuniv

χ -negligible if it is negligible under the pairing induced by χ .
We thus see that every character χ : U → K is the character of invariants of some

algebraic structure in some K -linear rigid symmetric monoidal category. However,
the symmetric monoidal categories one encounters when studying algebraic structures
are often not only K -linear and rigid but also abelian with finite dimensional vector
spaces as hom-spaces. We will callD a K -good category if it is a symmetric monoidal
K -linear abelian rigid category in which the hom-spaces are finite dimensional and
EndD(1) = K .

The first main theorem of this paper is the following:

Theorem 1.1 Let χ : U → K be a character. The following conditions are equivalent:

(1) The category Cχ is a semisimple K -good category.
(2) The character χ is afforded by an algebraic structure in some K-good category.
(3) The following two conditions are satisfied:

• The radical radp,qχ ⊆ Conp,q of pairp,qχ has finite codimension.
• If A ∈ Cuniv and T : A → A satisfies that T r is χ -negligible for some r > 0,

then χ(Tr(T )) = 0.

If χ satisfies the equivalent conditions of the theorem we will say that χ is a
good character. If χ is the character of invariants of a structure (Y , (yi )) in VecK ,
we will show in Sect. 5 that there is a unique symmetric fiber functor F : Cχ →
VecK . Using Tannaka reconstruction we will show that we get an equivalence Cχ

∼=
RepK (Aut(Z , (zi ))), where (Z , (zi )) is the unique structure with closed orbit in the
closure of the orbit of (Y , (yi )) inUdim(Y ).We summarize this in the following theorem:

Theorem 1.2 Let (Y , (yi )) be an algebraic structure of dimension d in Veck. Assume
that the GLd-orbit of this structure is closed in Ud. Then there is an equiva-
lence Cχ

∼= Rep(Aut(Y , yi )), and for every p, q ∈ N the linear span of linear
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maps Y⊗q → Y⊗p which are constructible from the structure tensors is equal to
HomAut(Y ,(yi ))(Y

⊗q ,Y⊗p).

This theorem raises the question of what representation categories are equivalent
to Cχ for some χ . If (Y , (yi )) has a closed orbit, this orbit will be isomorphic to
GLd/Aut(Y , (yi )). In particular, the quotient GLd/Aut(Y , (yi )) is affine, and byMat-
sushima’s criterion (see [2] and references therein) the groupAut(Y , (yi )) is reductive.
Another way to see that the group Aut(Y , (yi )) is reductive in the above case is that it
is equivalent to Cχ , which is semisimple. We will prove the following in Sect. 5:

Theorem 1.3 Let G be a reductive affine algebraic group. Then Rep(G) ∼= Cχ for
some character χ .

We will show that even though algebraic structures in VecK might be scarce, good
characters are abundant. In fact, as we will see in the theorem below, they form a
K -algebra that can be calculated explicitly in many cases. The diversity of good
characters will also enable us to interpolate the categories of representations of auto-
morphism groups of algebraic structure to more general categories, which generalize
the categories Rep(St ) of Deligne.

It was shown in Section 5 of [16] that the ring U is a polynomial algebra on the
set P of closed connected diagrams constructed from the structure tensors. There is
therefore a natural bijection between characters on U and functions P → K . We will
consider this bijection as an identification in what follows. The set of characters K P

is a K -algebra under pointwise addition and multiplication. It follows from Section
6 of [16] that taking direct sums and tensor products corresponds to taking sums and
products of characters in K P respectively.Wewill prove the following result in Sect. 6:

Theorem 1.4 The set of good characters in K P forms a K -subalgebra.

In Sect. 7 we will show that if (χt ) is a one-parameter family of characters such that
χt is good for countably many values of t , then under some mild conditions it holds
that χt is good for every value of t .

In Sect. 8 we will give examples. We will show how we can recover the construc-
tions of Deligne for Rep(St ), Rep(GLt ), Rep(Ot ) and Rep(Spt ) from [7]. Knop has
generalized the construction of Deligne in [12] by using degree functions. The val-
ues of his degree functions correspond to some values of the character χ we have
here. Knop constructed categories such as Rep(St � G) where G is a finite group,
and Rep(GLt (O/(πr ))) where O is a discrete valuation ring with a uniformizer π

and a finite residue field. We will give examples that generalize his constructions. If
χ is a good character, we will show how to construct a family of categories Ct ·χ
such that if Cχ

∼= Rep(G) then Cn·χ ∼= Rep(Sn � G) for n ∈ N. Here G can
be a reductive group, and not necessarily a finite one. We will generalize the cate-
gories Rep(GLt (O/(πr ))) in the following way: every finite O/(πr )-module has the
form Ma1,...,ar := (O/(π))a1 ⊕ (O/(π2))a2 ⊕ · · · ⊕ (O/(πr ))ar . We will construct
a family of good characters χ(t1, . . . , tr ), which depend on r non-zero parameters
ti , such that Cχ(qa1 ,...,qar )

∼= Rep(AutO(Ma1,...,ar )), where q = |O/(π)|. By con-
sidering the family of categories Cχ(t1,...,tr ) we get an interpolation of the categories
Rep(AutO(Ma1,...,ar )).
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The construction of Deligne was also generalized recently by Khovanov et al. [13].
They constructed a family of K -good categorieswhich are generated by a commutative
Frobenius algebra, and used these to construct new examples of 2 dimensional TQFTs.
Their construction depends on an infinite sequence (α0, α1, . . .) of scalars. In Sect. 8
we will show how we can recover this construction, and that the numbers αi arise
as some character values. Khovanov, Ostrik, and Kononov also gave a criterion that
characterizes the sequences (αi ) which arise from K -good categories. We will show
how their criterion relates to the criterion for good characters we have in Theorem 1.1.
The examples we have are summarized in the following table:

Type of algebraic
structure

Resulting category Good characters See also

Empty structure Rep(GLt ) K [7]
Single endomorphism

∏
i Rep(GLti ) Monoid algebra of (K , ×)

Non-degenerate
symmetric pairing

Rep(Ot ) K [7]

Non-degenerate
skew-symmetric pairing

Rep(Spt ) K [7]

Separable commutative
algebra

Rep(St ) K [7]

Commutative Frobenius
algebra

DCobα Described in Sect. 8.6 [13]

Wreath products with St ,
for general structures

Rep(St � G) K Described in some
cases in [12].

Group algebra with
operators of a finite
module Ma1,...,ar over
a DVR O

Rep(Aut(Ma1,...,ar ))

and their
interpolations,

(K×)r The case a1 = a2 =
· · · = ar−1 = 0
appears in [12].

The construction of the category Cχ is strongly related to the universal construction
of TQFTs from [3]. We replace the cobordism by the constructible morphisms and
invariants of closed manifold are replaced by values of the character χ . I believe that
the methods presented in this paper can be further used to the study and construction
of other TQFTs as well.

2 Preliminaries and notations

2.1 Algebraic structures in symmetric monoidal categories

Throughout this paper K will be an algebraically closed field of characteristic zero,
and all categories will be K -linear rigid symmetric monoidal categories. Recall that a
symmetricmonoidal categoryD is called rigid if for every X ∈ D there is an object X∗
together with maps evX : X∗ ⊗ X → 1 and coevX : 1 → X ⊗ X∗, such that evX and
coevX induce an adjunction isomorphismHomD(X∗⊗Y , Z) ∼= HomD(Y , X⊗Z) for
every Y , Z ∈ D. The object 1 here is the tensor unit ofD. Since we will only consider
symmetric monoidal categories in this paper, we will not distinguish between left
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and right duals. In particular, we also get natural isomorphisms HomD(X ⊗ Y , Z) ∼=
HomD(Y , X∗ ⊗ Z) induced by evX and coevX , together with the symmetry of the
category.

If D is a symmetric monoidal category and X ∈ D is some object, then we get
an action of the symmetric group Sn on X⊗n . To be more precise, we have a group
homomorphism φ : Sn → AutD(X⊗n) given by permuting the tensor factors. We
will write φ(σ) = L(n)

σ (X), or just L(n)
σ if the object X is clear.

If f : X → X is an endomorphism inD, we define the trace of f , Tr( f ), to be

Tr( f ) : 1 coevX→ X ⊗ X∗ f ⊗1→ X ⊗ X∗ cX ,X∗→ X∗ ⊗ X
evX→ 1.

Thus, Tr( f ) ∈ EndD(1). Of particular importance is the trace of the identity mor-
phism, which we shall denote by dim(X) = Tr(IdX ). If EndD(1) = K , the trace is
just a scalar. If F : D → D′ is a symmetric monoidal functor, then the definition of
trace immediately implies that Tr(F( f )) = F(Tr( f )), where we consider here the
ring homomorphism EndD(1) → EndD′(1) induced by F .

Given a symmetricmonoidal categoryD and a tuple ((pi , qi )) ∈ (N2)r , an algebraic
structure of type ((pi , qi )) in D is a pair (A, (yi )) where A is an object of D and for
every i = 1, . . . , r the structure tensor yi is an element of HomD(A⊗qi , A⊗pi ) ∼=
HomD(1, Api ,qi ), where Ap,q := A⊗p ⊗ (A∗)⊗q . For general algebraic structure we
do not require the structure tensors yi to satisfy any particular set of axioms, but in
most practical cases they do. We fix the type ((pi , qi )). For p, q ≥ 1 we will write
ev : Ap,q → Ap−1,q−1 for the map which applies evaluation on the last tensor copy
of A with the last tensor copy of A∗.

If (A, (yi )) is a structure of type ((pi , qi )) in D, we can use evaluation, tensor
products and composition with L(n)

σ to form morphisms in HomD(A⊗q , A⊗p) for
different values of p and q. All such morphisms can be described pictorially using
strings diagrams (see Section 4 of [16]). In Section 5 of [16] we constructed a graded
associative algebra Con = ⊕

p,q∈N Conp,q (here N = {0, 1, 2, . . .}). Note that this
algebra depends on the type ((pi , qi )) of the structure. The vector space Conp,q is
freely spanned by equivalence classes of diagrams representing morphisms from A⊗q

to A⊗p. For example, if (p1, q1) = (1, 2) and (p2, q2) = (2, 1), then the following
diagram in Con2,2 represents the morphism ev(L(3)

(123)(y1 ⊗ y2)):

y1 y2

The permutation (123) is needed here to make sure that the output string of x1 enters
the is connected with the input string of x2. The multiplication on Con is given by
taking tensor products of maps. The constructible morphisms in Con make sense in
any rigid symmetricmonoidal category. Thus, for every p, q ∈ Nwe have a realization
map Rep,qA : Conp,q → HomD(A⊗q , A⊗p), given by sending every basis element of
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Conp,q to the morphism it represents (see also Definition 7.2. in [16]). In particular,
we get an algebra homomorphism Con0,0 → HomD(1, 1). We write U = Con0,0.
This algebra, which is in fact a commutative Hopf algebra, was the main object of
study of the paper [16]. This algebra was named K [X ]aug in [16]. We rename it
here, for the sake of simplicity. If D′ is another K -linear rigid symmetric monoidal
category, and F : D → D′ is a symmetric monoidal functor, then (F(A), (F(yi ))
is an algebraic structure of type ((pi , qi )) in D′. For every p, q ∈ N we have the
following commutative diagram:

Conp,q

Rep,qF(A)

Rep,qA HomD(A⊗q , A⊗p)

F

HomD′(F(A)⊗q , F(A)⊗p)

.

If the structure (A, (yi )) is clear from the context we will also write Rep,q for Rep,qA .
Since elements in Conp,q represent morphisms A⊗q → A⊗p, we have a pairing
pairp,q : Conp,q ⊗ Conq,p → U given by pairp,q(T1 ⊗ T2) = Tr(T1 ◦ T2). The
following diagram is then commutative (see also Diagram 7.1. in [16]):

Conp,q ⊗ Conq,p Rep,q⊗Req,p

pairp,q

HomD(A⊗q , A⊗p) ⊗ HomD(A⊗p, A⊗q)

U
Re0,0 EndD(1),

where the map HomD(A⊗q , A⊗p) ⊗ HomD(A⊗p, A⊗q) → EndD(1) is given by
f ⊗ g → Tr( f ◦ g).
If HomD(1, 1) = K then the structure (A, (yi )) gives a character U → K . We will

refer to this character as the character of invariants of (A, (yi )), and we will often
write it as χ(A,(yi )). We will also say that (A, (yi )) affords the character χ(A,(yi )).

Definition 2.1 A K -good category is a K -linear symmetric monoidal categoryD that
satisfies the following conditions:

(1) The hom-spaces in D are finite dimensional.
(2) It holds that EndD(1) ∼= K .
(3) The category D is abelian and rigid.

The following lemma is Proposition 4.7.5. in [9] and Lemme 3.5 in [7]. We will
use it in this paper to calculate traces.

Lemma 2.2 LetD be a K -good category. Assume thatwe have a commutative diagram

0 A
i

f

B
p

g

C

h

0

0 A
i

B
p

C 0
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where the two rows are the same short exact sequence. Then Tr(g) = Tr( f ) + Tr(h).

The above lemma has the following corollary:

Corollary 2.3 (See also Corollaire 3.6 in [7]). Let D be a K -good category, and let
T ∈ EndD(B) for some object B ∈ D. Then

∑
i≥0 Tr(T

i )Xi ∈ K [[X ]] is a rational

function of the form P(X)
Q(X)

where deg(P) ≤ deg(Q), Q has no multiple roots, and
Q(0) �= 0. In particular, if T is nilpotent, then Tr(T ) = 0.

Proof Notice first that the set of rational functions that satisfy the condition stated in
the corollary is the same as the linear span of functions of the form 1

1−λX for some
λ ∈ K . In particular, it is a linear subspace of K [[X ]].

Since the hom-spaces inD arefinite dimensional, the set {IdB, T , T 2, . . .} is linearly
dependent, and T solves some non-zero polynomial. Let f (t) be the minimal polyno-
mial of T . We shall proceed by induction on deg( f ). If deg( f ) = 1 then T = λIdB
for some λ ∈ K . This implies that

∑
i Tr(T

i )Xi = dim(B)
∑

i λ
i X i = dim(B)

1−λX , and
we get a rational function of the desired form. If deg( f ) > 1, then since K is alge-
braically closed the polynomial f splits into linear terms. In particular, T − λIdB is
not invertible for some λ ∈ K . Write A = Ker(T − λIdB) and C = Im(T − λIdB).
We thus have a short exact sequence 0 → A → B → C → 0. Moreover, T induces
a morphism from this short exact sequence to itself. The lemma now implies that
Tr(T i ) = Tr(T i |A) + Tr(T i

C ) = dim(A)λi + Tr(T i
C ) where TC : C → C is the

endomorphism induced by T . Since the minimal polynomial of TC is f (t)/(t −λ) we
get that

∑

i

Tr(T i )Xi = dim(A)

1 − λX
+

∑

i

Tr(T i
C )Xi ,

and by induction we are done. In particular, if T is nilpotent then T r = 0 for big
enough r . This implies that the resulting rational function is a polynomial, and this
can only happen if Tr(T i ) = 0 for every i > 0. ��
Definition 2.4 A good rational function Z(X) ∈ K [[X ]] is a rational function that can
be written as a quotient P(X)

Q(X)
such that Q has no multiple roots, deg(P) ≤ deg(Q),

and Q(0) �= 0.

The categories we will construct in this paper will use the notion of tensor ideals,
which we recall here.

Definition 2.5 LetD be a K -linear rigid symmetric monoidal category. A tensor ideal
N�D is a collection of subspacesN(A, B) ⊆ HomD(A, B) for every A, B ∈ D that
satisfies the following conditions:

• If A, B,C, D ∈ D, f ∈ N(A, B), g ∈ HomD(B,C), and h ∈ HomD(D, A),
then g f h ∈ N(D,C).

• If f ∈ N(A, B) and C ∈ D then f ⊗ 1C ∈ N(A ⊗ C, B ⊗ C).

Remark 2.6 By using the symmetry isomorphisms and the first part of the definition
one can show that a tensor ideal is also closed under taking tensor product from the
left with the identity morphism.
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Definition 2.7 IfD is a rigid symmetric monoidal category and N is a tensor ideal in
D, we define the quotient categoryD/N to be the category with objects Ob(D/N) =
Ob(D) and hom-spaces HomD/N(A, B) = HomD(A, B)/N(A, B). This category
is again a rigid symmetric monoidal category, and there is a canonical functor D →
D/N.

2.2 Geometric invariant theory

Fix a type ((pi , qi )) of algebraic structures and a dimension d ∈ N. In [16] it was
shown that there is an affine variety Ud equipped with a GLd(K )-action such that
isomorphism classes of structures of type ((pi , qi )) of dimension d in VecK are in
one-to-one correspondence with GLd(K )-orbits in Ud . We summarize in the next
proposition some results about this action:

Proposition 2.8

(1) If W1 and W2 are two closed GLd(K )-stable subsets of Ud then there is f ∈
K [Ud ]GLd (K ) such that f (W1) = 0 and f (W2) = 1.

(2) The ring of invariants K [Ud ]GLd (K ) is finitely generated and therefore its maximal
spectrum Z = Specm(K [Ud ]GLd (K )) is an affine variety.

(3) The map π : Ud → Z induced by the inclusion K [Ud ]GLd (K ) ↪→ K [Ud ] is
surjective.

(4) The points in Z are in one to one correspondence with the closed GLd(K )-orbits
in Ud.

(5) For every z ∈ Z, the preimageπ−1(z) is a union of GLd(K )-orbits, and it contains
exactly one closed orbit. This closed orbit lies in the closure of all other orbits in
π−1(z).

Proof Thefirst four parts of the propositionwere proven in [16], Section 2. They follow
fromLemma 3.3, Theorem 3.4, and Theorem 3.5 in [17]. The last part follows from the
fact that if there are two closed orbitsO1 andO2 in π−1(z) then we cannot distinguish
them using invariant polynomials, contradicting the first part of the proposition. ��

2.3 Finite dimensional algebras

Let R be a finite dimensional K -algebra. For r ∈ R we define Lr : R → R to be the
linear map x → r · x . We write Trreg(r) = Tr(Lr ), and we define the trace pairing
R ⊗ R → K by r1 ⊗ r2 → Trreg(r1r2). We claim the following:

Lemma 2.9 The trace pairing is non-degenerate if and only if R is semisimple.

Proof Assume first that R is semisimple. By Wedderburn’s Theorem, and since K is
algebraically closed, R splits as the direct sum of matrix algebras, R = ⊕

t Mnt (K ).
The trace pairing is non-degenerate on every matrix algebra Mn(K ), where a dual
basis of {ei j } is given by { 1n e ji }. It follows that the trace pairing is non-degenerate also
on R.

In the other direction, assume that the trace pairing is non-degenerate.Wewill show
that the Jacobson radical J of R is zero, which will imply that R is semisimple. Let
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r ∈ J . Then r x ∈ J is nilpotent for every x ∈ R, and as a result Lrx : R → R is
nilpotent. This implies that Trreg(r x) = 0 for every x ∈ R. Since the trace pairing is
non-degenerate, we get that r = 0, and therefore J = 0. ��

3 Construction of the universal category

Fix a type ((pi , qi )).We begin by constructing the universal categoryCuniv and explain
its universal property. We will start with an auxiliary category C0. The objects in this
category are symbols Wa,b for a, b ∈ N which we shall think of as W⊗a ⊗ (W ∗)⊗b.
The duality adjunction implies that we should have

HomC0(W
⊗a ⊗ (W ∗)⊗b,W⊗c ⊗ (W ∗)⊗d) ∼= HomC0(W

⊗d ⊗ W⊗a,W⊗c ⊗ W⊗b)

∼= HomC0(W
⊗d+a,W⊗c+b).

We define

HomC0(W
a,b,Wc,d) = Conc+b,d+a

If f : Wa,b → Wc,d is represented by a diagram Di2 and g : Wc,d → We,h is
represented by a diagram Di1, then the composition g f : Wa,b → We,h is given
pictorially by the following diagram:

︷ ︸︸ ︷
e

︷ ︸︸ ︷
d

︷ ︸︸ ︷
c

︷ ︸︸ ︷
b

︸ ︷︷ ︸

h
︸ ︷︷ ︸

c
︸ ︷︷ ︸

d

︸ ︷︷ ︸

a

Di1 Di2

The identity morphism in HomC0(W
a,b,Wa,b) is given by

IdW⊗a IdW⊗b

︸ ︷︷ ︸

b

︸ ︷︷ ︸

a

︷ ︸︸ ︷
b

︷ ︸︸ ︷
a

We used here single strings to represent bundles of a strings and of b strings. If
m3 : Wa,b → Wc,d ,m2 : Wc,d → We, f , and m1 : We, f → Ws,t , are morphisms
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represented by the diagrams Di1, Di2 and Di3 respectively, then the associativity
axiom (m1m2)m3 = m1(m2m3) follows from showing that both compositions are
represented by the diagram:

︷ ︸︸ ︷
e ︷ ︸︸ ︷

d
︷ ︸︸ ︷

c

︷ ︸︸ ︷
b

︸ ︷︷ ︸

f
︸ ︷︷ ︸

c
︸ ︷︷ ︸

d

︸ ︷︷ ︸

a

Di1 Di2

︷ ︸︸ ︷
s

︷ ︸︸ ︷
f

︸ ︷︷ ︸

t
︸ ︷︷ ︸

e

Di1

The identity axiom follows from Definition 4.1. in [16].
The category C0 is also a symmetric monoidal category. The tensor product functor

is given on objects by

Wa,b ⊗ Wc,d = Wa+c,b+d .

If m1 : Wa1,b1 → Wa2,b2 and m2 : Wc1,d1 → Wc2,d2 are morphisms represented by
diagrams Di1 and Di2, then the tensor productm1⊗m2 is represented by the diagram

︷ ︸︸ ︷
a2

︷ ︸︸ ︷
b1

︷ ︸︸ ︷
c2

︷ ︸︸ ︷
d1

︸ ︷︷ ︸

b2

︸ ︷︷ ︸

a1

︸ ︷︷ ︸

d2

︸ ︷︷ ︸

c1

Di1 Di2

We have

(Wa,b ⊗ Wc,d) ⊗ We, f = Wa+c+e,b+d+ f = Wa,b ⊗ (Wc,d ⊗ We, f ).

The associativity isomorphism is given simply by the identity. The tensor unit is
1 := W 0,0. The unit isomorphismW 0,0⊗Wa,b = Wa,b → Wa,b andWa,b⊗W 0,0 =
Wa,b → Wa,b are just the identity morphisms as well, and C0 is thus a strict monoidal
category.

The symmetric structure on C0 is given by the collection of morphisms Wa,b ⊗
Wc,d → Wc,d ⊗ Wa,b or Wa+c,b+d → Wc+a,d+b given diagrammatically by
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IdW⊗d IdW⊗b IdW⊗a IdW⊗c

︸ ︷︷ ︸

c

︸ ︷︷ ︸

a

︸ ︷︷ ︸

b

︸ ︷︷ ︸

d
︷ ︸︸ ︷

d

︷ ︸︸ ︷

b

︷ ︸︸ ︷

a

︷ ︸︸ ︷

c

(In this diagram, as in the diagram representing the identity morphism, a single string
represents a bundle of strings for simplification). The category C0 is also rigid. That
is, every object has a dual object, the dual of Wa,b being Wb,a . It will be enough to
describe the evaluation and coevaluation for W := W 0,1 since W and W ∗ tensor-
generate the category C0. The evaluation W ∗ ⊗ W → 1 is given by IdW ∈ Con1,1.
Similarly, the coevaluation 1 → W ⊗W ∗ is given by the same element I dW ∈ Con1,1

(notice that we realize here Con1,1 as the hom-space between objects in the category
in two different ways). A direct calculation with diagrams now reveals the fact that
the compositions W → W ⊗ W ∗ ⊗ W → W and W ∗ → W ∗ ⊗ W ⊗ W ∗ → W ∗ are
indeed the identity morphisms.

Finally, we define Cuniv to be the additive envelope of C0. Its objects are finite direct
sums of objects of C0, and the morphisms are given by

HomCuniv (⊕i Ai ,⊕ j B j ) =
⊕

i, j

HomC0(Ai , Bj ),

where Ai and Bj are objects of C0. We can thus consider W = W 1,0 as an object of
Cuniv . Moreover, since xi ∈ Conpi ,qi , we get the structure (W , (xi )) of type ((pi , qi ))
in Cuniv , which we call the tautological structure. We claim the following:

Proposition 3.1 Let D be a K -linear symmetric monoidal category. Isomorphism
classes of symmetric monoidal K -linear functors F : Cuniv → D are in one to
one correspondence with isomorphism classes of dualizable algebraic structures of
type ((pi , qi )) in D.

Proof Given such a functor F we can consider the D-object A := F(W ). Since xi
can be considered as a morphism in HomCuniv (W

⊗qi ,W⊗pi ), its image yi := F(xi )
will be a morphism in HomD(A⊗qi , A⊗pi ), where we use here the monoidality of F
to identify F(W⊗n) with F(W )⊗n . We thus get the algebraic structure (A, (yi )) inD.
The object A is dualizable with dual F(W ∗) (we use here again the monoidality of
F).

Conversely, assume that (A, (yi )) is an algebraic structure of type ((pi , qi )) in D.
It will be enough to define the corresponding functor on the category C0, as this will
extends uniquely to a functor from Cuniv by additivity. We define F on objects by



Interpolations and invariants Page 13 of 37    58 

F(Wa,b) = Aa,b = A⊗a ⊗ (A∗)⊗b. The action of F on morphisms is defined using
the maps Rep,q from Sect. 2.1.

The monoidal structure on F is given by the composition

F(Wa,b) ⊗ F(Wc,d) = A⊗a ⊗ (A∗)⊗b ⊗ A⊗c ⊗ (A∗)⊗d

∼= A⊗a ⊗ A⊗c ⊗ (A∗)⊗b ⊗ (A∗)⊗d

= A⊗a+c ⊗ (A∗)b+d = F(Wa+c,b+d) = F(Wa,b ⊗ Wc,d)

where we used here the symmetric monoidal isomorphism (A∗)⊗b ⊗ A⊗c →
A⊗c ⊗ (A∗)⊗b in D. Finally. an isomorphism between structures will give rise to
an isomorphism between functors and vice versa. ��
Definition 3.2 The functor F : Cuniv → D constructed in the proposition will be
denoted by FA.

3.1 Universal categories for theories

We recall from Section 7 in [16] that a theory is a subset T ⊆ �Conp,q . The elements
of T are called axioms. Models of T are structures (A, (yi )) in some K -linear rigid
symmetric monoidal category D such that for every x ∈ T it holds that FA(x) = 0,
where we interpret x ∈ Conp,q as a morphism W⊗q → W⊗p in Cuniv . Axioms can
describe associativity, commutativity, the Jacobi identity, and so on.

Definition 3.3 We write IT for the tensor ideal in Cuniv generated by the elements of
T, interpreted as morphisms in Cuniv as above. We define CT

univ = Cuniv/IT .

Remark 3.4 The tensor ideal generated by a set of morphisms always exists. We can
either describe it as the intersection of all tensor ideals that contain the given set, or
as the collection of morphisms generated from the given set by taking compositions
and tensor products.

The following universal property follows immediately from the universal property
of Cuniv (Proposition 3.1), and the universal property of the quotient category:

Proposition 3.5 Let D be a K -linear symmetric monoidal category. Isomorphism
classes of symmetric monoidal K -linear functors F : CT

univ → D are in one to
one correspondence with isomorphism classes of dualizable models of T in D.

Definition 3.6 We write UT := U/IT , where IT = IT(1, 1)

Remark 3.7 We have EndCT
univ

(1) = U/IT , where IT is the ideal generated by

pair(x, y) ∈ U for x ∈ Conp,q ∩ T and y ∈ Conq,p, for some p, q ∈ N. This
ideal was denoted by IT in Section 7 of [16]. We write here IT for the tensor ideal in
Cuniv .

We shall see in Sect. 8 that theories can provide many good characters. Indeed,
in many interesting cases it will hold that the hom-spaces in CT

univ are already finite
dimensional.
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4 The category C� and a proof of Theorem 1.1

The construction in this section will be based on a fixed type ((pi , qi )) of algebraic
structures. Let χ : U → K be a character. It induces pairings

pairp,qχ : Conp,q ⊗ Conq,p pairp,q−→ U
χ→ K

for every p, q ∈ N. We call f ∈ Conp,q χ -negligible if it is in the radical of the above
pairing. We denote by N p,q

χ ⊆ Conp,q the subspace of all χ -negligible morphisms.
We will now construct the category Cχ as a quotient of the category Cuniv . For every
a, b, c, d ∈ N we define

Nχ (Wa,b,Wc,d) = Nc+b,d+a
χ ⊆ Conc+b,d+a = HomCuniv (W

a,b,Wc,d).

We extend the definition ofNχ to all objects of Cuniv by the ruleNχ (⊕i Ai ,⊕ j B j ) =⊕
i, j Nχ (Ai , Bj ). We claim the following:

Lemma 4.1 A morphism f ∈ HomCuniv (A1, A2) is in Nχ (A1, A2) if and only if for
every g ∈ HomCuniv (A2, A1) it holds that χ(Tr( f ◦ g)) = 0.

Proof It will be enough to prove the claim for the case where A1 = Wa,b and A2 =
Wc,d . We use the fact that if f is given by a diagram Di1 and g is given by a diagram
Di2 then Tr( f ◦ g) is given by the closed diagram

︷ ︸︸ ︷
c ︷ ︸︸ ︷

b
︷ ︸︸ ︷

a

︷ ︸︸ ︷
d

Di1 Di2

Define μ1 ∈ Sc+b by μ1(i) = i + b mod c + b and μ2 ∈ Sa+d by μ2(i) = i +
d mod a + d. The above diagram shows that

Tr( f ◦ g) = pairp,q(Di1 ⊗ L(a+d)
μ2

Di2L
(c+b)
μ1

).

Since pre- and post-composing with L(n)
σ are invertible maps for every n and every

σ ∈ Sn , the radical does not change. By applying the character χ to both sides of the
last equation we get the desired result. ��
Proposition 4.2 The collectionNχ (−,−) is a tensor ideal inCuniv (seeDefinition2.5).
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Proof The first condition for a tensor ideal follows easily from the previous lemma,
using the fact that Tr( f ◦ g) = Tr(g ◦ f ). The second condition follows from Lemme
6.2.1 and also from Lemme 7.1.1 of [1]. ��

If (A, (yi )) is a structure of type ((pi , qi )) in a K -good categoryD, then by Propo-
sition 3.1 we get a functor FA : Cuniv → D. We also get the character of invariants
χ = χA. We claim the following:

Lemma 4.3 If B,C are two objects of Cuniv and f ∈ HomCuniv (B,C) satisfies
FA( f ) = 0 then f ∈ Nχ (B,C)

Proof Since FA is a symmetric monoidal functor it commutes with taking traces.
(see Sect. 2.1). Therefore, for every g : B → A we have that FA(Tr( f ◦ g)) =
χ(Tr( f ◦ g)) = Tr(FA( f ◦ g)) = Tr(FA( f ) ◦ FA(g)) = 0 because FA( f ) = 0. We
used here the fact that χ is the character of invariants of (A, (yi )). By Lemma 4.1 we
get the result. ��

The following definition appeared in the statement of Theorem 1.1.

Definition 4.4 The characterχ : U → K is called good if the following two conditions
hold:

(1) For every p, q ∈ N the subspace N p,q
χ ⊆ Conp,q has finite codimension.

(2) If B ∈ Cuniv and T : B → B satisfies that T r is χ -negligible for some r > 0
then χ(Tr(T )) = 0.

We can now prove the following:

Proposition 4.5 If χ is the character of invariants of an algebraic structure (A, (yi ))
in a K -good category D then it is a good character.

Proof We have seen in Lemma 4.3 that for every B,C ∈ Cuniv it holds that the kernel
KB,C of HomCuniv (B,C) → HomD(FA(B), FA(C)) is contained Nχ (B,C). Since
the hom-spaces inD are finite dimensional, KB,C is cofinite in HomCuniv (B,C). Thus,
Nχ (B,C) is cofinite in HomCuniv (B,C), and the first condition is satisfied.

For the second condition, let T : B → B be an endomorphism in Cuniv . Assume
that T r ∈ Nχ (B, B) for some r > 0. This means that for n ≥ r Tr(FA(T )n) = 0, and
thus FA(T ) is nilpotent in EndD(FA(B)). By Corollary 2.3 we see that Tr(FA(T )) =
χ(Tr(T )) = 0 as required. ��
Definition 4.6 Let χ : U → K be any character. We define C̃χ := Cuniv/Nχ . and we
define Cχ to be the Karoubian envelope of C̃χ .

Thus, C̃χ has the same objects as Cuniv , but the hom-spaces are given by
HomC̃χ

(A, B) = HomCuniv (A, B)/Nχ (A, B). The objects of Cχ can be thought of

as pairs (A, p) where A ∈ C̃χ and p : A → A is an idempotent in C̃χ . We think of
(A, p) as the object Im(p). The hom-spaces in Cχ are given by

HomCχ
((A, p), (B, q)) = qHomC̃χ

(A, B)p,
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where we use the action of EndC̃χ
(A) from the right and the action of EndC̃χ

(B) from

the left on HomC̃χ
(A, B). We can thus think of the category C̃χ as being contained

in Cχ . In particular, since C̃χ is formed from Cuniv by dividing out a tensor ideal, we
get a symmetric monoidal functor Fχ : Cuniv → C̃χ → Cχ . To avoid cumbersome
notation, we will also write Fχ for the functor Cuniv → C̃χ . Notice that for the tensor
unit 1we get EndCχ

(1) = EndCuniv (1)/Nχ (1, 1) = U/Ker(χ) ∼= K , and that the map
EndCuniv (1) → EndCχ

(1) is just the map χ : U → K .
We are now ready to prove Theorem 1.1. The implication 1 ⇒ 2 is clear, and 2 ⇒ 3

is Proposition 4.5. The implication 3 ⇒ 1 follows from the next proposition.

Proposition 4.7 Assume thatχ is a good character. Then the categoryCχ is a semisim-
ple K -good category. Denote by (W , (xi )) the image of the tautological structure of
Cuniv under the functor Fχ . Then χ is the character of invariants of (W , (xi )). In par-
ticular, every good character arises as the character of invariants of some algebraic
structure in some K-good category.

Proof Notice first that by dividing out the ideal Nχ we get finite dimensional hom-
spaces in C̃χ and in Cχ , because χ is a good character. Moreover, as was stated before
the proposition, EndCχ

(1) = K . The category Cχ is also rigid. Indeed, Cuniv is rigid

and therefore C̃χ is rigid as every object in C̃χ is the image of some object in Cuniv

under the quotient functor. Since taking duals commutes with projections, Cχ is rigid
as well. Thus, we just need to prove that Cχ is semisimple.

For this, we begin by proving that all endomorphism algebras in C̃χ are semisimple.
Let A ∈ C̃χ and let R = EndC̃χ

(A). The trace pairing r1 ⊗ r2 → Tr(r1r2) defines
a non-degenerate pairing on R, since we showed in Lemma 4.1 that Nχ (A, A) is the
radical of the trace pairing. Let J be the Jacobson radical of R. If r ∈ J then it holds
that rr ′ ∈ J for every r ′ ∈ R. In particular, rr ′ is nilpotent for every r ′ ∈ R because R
is finite dimensional. But if rr ′ = L is nilpotent, we can lift it to an endomorphism T
in Cuniv . The fact that L is nilpotent means that some positive power of T is contained
in the idealNχ . By the second condition in Definition 4.4 we know that this means that
χ(Tr(T )) = Tr(L) = 0. but this implies that Tr(rr ′) = 0 for all r ′ ∈ R. Since Tr is a
non-degenerate pairing on R this implies that r = 0, so J = 0 and R is semisimple.

The objects of Cχ are of the form (A, p) where p ∈ EndC̃χ
(A) is an idempotent.

We shall think of the object (A, p) as Im(p). We then have EndCχ
((A, p)) = pRp

where R = EndC̃χ
(A). Since R is semisimple, it follows that pRp is semisimple as

well. We thus see that all endomorphism algebras in Cχ are semisimple. By taking
a Wedderburn decomposition of the endomorphism algebra, and taking a complete
orthogonal set of primitive idempotents, we see that every object A in Cχ decomposes
as the direct sum A = ⊕i Ai where EndCχ

(Ai ) = K .
We claim that all objects B which satisfy EndCχ

(B) = K are simple. For this it
will be enough to prove that if B1 and B2 are two such objects then either they are
isomorphic, or HomCχ

(B1, B2) = 0. To do so we consider the object A = B1 ⊕ B2.
Assume that HomCχ

(B1, B2) �= 0. Then

EndCχ
(A) = HomCχ

(B1, B2) ⊕ HomCχ
(B2, B1) ⊕ EndCχ

(B1) ⊕ EndCχ
(B2).
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The non-degeneracy of the trace pairing on EndCχ
(A) implies that if there is 0 �=

f : B1 → B2 then there must be a non-zero morphism g : B2 → B1 such that
Tr( f ◦ g) �= 0. In particular, f ◦ g �= 0. Since EndCχ

(B2) = K this implies that f ◦ g
is invertible. By rescaling we can assume that f ◦g = IdB2 . By a symmetric argument
we can show that g ◦ f = IdB1 and we are done. ��
Remark 4.8 Unlike Cuniv , the category Cχ does not satisfy a universal property for
structures (A, (yi )) in some K -good categoryDwhich afford χ as character of invari-
ants. The reason for this is that it is possible that (A, (yi )) will afford the character χ

but the resulting functor FA : Cuniv → D will not vanish on all morphisms in Nχ .
We will see an example of this phenomenon in Sect. 8.2

The construction of the category Cχ enables us to give an alternative definition for
good characters.

Lemma 4.9 Let χ : U → K be a character that satisfies the first condition of Defi-
nition 4.4. Then χ satisfies the second condition of Definition 4.4, and is therefore a
good character, if and only if the following condition holds: for every T ∈ Cuniv it
holds that

∑
n χ(Tr(T n))Xn ∈ K [[X ]] is a good rational function

Proof Ifχ is good thenCχ is a K -goodcategory, andbyCorollary 2.3
∑

n χ(Tr(T n))Xn

is a good rational function. In the other direction, if χ satisfies the condition in
the lemma, then in particular if T r is χ -negligible for some r > 0 it holds that∑

n χ(Tr(T n))Xn is a polynomial. But the only polynomials of the form P(X)
Q(X)

with deg(P) ≤ deg(Q) are the constant polynomials. In particular, we get that
χ(Tr(T )) = 0, and χ is therefore a good character. ��
Remark 4.10 The above lemma gives an alternative definition of good characters. The
advantage of this definition is that it refers to all morphisms in Cuniv , and not only the
χ -negligible ones.

5 Structures in VecK and a proof of Theorems 1.2 and 1.3

In this section we will describe the categories Cχ explicitly, in case χ is a character
arising from a structure in VecK . Recall from Sect. 2.2 that structures in VecK of
dimension d are in one-to-one correspondence with GLd(K )-orbits in the varietyUd .
If ((Y , (yi )) and (Z , (zi )) are two structures of dimension d, we will say that (Y , (yi ))
specializes to (Z , (zi )) if the GLd(K )-orbit of the isomorphism class of (Z , (zi )) is
contained in the closure of the GLd(K )-orbit of the isomorphism class of (Y , (yi )).
If this happens, the characters of invariants of (Y , (yi )) and of (Z , (zi )) are equal. We
claim the following:

Lemma 5.1 Assume that (Y , (yi )) and (Z , (zi )) are two structures of dimension d,
and that (Y , (yi )) specializes to (Z , (zi )). Denote by FY , FZ : Cuniv → VecK the
functors constructed in Sect.3. If f : A → B is a morphism in Cuniv and FY ( f ) = 0,
then FZ ( f ) = 0 as well.



   58 Page 18 of 37 E. Meir

Proof By fixing a basis for Y and for Z we can assume without loss of generality
that Y = Z = Kd as vector spaces. In this case we can think of the variety Ud as
the affine space made by the structure constants of the different structure tensors (See
Subsection 2.3. in [16]). The vanishing of FY ( f ) then boils down to the vanishing of a
set of polynomial functions in the structure constants. Since these polynomials vanish
on all point in the orbit of (Y , (yi )), they must also vanish on the orbit of (Z , (zi )) by
continuity, so FZ ( f ) = 0 as well. ��

Let now (Y , (yi )) be an algebraic structure of dimension d in VecK . Let χ =
χ(Y ,(yi )). The isomorphism class of (Y , (yi )) gives a GLd(K )-orbit inUd . LetO be the
unique closed orbit in the closure of this orbit (Uniqueness follows from the results
in Sect. 2.2). We write (Z , (zi )) for a representative of the orbit O. We claim the
following:

Proposition 5.2 There is a unique symmetric fiber functor F : Cχ → VecK . The
image of the tautological structure in Cχ under F is isomorphic to (Z , (zi )), and
Cχ

∼= Rep(Aut(Z , (zi ))).

Proof To prove the existence and uniqueness of the symmetric fiber functor F we
will use the theory of Deligne on Tannakian categories (see Théorème 7.1. in [6] and
also Proposition 0.5. in [5] for the more general case of an sVecK valued functor).
Applied to the present situation, the theorem of Deligne tells us that there is a (unique)
symmetric monoidal functor Cχ → VecK if and only if for every B ∈ Cχ there is an
integer r such that

∧r B = 0. This condition is equivalent to the condition that the
constructible idempotent AltBr : B⊗r → B⊗r defined by

AltBr = 1

r !
∑

σ∈Sr
(−1)σ L(r)

σ

vanishes in Cχ . It will be enough to prove this statement for objects of the form Wa,b

because the collection of objects which satisfies this condition is closed under taking
direct sums and direct summands. So we need to prove that for every a and every b
there is an r such that AltW

a,b

r ∈ Nχ ((Wa,b)⊗r , (Wa,b)⊗r ).
Consider now the functor FY : Cuniv → VecK . We do know that FY (Wa,b) = Ya,b

is a finite dimensional vector space. This means that for r = dimK Y a,b + 1 it holds
that

0 =
r∧
Ya,b =

r∧
FY (Wa,b) = FY (

r∧
Wa,b),

where we use the fact that FY is monoidal and symmetric, so it commutes with taking
tensor products and taking exterior powers. But this means that FY (AltW

a,b

r ) = 0. We

have seen in 4.3 that this implies that AltW
a,b

r ∈ Nχ ((Wa,b)⊗r , (Wa,b)⊗r ), so the first
statement is proved.

We thus have a symmetric fiber functor F : Cχ → VecK . We write F(W ) = D
and F(xi ) = ti . We get a structure (D, (ti )) in VecK . The character of invariants of
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(D, (ti )) is still χ , and (D, (ti )) specializes to (Z , (zi )). Following Section 6 of [14]
we get an equivalence between Cχ and Rep(Aut(D, (ti ))) (notice that the framework
here is a bit different than that of [14], because we work here over an algebraically
closed field. This is why we get here a proper equivalence of the categories, and not
just up to a form). We need to prove that (D, (ti )) is isomorphic to (Z , (zi )).

For this, let FZ : Cuniv → VecK be the functor sending the tautological structure in
Cuniv to (Z , (zi )). We will show that this functor splits via Cχ . This will imply that we
get a fiber functor Cχ → VecK sending the tautological structure in Cχ to (Z , (zi )).
By the uniqueness of the fiber functor this will prove that (Z , (zi )) ∼= (D, (ti )).

To prove the above statement, it will be enough to show that for every χ -negligible
morphism f we have FZ ( f ) = 0. But since (D, (ti )) spcializes to (Z , (zi )) and
FD( f ) = 0, this follows from Lemma 5.1. ��

Write now X (p,q) ⊆ Y p,q for the image ofHomCuniv (W
⊗q ,W⊗p) under the functor

FY . In otherwords: X (p,q) contains all the linear transformations one can form from the
structure tensors of (Y , (yi )) using linear algebra operations. We have the following:

Corollary 5.3 The restriction of the natural pairing Y p,q ⊗ Yq,p → K to X (p,q) ⊗
X (q,p) → K is non-degenerate if and only if the orbit of (Y , (yi )) is closed in Ud.

Proof We have already seen that if the orbit of (Y , (yi )) is closed then we have an
equivalence Cχ

∼= Rep(Aut(Y , (yi ))). By the way Cχ is constructed we see that the
pairing HomCχ

(W⊗q ,W⊗p) ⊗ HomCχ
(W⊗p,W⊗q) → K given by T1 ⊗ T2 →

Tr(T1T2) is non-degenerate. Since we have a fiber functor F : Cχ → VecK which
sends (W , (xi )) to (Y , (yi )) the result follows.

In the other direction, assume that the pairing X (p,q) ⊗ X (q,p) → K is non-
degenerate. This means that if f is a χ -negligible morphism in Cuniv then FY ( f ) = 0.
This implies that FY splits via Cχ , and we have already seen that this implies that
(Y , (yi )) ∼= (Z , (zi )), where (Z , (zi )) is the closed orbit which (Y , (yi )) specializes
to. ��

A special case of the next corollary was used in [15] to prove that every finite
dimensional semisimple Hopf algebra admits at most finitely many Hopf orders over
any number ring:

Corollary 5.4 Assume that (Y , (yi )) has a closed orbit. Let X (p,q) ⊆ Y p,q be the
subspace of constructible elements. Then X (p,q) = (Y p,q)G where G = Aut(Y , (yi )).

Proof This follows immediately because in this case Cχ
∼= Rep(G) and the hom-

spaces in Cχ are spanned by the constructible elements. ��
Remark 5.5 A simple example of a non-closed orbit is given as follows: Let Y = K 2

and consider a single tensor T of type (1, 1) (i.e. an endomorphism). The orbit of
the nilpotent linear transformation e12 is not closed, and contains the zero endomor-
phism in its closure. The algebra of invariants U is a polynomial algebra on Tr(T n)

n = 0, 1, 2, . . ., and the character of invariants of (K 2, e12) and (K 2, 0) is given by
χ(Tr(T n)) = 0 for n > 0 and χ(dim) = 2. Even though e12 �= 0, T will be a
negligible morphism and will therefore vanish in Cχ . The category that we will get is
Rep(GL2), as GL2 is the automorphism group of (K 2, 0).



   58 Page 20 of 37 E. Meir

5.1 Proof of Theorem 1.3

Let now G be any reductive affine algebraic group. We show that Rep(G) ∼= Cχ for
a suitable type of structure and a suitable character χ . This would have been fairly
easy to prove if we allowed infinitely many structure tensors. We will show here that
it is also possible when considering only finitely many structure tensors. Since G is
an affine algebraic group, we know that G is a subgroup of GL(V ) for some finite
dimensional vector space V . We begin with the following lemma:

Lemma 5.6 Assume that G ⊆ H ⊆ GL(V ) are algebraic groups, and that G is also
reductive. If HomH (1, V p,q) = HomG(1, V p,q) for every p, q ∈ N, then G = H.

Proof Consider the category Rep(H). Inside this category, consider an object of the
form A = A((ai ,bi )) = ⊕

i V
ai ,bi . By assumption, it holds that EndH (A) → EndG(A)

is an isomorphism. Since G is reductive, it holds that EndG(A) = EndH (A) is a
semisimple algebra, and thus A decomposes in Rep(H) into a direct sum of objects
B with EndH (B) = K . Moreover, for any two such objects B and B ′ it holds that
HomH (B, B ′) is either zero or one dimensional, and if B is a direct summand of A
and B ′ a direct summand of A′ then B ⊗ B ′ is a direct summand of A ⊗ A′ which is
again a direct sum of objects of the form Va,b.

Consider now the full subcategory C ⊆ Rep(H) whose objects are direct sums
of direct summands of objects of the form A((ai ,bi )) for some ((ai , bi )). The above
argument shows that this is a rigid tensor subcategory of Rep(H) that contains V and
V ∗. Since V and V ∗ tensor-generate Rep(H), it holds thatC = Rep(H). It follows that
the restriction functor Rep(H) → Rep(G) is an isomorphism on all hom-spaces, and
that it is surjective on objects, since Rep(G) is semisimple and every object there is
isomorphic to a direct summandof

⊕
V ai ,bi for some ((ai , bi )). The restriction functor

is therefore an equivalence of categories. By Tannaka reconstruction it follows that
H = G. ��

Next, we claim the following:

Lemma 5.7 There is a finite collection xi ∈ V pi ,qi , i = 1, . . . , c of tensors such that
G = StabGL(V )((xi )).

Proof Write T for the set of all tensors in V p,q for some p, q that are fixed by G.
Write Q for the set of subgroups of GL(V ) that arise as stabilizers of finite subsets of
T . Since GL(V ) is a Noetherian topological space, the set Q has a minimal element
H . Since taking unions of finite sets corresponds to taking intersections in Q, we see
that this minimal element of Q is in fact unique. We claim that H = G. This follows
from the fact that by minimality, H is contained in the stabilizer of any finite subset
of T . This implies that H fixes all the elements in T . By the previous lemma, this
implies that H = G. ��

We fix now a tuple (x1, . . . , xc) ∈ U (V ) = ⊕
V pi ,qi such that StabGL(V )((x1, . . . ,

xc)) = G.We are almost in position to construct aχ such thatCχ = Rep(G). The only
problem is that it might happen that the GL(V ) orbit of (x1, . . . , xc) inside

⊕
V pi ,qi

is not closed. We solve this issue using localisation:
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Lemma 5.8 Let (x1, . . . , xc) be a tuple as above. Then there are finitely many tensors
zi ∈ V ai ,bi , i = 1, . . . , d such that the GL(V )-orbit of (x1, . . . , xc, z1, . . . , zd) in
U (V ) ⊕ ⊕

i V
ai ,bi is closed, and such that StabGL(V )((x1, . . . , xc, z1, . . . , zd)) = G.

Proof Recall first that if GL(V ) acts on an affine space U , and u ∈ U is any point,
then dim(Ou) + dim(StabGL(V )(u)) = dim(GL(V )), where Ou is the orbit of u. In
particular, ifO1 andO2 are twoorbits such thatO2 ⊆ O1, thendim(O2) < dim(O1) and
as a result dim(StabGL(V )(u1)) < dim(StabGL(V )(u2)) where u1 ∈ O1 and u2 ∈ O2.

For our concrete case, we can view p = (x1, . . . , xc) as a point in the affine space
U (V ) upon which GL(V ) acts. If the orbit O of this point is closed, we are done.
Otherwise, consider the unique closed GL(V )-orbit in the closure of the GL(V )-orbit
of p. Let p′ = (x ′

1, . . . , x
′
c) be a point in this closed orbit. Write L = StabGL(V )(p′).

Then it holds that dim(G) < dim(L). If χ is the character of the structure defined
by (x1, . . . , xc), then we know that there is a constructible morphism f ∈ Conb,a

for some a, b ∈ N such that f is χ -negligible but 0 �= Reb,a( f ) ∈ V b,a . Denote by
Re′b,a : Conb,a → V b,a the realization map with respect to the tensors (x ′

1, . . . , x
′
c).

The fact that f is χ -negligible implies that Re′b,a( f ) = 0. Since G is reductive,
there is an element z ∈ (Va,b)G such that 〈z,Reb,a( f )〉 = 1. Consider now the
point q = (x1, . . . , xc, z) ∈ U (V ) ⊕ V a,b. We have a GL(V )-action on this space
as well, and projection gives a GL(V )-equivariant map 	 : U ′(V ) → U (V ). If
the closure of the orbit of q contains a point q ′, then the closure of the orbit of
	(q) = p contains the orbit of 	(q ′). However, the orbit of (x ′

1, . . . , x
′
c) is not in the

image of 	. Indeed, if it was the image of (x ′
1, . . . , x

′
c, z

′) then we would have had
〈z′,Re′b,a( f )〉 = 〈z,Reb,a( f )〉 = 1 by continuity. But this contradicts the fact that
Re′b,a( f ) = 0.

We claim that if q ′ ∈ U ′(V ) is in the closure of the orbit of (x1, . . . , xc, z) then
dim(StabGL(V )(q ′)) < dim(L). This follows from the fact that dim(StabGL(V )(q ′) ≤
dim(StabGL(V )(	(q ′))). The orbit of 	(q ′) is in the closure of the orbit of p,
and the closure of the orbit of 	(q ′) contains the orbit of p′, where we use the
fact that the closure of any orbit contains a unique closed orbit. This implies that
dim(StabGL(V )(q ′)) < dim(L).

We thus see that by passing from (U (V ), p) to (U ′(V ), q) we strictly decreased
the maximal dimension of the stabilizer of a point in the closure of the orbit of
p, respectively of q. It also holds that StabGL(V )(p) = StabGL(V )(q) = G. By
repeating this process finitely many times, and adding finitely many tensors, we will
reach a space U ′′(V ) and a point p′′ = (x1, . . . , xc, z1, . . . , zd) ∈ U ′′(V ) such that
StabGL(V )(p′′) = G and such that the orbit of p′′ is closed. This will give us the
desired algebraic structure and character of invariants. ��

6 The good characters form a K -algebra

The ring U is a polynomial algebra on the set P of closed connected diagrams. This
means that we have a one-to-one correspondence between characters U → K and
functions from P to K , given by restriction. The set of functions K P = { f : P → K }
carries an additional structure of a K -algebra. To state this precisely, for every closed
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connected diagram Di ∈ P , every χ1, χ2 ∈ K P , and every t ∈ K , we have

(χ1 + χ2)(Di) = χ1(Di) + χ2(Di), (χ1 · χ2)(Di) = χ1(Di) · χ2(Di),

(tχ)(Di) = t(χ(Di)).

In Section 6 of [16] we introduced two coproducts on U, 
 and 
⊗. The elements
of P are primitive with respect to 
 and are group-like with respect to 
⊗. A direct
calculation shows that as characters of U we have χ1 · χ2 = (χ1 ⊗ χ2)


⊗ and
χ1 + χ2 = (χ1 ⊗ χ2)
. We claim the following:

Lemma 6.1 The set of good characters in K P is closed under addition and multipli-
cation.

Proof Assume that χ1 and χ2 are good characters. Then the categories Cχ1 and Cχ2

are semisimple K -good categories. We can consider the Deligne product Cχ1 � Cχ2 ,
which is again a semisimple K -good category. This category contains the algebraic
structures W1 := W � 1 and W2 := 1 � W . We will write (W1, (xi )) and (W2, (yi ))
to indicate the specific structure tensors of these structures. It is easy to see that the
character of invariants ofWi is χi for i = 1, 2. Since the two structures live in the same
category we can consider the structures (W1⊕W2, (xi ⊕ yi )) and (W1⊗W2, (xi ⊗ yi )).
Following Section 6 of [16] we see that the characters of invariants of these structures
are χ1 + χ2 and χ1 · χ2 respectively. But since these are the character of invariants of
structures in a K -good category we get that χ1 + χ2 and χ1 · χ2 are good characters,
as required. ��

To prove that the good characters form a K -algebra we just need to show that the
set of good characters is closed under the action of t ∈ K . To do so, we will use the
category Rep(St ), which will be described in detail in Sect. 8. The proof of the next
proposition finishes the proof of Theorem 1.4

Proposition 6.2 Assume that χ : U → K is a good character. Then tχ is a good
character as well.

Proof Since we already know that the set of good characters is closed under multipli-
cation, it will be enough to show that the character ct , given by ct (Di) = t for every
closed connected diagram Di , is a good character. For this we will use the category
Rep(St ) described in Sect. 8. The category Rep(St ) can be described as Cχ , where χ is
the character of invariants of a certain separable commutative Frobenius algerba. Such
an algebra is given by the following list of tensors: m of degree (1, 2), 
 of degree
(2, 1), ε of degree (0, 1), and u of degree (1, 0). We will see in Sect. 8 that χ(Di) = t
for every closed diagram formed by the boxes m,
, ε, u, IdW .

We are interested here in structures of type ((pi , qi )). We will define a structure of
this type in Cχ . Let W be the tautological structure in Cχ . We define yi : W⊗qi →
W⊗pi to be (
⊗Id⊗p−2

W ) · · · 
m(m⊗IdW ) · · · (m⊗Id⊗q−2
W ) in case p ≥ 2 and q ≥ 2.

If p = 1we just remove the
-part from the above expression, and if p = 0we replace
it by ε. If q = 1 we remove the m-part from the above expression, and if q = 0 we
replace it by u. We get in this way an algebraic structure of type ((pi , qi )) in Cχ . Write
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ψ for its character of invariants. We will show that ψ = ct , thus proving the claim.
If Di is any closed connected diagram for structures of type ((pi , qi )), we can create
a closed diagram Di ′ for structures of type ((1, 2), (2, 1), (0, 1), (1, 0)) by replacing
any box labeled by xi by the composition yi described above. It is easy to see that if
Di is connected, then Di ′ is connected as well, since the morphisms are formed by
connected diagrams (even if not closed ones). We then get that ψ(Di) = χ(Di ′) = t
because Di ′ is a closed connected diagram. But this means that ψ = ct , so we are
done. ��

7 Interpolations

Our goal in this section is to show that under some mild conditions a family of char-
acters, and their symmetric monoidal categories, can be interpolated. We begin with
the following definition:

Definition 7.1 A one-parameter family of characters (χt )t∈K is a collection of charac-
ters χt : U → K , such that for every closed diagram Di the element χt (Di) ∈ K is a
polynomial in t . A family (χt )t∈K is called additive if ∀t1, t2 ∈ K χt1 + χt2 = χt1+t2 ,
and it is called multiplicative if ∀t1, t2 ∈ K χt1χt2 = χt1t2 .

Remark 7.2 The condition that χt (Di) is a polynomial in t for every closed diagram is
equivalent to the condition that χt (Di) is a polynomial in t for every closed connected
diagram, because every diagram can be written as a product of closed connected
diagrams.

Definition 7.3 We say that a property holds for almost all t ∈ K if it does not hold
only for finitely many values of t .

Lemma 7.4 Let (χt )t∈K be a one-paramter family of characters, and let c ∈ Conp,q

be a constructible morphism. Assume that there is an infinite subset {s1, s2, . . .} ⊆ K
such that c ∈ rad(pairp,qχsi

). Then c ∈ rad(pairp,qχt ) for every t ∈ K.

Proof The assertion c ∈ rad(pairp,qχt ) is equivalent to

∀d ∈ Conq,p χt (pair
p,q(c ⊗ d)) = 0.

But for every d ∈ Conq,p, χt (pairp,q(c ⊗ d)) is a polynomial in t . By assumption,
this polynomial has infinitely many zeros, and is therefore zero. ��

We claim the following:

Lemma 7.5 Let (χt )t∈K be a one-paramter family of characters. Assume that there
is an infinite subset {s1, s2, . . .} ⊆ K such that the following condition holds: for
every (p, q) ∈ N

2 there is a number n(p, q) such that for every i the codimension of
rad(pairp,qχsi

) in Conp,q is≤ n(p, q). Then the codimension of rad(pairp,qχt ) in Conp,q

is ≤ n(p, q) for all t . If moreover there are elements c1, . . . , cn(p,q) ∈ Conp,q such
that c1+rad(pairp,qχt ), . . . , cn(p,q)+rad(pairp,qχt ) form a basis of Conp,q/rad(pairp,qχt )

for some value of t then they form a basis of Conp,q/rad(pairp,qχt ) for almost all t .
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Proof Let (p, q) ∈ N
2. Let {w p,q

1 , w
p,q
2 , . . .} be a basis forConp,q . Similarly, we have

a basis {wq,p
1 , w

q,p
2 , . . .} forConq,p. Then the pairing pairp,q : Conp,q⊗Conq,p → U

is determined by its action on tensor products of basis elements. In particular, for every
natural number N and every t ∈ K it holds that the codimension of rad(pairp,qχt ) in
Conp,q is ≤ N if and only if for every i1, i2, . . . iN , iN+1 ∈ N the determinant of the
matrix

(χt (pair
p,q(w

p,q
i j

⊗ w
q,p
ik

))) j,k

vanishes. Since χt is a one-parameter family, this determinant is a polynomial p(t)
in t . If N = n(p, q) then we know that p(si ) = 0 for every i = 1, 2, . . .. But a
polynomial in one variable with infinitely many zeros is zero, so we deduce that the
codimension of rad(pairp,qχt ) is ≤ n(p, q) for every t ∈ K .

For the second assertion, assume that c1, . . . , cn(p,q) are elements of Conp,q . Then
they form a basismodulo rad(pairp,qχt ) if and only if the following condition is satisfied:
there are elements d1, . . . , dn(p,q) in the basis of Conq,p such that the determinant of
the matrix (χt (pairp,q(ci ⊗ d j ))) is non-zero. This is a Zariski-open condition, since
this determinant is also a polynomial in t . Thus, if there is a single value of t for which
there is a set of basis elements d1, . . . , dn(p,q) such that this determinant is non-zero,
then it will be non-zero for almost all t . ��
Lemma 7.6 Let (χt ) be a one-parameter family of characters, and let A be an
object of Cuniv . Assume that for almost all t ∈ K the endomorphism algebra
Rt := EndC̃χt

(Fχt (A)) is of dimension N and that for some value of t it has dimension
N and is semisimple. Then Rt semisimple for almost all t , and for almost all t it holds
that if r ∈ Rt is nilpotent then Tr(r) = 0.

Proof Let s ∈ K be an element for which Rs has dimension N and is semisimple.
Then Rs has a basis given by Fχs (c1), . . . , Fχs (cN ), for some morphisms ci in Cuniv .
It follows from the previous lemma that Fχt (c1), . . . , Fχt (cN ) form a basis for Rt for
almost all t . Let Trreg : Rt → K be the trace of the regular representation of Rt . Then
Rt is semisimple if and only if the determinant of the matrix

Trreg(Fχt (ci ) ◦ Fχt (c j ))

is non-zero (see Sect. 2.3) Again, this is a Zariski-open condition. Since we know that
this determinant does not vanish for t = s it doesn’t vanish for almost all t , and Rt

is thus semisimple for almost all t . Now, if Rt is semisimple, then the fact that Trreg
is non-degenerate implies that there is a unique rt ∈ Rt such that Tr(a) = Trreg(art )
for every a ∈ Rt . This is because non-degeneracy of Trreg implies that every linear
functional Rt → K is of the form Trreg(−x) for some x ∈ Rt .

We claim that rt is central. Indeed, it holds that Tr(ab) = Tr(ba) for everya, b ∈ Rt .
This implies that Trreg(abrt ) = Trreg(bart ).We use the linearity and cyclicity of Trreg
to deduce that Trreg(a(brt − rtb)) = 0 for every a, b ∈ Rt . Because Trreg is non-
degenerate this implies that rtb − brt = 0 for every b ∈ Rt , which means that rt is
central in Rt . Now, if a ∈ Rt is nilpotent then Tr(a) = Trreg(art ). Since rt is central,
art is nilpotent as well, and therefore Tr(a) = Trreg(art ) = 0 as required. ��
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Proposition 7.7 Let (χt ) be a one-parameter family of characters. Assume that there
is a countable subset {s1, s2, . . .} of values of t such that χsi is a good character for
every i . Assume moreover that for every (p, q) ∈ N

2 there is a number n(p, q) such
that

dim(Conp,q/rad(pairp,qχsi
)) ≤ n(p, q).

Then χt is not a good character for at most countably many values of t . If in addition
(χt ) is additive then χt is a good character for all t , and if it is multiplicative then χt

is a good character for all t �= 0.

Proof We use here the fact that a character is good if and only if it is afforded by
a structure in a K -good category. By Lemma 7.5 we see that the first condition of
Definition 4.4 holds for χt for every t ∈ K .

For the second condition, we proceed as follows: for every object A ∈ Cuniv we
know that Rt := EndC̃χt

(Fχt (A)) is finite dimensional and of dimension ≤ M for
some M (this follows from the condition on the radicals and the fact that every object
of Cuniv has the form

⊕
i W

ai ,bi . If N = supt {dim Rt } then dim(Rt ) = N holds for
almost all t . This is because the condition dim(Rt ) ≥ N is a Zariski-open condition.
In particular, for some si it will hold that dim(Rsi ) = N . Since χsi is a good character,
it follows that Rsi is semisimple, by the proof of Proposition 4.7. The condition of
Lemma 7.6 are thus fulfilled, and we see that for almost all t it holds that if T : A → A
in Cuniv satisfies that T n is χt -negligible, then Fχt (T ) ∈ Rt is nilpotent, and therefore
Tr(Fχt (T )) = χt (Tr(T )) = 0. We thus see that for every object A ∈ Cuniv there are
at most finitely many values of t for which the second condition of Definition 4.4 is
not satisfied. The category Cuniv has countably many objects A1, A2, . . .. Since the
countable union of finite sets is countable, we get the first part of the proposition.

For the second part, assume that K is uncountable. This is not really a restriction,
since we can always embed K in an uncountable field L and deduce back to K . Write
C = {t |χt is a good character}. Then D := K\C is at most countable. Assume that
(χt ) is additive and that D �= ∅. Let d ∈ D. Consider the set E = {d − t |t ∈ C}.
Then E has a countable complement. It follows that E ∩ C �= ∅. So there is t ∈ C
such that d − t is also in C . But since C is closed under addition it follows that
d = d − t + t ∈ C , a contradiction. The proof for the case where the family (χt ) is
multiplicative is similar, where we use multiplication instead of addition and K\{0}
instead of K . ��
Definition 7.8 We call {s1, s2, . . .} a special collection for (χt ) if it satisfies the con-
dition of the proposition.

8 Examples

8.1 The empty structure, and the categories Rep(GLt(K))

Consider first the empty structure, where r = 0 and there are no structure tensors. In
this case the algebra of invariants U is just K [D], where D is the dimension invariant.
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Define a one-parameter family of characters by the formula χt (D) = t for every
t ∈ K . Notice that this is an additive family. We have the special collection C =
{0, 1, 2, 3, 4, . . .}. In this particular case it holds that Conp,q = 0 if p �= q, while
Conp,p has already finite rank p! over U = K [D], and it has a basis given by L(p)

σ

for σ ∈ Sp. As a result, the condition for finite dimensionality of the hom-spaces
in C̃χt holds for all t , and χt is a good character for every t by Proposition 7.7. For
t = n, a non-negative integer, we get the category Rep(GLn(K )). We thus write
Cχt = Rep(GLt (K )) for every t ∈ K . The algebra of good characters in this case is
simply K . This example was given by Deligne [7].

8.2 A single endomorphism

Consider now the algebraic structure consisting of a vector space W and a single
endomorphism T : W → W . Alternatively, we can think of such an algebraic structure
as a K [t]-module,where t acts byT . In this case the ringU is K [D,Tr(T ),Tr(T 2), . . .].
Let χ : U → K be a good character. By Corollary 2.3 we know that the rational
function

∑
i χ(Tr(T i ))Xi has the form

∑n
j=1

t j
1−λ j X

where t j ∈ K and {λ j } is the
spectrum of T . The algebra EndCχ

(W ) is generated by the endomorphism T . Since
Cχ is semisimple, this algebra is semisimple, and W splits as W = ⊕n

j=1 Wj , where
Wj = Ker(T − λ j ). It then follows easily that t j = dimWj . Moreover, we get an
equivalence of categories

F : Cχ ≡ Rep(GLt1(K )) � · · · � Rep(GLtn (K )),

where F(Wi ) = 1� · · · �W � 1� · · · � 1 ∈ Rep(GLti (K )). The morphism F(T ) is
then given by F(T )|F(Wi ) = λi IdF(Wi ). We thus see that any good rational function
can be received here. For λ ∈ K write Uλ : U → K for the character Tr(T i ) → λi .
A direct calculation shows that UλUμ = Uλμ. It follows that the algebra of good
characters here is the monoid algebra of (K ,×).

We next use this type of algebraic structure to show that the category Cχ does
not necessarily satisfy a universal property, as was stated in Remark 4.8. Take A =
K 2 ∈ VecK , and take T : A → A to be the linear transformation represented by

the matrix

(
0 1
0 0

)

. Then dim(A) = 2 and Tr(T n) = 0 for all n ≥ 0. Let χ be the

character of invariants of (A, T ). Then T ∈ Cuniv is a χ -negligible morphism, and as
a result T = 0 in Cχ . This shows that there is no functor F : Cχ → VecK such that
F(W , T ) = (A, T ), because F is K -linear and therefore cannot send the zero vector
to a non-zero vector.

8.3 Non-degenerate symmetric pairings and the categories Rep(Ot(K))

For the next example,wewould like to consider vector spacesW with a non-degenerate
symmetric pairing c : W⊗W → K . The non-degeneracy is equivalent to the existence
of d ∈ W ⊗ W such that ev(c ⊗ d) = IdW , or in graphical terms:
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c d = IdW

The fact that c is symmetric implies that d is symmetric as well, considered as a map
W ∗ ⊗ W ∗ → K . This can also be proved directly using diagrams. We thus consider
the theory T which contains two axioms: the axioms ev(c ⊗ d) − IdW and the axiom
cL(2)

(12) −c. In this case, the resulting hom-spaces in CT
univ already have finite rank over

U/IT . Indeed, whenever a diagram contains a connection between an input string of
a c-box and an output string of a d-box we can reduce this to the identity morphism
on W (we use here the fact that both c and d are symmetric). Thus, every diagram is
equivalent to a diagram in which no c- and d-boxes are connected. But there are only
finitely many such diagrams with a given number of input and output strings.

For the scalar invariants, notice that the only closed connected diagram in which
no input strings of c are connected to output strings of of d is the dimension invariant.
Thus U/IT ∼= K [D] in this case, and characters for models of T are determined by
their value on D. Write χt : U → U/IT ∼= K [D] → K for the unique character that
satisfies χ(D) = t . Then χn is a good character for every n ∈ N. Indeed, it is the
character of invariants of the structure (Kn, (cn, dn)) where cn = ∑n

i=1 e
i ⊗ ei and

dn = ∑n
i=1 ei ⊗ ei , where ei is the standard basis for Kn . Up to isomorphism, this is

the only n-dimensional vector space with a non-degenerate symmetric pairing, and it
thus have a closed orbit. It is easy to see that (χt ) is an additive family. Since χn is
good for every n ∈ N, and the dimensions of the hom-spaces is uniformly bounded,
Proposition 7.7 implies that χt is good for every t . In case t = n is an integer, we
get by Proposition 5.2 that Cχn

∼= Rep(Aut(Kn, (cn, dn))) = Rep(Ot (K )). We thus
denote Cχt by Rep(Ot (K )). This example, as well as the next two examples, were
given by Deligne [7].

8.4 Non-degenerate skew-symmetric pairings and the categories Rep(Spt(K))

Consider now skew-symmetric pairings. In a very similar way to the last example,
such structures are given by two structure tensors: c of degree (0, 2) and d of degree
(2, 0). The theory here is made of the two axioms cL(2)

(12) + c and ev(c ⊗ d) − IdW .
As before, one can show that d is also skew-symmetric, and that U/IT ∼= K [D]. We
define χt : U → U/IT ∼= K [D] → K to be the character which sends D to t ∈ K .
Just as in the last example we can show that the hom-spaces in CT

univ have finite rank
over U/IT . For t = 2n where n ∈ N, the character χ2n is a good character, since it is
the character of the structure (K 2n, cn, dn) where cn = ∑n

i=1 e
i ⊗ ei+n − ei+n ⊗ ei

and dn = ∑n
i=1 ei ⊗ei+n −ei+n ⊗ei . Since (χt ) is an additive family, Proposition 7.7

implies that χt is a good character for all t . Since Cχ2n
∼= Rep(Aut(K 2n, (cn, dn))) ∼=

Rep(Sp2n(K )) we write Cχt = Rep(Spt (K )). As pointed out in Section 9.5 of [7] for
the case that t is an integer, there is a connection between the categories Rep(Ot ) and
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RepSp−t . We have an equivalence of symmetric monoidal categories F : Rep(Ot ) �
sVecK ∼= Rep(Sp−t ) � sVecK . This equivalence is given by acting as the identity on
sVecK , and by sending the tautological structure W of Rep(Ot ) to W � k−, where
k− is the odd vector space of dimension 1, and W ∈ Rep(Sp−t ) is the tautological
object. One can easily check that W ∈ Rep(Ot ) and W � k− ∈ Rep(Sp−t ) have the
same invariants, and therefore the functor F is well defined. It is also easy to write its
inverse, by a similar formula.

8.5 Separable commutative algebras and the categories Rep(St)

In this example we consider the structure of separable commutative algebras. Such an
algebra is an associative commutative unital algebra W such that the multiplication
m : W⊗W → W splits as aW−W -bimodulemorphism. The splitting s is determined
by c := s(1) ∈ W ⊗ W .

To phrase everything in the language of algebraic structures, a separable commu-
tative algebra contains a multiplication m : W ⊗ W → W , a unit u : 1 → W , and
separability idempotent c : 1 → W ⊗W . Another formulation is given by replacing c
with
 := ev(m⊗c) : W → W ⊗W . The separability idempotent c can be recovered
from 
 as 
 ◦ u : 1 → W → W ⊗ W . The comultiplication 
 was used in Sect. 6.

The theory Tsep of separable commutative algebras contains the axioms saying that
m is associative and commutative, that u is a unit for m, and that c defines a splitting
of m as a W − W -bimodule morphism. This boils down to the following equality of
morphisms:

c

m

= u

c

m

c

m

=

,

(8.1)

The axioms in Tsep also imply the following equality of constructible morphisms:

c

m

c

m
= =

c

m
=

c

m = u

(8.2)
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We then get the following equality of diagrams:

c

m

m

=

c

m

m

= u m = IdW

(8.3)

We claim the following:

Lemma 8.1 The algebra UTsep is isomorphic to K [D]. The natural projection U →
UTsep sends every closed connected diagram to D = dim(W ).

Proof Let Di be a closed connected diagram.Wewill show that we can reduce Di to D
using the axioms in Tsep. We shall do so by induction on the number n of appearances
of the tensor c in Di . If n = 0 then Di contains only the tensors u and m. Since
Di is a closed diagram, the number of u-boxes and the number of m-boxes must be
equal. Since only the tensorm contains input strings, the output of every u-box will be
connected to one of the input strings of m. But since u is a unit for m, we can replace
this by IdW . We can get rid of all appearances of u in this way. Since a closed diagram
cannot have only m-boxes, because the number of input and output strings will not
be balanced, we are left with a closed connected diagram with no u-,m-, or c-boxes.
Such a diagram can only be the trace of IdW , or D = dim(W ).

Consider now the case where n > 0. If Di contains a diagram of the form mc then
we can use the axioms in Fig. 8.1 to reduce these two boxes to the box u. This also
reduces the number of appearances of c by one. In the general case, since m is the
only type of box with input strings, if we have any c-box then its output strings will
be connected to an input string of some m-box. We follow the output string of this
m-box, which must be connected as well to the input string of another m-box, or to
the other input string of itself. Since the number of m-boxes in the diagram is finite, a
circle will be closed eventually. Since m is associative and commutative, we can find
an equivalent diagram to Di which contains a diagram which appear in Fig. 8.2 or 8.3.
In any case, we can remove a sub-diagram which contains the c-box and replace it
with either Idw or u. Again, this will reduce the number of c-boxes by one, and the
induction is completed. ��

Thus, for every t ∈ K we have a character χt : U → K which sends all closed
connected diagrams to t . It is easy to see that (χt ) is an additive one-parameter family.
We claim the following:

Proposition 8.2 All the characters χt are good characters.

Proof For t = n, a natural number, χn is the character of invariants associated to the
structure (Kn,mn, un, cn) where mn = ∑n

i=1 ei ⊗ ei ⊗ ei , un = ∑n
i=1 ei , and cn =∑n

i=1 ei ⊗ ei . This is just the algebra Kn with pointwise addition and multiplication.
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Since the dimension of this algebra is n we see that χn is a good character. The
automorphism group of the algebra Kn is Sn , acting by permuting the basis. For every
natural a, b it holds that the dimension of ((Kn)a,b)Sn is bounded by the number of
equivalence relations on {1, 2, . . . , a+b}, which does not depend on n. The conditions
of Proposition 7.7 are satisfied, so we see that indeed χt is a good character for every
t ∈ K . ��

Since Kn is the only n-dimensional commutative separable algebra, it has a closed
orbit, and Cχn

∼= Rep(Sn). We thus get an interpolation of the categories Rep(Sn).
The resulting category Cχt is then the Deligne’s category Rep(St ). The family of
good characters that correspond to separable commutative algebras then just gives the
algebra K .

8.6 Commutative Frobenius algebras and the categories DCob˛

We consider now the structure of commutative Frobenius algebras. Recall that such a
structureW has the following structure tensors: multiplicationm : W ⊗W → W , unit
u : 1 → W , and counit ε : W → 1. The axioms for a commutative Frobenius algebra
are the following:m is an associative and commutativemultiplication, u is a unit form,
and the pairing εm : W⊗W → 1 is non-degenerate.As in the case ofOt ,wewill record
the non-degeneracy by adding c : 1 → W ⊗W such that ev(c⊗εm) = IdW . We write

 : W → W ⊗W for the dual ofm with respect to the pairing εm. One can prove that

 is also given by ev(c⊗m).We denote the theory of commutative Frobenius algebras
by TComFr . It is known (see Section 2.3. in [13]) that commutative Frobenius algebras
in a given category C correspond to 2-dimensional oriented topological quantum field
theories (TQFTs) in C. The correspondence between the 2-dimensional cobordisms
and our diagrams is given by the following dictionary:

m =

,

u =

,

ε =

c =

,


 =

,

IdW =

.

Composition of morphisms is given by gluing of cobordisms. The closed connected
diagrams then correspond to closed connected two-dimensional orientable manifolds.
Such manifolds are classified by their genus. We write Mg for the connected oriented
two-dimensional manifold of genus g. If A is a commutative Frobenius algebra and
χA is its character of invariants, we can consider χA(Mg), where we understand that
we evaluate χ on the closed connected diagram that corresponds to a manifold of
genus g. We write αg := χA(Mg) ∈ K . The sequence (αg) also appears in [13].
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We thus see that characters UTComFr → K are in one-to-one correspondence with
sequences (αg) of elements in K . The category Cχ is the category DCobα from [13],
where (αg) is the sequence that corresponds to the character χ .

We next determine the sequences which correspond to good characters. For this,
define the handle endomorphism x = m
 : A → A. This is given by the cobordism




=

m

It holds that Tr(xn) = αn+1 for every n ∈ N. We consider now the function Z(X) =∑
i αi X i . ByCorollary 2.3we see that if (αg) corresponds to a good character then this

function has the form P(X)
Q(X)

, where Q(X) has nomultiple roots, deg(P)+1 ≤ deg(Q),
and Q(0) �= 0. We call rational functions of this specific form loyal. We claim the
following:

Proposition 8.3 (See Theorem 3.4. in [13]). The sequence (αg) corresponds to a good
character if and only if Z(X) is a loyal rational function.

Proof We have already seen that if (αg) comes from a good character then Z(X) is
loyal. In the other direction, the set of loyal functions is a linear subspace of K [[X ]]
spanned by the functions {1, X} ∪ { 1

1−λX }λ∈K× . Since we know that the set of good
characters is a linear subspaces, it will be enough to show that all functions in this
basis correspond to good characters.

For 1
1−λX we have the following algebra: take A = K with basis element e and

dual basis f . The structure tensors are given by m = e ⊗ f ⊗ f , u = e, ε = 1
λ
f ,

c = λe ⊗ e, and 
 = λe ⊗ e ⊗ f . We get that x = λIdK , so Tr(xn) = λn , and
α0 = ε(u) = 1

λ
. We get the rational function 1

λ

∑
i (λx)

i = 1
λ

1
1−λX , which is the

basis element 1
1−λX rescaled by 1

λ
. Since the set of good characters is closed under

multiplication by scalars this is good enough.
For the rational functions 1 and X we consider the following algebras: Let A =

k[y]/(y2). We define ε1(1) = 0, ε1(y) = 1 and ε2(1) = ε2(y) = 1. For i = 1, 2
let Ai be the Frobenius algebra with ε = εi . We will calculate the resulting rational
functions. A direct calculation shows that in both cases the handle endomorphism
x = m
 is given by 1 → 2y and y → 0. This is a nilpotent endomorphism, and
therefore all the scalars αi for i ≥ 2 vanish. We have that α1 = dim A = 2 in both
cases. We have α0 = ε(u), so it is 0 for A1 and 1 for A2. We thus get the rational
functions 2X and 1+ 2X . Since we get a spanning set for the loyal rational functions
we are done. ��

The collection of good characters arising from commutative Frobenius algebras
is closed under sums, products, and multiplication by a scalar in K , it thus form a
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subalgebra of K P . By considering the proposition above we see that this algebra is
isomorphic to KM ⊕ Ke where M is the monoid (K ,×), we write Uλ for a basis of
KM , e is an idempotent, and Uλe = λe. Here e corresponds to the characters with
α-sequence (0, 1, 0, 0, . . .).

Remark 8.4 The paper [13] also studies the case where the ground field is of charac-
teristic p.

8.7 Wreath products with St

If G is any group one can construct the wreath product Sn � G := Sn � Gn , where
Sn acts by permuting the entries in Gn . We will show here how we can interpolate
this construction when G is any reductive group. We will use Theorem 1.3, that says
that G is the automorphism group of some algebraic structure with a closed orbit. Our
construction generalizes the construction of Knop from [12], where he constructed the
categories Rep(St � G) for G a finite group. The construction we present here work
for general good characters as well.

Let (A, (yi )) be an algebraic structure in some good category D. Write χ : U →
K for the character of invariants of (A, (yi )). We will define now a new algebraic
structure, and show that its direct sums can be interpolated. We define A = 1 ⊕ A,
and we consider the new algebraic structure (A, (y1, . . . , yr , P, u, ε,m, c)) where
P : A → A is the projection with kernel A and image 1, u : 1 → A is the natural

inclusion, ε : A → 1 is the natural projection,m : A⊗ A → A is given by A⊗ A
P⊗1→

1 ⊗ A ∼= A, and c : 1 → A ⊗ A is given by 1 ∼= 1 ⊗ 1
u⊗u→ A ⊗ A. We will write the

new structure as (A, (zi )). We claim the following:

Lemma 8.5 Assume that (A, (yi )) is an algebraic structure in V ecK with automor-
phism group G. Then the automorphism group of (A, (zi ))⊕n is Sn � G
Proof We write A

⊕n = A⊕n ⊕ 1⊕n . Write B := 1⊕n = Ke1 ⊕ · · · ⊕ Ken . There is
an action of Sn � G = Sn � Gn on (A, (zi ))⊕n , where Gn acts diagonally on A⊕n and
trivially on B, and Sn permutes the direct summands. We will show that these are all
the possible automorphisms of the structure (A, (zi ))⊕n .

The constructible map P is just the projection onto B with kernel A⊕n . Thus, every
automorphism of (A, (zi ))⊕n must preserve the direct sum decomposition A⊕n ⊕ B.
The map m restricted to B gives an algebra structure mB : B ⊗ B → B on B.
This algebra is just isomorphic to 1n , and so its multiplication is given by the rule
ei · e j = δi, j ei . We thus see that restriction gives a group homomorphism φ from
the automorphism group of (A, (zi ))⊕n to the automorphism group of the algebra B,
which is just Sn .

We consider now an automorphism g in Ker(φ), and show that it must be in Gn .
Indeed, the morphism m induces a B-module structure on A⊕n . Since g acts trivially
on B, it sends ei ·W to itself. Thus, for every i we get an induced automorphism gi of
(A, (yi )). The assignment g → (g1, . . . , gn) thus gives us the desired isomorphism
between Ker(φ) and Gn and we are done. ��

We next claim the following:
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Lemma 8.6 Assume that (A, (yi )) is aVecK -structurewith a closed orbit and automor-
phism group G. Then (A, (zi ))⊕n has a closed orbit and therefore Cn·χ ∼= Rep(Sn �G).

Proof By Corollary 5.3 we know that having a closed orbit is equivalent to the non-
degeneracy of the pairings X (p,q)⊗X (q,p) → K , where X (p,q) ⊆ Ap,q is the subspace
of constructible elements. Since we will deal with a few different structures here we
will write X (p,q)(A, (yi )) to make it clear what structure we are considering. We first
show that (A, (zi )) has a closed orbit. Using the projection P : A → A it follows
easily that X (p,q)(A, (zi )) splits as

X (p,q)(A, (zi )) =
2⊕

i1,...,i p+q=1

X (p,q)(A, (zi )) ∩ (Ai1 ⊗ Ai2

⊗ · · · ⊗ Aip ⊗ (Aip+1)
∗ ⊗ · · · ⊗ (Aip+q )

∗),

where A1 = 1 and A2 = A. It then follows that we need to prove that the restriction
of the pairing is non-degenerate on every one of these direct summands, using the fact
that the space X (q,p)(A, (zi )) has a similar decomposition. But this follows easily from
the fact that the pairing X (p′,q ′)(A, (yi )) ⊗ X (q ′,p′)(A, (yi )) → K is non-degenerate
for p′ ≤ p and q ′ ≤ q, and from the fact that u and ε provide a dual basis of 1 ⊆ A
and 1∗ ∼= 1 ⊆ A

∗
.

Consider now the structure (A, (zi ))⊕n . Write Ai for the i-th copy of A in A
⊕n

. We
will begin by considering the structure (A

⊕n
, z11, . . . , z1n, . . . , zl1, . . . , zln), where

wewrite zi j for the tensor zi applied to A j . For convenience, we assume that IdA is one

of the tensors in {z j }, so that we get all the projections A⊕n → A j → A
⊕n

. The fact
that the pairing on X (p,q)(A, (zi )) ⊗ X (q,p)(A, (zi )) → K is non-degenerate easily
implies that the pairings for (A

⊕n
, (zi j )) are non-degenerate. The group Sn acts on

A
⊕n

by permuting the direct summands Ai . We will show that X (p,q)((A, (zi ))⊕n) =
X (p,q)(A

⊕n
, (zi j ))Sn . This will prove that the pairing is non-degenerate, since the field

K has characteristic zero, and Sn is therefore a reductive group.
For this, notice first that all the structure tensors of (A, (zi ))⊕n are fi := zi1 +

zi2 + · · · + zin , which are invariant under the action of Sn . It follows easily that all
the constructible tensors for (A, (zi ))⊕n are Sn-invariant as well, and we thus have an
inclusion X (p,q)((A, (zi ))⊕n) ⊆ X (p,q)(A

⊕n
, (zi j ))Sn .

To prove the inclusion in the other direction, we notice that by reordering the ten-
sors, X (p,q)(A

⊕n
, (zi j )) is spanned by elements of the form c(σ, τ, v1, . . . , vn) :=

L(p)
σ v1 ⊗ · · · ⊗ vnL

(q)
τ , where vi ∈ X (ai ,bi )(Ai , z1i , . . . , zli ),

∑
i ai = p,

∑
i bi = q,

σ ∈ Sp and τ ∈ Sq . By the reductivity of Sn it will be enough to show that
∑

μ∈Sn μ(c(σ, τ, v1, . . . , vn)) is in X (p,q)((A, (zi ))⊕n). Since the action of Sn com-
mutes with the action of Sp × Sq , we can assume without loss of generality that
σ = Id and τ = Id. We next use the fact that c = ∑

i ei ⊗ ei and (u ⊗ u) − c =∑
i �= j ei ⊗ e j , using the notation for the basis of B from the previous lemma. The

constructible morphism m enables us to consider A
⊕n

as a B-module. Write now
vi = vi (z1i , . . . , zli ). Using the elements c and u ⊗ u we can construct the element
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ua := ∑
μ∈Sn e

⊗a1
μ(1) ⊗ · · · ⊗ e⊗an

μ(n) and ub := ∑
μ∈Sn e

⊗b1
μ(1) ⊗ · · · ⊗ e⊗bn

μ(n). It then holds
that

∑
μ∈Sn μ(c(Id, Id, v1, . . . , vn)) = ua(v′

1⊗· · ·⊗v′
n)ub, where we identify ua and

ub with their action on (A
⊕n

)p,q via m, and where v′
i = vi ( f1, . . . , fl). But the last

expression belongs to X (p,q)((A, (zi ))⊕n), so we are done. ��
Following the above lemmas, we give the following definition:

Definition 8.7 If χ : U → K is the character of invariants of (A, (yi )) we write
χ : U → K for the character of invariants of (A, (zi )), where U is the uni-
versal ring of invariants for structures of type ((p1, q1), . . . , (pr , qr ), (1, 1), (1, 0),
(0, 1), (1, 2), (2, 0)). If Cχ

∼= Rep(G) we write Rep(St � G) := Ct ·χ as by the above
lemma it interpolates the categories Rep(Sn � G).

All the characters t · χ are good characters. This follows from the fact that χ is
a good character, and the set of good characters is closed under multiplication by a
scalar. It was necessary to form the auxiliary structure A because it is possible that
the automorphism group of A⊕n will be strictly bigger than Sn � G. This happens for
example for the families GLt ,Ot , and Spt . The construction we have works as well
also in case Cχ does not admit a fiber functor to VecK .

8.8 Finite modules over a discrete valuation ring and the categories
Rep(Aut(Ma1,...,ar))

Let O be a discrete valuation ring with a uniformizer π and a finite residue field of
cardinality q. We will consider here finitely generated modules over Or := O/(πr ),
where r > 0 is some integer. Such a module M gives rise to the group algebra
KM = spanK {Um}m∈M . This group algebra is a Hopf algebra. The multiplication
is given by Um1Um2 = Um1+m2 , the comultiplication by 
(Um) = Um ⊗ Um , the
unit is U0, the counit is ε(Um) = 1 for every m ∈ M , and the antipode is given by
S(Um) = U−m . In addition, for every x ∈ Or we have a Hopf albgera homomorphism
Tx : KM → KM given by Tx (Um) = Umx . These homomorphisms satisfy in
addition the conditions TxTy = Txy , m(Tx ⊗ Ty)
 = Tx+y , and T1 = IdKM . We can
thus consider (KM,m,
, u, ε, S, (Tx )x∈Or ) as an algebraic structure. Let T be the
theory containing the axioms for a commutative and cocommutative Hopf algebra,
the axioms saying that Tx is a homomorphism of Hopf algebras for every x ∈ Or ,
the axiom TxTy = Txy for all x, y ∈ Or , the axiom m(Tx ⊗ Ty)
 = Tx+y for all
x, y ∈ Or , and the axiom T1 = IdKM .

Claim 8.8 Isomorphism classes of models for T inside VecK are in one-to-one corre-
spondence with isomorphism types of finite modules over Or .

Proof We have seen that if M is a finite module over Or then KM is a model for the
above theory T. On the other hand, if W is a model for T, then by Cartier-Milnor-
Moore-Kostant Theorem we know that a commutative cocomuutative Hopf algebra
is necessarily the group algebra KM of some finite abelian group M . The fact that
Tx : KM → KM is a Hopf algebra homomorphism implies that Tx arises from a
group homomorphism M → M . The other axioms ensure us that we get indeed a
structure of an Or -module on M . ��
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Since O is a principal ideal domain, the structure theorem for finitely generated
modules over a PID applies here. Adapted to O/(πr ), we see that every module over
Or has the form

M = (O/(π))a1 ⊕ (O/(π2))a2 ⊕ · · · ⊕ (O/(πr ))ar ,

for some a1, a2, . . . , ar ∈ N. Moreover, the tuple (a1, . . . , ar ) ∈ N
r is a complete set

of invariants for M . We will write M = Ma1,...,ar .
The integers a1, . . . , ar can be recovered from the associated character of invari-

ants of KMa1,...,ar , which we denote by χa1,...,ar : U → K . Indeed, for every
i = 1, 2, . . . , r it holds that

ci := Tr(T1+π i ) = qa1+2a2+···+iai+iai+1+···+iar , (8.4)

where q = |O/(π)|. This is because Tr(T1+π i ) = |{m ∈ M |(1+π i )m = m}| = {m ∈
M |π im = 0}| = |HomOr (Oi , M)|.

We can write qai in the form
∏

j c
xi j
j for some xi j ∈ Z. We will need the following

lemma:

Lemma 8.9 Let L ⊆ N be an inclusion of finitely generated Or -modules. Let M be
anotherOr -module. Then there are elementsαi ∈ L and integers ni ∈ {0, 1, . . . , r−1}
such that a homomorphismψ : L → M can be extended to a homomorphism N → M
if and only if the set of equations πni ξi = ψ(αi ) has a solution (ξi )i ∈ Mr . If ψ is
extendable to N, then there are |HomOr (N/L, M)| possible extensions.
Proof Write N/L = Q = ⊕

i 〈qi 〉, where 〈qi 〉 ∼= Oni . Write qi for a preimage of qi
in N . Then πni qi ∈ L . We write πni qi = αi ∈ L . It then holds that ψ is extendable
to N exactly when we can choose ψ(qi ) such that πni ψ(qi ) = ψ(αi ), as required.
The second result follows from the fact that any two extensions of ψ to N differ by a
homomorphism inflated from a homomorphism Q → M . ��
Proposition 8.10 For every a1, . . . , ar , a, b ∈ N write n(a1, . . . , ar , a, b) for the
dimension of the space of constructible elements in KMa,b

a1,...,ar . Then there is a number
n(a, b) such that n(a1, . . . , ar , a, b) ≤ n(a, b) for every a1, . . . , ar .

Proof By the space of constructible elements we mean the image of Cona,b under
FKM : HomCuniv (W

⊗b,W⊗a) → HomVecK (KM⊗b, KM⊗a). Write M = Ma1,...,ar ,
and write {em} for the dual basis of {Um}. For everyOr -module N and every two tuples
of elements of N , (s1, . . . , sa) and (l1, . . . , lb), we define

R(N ,(si ),(l j )) =
∑

ψ

Uψ(s1) ⊗ · · · ⊗Uψ(sa) ⊗ eψ(l1) ⊗ · · · ⊗ eψ(lb) ∈ KMa,b,

where the sum is taken over all Or -module homomorphisms ψ : N → M . We claim
that all the constructible elements are of the form R(N ,(si ),(t j )) for some (N , (si ), (t j )).
For the structure tensors this follows directly. For example: for the multiplication,
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∑
m1,m2

Um1+m2 ⊗ em1 ⊗ em2 , take N = Orμ1 ⊕Orμ2, s1 = μ1 + μ2 and (l1, l2) =
(μ1, μ2). Similar constructions hold for 
, u, ε, S, and Tx .

The set of tensors R(N ,(si ),(l j )) is closed under taking tensor products and under
applying tensor permutations. If we can show that it is also closed under applying
ev then it will follow that it must contain all the constructible elements. For this,
recall that ev(Um ⊗ em′) = δm,m′ . Thus, after applying ev to R(N ,(si ),(t j )) only the
homomorphisms ψ : N → M for which ψ(sa) = ψ(tb) will survive. These are in
one-to-one correspondence with homomorphisms N1 := N/(sa − tb) → M . Write n
for the image of n ∈ N in N1. We thus see that

ev(R(N ,(si ),(l j ))) = R(N1,(s1,...,sa−1),(t1,...,tb−1))
,

and all constructible elements are of the form R(N ,(si ),(l j )).
We need to show that for a given (a, b) ∈ N

2 the elements R(N ,(si ),(l j )) span a vector
space of bounded dimension in KMa,b. For this, write L = 〈s1, . . . , sa, t1, . . . , sb〉 ⊆
N and write N/L = Q. The ψ-summand in the tensor R(N ,(si ),(t j )) is determined by
the restriction ofψ to L . By Lemma 8.9, we see that there are elementsα1, . . . , αw in L
and numbers n1, . . . , nw ∈ {0, 1, . . . r −1} such that a homomorphismψ : L → M is
extendable to N if and only if the equation πni ξ = ψ(αi ) has a solution in M for every
i = 1, . . . w. If ψ is extendable to N , then it has exactly HomOr (Q, M) extensions.
We can thus write R(N ,(si ),(t j ) as |HomOr (Q, M)| ∑ψ Uψ(s1)⊗· · ·⊗Uψ(sa)⊗eψ(l1)⊗
· · · ⊗ eψ(lb), where the sum is taken over all homomorphisms L → M which satisfy
the conditions given by the tuples (αi ) and (ni ).

Since there are only finitelymanymodules L of rank≤ a+b, And since the possible
tuples (si ), (t j ), (αi ) and (ni ) are all taken from finite sets, we get the desired result.
We also see that the scalar invariants that we get are all of the form |HomOr (Q, M)|
for someOr -module Q. By writing Q as the direct sum of cyclic modules, we see that
every such invariant is a product of the elements ci from Eq.8.4. ��

We can now prove that there exists an interpolation of the categories
Rep(Aut(Ma1,...,ar )). It holds that

χa1,...ar
∼= χa1,0,...,0 · · · χ0,0,...ar .

It will thus be enough to show that for every i there is an interpolation of the family
χ0,...,0,ai ,0,...,0. For this, we use the fact that all the character values of χ0,...,0,ai ,...,0

are integer powers of qai . We define a one-parameter family of character ψ
(i)
t by

the following formula: if χ0,...,0,ai ,...,0(Di) = qnai then ψ
(i)
t (Di) = tn . This gives

us a multiplicative family, and all the conditions of Proposition 7.7 hold. Indeed,
all the hom-spaces are of bounded finite dimension by Proposition 8.10, and the
special collection is given by the elements {qi }i∈N. The categories Rep(GLt (O1)were
also constructed by Deligne (unpublished). In [12] Knop constructed the categories
Rep(GLt (Or )). We get here a bigger family of tensor categories, as for general values
of (t1, . . . , tr ) it holds that

C
ψ

(1)
t1

···ψ(r)
tr

� �r
i=1Cψ

(i)
ti
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(in fact, there is no equivalence of categories even when all the parameters ti are
positive integer powers of q.)
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