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Abstract
1.	 Dispersal is a central life history trait that affects the ecological and evolutionary 

dynamics of populations and communities. The recent use of experimental evolu-
tion for the study of dispersal is a promising avenue for demonstrating valuable 
proofs of concept, bringing insight into alternative dispersal strategies and trade-
offs, and testing the repeatability of evolutionary outcomes.

2.	 Practical constraints restrict experimental evolution studies of dispersal to a set 
of typically small, short-lived organisms reared in artificial laboratory conditions. 
Here, we argue that despite these restrictions, inferences from these studies can 
reinforce links between theoretical predictions and empirical observations and 
advance our understanding of the eco-evolutionary consequences of dispersal.

3.	 We illustrate how applying an integrative framework of theory, experimental evo-
lution and natural systems can improve our understanding of dispersal evolution 
under more complex and realistic biological scenarios, such as the role of biotic 
interactions and complex dispersal syndromes.
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1  |  INTRODUC TION

Dispersal, generally defined as the movement of an individual from 
its place of birth to its place(s) of reproduction, is an integral part of 
a species' life history (Ronce,  2007). Dispersal traits often have a 
genetic basis (Saastamoinen et al., 2018) and are subject to consid-
erable selection (Lowe & McPeek, 2014) with costs and benefits to 
the dispersing individual (Bonte et al., 2012; Bonte & Dahirel, 2017; 
Clobert et al., 2012). Dispersal traits not only differ between popu-
lations, but genetic and environmental linkages to other traits (i.e. 
joint selection on dispersal and adaptation to local environmental 
conditions) also generate heterogeneity within populations (Clobert 
et al., 2012). Given the strong impact of dispersal on the ecological 
dynamics of spatially structured systems (Bowler & Benton, 2005; 
Luo et al.,  2022), evolutionary changes in dispersal have the po-
tential to induce strong eco-evolutionary feedbacks. For example, 
dispersal evolution may alter metapopulation dynamics (Hanski 
et al., 2006; Jacob et al., 2019), population expansion rates (Miller 
et al., 2020; Nadeau & Urban, 2019), species interactions (Nørgaard 
et al.,  2021; Phillips & Shine,  2006), local adaptation (Moerman 
et al.,  2020; Tusso et al.,  2021), and the evolution of niche width 
(Friedenberg, 2003). Yet disentangling the causes and consequences 
of dispersal evolution has often proven difficult in natural systems, 
due to the spatiotemporal scale of dispersal, the lack of replicability 
and the presence of confounding factors.

These limitations may be overcome through well-designed ex-
perimental evolution studies, that allow isolating ecological (e.g. 
population dynamics, species interactions, dispersal) and evolu-
tionary (drift, gene flow, selection, mutation) processes in order to 
study their effects on the evolution of a given trait of interest (Bailey 
& Bataillon, 2016; Chevin, 2011; Kawecki et al., 2012; Schlötterer 
et al.,  2015; Van den Bergh et al.,  2018). Recently, this approach 
has also been applied to dispersal, demonstrating that different dis-
persal traits may evolve, that dispersal behaviour can be altered by 
population density and relatedness (Bitume et al.,  2013), and that 
dispersal evolution can accelerate range expansion (Fronhofer, Gut, 
et al., 2017; Mishra et al., 2020; Ochocki & Miller, 2017; Van Petegem 
et al., 2018; Weiss-Lehman et al., 2017).

Despite this progress, the potential for experimental evolution 
to advance dispersal research is constrained by several challenges. 
Here, we outline how to mitigate these constraints by (i) identifying 
the possibilities and challenges of using experimental evolution to 
study dispersal; (ii) advocating a conceptual framework integrating 
experimental evolution, theoretical modelling and studies of natural 
systems; and (iii) proposing recommendations for future experimen-
tal evolution studies of dispersal.

2  |  HOW (NOT ) TO USE E XPERIMENTAL 
E VOLUTION TO STUDY DISPERSAL

2.1  |  Possibilities

A main benefit of experimental evolution is the possibility to infer 
causation by isolating individual factors and processes to study their 
effects on evolutionary changes in a systematic and replicated man-
ner. Dispersal evolution experiments include studies investigating 
two-patch systems (Friedenberg,  2003; Tung, Mishra, Shreenidhi, 
et al.,  2018), linear arrays (Fronhofer & Altermatt,  2015; Mortier 
et al., 2021; Weiss-Lehman et al., 2017; Williams et al., 2016), meta-
populations (De Roissart et al., 2015; Fronhofer et al., 2014; Masier 
& Bonte, 2020), and meta-communities (Nørgaard et al., 2021); see 
also Larsen and Hargreaves (2020) for an overview of experimental 
landscapes. In each experimental landscape, the available habitat 
(e.g. number of patches), population density, environmental condi-
tions or species interactions can be manipulated to study how mod-
ulators such as landscape fragmentation (De Roissart et al., 2016; 
Fronhofer et al., 2014; Masier & Bonte, 2020; Williams et al., 2016) 
or environmental gradients (Fronhofer, Nitsche, et al., 2017) affect 
dispersal and its eco-evolutionary consequences. Further, by experi-
mentally shuffling individuals, experimental evolution studies can 
effectively partition spatial (e.g. spatial sorting of individuals due to 
dispersal ability) vs. temporal (e.g. drift, density-dependent selec-
tion) contributors to dispersal evolution (Ochocki & Miller,  2017; 
Weiss-Lehman et al., 2017) and control for kinship structure. While 
such experiments may not be suitable to answer all questions related 
to the evolution of dispersal, they are especially useful in four key 
ways (further explored in Box 1 with representative studies):

1.	 Certain dispersal processes, such as range expansions and 
extinction/colonization events are practically infeasible or too 
disruptive to experimentally manipulate in nature, making ex-
periments ideal tools for simulating these processes (e.g. Alzate 
et al.,  2019).

2.	 Experimental evolution studies are very effective as ‘proof of con-
cept’ studies to test theoretical predictions related to the evolu-
tion of dispersal (e.g. Friedenberg, 2003; Ochocki & Miller, 2017; 
Williams et al., 2016), demonstrating experimentally to which ex-
tent certain eco-evolutionary processes occur and may apply to 
real-world systems.

3.	 Evolution experiments can yield valuable insights about traits 
under selection, correlated evolutionary responses, and the 
role of trade-offs in governing trait evolution (e.g. De Roissart  
et al., 2016; Van Petegem et al., 2018).

K E Y W O R D S
dispersal, dispersal syndromes, evolutionary trade-offs, experimental evolution, 
metacommunities, metapopulations, movement

 13652656, 2023, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13930 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1115Journal of Animal EcologyLUSTENHOUWER et al.

BOX 1 Key advantages of using experimental evolution to study dispersal.

Here we illustrate the four advantages of experimental evolution outlined in Section 2 with example studies.

1. Landscape design and dispersal

Experiments allow for manipulation of landscape fea-
tures and dispersal rates or routes that would be in-
tractable in nature (Larsen & Hargreaves, 2020). For 
instance, Alzate et al. (2019) used an island biogeogra-
phy design where spider mites adapted to pea plants 
on the ‘mainland’ (stock) dispersed at different rates 
(number of females transferred) to islands of different 
sizes (number of tomato plants). The study focussed 
on the effects on population dynamics (colonization, 
extinction) and adaptation to the new host plant, but 
could be extended with mite dispersal morphology 
and behaviour

Experimental design used by Alzate et al. (2019). Mites were transffered at 
rate of 0.5, 1, or 2 females per week to ‘islands’ of 1, 2, or 4 tomato plants

2. Providing proof of concept

Experimental evolution has provided ‘proof of concept’ 
that evolution can accelerate range expansion (Ochocki 
& Miller,  2017; Weiss-Lehman et al.,  2017; Williams 
et al., 2016). For example, Williams et al. (2016) created 
replicated experimental mesocosms with Arabidopsis 
thaliana, where each generation dispersed into a linear 
array of pots. In the nonevolving treatment, a replace-
ment array was created with seeds sown at the same 
density and location, but with equal frequencies of the 
14 starting genotypes (left panel, different coloured 
symbols). By comparing the furthest extent between 
the evolving and non-evolving treatments, they could 
quantify the extent to which evolution increased the 
speed of range expansion (right panel) and character-
ize which traits contributed

Left: experimental design with symbols indicating different genotypes. Right: 
furthest extent of evolving (green) and non-evolving (black) replicate 
invasions, with mean values in bold (from Williams et al., 2016, reprinted 
with permission from AAAS)

3. Unexpected insights into evolution

By allowing dispersal and population dynamics to play 
out freely within the landscape, experimental evolu-
tion studies often find emerging insights into selection 
on more than just emigration traits but also on other 
stages of dispersal and life histories. For instance, 
using mite experimental metapopulations, De Roissart 
et al.  (2016) found metapopulation structure not to 
induce the evolution of emigration rates, but to im-
pose complex but adaptive changes in developmental 
time, fecundity and sex ratio (Bonte & Bafort, 2019). 
Similarly, experimental range expansions showed 
spatial sorting of reproductive traits to prevail over 
dispersal, but kin competition to overrule any trait 
evolution (Van Petegem et al., 2018). Connectivity loss 
in experimental metapopulations lead to the evolution 
of dispersal costs rather than increased emigration 
rates or dispersal distance (Masier & Bonte, 2020)

Changing connectivity in experimental spider mite metapopulations did 
not lead to the expected evolution of dispersal. Rather, dispersal 
costs evolved such that they equalized dispersal across the different 
connectivity treatments (from Masier & Bonte, 2020)
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4.	 The replicated experimental design provides the opportu-
nity to study the repeatability of dispersal evolution (direc-
tion, magnitude and rate of change) and to understand why 
certain evolutionary outcomes and processes are more pre-
dictable than others (Weiss-Lehman et al.,  2019; Williams  
et al., 2019).

2.2  |  Challenges

Although experimental evolution may provide exciting opportuni-
ties to study the evolution of dispersal, several challenges should 
be considered (see Figure 1 for an overview of strengths and weak-
nesses compared to studying dispersal using theory or natural sys-
tems). First, given the short timescales and small landscape involved, 
scaling inference to natural systems is a major challenge (Morales & 
Ellner, 2002). Spatial and temporal scales of evolution experiments 
should thus be carefully tailored to the focal species and its mode of 
dispersal to produce relevant and realistic results. These constraints 
of artificial landscapes are clearly reflected in the taxonomic bias 
of study species towards small, short-lived organisms (Figure  2). 
However, some study systems are better than others for addressing 
particular questions: whereas complex dispersal behaviours at the 
level of the individual (individual dispersal decisions, body-condition 
dependency of dispersal) may be studied more easily in larger or-
ganisms (arthropods and vertebrates), bacteria and protists may be 
better suited to study species interactions, population dynamics 
and underlying genetic mechanisms. We highlight specific research 

questions that eight different groups of taxa would be suitable for 
(algae, arthropods, bacteria, ciliates, fungi, nematodes, plants and 
vertebrates) in Figure 2.

Second, regardless of their spatial and temporal scale, experi-
mental evolution studies typically take place in a controlled labo-
ratory or semi-natural environment. Dispersal traits that are under 
selection in an artificial environment may not be the same traits se-
lected in nature (e.g. ambulatory vs. aerial dispersal), and dispersal 
behaviour is inherently constrained by the spatial limits and con-
ditions of the experimental setting. Trade-offs observed in the lab 
could evolve in an unexpected direction (Lustenhouwer et al., 2019) 
and key traits impacting or trading off with dispersal in nature could 
be missed altogether (Tung, Mishra, Gogna, et al., 2018). If the goal 
of an experiment is extrapolation to natural populations, it is there-
fore imperative to proceed with caution and critically evaluate the 
extent to which dispersal in the artificial environment reflects real 
dispersal. In Section 3, we discuss further approaches to scale infer-
ence to natural systems.

Similar to phenotypic data, identifying the genetic basis of disper-
sal from lab experiments may only be relevant if the same traits (and 
genes) are under selection in nature. However, genomic approaches 
combined with experimental evolution are well suited to elucidate 
more general patterns, such as the repeatability of genetic changes 
associated with dispersal evolution, or differences in genetic load 
across experimental landscapes (Bosshard et al., 2020). Small effec-
tive population size and founder effects are natural outcomes of dis-
persal dynamics at range margins that will magnify the role of genetic 
drift and impact future evolution. An important task when using 

Here we illustrate the four advantages of experimental evolution outlined in Section 2 with example studies.

4. Quantifying variability

Variability among replicates can be studied at both the 
phenotypic and genomic level, which is particularly 
useful due to the large role of drift in range-expanding 
populations (Slatkin & Excoffier, 2012). Weiss-Lehman 
et al.  (2017) used experimental microcosms of red 
flour beetles to test the role of spatial evolution on 
variability in expansion outcomes. In one treatment, 
beetles within a landscape were spatially randomized 
(‘shuffled’) each generation to remove any role of spa-
tial evolution. After 8 generations, the non-shuffled 
landscapes (‘structured’) showed almost twice the 
variability in expansion distances of the shuffled land-
scapes. Analysing genomic data from this experiment, 
Weiss-Lehman et al.  (2019) further demonstrated 
increased genomic variability in edge populations of 
structured landscapes, mirroring the increased vari-
ability seen in spread rates

Left: Variance in distance spread through time of the structured and shuffled 
treatments. Right: Pairwise correlation in nucleotide diversity (ρπ) of key 
beetle populations from the experiment (lower values correspond to 
greater variability among replicates). Figures reprinted with permission 
from Weiss-Lehman et al., 2017 (left), and 2019 (right), respectively
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F I G U R E  1  Interdisciplinary links between experimental evolution, theory and modelling, and natural systems that could advance the 
study of dispersal evolution, harnessing strengths and overcoming weaknesses of each approach. Numbered arrows are further discussed 
in Appendix 1 with relevant publications where available. Direct links between theory and natural systems are common but are outside the 
scope of this paper.

F I G U R E  2  Taxonomic diversity of the species that have been used for the study of dispersal through experimental evolution. For each 
major taxonomic group, we list the main advantages and disadvantages for using an experimental evolution approach, as well as suggested 
research questions, for which the group may be well suited. Figure made using iTOL (Letunic & Bork, 2021).
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experimental evolution to study the population genetics of disper-
sal is therefore to calibrate or monitor population sizes to ascertain 
that observed outcomes can be extrapolated to natural scenarios. 
Moreover, a small effective population size in the experiment will 
bias studies investigating the genetic basis of dispersal towards de-
tecting loci with large effects. This issue arises due to the combina-
tion of the magnified role of drift in small experimental populations 
and the reduced statistical power to infer selection when replicate 
lineages adapt via different small effect alleles (Barton, 2022). This 
problem can be partly mitigated by genomic sequencing of temporal 
samples of evolving lineages, which improves statistical inferences 
of selection (Taus et al., 2017). Moreover, when applied to multiple 
replicate lineages, temporal sampling and sequencing can detect ge-
netic linkage among outlier loci, further elucidating the targets of 
selection and providing insights into the repeatability of evolution 
(Barghi et al., 2019).

3  |  FURTHER ADVANCING THE FIELD: 
LINKING THEORY, E XPERIMENTAL 
E VOLUTION AND NATUR AL SYSTEMS

Scaling inference from dispersal evolution experiments to natural 
systems is arguably the most significant challenge impeding the 
critical step from proof-of-concept studies to forecasting the eco-
evolutionary dynamics of dispersal in nature. Here, we highlight in-
terdisciplinary research at the interface of theory, experiments and 
natural systems that may help bridge this gap and illustrate how fu-
ture studies could explore dispersal evolution under greater biologi-
cal realism (see Appendix 1 for a full list of suggested approaches).

3.1  |  Integrating theory, models and 
experimental evolution

We see three main ways to improve integration between conceptual 
theory, modelling and evolution experiments. First, modelling and ex-
perimental evolution can be strengthened by mutually informing each 
study design—tailored experiments can validate analytical or statis-
tical models, aid in model selection or evaluate predictability (Zilio 
et al., 2023; Figure 1, arrow 3 and 4). For example, theory has shown 
that high levels of genetic polymorphism in dispersal traits and/or 
high mutation rates can accelerate range expansion and alter trade-
offs between reproductive output and movement/dispersal capac-
ity (Elliott & Cornell, 2012; Morris et al., 2019). Experimental designs 
using replicate lineages with different starting levels of genetic vari-
ation in dispersal traits could test these predictions. In experiments 
with genetically tractable micro-organisms, putative mutations driv-
ing dispersal can even be re-engineered into the ancestor to establish 
a mechanistic causality (cfr. Fumasoni & Murray, 2020).

Second, simulation models can be used to tease apart com-
plex dynamics, drivers and consequences of dispersal. Individual 
Based Models (IBMs) taking a bottom-up approach while explicitly 

considering genetic, ecological, and evolutionary processes, are 
a key example here (Bocedi et al., 2014; Rocha et al., 2021; Travis 
et al., 2011; Van Petegem et al., 2016; Weiss-Lehman & Shaw, 2022). 
Taking patterns observed in the experiments as inputs (e.g. dispersal 
between populations, population densities, relatedness, or genetic 
diversity), inverse modelling (Figure 1 arrow 1) can infer underlying 
eco-evolutionary processes that may be hard to observe or measure 
directly (Grindrod & Higham, 2010; Hartig et al., 2011; Soetaert & 
Petzoldt,  2010). For example, this approach has been applied to 
fit dispersal kernels (Sánchez et al.,  2011), or to disentangle eco-
logical and evolutionary drivers of dispersal behaviour (Bonte & 
Bafort, 2019).

Third, experimental data can be used to parameterize simulation 
models that incorporate larger populations and more complex envi-
ronments, addressing the important challenge of scaling inference 
from experimental landscapes to natural systems (Figure  1 arrow 
2). For example, metapopulation models could ask whether results 
(dispersal evolution, metapopulation dynamics) observed in a small, 
laboratory metapopulation will hold in larger, more extensive meta-
populations with greater biological complexity (Kubisch et al., 2014).

3.2  |  Extrapolating findings to natural systems

To assess whether patterns of dispersal evolution found in experi-
mental landscapes can be extrapolated to more complex natural 
systems, direct comparisons to field data will be essential. Ideally, 
experimental results can be compared with documented time series 
of trait changes in natural populations (similar to the observed evolu-
tion in natural populations of Darwin finches; Grant, 2017). Barring 
such ideal data, observed outcomes of experimental evolution can 
be compared with trait changes in museum specimens or across phy-
logenetic transitions (cfr. methods used by Bagchi et al., 2021) and 
further linked to biogeographical changes in species distributions 
(Freedman et al., 2020; Figure 1 arrow 7). Resurrection experiments 
reviving historical populations through efforts such as project base-
line (Etterson et al., 2016) provide another opportunity to validate 
results from evolution experiments with past and future evolution-
ary change in natural systems (Goitom et al., 2018).

An effective approach to link findings to natural systems is to 
perform evolution experiments in semi-natural systems such as me-
socosms (Legrand et al., 2012; Stokstad, 2012) or even in replicated 
natural populations (Cheptou et al.,  2008; Donihue et al.,  2022; 
Hanski et al., 2006; Figure 1 arrow 7). By introducing selection lines 
from an evolution experiment (e.g. dispersive versus philopatric 
lines, or the leading and trailing edge from range expansion experi-
ments) to a semi-natural system, it is possible to assess how evolu-
tionary changes in dispersal affect population dynamics. De Bona 
et al. (2019) applied this approach in wild guppies, where individuals 
adapted to high levels of predation were transplanted across barrier 
waterfalls where predators are absent. This design mimics natural 
occurrences where guppies, but not their predators, have breached 
these barriers. The experimental introductions were used to assess 

 13652656, 2023, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2656.13930 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [04/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1119Journal of Animal EcologyLUSTENHOUWER et al.

how density dependent dispersal evolves during a colonization 
event (De Bona et al., 2019). Dispersal evolution in this system can 
be further investigated with a combination of mark-recapture stud-
ies, mesocosms and common garden experiments examining the 
joint evolution of dispersal and life history across natural ecotypes.

3.3  |  Integrative approaches addressing 
emerging questions

To illustrate how a combination of experimental evolution, theo-
retical predictions, modelling and field experiments may help an-
swer major gaps in our understanding of dispersal evolution, we 
highlight hypothetical studies investigating dispersal evolution in 
the presence of two currently understudied factors: trade-offs 
between dispersal and other life history traits, and interspecific 
interactions (Figure 3). First, it is well-known that dispersal traits 
are often associated with life history, behavioural or morpho-
logical characteristics, resulting in dispersal syndromes (Clobert 
et al.,  2012) that affect ecological processes such as population 

spread (Lustenhouwer et al.,  2017). Consequently, evolutionary 
changes in dispersal may leave a legacy on other demographic pa-
rameters of the population (Lustenhouwer et al.,  2019). Second, 
theory and experimental studies of dispersal evolution in spread-
ing populations almost exclusively focus on a single species. 
However, the eco-evolutionary dynamics of dispersal will unfold in 
the context of (often strong) species interactions, especially during 
climate-mediated range shifts where entire species communities 
are reshuffled (Urban et al., 2012).

The potential for trade-offs and species interactions to funda-
mentally alter dispersal evolution is illustrated by a model simulating 
range expansion of species into a region occupied by a competitor 
(Burton et al., 2010), assuming a trade-off between dispersal ability, 
reproductive performance and competitive ability. In the absence 
of a competitor, selection favoured greater investment in dispersal 
at the expense of competitive ability. However, in the presence of a 
competitor, trade-offs constrained the evolution of increased disper-
sal at the expanding front. A second model by Kubisch et al. (2014) 
illustrated that the type of interaction occurring between two range 
expanding species (e.g. mutualistic vs competitive vs exploitative) 

F I G U R E  3  Example of a potential integrative approach between experimental evolution, natural systems and theory to study an 
imaginary protist species expanding its range along a river. A range of genotypes are sampled in the field, which vary along a trade-off 
(high dispersal- yellow genotype, high competitive ability-blue genotype, intermediate genotype- green). The focal species encounters 
novel competitors during range expansion, which are sampled downstream and used to set up experimental range expansions with and 
without competitors. Spatially explicit IBMs are parameterized with environmental and landscape genetic data from the field landscape, 
in combination with the relevant trade-off structure and population dynamics results identified in the evolution experiment. Modelling 
examples are from Haller and Messer (2019), Bocedi et al. (2021), Guillaume and Rougemont (2006), and Jabot et al. (Jabot et al., 2013, 
EasyABC).
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can substantially change the dynamics and outcome of dispersal 
evolution across the expanding range.

Although dispersal evolution during range expansion in a multi-
species context needs to be further explored theoretically, emerging 
predictions can already be tested using experiments where inter-
acting species spread in micro- or mesocosms (Figure 3). The exper-
imental tools at our disposal range from experimental communities 
of competing species (Matthiessen & Hillebrand, 2006) to complex 
meta-foodwebs (Altermatt et al., 2015; Carrara et al., 2012). Such 
resources allow us to ask how different types of interspecific inter-
actions affect eco-evolutionary dynamics and whether the presence 
of interspecific interactions affects the predictability of evolution-
ary trajectories and demography.

On a final note, interdisciplinary studies are also a promising 
approach to examine (evolutionary changes in) dispersal plasticity 
under different environmental conditions (Campana et al.,  2022). 
Meta-population experiments have recently shown that dispersal 
plasticity is impacted by top-down and bottom-up effects (Cote 
et al., 2022; Fronhofer et al., 2018) including potential consequences 
for meta-foodweb stability. Dispersal plasticity may also evolve 
along environmental gradients such as those experienced by range-
expanding populations (Fitt et al.,  2019). To test this hypothesis, 
experiments could be seeded with individuals from different parts 
of the range, based on genetic markers that can assess patterns of 
connectivity among populations and landscape resistance to dis-
persal (Dudaniec et al., 2022), using software such as Circuitscape 
(McRae & Beier, 2007) and Geneclass, (Piry et al., 2004). Individuals 
may also be reared under common garden conditions to establish 
how environmental variation affects dispersal. To forecast disper-
sal evolution in the context of natural communities, spatially explicit 
process-based models can be parameterised with the experimen-
tally estimated vital rates, reaction norms and trade-offs, as well as 
with genetic data (e.g. heritability and amount of standing genetic 
variation in dispersal) and run under different scenarios (Figure 3).

4  |  CONCLUDING REMARKS

Experimental evolution is a powerful tool to study the evolution 
of dispersal. Major experimental challenges can be overcome by 
addressing scaling issues (e.g. combining experiments with mod-
els to extrapolate results, scaling experimental findings to species 
with longer generation times), expanding the taxonomic range (i.e. 
use mesocosm or semi-natural experiments to include less well-
represented species that are not suited to a traditional lab set-up), 
and carefully considering how population size affects the outcome 
of dispersal evolution in experimental and natural populations (see 
Appendix 1 for a detailed list of suggested methods and case stud-
ies). We argue the best way to do so is to reinforce links between 
experimental evolution, natural systems and theory/modelling, by, 
for example, using experimental evolution to validate analytical 
models, parameterize genetically explicit IBMs, or test the repli-
cability of evolutionary changes observed in natural populations 

(Figure  3 and Appendix  1). Such an integrative framework will 
make it possible to design more realistic experimental evolution 
studies in the future to answer questions of increasing biological 
complexity—how dispersal evolves in the context of species inter-
actions, environmental variation and genetic variation underlying 
dispersal in the natural world.
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Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Appendix 1. Suggested methodologies on how experimental 
evolution of dispersal can be linked to theoretical and empirical 
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of the numbered arrows from Figure 1, we list several methodologies 
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