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Vision paper

General shallow water equations (GSWEs)
DUBRAVKA POKRAJAC (IAHR Member), Professor, School of Engineering, University of Aberdeen, Aberdeen, UK ; Visiting
Professor, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
Email: d.pokrajac@abdn.ac.uk

ABSTRACT
Shallow water equations (SWEs) have been traditionally derived by integrating fundamental flow equations over a flow profile above a single point
in a horizontal or nearly horizontal plane, with the main assumptions that the profile thickness is much smaller than other two dimensions and it
contains only water. This paper presents the derivation of generalized SWEs (GSWEs) obtained for a finite plan area, allowing for the presence of
phases other than water, such as air, grains, vegetation, and debris, which can be either stationary or mobile. The derivation provides a rigorous basis
for various applications of layer-averaged models and opens numerous research questions, some of which are highlighted in the paper.
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1 Introduction

The shallow water equations (SWEs) are a well-known classi-
cal mathematical framework for describing flow in a thin layer
of fluid. They are able to describe many different types of flows
ranging from tsunami waves (e.g. Wang et al., 2021; Wup-
pukondur & Baldock, 2022) and waves on shallow beaches (e.g.
Hibberd & Peregrine, 1979; Hubbard & Dodd, 2000) to flood
waves in rivers (e.g. Ayog et al., 2021; Yu & Chang, 2021) and
urban areas (e.g. Dong et al., 2021; Li et al., 2020). Despite
“Water” in their name the SWEs are also used for describing
gravity currents (e.g. Adduce et al., 2012; Ungarish, 2007), dry
avalanches (e.g. Savage & Hutter, 1989), debris flow (Xiong
et al., 2020), and even magnetohydrodynamics (e.g. Lahaye
& Zeitlin, 2022). The common feature of all these diverse kinds
of flow is that they can be considered as shallow, because they
occur in a layer with a much smaller thickness and the cor-
responding layer-normal velocity than the length and velocity
scales in the layer-parallel directions.

The derivation of SWEs can be found in many classical text-
books and papers (Peregrine, 1972; Stoker, 1957; Toro, 2001;
Whitham, 1974 to name just a few). The derivation is carried out
by depth-integrating the 3D fundamental volume and momen-
tum balance equations (either Navier–Stokes or Reynolds-
averaged Navier–Stokes equations), and assuming hydrostatic
pressure distribution. The resulting 2D or 1D flow description

provides the basis for computationally efficient numerical sim-
ulation codes, making the SWE-based models very attrac-
tive for practical engineering models (e.g. ANUGA, Roberts
et al., 2009, BASEMENT, Volz et al., 2012, LISFLOOD-FP,
Neal et al., 2012).

Besides the main assumption of shallow flow, the original
derivation of the SWEs involves a few more assumptions: the
flow layer contains only one fluid, usually water, the free surface
does not fluctuate around its relatively slowly moving position,
and all forces other than pressure (and gravity for non-horizontal
flows) are negligible. The SWEs are then derived by integrat-
ing the fundamental flow equations over a single flow profile,
between the bed and the free-surface level.

For the purpose of expanding their applicability, the origi-
nal SWEs have been modified by including the effects that were
deemed important such as turbulent stress, the bed shear stress
at the bottom boundary (e.g. Stansby & Feng, 2005) and other
effects. There is clearly a desire to expand the application of the
SWEs beyond the modelling of clear water flow. Examples of
such models are hydro-sediment morphodynamics models (e.g.
Carraroa et al., 2018). However, the depth-averaged equations
needed for such models are usually developed by integration
over a single flow profile located at a point in the plan area. Such
an approach is not suitable for rigorous definitions of the terms
that arise for flow over a finite plan area that covers a represen-
tative sample of the bed geometry, for instance bed shear stress

Received 15 July 2022; accepted 6 June 2023/Open for discussion until 1 December 2023.

ISSN 0022-1686 print/ISSN 1814-2079 online
http://www.tandfonline.com

303

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


304 D. Pokrajac Journal of Hydraulic Research Vol. 61, No. 3 (2023)

which results from forces acting on the bed across the entire
finite area. Such terms are instead added intuitively (e.g. Ayog
et al., 2021; Mignot et al., 2006 and numerous other papers)
– a quick and simple approach, but lacking clarity and rigour.
This gap in knowledge has motivated the author to revisit the
derivation of the SWEs, remove all assumptions other than that
of shallow flow, and carry out the derivation which considers
flow over a finite plan area rather than over a point. The deriva-
tion has been performed using the already existing generalized
double averaging methodology (V. Nikora et al., 2013), with
slightly modified notation which allows for a clear distinction
between the two averaging steps and a rigorous definition of
intrinsic averages. It has yielded a general version of the tradi-
tional SWEs. The new equations will be referred to as GSWEs
with “G” standing for “Generalized”.

The derivation is presented for a single layer which contains
mainly water, but can also include air bubbles, stationary and
moving grains, vegetation, and other solid objects. The same
methodology can be used to derive underlying equations for
various multi-layer models.

The paper is organized as follows. The next section pro-
vides a brief overview of the main concepts and definitions (the
details are presented in the appendices). It also describes the
physical system to which the GSWEs apply, and the additions
to the classical double-averaging methodology needed for its
application for deriving the GSWEs. Sections 3 and 4 summa-
rize the derivation of the continuity and momentum GSWEs,
respectively. Section 5 highlights some open research questions
and directions related to the derived GSWEs. The final section
contains few concluding remarks.

2 Main concepts and definitions

The derivation of the GSWEs presented in this paper can be
considered as an extended version of the derivation of clas-
sical SWEs’. While classical SWEs are derived by averaging
over a single flow profile/water column located at a point in
the plan area, the GSWEs will be derived by averaging over
all flow profiles covering a finite plan area. This is necessary
for flows over rough beds, those with irregular free surface,
and those containing phases other than water in the water col-
umn because for such cases the finite plan area needs to capture
representative samples of the bed, the free surface, and phases
other than water. The extension from SWEs to GSWEs there-
fore involves expanding the bottom and the top boundaries of
the water column from points into surfaces, and the use of
the spatial averaging theorems instead of the Leibniz integral
rules: the theorems contain the terms which express the con-
ditions along the bottom and the top surfaces that correspond
to the terms in the Leibniz rules expressing the conditions at
the bottom and top points. In either case the derivation trans-
forms the original 3D description/model of the problem to 2D
depth-averaged description, so that the bottom and top boundary

conditions of the 3D model become source terms in the 2D
model.

Besides spatial averaging needed to capture flow heterogene-
ity due to the presence of small-scale features, time averaging is
needed to account for turbulence effects. This makes the double
averaging methodology a convenient theoretical framework for
deriving GSWEs.

2.1 Averaging approach

Double averaging methodology in its classical form (e.g. Finni-
gan, 2000; V. I. Nikora et al., 2001; Wilson & Shaw, 1977)
involves two averaging steps, one over a time interval (or over
an ensemble of statistical realizations), and another one over a
volume. In order to incorporate turbulent quantities defined in
classical way the time averaging step is usually performed first,
but reversing the order may be conceptually simpler (Pokra-
jac & Kikkert, 2011). It is also possible to perform the two
averaging steps simultaneously (V. Nikora et al., 2013).

In order to produce large-scale equations which include
classical turbulent quantities and hence build on the wealth
of knowledge on turbulence, this paper presents the large-
scale equations derived using two averaging steps, i.e. either
time/ensemble averaging followed by spatial averaging or
vice-versa. Deriving large-space equations using simultaneous
time/space averaging is analogous and simpler in mathematical
terms, so it will not be further considered.

The derivations are carried out for a general case which
allows for a possibility to have gaps (points not occupied by the
fluid) in both spatial and temporal domains. Such gaps occur, for
instance, over the volumes of individual solid grains, or at loca-
tions close to the water surface at time instances when they are
dry. The large-scale equations for this general case have been
derived in V. Nikora et al. (2013), where they have been applied
to a thin bed parallel averaging volume, which covers a suffi-
ciently large plan area. In this paper the identical methodology
is applied to a “thick” averaging volume which covers the entire
flow depth.

All definitions of averaging operators and relevant quantities
and rules are provided in Appendix A, and only the key rela-
tionships needed for the derivation of the GSWEs are repeated
here. The notation used to denote temporal and spatial aver-
ages (overbar and square brackets for time and space averages,
respectively) and related quantities is the same as in the most of
the DAM literature, with the following amendment. For the pur-
pose of having precise definitions it is beneficial to distinguish
between the first and the second averaging step, so the former
is highlighted by adding a symbol ° (standing for “one”) to all
operators applied and quantities obtained in the first averaging
step.

For both time and volume averaging the term “superficial
average” refers to the average carried over the entire averaging
window (see Eqs A1 and A5 for definitions), whereas “intrin-
sic average” indicates averaging over the part of the averaging
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Figure 1 The averaging volume, V0, covers a section of an open channel between dark grey lines. (a) The content of the averaging volume at an
arbitrary time instant: water (light grey), air (white), grains and other solid objects such as debris and vegetation (dark grey if immobile and textured
if mobile). Velocities of mobile objects are shown with arrows. Thick red lines indicate the bottom and the top boundaries, denoted with BOT, TOP
respectively, which are the conceptual interfaces of the 2D model with the adjacent layers. The right-handed main coordinate system x, y, z has
inclination angles relative to the horizontal plane αx and αy . Another Cartesian coordinate system has the xbed, ybed plane aligned with the average
bed plane, and the inclination angles relative to the xy plane βx and βy . (b) The averaging volume shown in (a) prepared for spatial averaging: water
is light grey and its interfaces with other fluid phases or objects are shown as thick black or blue lines. Black lines indicate the interfaces associated
with either top or the bottom boundary, and blue lines show those within the water column. Thick red lines show the wet parts of either bottom or top
boundary which, for the purpose of deriving GSWEs, also act as interfaces because water located beyond them (above the top and below the bottom
boundary) has been deleted. The black and the red interfaces along the bottom and the top boundaries joined together form the bottom and the top
surfaces denoted with Sbot, Stop respectively. Geometry of all interfaces is defined by a unit normal vector �n pointing into water

window occupied by the main fluid (Eqs A2 and A7). These
parts are tracked using a “marker function” γ (xi, t) which takes
the value of one if the fluid occupies the point xi at time t,
and the value of zero otherwise (Fig. A1b). The ratios of the
parts of averaging windows that contain the main fluid and the
entire averaging windows, called “space and time porosity” in
V. Nikora et al. (2013), are here referred to as spatial and tempo-
ral “occupancy ratios”. They provide the relationships between
superficial and intrinsic averages of a generic fluid quantity θ ,
which are derived in Appendix A (Eqs A4, A8) and repeated
here for convenience:

θ
s◦ = φ ◦

T
θ

◦
, 〈θ〉s◦ = φ ◦

V
〈θ〉◦,

〈ψ〉s = φV 〈ψ〉 , ϕs = φTϕ
(1)

The first and the second rows of Eq. (1) are for the first and
second averaging step, respectively. The second averaging step
is performed over the results of the first step, which are denoted
asψ and ϕ:ψ(xi) denotes a result of the first averaging step over
time, i.e. either θ

s◦
or θ

◦
, or any other function with the same

marker function γ ◦(xi), for instance φ◦
T
, see Fig. A2; ϕ(t) is a

first step volume average (〈θ〉s◦, or 〈θ〉◦), or any other function
marked by 〈γ 〉◦(t), such as φ◦

V
. These relationships have been

defined in V. Nikora et al. (2013), where φV and φT were denoted
with φVm

and φTm
, respectively.

After each averaging step the intrinsic averages resulting
from it can be used to decompose the variable that has been
averaged into an intrinsic average and the deviation from this
average. The deviations are denoted with a prime and a tilde
for a deviation from the temporal and spatial intrinsic average,

respectively. The usual rules, e.g. of sum and product, apply for
the intrinsic averages of two or more variables (Eq. A9).

The superficial averages applied in the two consecutive steps
commute, i.e. reversing their order produces identical result. The
relationships between superficial and intrinsic double averages
developed in Appendix B (Eq. B2) show that intrinsic averages
do not commute in a general case analysed in this paper, but
do commute in the following special cases: (i) neither φ◦

T
and

θ
◦
, nor φ◦

V
and 〈θ〉◦ are correlated; (ii) all interfaces between the

main fluid and other phases are “frozen”, i.e. immobile.

2.2 Basic concepts relevant for derivations of the GSWEs

Figure 1a shows a sketch of a possible general case for which
the GSWEs will be derived, with a snapshot of all phases at
an arbitrary time instant. The main fluid is water, which flows
over a permeable bed made of stationary grains, and carries
mobile objects such as sediment grains and debris. There is also
aquatic vegetation, which may be either immobile or mobile.
The free surface is irregular, and the water column may contain
air bubbles.

The Cartesian right-handed coordinate system is used
throughout the paper, with either tensorial (xi, i = 1, 2, 3) or
hydraulic (x, y, z) notation. In the former case Einstein summa-
tion convention applies. The streamwise and lateral coordinates
x1 ≡ x and x2 ≡ y follow the two principal directions of the
double-averaged flow. Their inclination angles relative to the
horizontal plane are denoted with αx, and αy , respectively. More
precisely, rotation of the x, y, z system about the y axis by αx

brings the x axis into the horizontal plane, and another rotation
(about the new position of x) by αy brings the y axis into the



306 D. Pokrajac Journal of Hydraulic Research Vol. 61, No. 3 (2023)

horizontal plane and hence also makes the z axis vertical. The
velocity components corresponding to the coordinate axes are
u1 ≡ u, u2 ≡ v, u3 ≡ w respectively.

The averaging volume is shown with thick dark grey lines
in Fig. 1. It is a cuboid with a base in the x, y plane (i.e. at
z = 0), centred at an arbitrary (x, y) point. Its dimensions in the
three coordinate directions are X0, Y0, Z0. Geometry of all inter-
faces between water and other phases is defined by their outer
unit normal vectors, ni, pointing into water (Fig. 1b). The clas-
sical requirement for volume averaging to produce physically
meaningful results is that it is done over the so-called represen-
tative elementary volume (REV) (Bear, 1972). REV is a volume
which is sufficiently large to provide stable averaging results
and sufficiently small to avoid large (macroscopic) scale effects.
For the general case considered here the volume should be suf-
ficiently large to provide a statistically representative sample of
all phases, i.e. grains, vegetation, any other solid objects, and air
bubbles, and sufficiently small to avoid smoothing larger struc-
tures, for instance bed forms. An analogous requirement for time
averaging is that there is a clear separation of scales between the
rapid changes within the time-averaging window, and the slow
variation of the time-averaged quantities. The practical impli-
cations of these requirements depend on the scales of interest
for a particular problem. For some practical problems it may
be impossible to strictly satisfy either of these requirements, for
instance the separation of time scales of turbulence and bulk
flow unsteadiness. It may still be possible to use the derived
GSWEs as a framework, and to account for the effect of the
overlapping scales by adjusting the turbulence closure models,
e.g. Zilitinkevich et al. (2009).

The thick red lines in Fig. 1a show the lower and the upper
boundaries of the flow layer, BOT and TOP, with their respec-
tive z coordinates denoted with zBOT and zTOP . They are fictive
boundaries introduced in the original 3D problem description to
define the boundaries of integration required for transition from
3D to 2D description. This transition will convert the boundary
conditions acting along the boundaries into source terms in 2D
equations in a manner analogous to the derivation of the clas-
sical SWEs, where the Leibniz rule is applied, with the same
effect, to the bottom and the top boundaries “shrunk” into points.
In order to find the boundary conditions imposed on water across
the wet parts of the two boundaries we have to “cut” water along
these parts, delete water located outside of the flow layer, and
express the effect of the deleted water along the “cuts”. This
means that the wet parts of the bottom and top boundary will be
effectively considered as interfaces (between the main flow and
the subsurface flow and the ambient air, respectively).

For the case considered in this paper the bottom boundary
is defined as an average bed plane passing through the highest
(measured along z) layer of grains which do not move during the
time averaging window. The top boundary is located along the
time averaged levels of the free surface. These are the highest z
levels that are wet during 0.5 of the time averaging window, i.e.
that have temporal occupancy rate of 0.5. This means that both

bottom and top boundaries are constant during the time averag-
ing window, but may still vary with time (at scales much larger
than averaging window). Both bottom and top boundary gener-
ally contain the “wet” parts and the “dry” parts where phases
other than water such as grains, plants or air bubbles intersect
with the boundary (Fig. 1b).

It should be noted that the bottom and top boundaries defined
above have been selected as physically meaningful for the case
considered in this paper, i.e. for shallow open channel flows with
fluctuating free surface, and over a rough, possibly mobile, bed.
The derivations presented in the paper are however also valid for
other definitions of the top and bottom boundaries, which should
be always guided by the conceptual model of the problem to be
solved.

Another Cartesian system xbed, ybed, zbed has the xbed, ybed

plane aligned with the average bed plane, and its inclination
angles relative to the x, y plane are βx,βy , respectively (Fig. 1a).
The angles of inclination of the (x, y) and the (xbed, ybed) planes
are deliberately defined in a general manner such that (x, y) can
be located anywhere between the (xbed, ybed) and the horizontal
plane, or coincide with either of them. This will allow having
a single set of equations applicable to the following commonly
used options:

(i) The (x, y) plane coincides with the average bed plane,
so that αx, and αy are longitudinal and lateral bed slope,
respectively, and βx = βy = 0.

(ii) The (x, y) plane is horizontal, so that αx = αy = 0, z axis
is vertical, and βx,βy are the bed slopes.

The former option is suitable for open channel flows over
a fixed bed, and the latter one for morphodynamic simulations
when the mean bed level changes in time, so that it would be
very difficult to keep it aligned with a stationary x, y plane.
In either case the inclination angles are usually small, but the
derivations will be presented without imposing the assumption
of small angles.

The GSWEs will be derived by applying the averaging the-
orems, which were derived in V. Nikora et al. (2013) for all
averaging options (simultaneous space and time, time/space,
and space/time). They connect averages of derivatives and
derivatives of averages of a generic quantity θ defined within the
main fluid. In terms of superficial averages the averaging theo-
rems are identical for all three averaging options (time-space,
space-time, simultaneous time and space).

Both averaging theorems contain integrals over the entire
interface between the main fluid and any other phases. For
the case considered in this paper it is beneficial to distin-
guish between the interfaces associated with the bottom and top
boundaries, shown as thick black lines in Fig. 1b, and the “inter-
nal” interfaces associated with the flow layer between them
(blue lines). For that purpose Sint is used to denote all inter-
nal interfaces. The wet parts of the bottom boundary (red lines
in Fig. 1b) are joined with the interfaces associated with this
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boundary (red lines), e.g. the intersected grains’ surfaces within
the flow layer, and collectively denoted with Sbot (Fig. 1b). Anal-
ogously Stop denotes all wet parts of the top boundary joined
with the surfaces of intersected air, vegetation, or debris present
within the flow layer. The z coordinates of Sbot and Stop are
denoted with zbot, ztop respectively. It should be noted that both
bottom and top surfaces have gaps across the internal objects
associated with them (e.g. the area at the base of the plants in
Fig. 1, which are classified as internal objects but are rooted in
the bed). The area of these gaps projected onto the plan area can
be expressed by areal occupancy ratio equal to the ratio of the
projected area of the gaps and the plan area A0. The areal occu-
pancy ratios for the bottom and the top surface are denoted with
Cbot

A and Ctop
A , respectively.

The entire interface between water and other phases, includ-
ing the surfaces where the external water was deleted, will be
denoted with Sibt, i.e. Sibt = Sint + Sbot + Stop . Furthermore, the
spatial derivative of a volume-averaged quantity in z direction
is zero because a small movement of the averaging volume in z
direction does not change the volume of water it contains. The
averaging theorems from V. Nikora et al. (2013) can therefore
be written as:

〈
∂θ

∂t

s◦〉s

=
∂

〈
θ

s◦〉s

∂t
+ 1

V0

∫
Sibt

θvini dS
s

, i = 1, 2, 3 (2)

〈
∂θ

∂xi

s◦〉s

= (1 − δiz)
∂

〈
θ

s◦〉s

∂xi
− 1

V0

∫
Sibt

θni dS
s

, i = 1, 2, 3

(3)

where θ is a generic quantity which can be a scalar or a compo-
nent of a vector or a tensor, δ is the Kronecker delta, and vi is
the ith component of the interface velocity.

For the purpose of deriving GSWEs it is useful to introduce
the height of the flow layer at an xk location:

h0(xk, t) = zTOP (xk, t)− zBOT(xk, t), k = 1, 2 (4)

and an areal averaging operator for a general quantity η over the
plan area of the averaging volume, A0 = X0Y0:

〈η〉A (t) = 1
A0

∫
A0

η(xk, t) dA, k = 1, 2 (5)

The average, or bulk height of the flow layer can now be
expressed as:

H0(t) = 1
A0

∫
A0

h0(xk, t) dA = 〈h0〉A , k = 1, 2 (6)

The flow layer in general contains phases other than water. The
total height of the wet parts (i.e. those covered with water) of
the flow layer is called the instantaneous water depth, h, and

defined, following Pokrajac and Kikkert (2011) as:

h(xk, t) =
∫ Z0

0
γ (xk, z, t) dz, k = 1, 2 (7)

where γ (xk, z, t) is the marker function which is equal unity if
water occupies a point (xk, z, t) and is zero otherwise. It is now
used for defining the instantaneous bulk water depth, H, as:

H(t) = 〈h(xk, t〉A = 1
A0

∫
V0

γ (xk, z, t) dV, k = 1, 2 (8)

It should be noted that both h and H may vary within the time
averaging window, while h

s
, H

s
, h0, H0 are constant within the

window and vary only at large temporal scales.
The time-averaged bulk water depth H

s
is the depth that the

water contained within the flow layer would have if placed in a
tank with the plan area A0, whereas H0 is the water depth in the
same tank which also contains all phases other than water from
the flow layer. The proportion of the bulk flow layer height H0

occupied by water is expressed via height occupancy rate as:

φH = H
s

H0
(9)

Combining (9) with the Eq. (B6), which links H
s

with temporal
and spatial occupancy rates yields:

Z0
〈
φ ◦

T

〉s = Z0 φ ◦
V

s = H
s = φH H0 (10)

The macroscopic balance equations will be derived by double-
averaging of the microscopic equations and applying the averag-
ing theorems and rules. The following sections show the details
of this procedure for the volume and the momentum balance.
The analogous process can be applied to other balance equa-
tions, for example mass balance for a substance dissolved in
water.

3 Continuity equation

The microscopic mass conservation equation for a fluid particle
that has density ρ and velocity components ui, written as:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, i = 1, 2, 3 (11)

is superficially averaged twice and averaging theorems
Eqs (2), (3) are applied to the respective terms. Regardless of
the order of averaging steps the resulting macroscopic equation
is:

∂ 〈ρs◦〉s

∂t
+ ∂

〈
ρus◦

k

〉s
∂xk

+ 1
V0

∫
Sibt

ρvini dS
s

− 1
V0

∫
Sibt

ρuini dS
s

= 0,
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k = 1, 2, i = 1, 2, 3,

Sibt = Sint + Sbot + Stop (12)

Note that a new index k is used to indicate the two principal
directions of double-averaged flow. Assuming that all internal
interfaces are material surfaces for water imposing a no-slip
condition, or in other words that all phases other than water
present in the averaging volume are impermeable (e.g. solid
rather than porous grains) it follows that the velocity of water
at all interfaces is the same as the velocity of interface itself
(i.e. vi = ui) so that the two integrals on the l.h.s. of (12) over
Sint cancel each other, and only the integrals over Sbot and Stop

remain in the equation.
For constant microscopic water density, ρ, Eq. (B9) shows

that 〈ρs◦〉s = H
s
ρ/Z0 and it can be easily demonstrated that〈

ρus◦
i

〉s = ρ
〈
us◦

i

〉s. The two expressions are plugged into Eq. (12)
and the resulting equation is multiplied with Z0/ρ to yield:

∂H
s

∂t
+ Z0

∂
〈
uk

s◦〉s
∂xk

= ∂H
s

∂t
+ Z0

∂〈uk〉s◦s

∂xk

= 1
A0

∫
Sbot

(ui − vi)ni dS
s

+ 1
A0

∫
Stop

(ui − vi)ni dS
s

,

k = 1, 2, i = 1, 2, 3 (13)

The first term of Eq. (13) contains the superficial time aver-
age of the bulk water depth H. For practical cases that involve
flows which never become dry over the entire averaging vol-
ume the time series of H are continuous, i.e. the superficial and
intrinsic time averages of H are identical, so the symbol s next
to the overbar in Hs

s
can be dropped.

The terms on the r.h.s of Eq. (13) represent time-averaged
water volume fluxes entering the main flow from either the sub-
surface or the air above the water column per unit plan area, and
will be denoted with qbot, and qtop , respectively, i.e.:

qbot/top = 1
A0

∫
Sbot/top

(ui − vi)ni dS
s

, i = 1, 2, 3 (14)

For cases with phases other than water within the water col-
umn moving at different velocity than that of water, the right
hand side of Eq. (13) would contain a third integral, namely an
integral of vi − ui over the surface Sint.

Further forms of the macroscopic continuity equation depend
on the selected order of the averaging steps. Using (B7) to
relate double superficial and double intrinsic averages of veloc-
ity components yields the following respective equations for
time/space and space/time averaging:

∂H
s

∂t
+ ∂H

s 〈uk
◦〉

∂xk
+ Z0

∂
〈
φ̃ ◦

T
ũk

◦〉s
∂xk

= qbot + qtop ,

∂H
s

∂t
+ ∂H

s 〈uk〉◦
∂xk

+ Z0
∂φ◦′

V
〈uk〉◦′ s

∂xk
= qbot + qtop , k = 1, 2

(15)

where a prime defines a time fluctuation, and ∼ defines a spatial
disturbance (see Appendix A).

The first term on the l.h.s. and the terms on the r.h.s. of
Eq. (15) are identical, but others become identical only in
the special cases when the intrinsic averages commute. It was
shown at the end of Appendix A that intrinsic averages com-
mute if the first step occupancy ratios and the corresponding
intrinsic averages are not correlated. For such cases it can be
shown that the fluctuation and spatial disturbance operators also
commute with spatial and temporal averages, respectively. This
means that the symbol ◦ next to the first averaging step opera-
tors can be dropped. Furthermore, for simplicity the two volume
averaged velocity components are denoted with 〈uk〉 = Uk, and
the third term in each equation with Qdev

k , so that the macro-
scopic continuity equation for both orders of averaging steps
becomes:

∂φH H0

∂t
+ ∂φH H0 Uk

∂xk
+ ∂Qdev

k

∂xk
= qbot + qtop (16)

where H
s

was replaced with φH H0 and:

Qdev
k = Z0

〈
φ̃ ◦

T
ũk

〉s = Z0 φ◦′
V

U′
k

s = H ′ Uk
′s, k = 1, 2 (17)

Note that the last term in Eq. (17) was added based on Eq. (B8).
For flows without phases other than water present in the

flow layer φH = 1, and the first two terms in Eq. (16) have
the same form as in the classical SWEs, but in the GSWEs H
and Uk have more general meaning. The term Qdev

k , resulting
from the correlations in the large-scale spatial or temporal dis-
turbances, collectively called deviations, can be interpreted as
apparent volume flux. The significance of this term, and possi-
bly also convenient parametrization are open research questions
(Section 5).

4 Momentum equation

The momentum conservation equation for a fluid particle can be
written as:

∂uj

∂t
+ ∂uiuj

∂xi
= gj − 1

ρ

∂p
∂xj

+ 1
ρ

∂τij

∂xi
, i, j = 1, 2, 3 (18)

where j is the principal direction for which the equation is writ-
ten (i.e. j th momentum component), gj is the j th component of
acceleration due to gravity, p is pressure and τij is the viscous
stress. The above equation is superficially averaged twice, and
averaging theorems Eqs (2), (3) are applied to the respective
terms. Regardless of the order of averaging steps the resulting
macroscopic equation for the two main momentum components,
j = 1, 2 is:

∂
〈
uj

s◦〉s
∂t

+ ∂
〈
ukuj

s◦〉s
∂xk
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− 1
V0

∫
Sbot

uj (ui − vi)ni dS
s

− 1
V0

∫
Stop

uj (ui − vi)ni dS
s

= 〈
gj

s◦〉s − 1
ρ

∂
〈
ps◦〉s
∂xj

+ 1
ρ

∂
〈
τkj

s◦〉s
∂xk

+ 1
ρV0

∫
Sibt

pnj dS
s

− 1
ρV0

∫
Sibt

τij ni dS
s

,

i = 1, 2, 3, j , k = 1, 2 (19)

As explained for the continuity equation, the integrals over
the Sibt surface resulting from averaging of the left-hand side
terms in Eq. (18) have yielded two integrals, one over Sbot

and another one over Stop . These integrals, divided with A0,
will be denoted with qbot

j , qtop
j , respectively. They represent the

j -momentum flux that enters the main flow through the two
respective boundaries, per unit area.

The surface integrals resulting from averaging pressure and
viscous stress terms represent the j th component of the total
force that all other phases (grains, solid objects, air) inside the
flow layer exert on water, plus the forces exerted through the
bottom and the top interfaces. The j th component of the total
force per unit area will be denoted with fj , with superscripts int,
bot, top denoting its parts originating from the internal, bottom,
and top interfaces, respectively, i.e.

fj = f int
j + f bot

j + f top
j

Equation (19) multiplied with Z0 therefore yields:

Z0
∂

〈
uj

s◦〉s
∂t

+ Z0
∂

〈
ukuj

s◦〉s
∂xk

= Z0
〈
gj

s◦〉s − Z0

ρ

∂
〈
ps◦〉s
∂xj

+ Z0

ρ

∂
〈
τkj

s◦〉s
∂xk

+ fj
s

ρ
+ qbot

j + qtop
j , j , k = 1, 2 (20)

where

qbot/top
j = 1

A0

∫
Sbot/top

uj (ui − vi)ni dS
s

(21)

f int/bot/top
j = 1

A0

∫
Sint/bot/top

pnj dS − 1
A0

∫
Sint/bot/top

τij ni dS,

i = 1, 2, 3, j = 1, 2 (22)

Further development will first focus on the l.h.s. of Eq. (20),
which will be denoted with “LHS”. Applying (B7), and (B10)
to Eq. (20) produces, for time/space averaging:

LHS = ∂H
s 〈

uj
◦〉

∂t
+ Z0

∂
〈
φ̃ ◦

T
ũj

◦〉s
∂t

+ ∂H
s 〈

uj
◦〉 〈uk

◦〉
∂xk

+ ∂H
s 〈

ũj
◦ũk

◦〉
∂xk

+
∂H

s
〈
uj

′◦ uk
′◦◦〉

∂xk

+ Z0
∂

〈
uj

◦〉s 〈
φ̃ ◦

T
ũk

◦〉
∂xk

+ Z0
∂ 〈uk

◦〉s 〈
φ̃ ◦

T
ũj

◦〉
∂xk

+ Z0

∂

〈
φ̃ ◦

T

˜uj
′◦ uk

′◦◦
〉s

∂xk
, j , k = 1, 2 (23)

Space/time averaging using Eqs (B7) and (B11) yields:

LHS = ∂H
s 〈

uj
〉◦

∂t
+ Z0

∂φ◦′
V

〈
uj

〉◦′ s

∂t

+ ∂H
s 〈

uj
〉◦ 〈uk〉◦

∂xk
+ ∂H

s 〈
uj

〉◦′ 〈uk〉◦′

∂xk
+ ∂H

s 〈
ũj

◦ ũk
◦〉◦

∂xk

+ Z0
∂
〈
uj

〉◦s
φ◦′

V
〈uk〉◦′

∂xk
+ Z0

∂〈uk〉◦s
φ◦′

V

〈
uj

〉◦′

∂xk

+ Z0
∂φ◦′

V

〈
ũj

◦ ũk
◦〉◦′ s

∂xk
, j , k = 1, 2 (24)

The first four terms on the right hand side of Eq. (20) are
developed one by one, in the order of appearance, as:

(i) Gravity
Applying Eq. (B9) and finding the j component of
gravity acceleration yields:

Z0
〈
gj

s◦〉s = gH
s
sinαj (25)

(ii) Pressure
The expression for the double-averaged pressure is
developed, under the assumption of the hydrostatic pres-
sure distribution, from the macroscopic z-momentum
equation. For details of the derivation please see
Appendix C. The final expression (Eq. C14) is:

Z0
〈
ps◦〉s = ξp

1
2
ρgH

s
H

s
cosαx cosαy (26)

The coefficient ξp accounts for the time variable distri-
bution of the wet parts along a water column, for all
columns across the plan area A0. If all water columns
at each time instant contain just clear water ξp = 1.
Otherwise ξp > 1 and it increases as the wet parts of
the water column move downwards, i.e. it is largest
(and equal 2

〈
h0/h

s
〉
A

− 1) when the wet part occu-
pies the lowest part of each water column at all times
(Fig. C1).



310 D. Pokrajac Journal of Hydraulic Research Vol. 61, No. 3 (2023)

(iii) Viscous stress
The superficial double-average of the viscous stress is
expressed as:

Z0
〈
τkj

s◦〉s = H
s 〈
τkj

◦〉 + Z0
〈
φ̃ ◦

T
τ̃kj

◦〉s
= H

s 〈
τkj

〉◦ + Z0 φ◦′
V

〈
τkj

〉◦′ s
(27)

its deviation terms are neglected, and
〈
τkj

◦〉 will be
merged with the apparent stress terms arising from aver-
aging the momentum flux term ukuj , i.e. with the terms
number 4 and 5 in Eqs (23) or (24).

(iv) Forces acting across the interfaces
As already stated above, the force term fj includes three
main components, int, bot, top, representing, respec-
tively, the forces per unit area acting on water across the
interfaces with other phases within the flow layer, across
the bottom surface, and across the top surface. For the
open channel case considered in this paper f top

j is usually
neglected. Two other force terms, f int

j and f bot
j , are split

into the hydrostatic pressure component and the remain-
ing component due to flow around internal obstacles or
bed roughness:

f int/bot
j = 1

A0

∫
Sint/bot

pint/botnj dS

+ 1
A0

∫
Sint/bot

(p − pint/bot)nj dS

− 1
A0

∫
Sint/bot

τij ni dS, i = 1, 2, 3, j = 1, 2

(28)

where pint/bot is the hydrostatic pressure at either the
internal interface or the bottom boundary.

For internal interfaces the first term in Eq. (28) is
the buoyancy force per unit plan area. To derive the
expression for this force we first “disconnect” all inter-
nal objects that are connected to the bottom boundary
(over the plan area (1 − Cbot

A )A0) and add and subtract
the hydrostatic pressure that would act over the areas that
we have just disconnected. Together with the hydrostatic
pressure added across the previous connections, the total
buoyancy force becomes equal to the weight of water
occupying the volume of all internal objects, and it acts
in the vertical downwards direction. Its j th component is
therefore equal:

1
A0

∫
Sint

pintnj dS = ρg
1

A0

∫
A0

(h0 − h) dA sinαj

= ρg(H0 − H) sinαj , j = 1, 2
(29)

Comparing Eqs (29) and (25) shows that time average
of the bouoyancy force can be merged with gravity force

by simply replacing H
s

in Eq. (25) with H0. However,
we now need to subtract the hydrostatic pressure force
over the connection area that we have previously added.
The pressure force that needs to be subtracted is equal
(1 − Cbot

A )ρgH0 (Eq. C9), so that the final expression
for the combined gravity and buoyancy force becomes
Cbot

A ρgH0 and its j th component is Cbot
A ρgH0 sinαj .

The remaining two terms in Eq. (28) for internal inter-
faces are the total force (minus buoyancy force) per unit
plan area, exerted on water by other phases within the
flow layer. It will be called “internal drag force” and
denoted with dint

j .
For the bottom boundary the first term in Eq. (28)

is the hydrostatic force per unit plan area acting on
water along the bottom surface. The expression for this
term is derived in Appendix C, by first deriving the
expression for pbot, and then integrating it along the bot-
tom boundary. The result is Eq. (C9), repeated here for
convenience:

1
A0

∫
Sbot

pbot
snj dS = ρgCbot

A H0 sinβj cosαx cosαy

(30)
The remaining two terms in Eq. (28) for the bottom sur-
face are further split into the parts acting across the “wet”
part of the bottom surface, Sw

bot (red lines along the bot-
tom boundary in Fig. 1b), and the part exerted by the
grains and other objects across their surface, Sg

bot (black
lines along the bottom boundary in Fig. 1b). These will
produce, respectively:
• Fluid shear stress acting across the wet parts of the

bottom surface:

τ
f
j

s
= 1

A0

∫
Sw

bot

(ps − ps
bot)nj dS − 1

A0

∫
Sw

bot

τij
sni dS,

i = 1, 2, 3, j = 1, 2 (31)

This term provides the transfer of the fluid momentum
to the subsurface flow. In the context of the sub-
surface flow this term is usually referred to as the
Brinkman term, because it was first introduced by
H.C. Brinkman in 1947.

• Bed shear stress acting across the surfaces of bottom
grains or other objects

τ bed
j

s = 1
A0

∫
Sg

bot

(ps − ps
bot)nj dS − 1

A0

∫
Sg

bot

τ s
ij ni dS,

i = 1, 2, 3, j = 1, 2 (32)

It should be noted that strictly speaking fluid shear
stress and bed shear stress should be called “shear
stresses” only when the bottom plane coincides with
the xy plane, and consequently the pbot disappears
from Eqs (31) and (32) since it does not contribute to
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j momentum balance. Since the angles between the
average bottom plane and both x, y and horizontal
planes are usually very small, the difference between
the fluid stress components acting parallel to the aver-
age bottom plane and parallel to the horizontal plane
and any x, y plane lying in-between these is very small,
so the term “shear stress” is considered appropriate.

For cases which involve non-negligible momentum exchange
through the top surface this exchange would be expressed via
pressure and shear stress analogous to pbot, τ bed, τ f .

Once the forces contributing to momentum balance have
been defined, the rationale for classifying the interfaces between
water and other phases as int, bot and top becomes clearer. It
was done to distinguish between the obstacles within the water
column which contribute to internal drag and buoyancy forces,
and those associated with the bottom boundary that contribute
to the bottom pressure and the bed shear stress. Similar to the
choice of the bottom and top boundaries, a modeller should
decide on the classification that is physically meaningful for a
particular case. For instance, the small plant attached to the the
middle of the bottom surface in Fig. 1 could have been joined
with the bottom rather than with the internal surface and in that
case it would contribute to the bottom pressure and bed shear
stress along with the bed grains.

The entire momentum equation, obtained by using either
Eqs (23) or (24) for the left hand side, and the expressions devel-
oped above for the first four terms of the right hand side, will
not be listed in its general form. Instead, it will be simplified
by assuming that the the required conditions for double intrinsic
averages to commute are met. For these cases the sign indicat-
ing the first averaging step, ◦, can be omitted. As before the
the two volume-averaged velocity components are denoted by〈
uj

〉 = Uj , and the apparent k momentum flux due to spatial or
temporal deviations is denoted by Qdev

k . The terms with the prod-
ucts of two velocity fluctuations are considered as apparent large
scale stresses and are therefore grouped with the macroscopic
viscous stress. The term with the fluctuation of the macroscopic
viscous stress, and the terms with the triple product of deviations
(the last terms in Eqs (23) and (24)) are all neglected. Finally,
time-averaged bulk water depth H

s
is replaced with φH H0. The

resulting large scale momentum equation is:

∂φH H0 Uj

∂t
+ ∂φH H0 Uj Uk

∂xk
+ ∂Qdev

j

∂t
+ ∂Uj

s
Qdev

k

∂xk
+ ∂Uk

s
Qdev

j

∂xk

= gCbot
A H0 sinαj − ξp

1
2

g
∂ (φH H0)

2

∂xj
cosαx cosαy

+ gCbot
A H0 cosαx cosαy sinβj

+ 1
ρ

∂φH H0 Tkj

∂xk
+ qj

bot + qj
top + dint

j

s

ρ
+ τ

f
j

s

ρ
+ τ bed

j

s

ρ
,

j , k = 1, 2, (33)

where Qdev
k is defined by Eq. (17), qbot and qtop are defined by

Eq. (21), τ f
j and τ bed

j are defined by Eqs (31) and (32), respec-
tively, and the term Tkj , which will be referred to as bulk fluid
stress, is equal:

Tkj = −ρ 〈
uj

′ uk
′〉 − ρ

〈
ũj ũk

〉 + 〈
τk j

〉
= −ρ 〈

uj
〉′〈uk〉′ − ρ

〈
ũj ũk

〉 + 〈
τk j

〉
, j , k = 1, 2 (34)

The terms in the first row of Eq. (34) are, in order of appearance:
large scale turbulent stress, form-induced stress, and large scale
viscous stress. The first term in the first row and the second term
in the second row of Eq. (34) can be decomposed using the rule
of product. Regardless of the order of averaging the result is:

Tkj = −ρ 〈
uj

′〉 〈uk
′〉 − ρ

〈
ũj

′ ũk
′〉 − ρ

〈
ũj ũk

〉 + 〈
τk j

〉
(35)

and all averaging and deviation operators commute, so their
order in the above equation can be swapped. This decomposi-
tion was first introduced by Pedras and de Lemos (2000) and
the physical meaning of the resulting terms was discussed in
Pokrajac et al. (2008).

The left hand side of the large-scale momentum equation (33)
represents the rate of change of the bulk flow momentum, with
the first two “resolved” terms involving bulk flow depth and
velocity, and the other three terms resulting from the correlation
in small-scale deviations from the mean values, for instance tur-
bulent fluctuations or differences between a point velocity and
volume-averaged velocity. The right hand side represents var-
ious forces contributing to momentum balance. These are, in
order of appearance: gravity, pressure gradient, hydrostatic pres-
sure on the bottom surface, fluid stress gradient, momentum flux
through the bottom and top surface, internal drag, fluid shear
stress along the wet gaps in the bottom surface, and bed shear
stress.

The large-scale momentum equation (Eq. 33) can be further
simplified by developing the terms on the left hand side and by
deleting those that collectively have to be zero according to the
continuity equation (Eq. 16).

In practical cases for which the bulk flow depth does not
become zero at any time instant all superficial time averages
in the above macroscopic momentum equation can be replaced
with intrinsic averages. Furthermore, in order to obtain the
form similar to the classical SWEs the following terms are
neglected: all “deviation” terms, momentum fluxes through and
fluid stresses across the bottom and the top surface, viscous
stress, form-induced stress. Furthermore, water is clear of any
other phase, and the bed is a smooth flat plain. Since the classical
SWEs have been derived by averaging over the water column at
a single x, y point the bulk water depth, H, is replaced with h.
The result is:

∂h Uj

∂t
+ ∂h Uj Uk

∂xk
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= gh sinαj − 1
2

g cosαx cosαy
∂h h
∂xj

+ gh cosαx cosαy sinβj

+ 1
ρ

∂h τ turb
kj

∂xk
+ τ bed

zj

ρ
, j , k = 1, 2 (36)

where

τ turb
kj = −ρ 〈

uj
′ uk

′〉 (37)

is the depth averaged turbulent stress, and τ bed
zj is the viscous

shear stress at the bed level, obtained from Eq. (32) with p −
pbot = 0, and an infinitesimally small dS, i.e. as:

τ bed
j = τij ni dS

A0
= τ bed

zj . i = 1, 2, 3, j = 1, 2 (38)

The comparison of the expressions for the bed shear stress
obtained by volume averaging, Eq. (32), and by averaging over
a single flow profile, Eq. (38), illustrates why only the former
approach yields a rigorous definition of the bed shear stress for
rough beds: it incorporates the collective force exerted by a rep-
resentative set of bed surface on the main fluid rather than just
the viscous stress at the base of the water column.

Classical SWEs are often used with a horizontal xy plane
and vertical z, i.e. with αx = αy = 0. In such case the grav-
ity term (the first term on the r.h.s of Eq. 36) is zero, and
cosαx = cosαy = 1 are omitted from the further two terms.
Conversely, in cases where the xy is parallel to the average bot-
tom plane (βx = βy = 0) the hydrostatic pressure force on the
bottom surface does not contribute to the j momentum balance
so the third term on the r.h.s of Eq. (36) is zero. For these cases
sinαj is usually replaced with the bed slope in j th direction,
and the angles αx,αy are considered sufficiently small for their
cosines to be approximately equal unity.

5 Open research questions

Compared to the classical SWEs, the GSWEs have more general
definitions of the bulk flow depth and velocity, additional terms
Qdev and T, called apparent terms, resulting from the correla-
tions of the small-scale deviations from averages, and the more
general definitions of the drag terms in the momentum equation.
The new terms and features of the GSWEs opens a number of
new research questions, briefly summarized below.

5.1 Commutativity of intrinsic averages

In general case the GSWEs have a different form for the two pos-
sible orders of averaging, time/space and space/time. The two
forms would coincide only if the conditions for intrinsic aver-
ages to commute are met. The conditions are mathematically
expressed by Eq. (B2) but what these conditions mean in practi-
cal terms and how often they are met in real world applications

need to be explored. This includes an investigation and possi-
ble parametrization of the temporal and spatial occupancy ratios
for various classes of practical cases, e.g. bed-load transport,
aerated open channel flows, turbidity currents.

5.2 Significance and parametrization of the new apparent
terms

Averaging the terms containing products in the original micro-
scopic equations has produced new terms referred to as “appar-
ent” terms. The derivation of the continuity equation has pro-
duced the apparent volume flux Qdev

x , which is the time-averaged
product of fluctuations of bulk flow depth and flow velocity.
Intuitively one would expect that these fluctuations are corre-
lated, i.e. that changes in velocity are accompanied with the
corresponding changes in depth. However, the magnitude of this
term for various spatial and temporal scales, i.e. the conditions
when it is negligible, as well as an appropriate parametrization
when it is not negligible is an open research question.

Another apparent term is the stress term Tkj that appears
in the momentum equation. It contains the following compo-
nents: volume-averaged turbulent stress, form-induced stress,
and double averaged viscous stress which is usually negligi-
ble in practical engineering applications of SWEs/GSWEs. The
form-induced stress in the context of GSWEs is due to the
differences between the point velocities and volume-averaged
velocities, i.e. it results mainly from the non-uniformity of
velocity profiles. The term analogous to this one in classical
SWEs is often expressed via the Bousinesq momentum coef-
ficient. The difference between the form-induced stress in the
GSWEs and the Bousinesq momentum coefficient term in the
SWEs is that the former quantifies the effect of the velocity pro-
files in the entire averaging volume, whereas the latter refers to
a single velocity profile. Similarly, some SWE-based simulation
models include depth-averaged turbulent stress, which is usually
parametrized using eddy viscosity (Stansby & Feng, 2005), but
the validity of this parametrization in the context of the GSWEs
where spatial averaging is done over a volume rather than over
flow depth at a point is yet to be tested.

5.3 Parameterization of pressure terms

The derivations of the double-averaged pressure and hydrostatic
pressure terms presented in Appendix C involve the assumption
of negligible acceleration in the flow-normal z direction, which
yields a hydrostatic pressure distribution along z. However, the
presence of solid objects in the water column and volume and
momentum exchange through the bottom and top surface may
create conditions for which this assumption is violated so that
water pressure substantially deviates from the hydrostatic dis-
tribution. This would require further analysis of how to best
estimate bulk pressure for such condition, including proposing
new parametrizations for pressure terms.
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Even when the assumption of hydrostatic pressure is satis-
fied, the presence of phases other than water in the water column
requires expressing the pressure coefficient introduced in the
derivation of the double-averaged pressure (Appendix C) and
validating the expression.

5.4 Parametrization of drag terms and bed shear stress

Depending on a practical case considered, phases other than
water present in the averaging volume may include moving air
bubbles and various stationary or moving solid objects such as
grains, vegetation, debris etc. Parametrization of drag force for
some of these objects exists in the literature, typically involving
the nonlinear relationship between the force and the flow veloc-
ity. They have usually been studied on their own, e.g. vegetation
in otherwise clear water flow without sediment transport or aer-
ated parts. Since the nonlinear relationships are not additive, the
appropriate parametrizations for drag forces in the presence of
different kinds of objects require further research.

The SWE-based models usually use Chezy coefficient,
Darcy-Weisbach friction factor, or Manning’s n coefficient to
parametrize bed shear stress. These are also nonlinear, so their
validity in the presence of moving grains or other objects in the
flow column should be further investigated.

5.5 Extension to multi-layered models

The GSWEs derived in this paper can be applied in their
present form to shallow open channel flows and shallow waves
which involve sediment transport, transport of debris or other
solid objects, presence of stationary or moving vegetation, sub-
stantial aeration and/or substantial fluctuations of free surface
around its time or ensemble average. The analogous method-
ology can be applied to derive rigorous equations for various
layer-based models. For instance a model could consist of the
following layers: (i) hyporheic flow within a gravel bed of a
natural stream, (ii) bed-load transported close to the stream bed,
(iii) clear water layer above the bed load, (iv) layer of debris
floating at the top of the clear water column. Each of the lay-
ers needs to have a clearly defined bottom and top boundary.
The transfer of mass/volume and momentum between the lay-
ers is then quantified by terms that arise from the derivations of
the layer-averaged equations. All of these inter-layer mass and
momentum transfer terms would also need to be parametrized.

5.6 Application to various spatial and temporal scales

The derivations presented in the paper require that both time
and volume averaging is done over representative averaging
windows that are sufficiently large to incorporate all scales of
interest and produce stable averages, and also sufficiently small
to exclude much slower temporal changes or much larger spa-
tial variations which should remain resolved in the macroscopic
equations. This requirement can be visualized in a diagram of
an average value versus the size of the averaging window: for

a too small window the diagram is scattered; for a too large
window it has a slope; between these two there is a range of
the averaging window sizes that shows a horizontal or nearly
horizontal diagram indicating a stable average which does not
change with a small change of the averaging window. An aver-
aging window which falls within the region of stable averages
is the representative averaging window size.

There are no absolute limits for either temporal or spatial
scales other than those guided by the practical application. For
example, the bottom boundary may cover some number of indi-
vidual grains of a gravel bed river so that the bed shear stress is
due to their collective action. Alternatively, the bottom bound-
ary may cover a representative sample of bed forms much larger
than individual grains, so that the bed shear stress will be deter-
mined by flow around the structures, as well as by the flow
around individual grains, which may have a secondary effect and
is in a way analogous to the effect of the viscous stress, i.e. vis-
cous drag, compared to the effect of form drag in bed shear stress
for a flat rough bed. Similarly, the time scales can vary by many
orders of magnitude, from an individual flood wave to seasonal,
annual, and even geological time variations. This means that all
open research questions listed above should be examined over
the appropriate range of temporal and spatial scales.

6 Conclusion

The paper has presented a rigorous derivation of the general-
ized shallow water equations. The difference, compared to how
the classical SWEs are derived, is that spatial averaging for
GSWEs is done over a volume that covers a finite plan area
X0, Y0 rather than over a single flow profile at an x, y point.
This allows rigorous definitions of the internal drag and the
bed shear stress, which cannot be introduced based on a sin-
gle flow profile. Furthermore the present derivation has used a
general form of double-averaging methodology which allows
for gaps in both spatial and temporal data. This means that
GSWEs cover a general case which allows for the presence
of phases other than water such as grains, vegetation, air, and
debris in the water column. These phases can be either stationary
or mobile. The GSWEs therefore cover a much broader scope
of practical engineering applications than SWEs. However, a
rather extensive research effort is required in order to utilize their
broader applicability. As highlighted in the open research ques-
tions related to the GSWES listed above, this effort should be
dedicated to examining the significance, and developing appro-
priate parametrizations for the new terms appearing in GSWEs,
as well as for examining the terms already existing in SWEs in
the broader context of GSWEs.
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Notation

= intrinsic second step time average
◦ = intrinsic first step time average
s = superficial second step time average
s◦ = superficial first step time average

〈 〉 = intrinsic second step volume average
〈 〉◦ = intrinsic first step volume average
〈 〉s = superficial second step volume average
〈 〉s◦ = superficial first step volume average
〈 〉A = average over the plan area

′ = temporal fluctuation˜ = spatial disturbance
A0 = plan area of the averaging volume (m2)
Cbot

A = fraction of the plan area where pressure is defined
(–)

H = instantaneous bulk water depth (m)
H0 = bulk height of the flow layer (m)
Qdev = apparent volume flux (m2 s−1)
Sibt = interface between water and all other phases
T = bulk fluid stress (Pa)
U = volume-averaged velocity (m s−1)
V0 = volume of the averaging volume (m3)
Z0 = height of the averaging volume (m)
dint = internal drag force per unit plan area exerted on

water (Pa)
g = acceleration due to gravity (m s−2)
f = force per unit plan area exerted on water (Pa)
h = instantaneous water depth (m)
h0 = height of the flow layer (m)

n = unit normal vector for an interface, pointing into
water (–)

p = pressure (Pa)
qbot/top = time-averaged volume flux entering through the

bottom/top boundary per unit plan area (m s−1)
qbot/top

j = time-averaged j -momentum flux entering through
the bottom/top boundary per unit plan area (m2 s−2)

u = instantaneous velocity of water at a point (m s−1)
α = inclination angle of the main coordinate system

relative to the horizontal plain (–)
α = inclination angle of the average bed plane relative

to the main coordinate system (–)
γ = marker function for water (–)
η = generic fluid quantity defined at a point within the

plan area of the averaging volume (–)
θ = generic fluid quantity defined at a point within the

averaging volume (–)
ν = instantaneous velocity of an interface (m s−1)
ξp = pressure correction coefficient (–)
ρ = water density (kg m−3)
τ = viscous stress (Pa)
τ bed = bed shear stress (Pa)
τ f = fluid shear stress across the bottom surface (Pa)
φH = height occupancy ratio (–)
φT = second step temporal occupancy ratio (–)
φ◦

T
= first step temporal occupancy ratio (–)

φV = second step spatial occupancy ratio (–)
φ◦

V
= first step spatial occupancy ratio (–)

ϕ = result of the first spatial averaging step (–)
ψ = result of the first time averaging step (–)
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Appendices

Appendix A. Definitions and rules

Figure A1a shows an averaging volume V0 which contains
the main fluid phase, water, another fluid phase, air, and solid
particles or objects. The sketch also shows the right-handed
Cartesian coordinate system xi used for all definitions. For the
purpose of tracking of the fluid configuration in both space and
time it is convenient to use a “marker function” γ (xi, t) which
takes the value of one if the fluid occupies the point xi at time t,
and the value of zero otherwise (Fig. A1b).

It is assumed that the averaging volume is sufficiently large to
produce stable spatial averages but is also smaller than the scale
of macroscopic spatial heterogeneities. It is also assumed that
there is a clear separation between the time scales of turbulence
and those of gradually varying unsteady flow. Time averaging
is hence performed over a window T0 which is sufficiently large
to incorporate all scales of turbulence, but is also much smaller
than the time scales of flow unsteadiness.

The first averaging step is performed over either time or
volume. For a generic fluid quantity θ(xi, t) which is defined
wherever γ (xi, t) = 1, the respective definitions of the super-
ficial time and volume averages performed in the first step
are:

θ
s◦
(xi) = 1

T0

∫
T0

θ(xi, t)γ (xi, t) dt,

〈θ〉s◦ (t) = 1
V0

∫
V0

θ(xi, t)γ (xi, t) dV (A1)

where the overbar indicates time average, square brackets indi-
cate volume average, T0 and V0 are the averaging windows
in time and space, respectively, superscript s indicates that an
average is superficial, i.e. expressed using the entire averaging

Figure A1 The averaging volume (thick black line) and its composi-
tion at an arbitrary time instant t. (a) It contains: water (light grey), air
(white), immobile (dark grey) and mobile (textured grey) solid objects,
with mobile elements’ velocities shown with black arrows. (b) Position
of all phases other than water is tracked with a marker function γ (xi, t)
which takes the value of one if the fluid occupies a point (grey regions)
and the value of zero otherwise (white regions)

window, and a symbol “◦” next to “s” stands for “one” and
indicates the first averaging step.

For a general case with gaps in temporal and spatial aver-
aging windows, parts of the averaging windows where the
main fluid is present, i.e. where γ (xi, t) = 1 will be called
“occupancy” time or volume, and defined as:

T ◦
f (xi) =

∫
T0

γ (xi, t) dt,

V ◦
f (t) =

∫
V0

γ (xi, t) dV

It follows that occupancy time and volume have to be within
the intervals 0 ≤ T ◦

f (xi) ≤ T0 and 0 ≤ V ◦
f (t) ≤ V0, respectively.

The occupancy time T ◦
f is zero for all spatial points located

inside a stationary grain or another stationary solid object,
whereas the occupancy volume V ◦

f is zero for all time instances
when the entire averaging volume is dry (i.e. it does not con-
tain the main fluid). The intrinsic averages, i.e. the averages
expressed relative to the “occupied” parts of the averaging
windows, are defined as:

θ
◦
(xi) =

⎧⎪⎨⎪⎩
1

T ◦
f

∫
T0

θ(xi, t)γ (xi, t) dt if T ◦
f 
= 0,

0 if T ◦
f = 0,

〈θ〉 ◦ (t) =

⎧⎪⎨⎪⎩
1

V ◦
f

∫
V0

θ(xi, t)γ (xi, t) dV if V ◦
f 
= 0,

0 if V ◦
f = 0

(A2)

The two kinds of averages are related via the ratios of “occu-
pancy” time or volume and the corresponding averaging win-
dow:

φ ◦
T
(xi) = T ◦

f

T0
= γ (xi, t)

s◦
,

φ ◦
V
(t) = V ◦

f

V0
= 〈γ (xi, t)〉s◦ (A3)

In V. Nikora et al. (2013) and Papadopoulos et al. (2020) φ◦
T

and φ◦
V

are called time and spatial porosity, but in this paper
they will be referred to as temporal and spatial occupancy ratios.
From (A1), (A2) it follows that:

θ
s◦ = φ ◦

T
θ

◦
,

〈θ〉s◦ = φ ◦
V

〈θ〉◦ (A4)

The results of the first averaging step are functions of either
space only, e.g. θ

s◦
(xi), θ

◦
(xi), or time only, e.g. 〈θ〉s◦ (t), 〈θ〉◦(t)

(Fig. A2). In either case it is necessary to track the regions where
the first step occupancy time or volume are not zero, because
the second step intrinsic averages have physically meaningful
values only over these regions. Following time averaging, such
regions are tracked over the averaging volume by γ ◦(xi), which
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Figure A2 Results of the two possible first averaging steps for an idealized 1D case where the only spatial variations are in the x direction. The
averaging windows in space and time are shown in the x, t plane: grey colour indicates the “wet” regions where water is present so the marker
function γ (x, t) is equal to one, and a generic fluid property θ(x, t) is defined, and white colour indicates “dry” regions where γ is zero. Results of
each averaging step include intrinsic average of γ , occupancy ratio, and intrinsic (or superficial) average of θ , which are all functions of space if the
first averaging step is time and vice-versa. The intrinsic average of γ can be used to track the other two functions

has value 1 wherever Tf 
= 0 because the location has been vis-
ited by water at least once during T0, and is zero otherwise
(Fig. A2). Following volume averaging, “occupied regions” are
tracked in time by 〈γ 〉◦(t), which is one at all time instances
when the averaging volume contains at least a single particle of
water. The two tracking functions are now used for the definition
of the second step averages.

A general function ψ(xi) denotes a result of the first averag-
ing step over time i.e. either θ

s◦
or θ

◦
, or any other function

with the same marker function γ ◦(xi), for instance φ◦
T
; Fig.

A2. Similarly, ϕ(t) is a volume average (〈θ〉s◦, or 〈θ〉◦), or
any other function marked by 〈γ 〉◦(t), such as φV. The sec-
ond step superficial averages of ψ(xi) and ϕ(t) are therefore
defined as:

〈ψ〉s = 1
V0

∫
V0

ψ(xi)γ
◦(xi) dV,

ϕs = 1
T0

∫
T0

ϕ(t)〈γ 〉◦(t) dt (A5)

The second step occupancy volume and time are:

Vf =
∫

V0

γ ◦(xi) dV,

Tf =
∫

T0

〈γ 〉◦(t) dt

and the corresponding second step occupancy ratios are:

φV = Vf

V0
= 〈γ ◦(xi)〉s ,

φT = Tf

T0
= 〈γ 〉◦(t)s (A6)

Neither Vf , Tf nor φV , φT can be zero because that would hap-
pen only if the entire averaging volume has been dry throughout
the entire time averaging window. For such case the fundamen-
tal equations describing the motion of the main fluid do not
apply, so it is physically meaningless. The second step intrinsic
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averages are defined as:

〈ψ〉 = 1
Vf

∫
V0

ψ(xi)γ
◦(xi) dV,

ϕ = 1
Tf

∫
T0

ϕ(t)〈γ 〉◦(t) dt (A7)

and they are related to second step superficial averages via:

〈ψ〉s = φV 〈ψ〉 ,

ϕs = φTϕ (A8)

Once all intrinsic averaging operators are defined it is possi-
ble to define the deviations from the intrinsic variables and the
associated decomposition for fluid quantities.

• Time/space averaging An instantaneous value of θ(xi, t) is
decomposed into the first step intrinsic time average and
the first step fluctuation:

θ(xi, t) = θ(xi)
◦ + θ ′◦(xi, t)

A local value of ψ(xi), which is the result of the first
averaging step (i.e. either θ

◦
(xi) or any other function

defined over the same part of V0, for instance φ◦
V
) is decom-

posed into the intrinsic volume average and the spatial
disturbance:

ψ(xi) = 〈ψ〉 + ψ̃(xi)

The following rules of sum and product apply:

θ1 + θ2
◦ = θ1

◦ + θ2
◦
,

θ1 θ2
◦ = θ1

◦
θ2

◦ + θ1
′◦ θ2

′◦◦
,

〈ψ1 + ψ2〉 = 〈ψ1〉 + 〈ψ2〉 ,

〈ψ1 ψ2〉 = 〈ψ1〉 〈ψ2〉 + 〈
ψ̃1 ψ̃2

〉
(A9)

• Space/time averaging A local value of θ(xi, t) is decom-
posed into the first step intrinsic volume average and the
spatial disturbance:

θ(xi, t) = 〈θ〉◦(t)+ θ̃◦(xi, t)

An instantaneous value of ϕ(t), which is the result of
the first averaging step (i.e. either 〈θ〉 ◦ (t) or any other
function defined over the same part of T0, for instance
φ◦

T
) is decomposed into the intrinsic time average and the

fluctuation:

ϕ(t) = ϕ + ϕ′(t)

The rules of sum and product analogous to Eq. (A9)
apply.

Appendix B. Relationships between superficial and intrinsic
double averages

From the definitions of the averaging operators it follows that
the two-step superficial averages commute, i.e.

〈
θ

s◦〉s
= 〈θ〉s◦s

(B1)

For θ = γ it follows that:

〈
γ (xi, t)

s◦〉s
= 〈γ (xi, t)〉s◦s = 〈

φ ◦
T

〉s = φ ◦
V

s

The relationships between double superficial averages and dou-
ble intrinsic averages are developed by using the appropriate
occupancy ratios (Eq. 1) to switch from superficial to intrin-
sic averages and vice versa, and the rules of sum and product
for intrinsic averages. For time/space and space/time averaging,
respectively, this yields:

〈
θ

s◦〉s
= φV

〈
φ ◦

T
θ

◦〉
= φV

〈
φ ◦

T

〉 〈
θ

◦〉 + φV

〈
φ̃ ◦

T
θ̃

◦〉 = 〈
φ ◦

T

〉s 〈
θ

◦〉 + 〈
φ̃ ◦

T
θ̃

◦〉s
,

〈θ〉s◦s = φTφ
◦

V
〈θ〉◦ = φTφ

◦
V

〈θ〉◦ + φT φ
◦′
V
〈θ〉◦′

= φ ◦
V

s 〈θ〉◦ + φ◦′
V
〈θ〉◦′ s

(B2)

These expressions indicate that the two-step intrinsic averages
commute if the last terms in the Eq. (B2) are both zero, i.e. if
neither φ◦

T
and θ

◦
nor φ◦

V
and 〈θ〉◦ are correlated. Providing real

world examples when this condition is satisfied requires further
investigations.

Another, simpler class of special cases when the intrinsic
averages commute are those for which the interfaces between
water and any other phase (i.e. grains, vegetation, air above
free surface) are frozen, so that φ◦

V
is constant and equal vol-

umetric porosity, and φ◦
T

is equal unity at all points occupied
by water, hence making θ

s◦
and θ

◦
identical. For “frozen inter-

faces” cases both fluctuation and spatial disturbance operators
commute with each other and with both kinds of averages, and
the order of averaging steps for deriving double-averaged conti-
nuity and momentum equations does not affect the result (Pedras
& de Lemos, 2000; Pokrajac et al., 2008).

The entire Appendices A and B so far have presented gen-
eral definitions and rules applicable to a much broader range
of cases than for the development of GSWEs. The remaining
part of Appendices B and C are however dedicated to additional
concepts and relationships needed for GSWEs.

The relationships (Eq. B2) can be expressed using the bulk
water depth, H. Firstly, the definition of H given by Eq. (8) can
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be developed as:

H(t) = 1
A0

∫
V0

γ (xi, t) dV = Z0

V0

∫
V0

γ (xi, t) dV = Z0 〈γ (xi, t)〉s◦

(B3)
Comparison with (A3), shows that:

H(t) = Z0 φ
◦

V
(t) (B4)

Secondly, averages of temporal and spatial occupancy rates
(Eq. A3) can be related to H via:

〈
γ (xi, t)

s◦〉s
= 〈γ (xi, t)〉s◦s = 〈

φ ◦
T

〉s = φ ◦
V

s

= 1
T0

1
V0

∫
T0

∫
V0

γ (xi, t)dV dt

= 1
T0

1
Z0

1
A0

∫
T0

∫
V0

γ (xi, t) dV dt

= 1
T0

1
Z0

∫
T0

H(t) dt = 1
Z0

H
s

(B5)

Recalling that time-averaged bulk water depth can be related to
bulk flow layer height via H

s = φH H0 the above equation can
be summarized as:

Z0
〈
φ ◦

T

〉s = Z0 φ ◦
V

s = H
s = φH H0 (B6)

so that the relationships (Eq. B2) can be written as:

Z0

〈
θ

s◦〉s
= Z0〈θ〉s◦s = H

s 〈
θ

◦〉 + Z0

〈
φ̃ ◦

T
θ̃

◦〉s

= H
s 〈θ〉◦ + Z0 φ◦′

V
〈θ〉◦′ s

(B7)

It can be shown that for space-time averaging the fluctuations of
the instantaneous bulk water depth are related to the fluctuations
of the instantaneous spatial occupancy ratio via:

H ′ = Z0 φ
◦

V

′ (B8)

so that the last term in Eq. (B7) can be written as H ′〈θ〉◦′ s
.

For θ representing a microscopically constant property such
as the main fluid density, ρ, both terms with deviations in
Eq. (B7) are zero so that it reduces to:

Z0
〈
ρs◦〉s = H

s 〈ρ◦〉 = H
s
ρ (B9)

Finally, it is necessary to develop the the relationship between
double superficial average and double intrinsic average of a
product. It is needed solely for the advective term in the momen-
tum equation, so the derivation is shown for the product uiuj

rather than for generic fluid quantities. For time/space averaging
it starts with:〈

uiuj
s◦〉s = φV

〈
φ ◦

T
uiuj

◦〉 = φV

〈
φ ◦

T
ui

◦ uj
◦〉 + φV

〈
φ ◦

T
ui

′◦ uj
′◦◦〉

The two last terms are developed separately as:

φV

〈
φ ◦

T
ui

◦ uj
◦〉 = φV

〈
φ ◦

T

〉 〈ui
◦〉 〈

uj
◦〉 + φV

〈
φ ◦

T

〉 〈
ũi

◦ũj
◦〉

+ φV

〈
uj

◦〉 〈φ̃ ◦
T

ũi
◦〉 + φV 〈ui

◦〉 〈
φ̃ ◦

T
ũj

◦〉
= 〈
φ ◦

T

〉s 〈ui
◦〉 〈

uj
◦〉 + 〈

φ ◦
T

〉s 〈
ũi

◦ũj
◦〉

+ 〈
uj

◦〉s 〈
φ̃ ◦

T
ũi

◦〉 + 〈ui
◦〉s 〈

φ̃ ◦
T

ũj
◦〉 ,

φV

〈
φ ◦

T
ui

′◦ uj
′◦◦〉 = φV

〈
φ ◦

T

〉 〈
ui

′◦ uj
′◦◦〉 + φV

〈
φ̃ ◦

T

˜ui
′◦ uj

′◦◦
〉

= 〈
φ ◦

T

〉s 〈
ui

′◦ uj
′◦◦〉 +

〈
φ̃ ◦

T

˜ui
′◦ uj

′◦◦
〉s

Remembering that Z0
〈
φ◦

T

〉s = H
s

(Eq. B6) the previous three
relationships can be combined into:

Z0
〈
uiuj

s◦〉s = H
s 〈ui

◦〉 〈
uj

◦〉 + H
s 〈

ũi
◦ũj

◦〉 + H
s
〈
ui

′◦ uj
′◦◦〉

+ Z0
〈
uj

◦〉s 〈
φ̃ ◦

T
ũi

◦〉 + Z0 〈ui
◦〉s 〈

φ̃ ◦
T

ũj
◦〉

+ Z0

〈
φ̃ ◦

T

˜ui
′◦ uj

′◦◦
〉s

(B10)

The derivation for space/time averaging is analogous:

〈uiuj 〉s◦s = φTφ
◦

V
〈uiuj 〉◦ = φTφ

◦
V
〈ui〉◦ 〈uj 〉◦

+ φTφ
◦

V
〈ũi

◦ ũj
◦〉◦,

φTφ
◦

V
〈ui〉◦ 〈uj 〉◦ = φTφ

◦
V

〈ui〉◦ 〈uj 〉◦ + φTφ
◦

V
〈ui〉◦′ 〈uj 〉◦′

+ φT

〈
uj

〉◦
φ◦′

V
〈ui〉◦′ + φT 〈ui〉◦ φ◦′

V

〈
uj

〉◦′

= φ ◦
V

s 〈ui〉◦
〈
uj

〉◦ + φ ◦
V

s 〈ui〉◦′ 〈
uj

〉◦′

+ 〈
uj

〉◦s
φ◦′

V
〈ui〉◦′ + 〈ui〉◦s

φ◦′
V

〈
uj

〉◦′
,

φTφ
◦

V

〈
ũi

◦ ũj
◦〉◦ = φTφ

◦
V

〈
ũi

◦ ũj
◦〉◦ + φTφ

◦′
V

〈
ũi

◦ ũj
◦〉◦′

= φ ◦
V

s〈
ũi

◦ ũj
◦〉◦ + φ◦′

V

〈
ũi

◦ ũj
◦〉◦′ s

In terms of bulk water depth, using Eq. (B6):

Z0
〈
uiuj

〉s◦s = H
s 〈ui〉◦

〈
uj

〉◦ + H
s 〈ui〉◦′ 〈

uj
〉◦′ + H

s〈
ũi

◦ ũj
◦〉◦

+ Z0
〈
uj

〉◦s
φ◦′

V
〈ui〉◦′ + Z0〈ui〉◦s

φ◦′
V

〈
uj

〉◦′

+ Z0φ◦′
V

〈
ũi

◦ ũj
◦〉◦′ s

(B11)
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Appendix C. Hydrostatic pressure

In order to determine pressure at the bottom surface and double-
averaged pressure for the entire averaging volume V0 used for
deriving GSWEs (Fig. 1) it is useful to develop an expression
for pressure at the bottom of the water column, and at an arbi-
trary level z, both for an arbitrary x, y location. This can be
achieved by using the double-averaged momentum equation for
the z direction, but this time with the spatial averaging done
over a cylinder with a base dA0 = dxdy centred at x, y, which
contains at least a single point that gets wet for at least a single
time instant. The equation is analogous to the double-averaged
momentum equation (20) for j = 3 instead of j = 1, 2, except
that it does not contain the term with the z-gradient of pressure
(for the same reason all other z-gradients are zero). Further-
more, water depth and flow layer height are denoted by h and h0,
respectively, (rather than H and H0), because averaging has been
done over an infinitesimally small plan area, and momentum
exchange terms qtop

z and qbot
z are assumed zero. The macroscopic

z-momentum equation is:

Z0
∂

〈
ws◦〉s
∂t

+ Z0
∂

〈
ukws◦〉s
∂xk

= Z0
〈
gz

s◦〉s + Z0

ρ

∂ 〈τkz
s◦〉s

∂xk
+ fz

s

ρ
, k = 1, 2 (C1)

where

Z0
〈
gz

s◦〉s = −gh
s
cosαx cosαy ,

fz = f int
z + f bot

z + f top
z ,

f int/bot/top
z = 1

dA0
p|int/bot/top nz dSint/bot/top

− 1
dA0

τiz|int/bot/top ni dSint/bot/top , i = 1, 2, 3

Hydrostatic pressure distribution implies that all terms in
Eq. (C1) other than gravity and fz are negligible. Furthermore,
the force acting at the top of the flow layer, f top

z , is assumed to
be zero. The resulting z-momentum equation is:

ρgh
s
cosαx cosαy = f int

z
s + f bot

z
s

(C2)

The viscous stress components of both f int
z and f bot

z are
neglected so that:

f int
z = 1

dA0
p|int nz dSint = pint,

f bot
z = 1

dA0
p|bot nz dSbot = pbot (C3)

where pint is the magnitude of the buoyancy force, per unit plan
area, exerted by all internal interfaces within the water column,
and pbot is the hydrostatic pressure at the bottom boundary.

Combining Eqs (C2) and (C3) yields:

pint
s + pbot

s = ρgh
s
cosαx cosαy (C4)

Buoyancy force is exerted by all dry parts of the water col-
umn and its direction is downwards. The total height of the dry
parts at any time instant is zTOP − zbot − h

s
, so pint

s can be also
expressed as:

pint
s = −ρg(zTOP − zbot − h

s
) cosαx cosαy (C5)

Combining Eqs (C5) with (C4) produces, for the bottom pres-
sure:

pbot
s = ρg(zTOP − zbot) cosαx cosαy (C6)

The bottom pressure (Eq. C6) acts across the entire bottom sur-
face, except for the gaps in this surface caused by the internal
objects rooted into the bed. These gaps are not in contact with
water, hence the bottom pressure across them is not defined. The
part of the bottom surface where pressure is defined, projected
onto the bottom boundary, is tracked by a marker function γBOT ,
and projected onto the (x, y) plane, by γA . The area of the part
of A0 where γA is equal unity is Cbot

A A0. Equation (C6) is now
plugged into the first term on the r.h.s. of Eq. (28) in order to
develop the expression for the j component of the hydrostatic
force on the entire bottom surface:

1
A0

∫
Sbot

pbot
snj dS = ρg

1
A0

∫
Sbot

(zTOP − zbot)nj dS cosαx cosαy

(C7)
The integral over Sbot in the above equation is developed as:∫

Sbot

(zTOP − zbot)nj dS =
∫

Sbot

(zTOP − zBOT + zBOT − zbot) nj dS

=
∫

Sbot

(zTOP − zBOT) nj dS

=
∫

SBOT

γBOT(zTOP − zBOT) dS

=
∫

A0

γA(zTOP − zBOT) sinβj dA

=
∫

A0

γAh0 dA sinβj = A0Cbot
A H0 sinβj

(C8)

Plugging the final expression for the integral over Sbot into
Eq. (C7) yields:

1
A0

∫
Sbot

pbot
snj dS = ρgCbot

A H0 sinβj cosαx cosαy (C9)

The expression for the hydrostatic pressure at an arbitrary level
z is derived in an analogues manner as Eq. (C6), this time with
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Figure C1 Hydrostatic pressure distribution over flow profiles containing a wet part of height h (grey), and a part that remains dry throughout the
entire time averaging window. (Red line shows what the pressure profile would be if the entire space between zTOP and zbot was wet.) Pressure force
is proportional to the areas shaded grey. It is smallest when the wet part is at the top of the profile (a), and largest when it is at the bottom (b)

z instead of zbot. The result is:

pz
s(z) = ρgh0z cosαx cosαy = ρg cosαx cosαy(zTOP − z)

(C10)
where h0z = zTOP − z is the flow layer height above z. It should
be noted that pz

s is defined only at the z points that get wet for
at lest single time instant during time averaging window, i.e. for
the z points for which the intrinsic time average of the marker
function γ is equal to one.

The time-averaged hydrostatic pressure at z expressed by
Eq. (C10) is now averaged over the entire averaging volume
in order to find the double-averaged hydrostatic pressure. The
result is:

〈
ps◦〉s = 1

Z0A0

∫
A0

∫ Z0

0
γ ◦(z) ps◦(z) dz dA0

= ρg
Z0A0

cosαx cosαy

∫
A0

∫ zTOP

zBOT

γ ◦(z)(zTOP − z) dz dA0

(C11)

Note that the boundaries of integration over z were changed
from (0, Z0) to (zBOT , zTOP ) because γ (z) = 0 below zBOT and
above zTOP .

If a flow layer contains just clear water and the bottom sur-
face is flat (zbot = zBOT ), the integral over z in Eq. (C11) yields
h2

0/2 = h2/2 and integrating this term over A0 produces H 2
0 /2.

In a general case when some parts of z profiles are dry, finding
the analytical expression for the integral over z is straightfor-
ward only if the distribution of the wet parts of the water column
is known. For a general case with an unknown distribution it is
not possible to solve the integral analytically. However, with the
reference to Fig. C1 it is clear that the integral cannot be smaller

than h
s
h

s
/2 (when all wet parts are at the top of the column, Fig.

C1a), nor larger than (2h0/h
s − 1) h

s
h

s
/2 (when they are at the

bottom, Fig. C1b). The integral over z in the last term of (C11)
can therefore be expressed as:

∫ Z0

0
γ ◦(z)(zTOP − z) dz = Cp

h
s
h

s

2
(C12)

where 1 ≤ Cp(x, y) ≤ 2h0/h
s − 1 accounts for the distribution

of the wet parts of the profile, including its variability with time,
and the expression applies only for the profiles which contain at
least a single wet point for at least a single time instant.

Plugging Eq. (C12) into Eq. (C11) yields:

Z0
〈
ps◦〉s = ρg

2A0
cosαx cosαy

∫
A0

Cp h
s
h

s
dA0

= ρg
2

cosαx cosαy

〈
Cp h

s
h

s
〉
A

(C13)

The final expression for the double-averaged pressure is
obtained by assuming that Cp is not correlated with h

s
, and

that the deviations of h
s

from H
s

are negligible compared to
H

s
itself:

Z0
〈
ps〉s = ρg

2
cosαx cosαy ξp

〈
h

s
〉
A

〈
h

s
〉
A

= ρg
2

cosαx cosαy ξpH
s
H

s
(C14)

where

ξp = 〈
Cp

〉
A (C15)

is called the pressure correction coefficient.
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