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ABSTRACT

With recent advances of diffusion model, generative speech en-
hancement (SE) has attracted a surge of research interest due to its
great potential for unseen testing noises. However, existing efforts
mainly focus on inherent properties of clean speech for inference,
underexploiting the varying noise information in real-world condi-
tions. In this paper, we propose a noise-aware speech enhancement
(NASE) approach that extracts noise-specific information to guide
the reverse process in diffusion model. Specifically, we design a
noise classification (NC) model to produce acoustic embedding as a
noise conditioner for guiding the reverse denoising process. Mean-
while, a multi-task learning scheme is devised to jointly optimize SE
and NC tasks, in order to enhance the noise specificity of extracted
noise conditioner. Our proposed NASE is shown to be a plug-and-
play module that can be generalized to any diffusion SE models.
Experiment evidence on VoiceBank-DEMAND dataset shows that
NASE achieves significant improvement over multiple mainstream
diffusion SE models, especially on unseen testing noises1.

Index Terms— Diffusion probabilistic model, speech enhance-
ment, unseen testing noise, noise conditioner, multi-task learning

1. INTRODUCTION

Speech enhancement (SE) aims to estimate clean speech signals
from audio recordings that are corrupted by acoustic noises [1],
which usually serves as a front-end processor in many real-world
applications, including speech recognition [2, 3], hearing aids [4]
and speaker recognition [5]. With recent advances of deep learning,
significant progress has been made in the past decade.

Deep learning based SE can be roughly divided into two cat-
egories, based on the criteria used to estimate the transformation
from noisy speech to clean speech. The first category trains discrim-
inative models to minimize the distance between noisy and clean
speech. However, as supervised methods are inevitably trained on
a finite set of training data with limited model capacity for practi-
cal reasons, they may not generalize well to unseen situations, e.g.,
different noise types, different signal-to-noise ratios (SNR) and re-
verberations. Additionally, some discriminative methods have been
shown to result in undesirable speech distortions [6].

The second category trains generative models to learn the distri-
bution of clean speech as a prior for speech enhancement, instead of
learning a direct noisy-to-clean mapping. Several approaches have
employed deep generative models for speech enhancement, includ-
ing generative adversarial network (GAN) [7, 8], variational autoen-
coder (VAE) [9, 10] and flow-based models [11, 12]. Recent ad-
vances of diffusion probabilistic model have launched a new surge
of research interest in generative SE [13–18]. The main principle of

1Code and model are publicly available at: https://github.com/
YUCHEN005/NASE

these approaches is to learn the inherent properties of clean speech,
such as its temporal and spectral structure, which then serve as prior
knowledge to infer clean speech from noisy input. Therefore, they
focus on generating clean speech and are thus considered more ro-
bust to varying acoustic conditions in the real world. Existing stud-
ies [9, 10, 14] have showed better performance of generative SE on
unseen testing noises than discriminative counterparts. However,
these approaches fail to fully exploit the noise information inside
input noisy speech [19], which could be instructive to the denoising
process of SE, especially under unseen testing conditions.

In this paper, we propose a noise-aware speech enhancement
(NASE) approach that extracts noise-specific information to guide
the reverse process of diffusion model. Specifically, we design a
noise classification (NC) model and extract its acoustic embedding
as a noise conditioner for guiding the reverse denoising process [20].
With such noise-specific information, the diffusion model can target
at the noise component in noisy input and thus remove it more ef-
fectively. Meanwhile, a multi-task learning scheme is devised to
jointly optimize SE and NC tasks, which aims to enhance the noise
specificity of extracted noise conditioner. Our NASE is shown to
be a plug-and-play module that can be generalized to any diffusion
SE models for improvement. Experiments verify its effectiveness on
multiple diffusion backbones, especially on unseen testing noises.

2. DIFFUSION PROBABILISTIC MODEL

In this section, we briefly introduce the vanilla diffusion probabilistic
model in terms of its diffusion and reverse processes. To formulate
speech enhancement task, we define the input noisy speech as y and
its corresponding clean speech as x0. Generally speaking, SE aims
to learn a transformation f that converts the noisy input to clean
signal: x0 = f(y), {x0, y} ∈ RL, L is signal length in samples.
Diffusion process is defined as a T -step Markov chain that gradually
adds Gaussian noise to original clean signal x0:

q(x1, · · · , xT |x0) =

T∏
t=1

q(xt|xt−1), (1)

with a Gaussian model q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI),

where βt is a small positive constant serving as a pre-defined sched-
ule. After sufficient diffusion steps T , the clean x0 is finally con-
verted to a latent variable xT with an isotropic Gaussian distribution
platent(xT ) = N (0, I). Therefore, conditioned on x0, the sampling
distribution of step t in the Markov chain can be derived as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1− βt and ᾱt =
∏t

s=1 αs.
Reverse process aims to restore x0 from the latent variable xT based
on the following Markov chain:

pθ(x0, · · · , xT−1|xT ) =

T∏
t=1

pθ(xt−1|xt), (3)
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Fig. 1: The overall framework of our proposed NASE approach.

where pθ(·) is a distribution of reverse process with learnable param-
eters θ. As marginal likelihood pθ(x0) =

∫
pθ(x0, · · · , xT−1|xT ) ·

platent(xT )dx1:T is intractable for calculation, the ELBO [21] is em-
ployed to approximate the objective function for model training.
Consequently, the equation of reverse process can be formulated as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI),

where µθ(xt, t) =
1√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t))
(4)

The µθ(xt, t) predicts the mean of xt−1 by removing the estimated
Gaussian noise ϵθ(xt, t) in xt, and the variance of xt is fixed to a
constant β̃t =

1−ᾱt−1

1−ᾱt
βt.

3. METHODOLOGY

In this section, we introduce our proposed NASE approach, which
integrates a noise conditioner from classification module into the re-
verse process of conditional diffusion probabilistic model for guid-
ance. The overall framework of NASE is shown in Fig 1.

3.1. Conditional Diffusion Probabilistic Model

Considering that real-world noises usually does not obey the Gaus-
sian distribution, recent study [14] propose conditional diffusion
probabilistic model that incorporates the noisy data y into both
diffusion and reverse processes. Specifically, a dynamic weight
wt ∈ [0, 1] is employed for linear interpolation from x0 to xt. As
shown in Fig. 1, each latent variable xt contains three terms: clean
component (1 − wt)x0, noisy component wty and Gaussian Noise
ϵ. Therefore, the diffusion process in Eq. (2) can be rewritten as:

q(xt|x0, y) = N (xt; (1− wt)
√
ᾱtx0 + wt

√
ᾱty, δtI),

where δt = (1− ᾱt)− w2
t ᾱt

(5)

Here wt starts from w0 = 0 and gradually increases to wT ≈ 1,
turning the mean of xt from clean speech x0 to noisy speech y.

Starting from xT with distribution N (xT ,
√
ᾱT y, δT I), the

conditional reverse process can be formulated as below from Eq. (4):

pθ(xt−1|xt, y) = N (xt−1;µθ(xt, y, t), δ̃tI), (6)

where µθ(xt, y, t) predicts the mean of xt−1. In contrast to vanilla
reverse process, here the neural model θ considers both xt and the

noisy speech y during its prediction. Therefore, similar to Eq. (4),
the mean µθ is defined as a linear combination of xt, y, and ϵθ:

µθ(xt, y, t) = cxtxt + cyty − cϵtϵθ(xt, y, t), (7)

where the coefficients cxt, cyt, and cϵt are derived from the ELBO
optimization criterion in [14]. Finally, the Gaussian noise ϵ and non-
Gaussian noise y−x0 are combined as ground-truth Ct to supervise
the predicted ϵθ from neural model:

Ct(x0, y, ϵ) =
mt

√
ᾱt√

1− ᾱt

(y − x0) +

√
δt√

1− ᾱt

ϵ (8)

Ldiff =∥ ϵθ(xt, y, t)− Ct(x0, y, ϵ) ∥1, (9)

3.2. Noise Conditioner from Classification Module

Based on conditional diffusion probabilistic model, we propose to
fully exploit the noise-specific information inside noisy speech y to
guide the reverse denoising process. In particular, with inspiration
from prior work [20], we design a noise classification module to pro-
duce acoustic embedding as conditioner, which informs the diffusion
model about what kind of noise to remove.

As shown in Fig. 1, the noisy speech y is sent into a Transformer
Encoder E as well as a linear classifier for noise type classification,
where the output acoustic embedding E(y) of encoder are extracted
out as a noise conditioner. Furthermore, in order to ease the training
of noise classification module and extract better acoustic embedding
with rich noise-specific information, we load an audio pre-trained
model called BEATs from prior work [22] for encoder E. It is pre-
trained on large-scale AudioSet [23] dataset and thus can provide
rich prior knowledge of audio noise for classification.

After extracting out the acoustic embedding, we send it to guide
the reverse process as an extra conditioner. Specifically, the Eq. (6)
and (7) can be re-written as:

pθ(xt−1|xt, y, E(y)) = N (xt−1;µθ(xt, y, t, E(y)), δ̃tI),

where µθ(xt, y, t, E(y)) = cxtxt + cyty − cϵtϵθ(xt, y, t, E(y)),

(10)

The predicted noise ϵθ is also conditioned on acoustic embedding
E(y), which contains noise-specific information and thus enables
more effective denosing in reverse process. Specifically, we select
three techniques to inject the noise conditioner into ϵθ , i.e., addition,
concatenation and cross-attention fusion with original inputs xt and
y. The ϵθ in Eq. (9) should also be re-written accordingly.



3.3. Multi-task Learning

In order to further enhance the noise specificity of acoustic embed-
ding E(y), we perform noise classification as an auxiliary task:

LNC = CrossEntropy(Ĉ, C)

where Ĉ = Softmax(P (E(y)))
(11)

Here the Ĉ and C denote the predicted probability distribution and
noise class label respectively. P denotes the linear classifier.

Multi-task learning scheme is employed to optimize SE and NC
tasks simultaneously for better generalization:

L = Ldiff + λNC · LNC (12)

where λNC is a weighting hyper-parameter to balance two tasks.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Dataset. We evaluate the proposed method on public VoiceBank-
DEMAND (VBD) dataset [24]. In particular, the training set con-
tains 11,572 noisy utterances from 28 speakers in VoiceBank cor-
pus [25], which are recorded at a sampling rate of 16 kHz and mixed
with 10 different noise types at SNR levels of 0, 5, 10, and 15 dB.
The test set contains 824 noisy utterances from 2 speakers, which are
mixed with 5 types of unseen noise at SNR levels of 2.5, 7.5, 12.5,
and 17.5 dB. For further evaluation on unseen noise, we also simu-
lated noisy test data with three types of noise from prior work [26],
i.e., “Helicopter”, “Baby-cry” and “Crowd-party”.
Configurations. We select three various types of open-sourced dif-
fusion SE models as our backbone, including one conditional diffu-
sion model: CDiffuSE2 [14], and two score-based diffusion models:
StoRM3 [16] and SGMSE+4 [17], and we follow their best config-
urations as our backbone. The pre-trained BEATs5 model contains
12 Transformer [27] encoder layers, with 12 attention heads and 768
embedding units. Number of classes is set to 10. λNC is set to 0.3.
Metric. We use perceptual evaluation of speech quality (PESQ) [28],
extended short-time objective intelligibility (ESTOI) [29] and scale-
invariant signal-to-distortion ratio (SI-SDR) [30] as evaluation met-
rics. Higher scores mean better performance for all the metrics.

4.2. Results

4.2.1. Comparison with competitive baselines

Table 1 illustrates the comparison of our proposed NASE with com-
petitive baselines, especially the three diffusion SE models that we
select as backbones, i.e., CDiffuSE, StoRM and SGMSE+. Our pro-
posed NASE is shown to be a plug-and-play module and can gen-
eralize to various diffusion models for improvement (2.52→2.57,
2.93→2.98, 2.93→3.01), where we have achieved the most 0.08
PESQ improvement on SGMSE+ backbone. As a result, our NASE
has achieved the state-of-the-art among generative SE approaches,
though still lagging behind the state-of-the-art discriminative coun-
terparts. Apart from PESQ metric, our NASE also improves the ES-
TOI and SI-SDR metrics to some extent.

2https://github.com/neillu23/CDiffuSE
3https://github.com/sp-uhh/storm
4https://github.com/sp-uhh/sgmse
5https://github.com/microsoft/unilm/tree/master/

beats

Table 1: NASE vs. other methods. “G” and “D” denote generative
and discriminative categories. * means self-reproduced results. We
select the top-3 open-sourced diffusion SE models as our backbone.

System Category PESQ ESTOI SI-SDR

Unprocessed - 1.97 0.79 8.4

Conv-TasNet [31] D 2.84 0.85 19.1
GaGNet [32] D 2.94 0.86 19.9
MetricGAN+ [33] D 3.13 0.83 8.5

SEGAN [7] G 2.16 - -
SE-Flow [12] G 2.28 - -
RVAE [10] G 2.43 0.81 16.4
CDiffuSE [14] G 2.52 0.79 12.4
MOSE [34] G 2.54 - -
UNIVERSE* [35] G 2.91 0.84 10.1
StoRM [16] G 2.93 0.88 18.8
SGMSE+ [17] G 2.93 0.87 17.3
GF-Unified [18] G 2.97 0.87 18.3

NASE (CDiffuSE) G 2.57 0.80 12.8
NASE (StoRM) G 2.98 0.88 18.9
NASE (SGMSE+) G 3.01 0.87 17.6

Table 2: PESQ results on on unseen noise with different SNRs.
“Avg.” denotes the average of all SNR levels.

System Noise level, SNR (dB) =
-5 0 5 10 15 Avg.

Noise type: Helicopter
Unprocessed 1.06 1.09 1.16 1.33 1.62 1.25 +0%
SGMSE+ 1.08 1.22 1.49 1.88 2.33 1.60 +28.0%
NASE (SGMSE+) 1.09 1.25 1.57 2.01 2.42 1.67 +33.6%

Noise type: Baby-cry
Unprocessed 1.09 1.12 1.18 1.30 1.50 1.24 +0%
SGMSE+ 1.21 1.44 1.85 2.34 2.83 1.93 +55.6%
NASE (SGMSE+) 1.24 1.49 1.94 2.43 2.92 2.00 +61.3%

Noise type: Crowd-party
Unprocessed 1.13 1.14 1.21 1.34 1.58 1.28 +0%
SGMSE+ 1.26 1.58 2.02 2.42 2.83 2.02 +57.8%
NASE (SGMSE+) 1.28 1.63 2.07 2.49 2.89 2.07 +61.7%

4.2.2. Generalization to unseen testing noises

We also evaluate our proposed NASE on three unseen testing
noises [26] with a wide range of SNR levels from -5dB to 15dB,
where the best SGMSE+ backbone is selected for this study. Table 2
shows the performance comprison in terms of PESQ metric. Despite
the outstanding performance on matched VBD test set, we observe
that the PESQ result of SEMSE+ baseline on unseen noises dramat-
ically degrades due to noise domain mismatch. In comparison, our
NASE significantly outperforms SGMSE+ in different noise types
and SNR levels (1.60→1.67, 1.93→2.00, 2.02→2.07), thanks to the
noise-specific information provided by extracted noise conditioner.

In addition, we also find that NASE achieves higher relative
PESQ improvement over SGMSE+ on unseen noises, which indi-
cates its effectiveness under varying real-world conditions. Another
interesting fact is that, among the three unseen noises, NASE shows
larger relative improvement over SGMSE+ on non-stationary “Heli-
copter” and “Baby-cry” noises than stationary “Crowd-party” noise,
implying the strong robustness of NASE in adverse conditions.

https://github.com/neillu23/CDiffuSE
https://github.com/sp-uhh/storm
https://github.com/sp-uhh/sgmse
https://github.com/microsoft/unilm/tree/master/beats
https://github.com/microsoft/unilm/tree/master/beats


Table 3: Effect of audio pre-training in noise classification module.
“PT” denotes loading pre-trained BEATs, “Freeze” denotes freezing
the model parameters of BEATs.

ID System PT Freeze PESQ ESTOI SI-SDR

1 Unprocessed - - 1.97 0.79 8.4

2 SGMSE+ - - 2.93 0.87 17.3

3
NASE (SGMSE+)

✗ ✗ 2.95 0.86 17.3
4 ✓ ✓ 2.97 0.86 17.4
5 ✓ ✗ 3.01 0.87 17.6

Table 4: Effect of the weight of noise classification in multi-task
learning. “Acc.” denotes the classification accuracy on training data.

ID System λNC Acc. (%) PESQ ESTOI SI-SDR

6 Unprocessed - - 1.97 0.79 8.4

7 SGMSE+ - - 2.93 0.87 17.3

8

NASE (SGMSE+)

0 - 2.98 0.86 17.3
9 0.1 71.3 3.00 0.88 17.4

10 0.3 77.4 3.01 0.87 17.6
11 0.5 81.8 2.96 0.86 17.6
12 1.0 83.6 2.92 0.86 17.2

4.2.3. Effect of audio pre-training in noise classification

Table 3 illustrates the effect of audio pre-training from BEATs. First,
comparing system 2 and 3, we can observe limited PESQ improve-
ment brought by NASE when without audio pre-training, where the
ESTOI and SI-SDR metrics even degrade. System 4 load the pre-
trained BEATs but freeze its parameters during training, which can
bring some PESQ improvement (2.95→2.97). It indicates that the
pre-trained BEATs can produce high-quality but not optimal noise
conditioner to improve the reverse process. In comparison, unfreez-
ing the pre-trained BEATs for training can produce better noise con-
ditioner to guide the reverse denoising process, which thus yields the
best SE performance in terms of all three metrics, i.e., system 5.

4.2.4. Effect of the weight of noise classification

Table 4 analyzes the effect of the weight of noise classification in
multi-task learning, which all follow the settings of system 5. First,
system 8 sets λNC to 0, which means the Transformer encoder E
would be optimized by Ldiff only. However, this operation seems in-
sufficient to improve noise conditioner, as compared with system 4
(2.97→2.98). On top of that, we start to increase λNC to incorporate
noise classification into multi-task learning. System 9 and 10 achieve
promising improvements over system 8 in terms of all three metrics,
where λNC = 0.3 yields the best SE performance. Meanwhile, they
also perform well in the auxiliary noise classification task, with up to
77.4% in accuracy. Further increasing the weight of noise classifica-
tion task produces higher accuracy up to 83.6%, but the PESQ per-
formance is significantly degraded (3.01→2.96→2.92). This phe-
nomenon indicates that the auxiliary NC task can benefit the dif-
fusion SE with a relatively small weight, by enhancing the noise-
specificity of extracted conditioner. In contrast, when the weight
gains large, the training of encoder E would be dominated by NC
task and thus degrade the performance of our targeted SE task [3].

4.2.5. Effect of different techniques to inject noise conditioner

Table 5 presents the results of different techniques to inject noise
conditioner E(y) into reverse process. As introduced in Section. 3.2,
we inject the noise conditioner into ϵθ by combining it with original

Table 5: Effect of different techniques to inject the noise conditioner,
including addition, concatenation and cross-attention fusion.

ID System Inject PESQ ESTOI SI-SDR

13 Unprocessed - 1.97 0.79 8.4

14 SGMSE+ - 2.93 0.87 17.3

15
NASE (SGMSE+)

addition 3.01 0.87 17.6
16 concat 2.99 0.87 17.5
17 cross-attn 2.96 0.86 17.5

Fig. 2: The t-SNE visualization of noise conditioners from three un-
seen noise types, i.e., “Helicopter”, “Baby-cry” and “Crowd-party”.

inputs, i.e., xt and y. Here we select three common techniques for
feature fusion, i.e., simple addition, feature concatenation and cross-
attention fusion. Our results indicate that all three techniques are
effective, where the simple addition yields surprisingly the best per-
formance. One possible explanation is, in fact the noisy speech y
inherently contains noise-related information but not noise-specific,
and our extracted noise conditioner exactly serves to complement
and highlight the noise-specific information. Therefore, simple ad-
dition or concatenation seems enough to achieve good improvement,
while cross-attention may wrongly discard some noise-specific parts
and thus leads to sub-optimal performance.

4.2.6. Visualization of noise conditioners

Fig. 2 visualizes the noise conditioners from three types of unseen
noises. We observe that different noise conditioners are well sepa-
rated with clear boundaries, indicating their strong noise-specificity.
It guides the reverse process to target at the noise component in xt

for more effective denoising, which is exactly the key to the perfor-
mance improvement of our NASE.

5. CONCLUSION

In this paper, we propose a noise-aware speech enhancement
(NASE) approach that extracts noise-specific information to guide
the reverse process of diffusion model. Specifically, we design a
noise classification model and extract its acoustic embedding as a
noise conditioner for guiding the reverse process. Meanwhile, a
multi-task learning scheme is devised to jointly optimize SE and
NC tasks, aiming to enhance the noise specificity of extracted con-
ditioner. Our NASE is a plug-and-play module that can generalize
to any diffusion SE models. Experiments verify its effectiveness on
multiple diffusion backbones, especially on unseen testing noises.
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