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Abstract: Predicting emissions for gas turbines is critical for monitoring harmful pollutants being
released into the atmosphere. In this study, we evaluate the performance of machine learning models
for predicting emissions for gas turbines. We compared an existing predictive emissions model, a
first-principles-based Chemical Kinetics model, against two machine learning models we developed
based on the Self-Attention and Intersample Attention Transformer (SAINT) and eXtreme Gradient
Boosting (XGBoost), with the aim to demonstrate the improved predictive performance of nitrogen
oxides (NOx) and carbon monoxide (CO) using machine learning techniques and determine whether
XGBoost or a deep learning model performs the best on a specific real-life gas turbine dataset.
Our analysis utilises a Siemens Energy gas turbine test bed tabular dataset to train and validate
the machine learning models. Additionally, we explore the trade-off between incorporating more
features to enhance the model complexity, and the resulting presence of increased missing values in
the dataset.
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1. Introduction

Gas turbines are widely employed in power generation and mechanical drive appli-
cations, but their use is associated with the production of harmful emissions, including
nitrogen oxides (NOx) and carbon monoxide (CO), which pose environmental and health
risks. Regulations have been implemented to limit emissions and require monitoring.

To monitor emissions from gas turbines, a continuous emissions monitoring system
(CEMS) is commonly employed, which involves sampling gases and analysing their compo-
sition to quantify emissions. While CEMS can accurately measure emissions in real-time, it
can lead to a high cost to the process owner, including requiring daily maintenance to avoid
drift. As a result, CEMS may not always be properly maintained, leading to inaccurate or
unreliable measurements.

Predictive emissions monitoring system (PEMS) models provide an alternative method
of monitoring emissions that is cost-effective and requires minimal maintenance compared
to CEMS while not requiring the large physical space needed for CEMS gas analysis. PEMS
is trained on historical data using process parameters such as temperatures and pressures
and uses real-time data to generate estimations for emissions.

To develop a PEMS model, it is necessary to validate the model’s predictive accuracy
using data with associated emissions values [1]. In our experiments, we used gas turbine
test bed tabular data consisting of tests conducted over a wide range of operating conditions
to train our models. Gradient-boosted decision trees (GBDTs) such as XGBoost [2] and
LightGBM [3] have demonstrated excellent performance in the tabular domain and are
widely regarded as the standard solution for structured data problems.
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Previous studies comparing deep learning and GBDTs for tabular regression have
generally found that GBDTs match or outperform deep learning-based models, particularly
when evaluated on datasets not documented in their original papers [4]. Some deep learning-
based methods claim to outperform GBDTs, such as SAINT [5] and ExcelFormer [6]; however,
performance seems to be highly dataset dependent [4].

In this work, we provide a comprehensive evaluation of machine learning models,
SAINT and XGBoost, against an industry-used Chemical Kinetics PEMS model developed
by Siemens Energy [7] as a means to predict emissions in the absence of expensive continu-
ous emissions monitoring systems. We aim to determine how improvements can be made
in emissions prediction for gas turbines compared to the current industry-used method,
and to determine whether a GBDT method, XGBoost, or deep learning method, SAINT,
performs the best for this gas turbine emissions dataset. To our knowledge, this is the first
transformer-based method that has been used for gas turbine emissions prediction.

We demonstrate that both machine learning methods outperform the original Chemical
Kinetics model for predicting both NOx and CO emissions on test bed data for gas turbines.

This paper is structured as follows. Section 2 discusses the background on gradient-
boosted decision trees, attention and transformers, and the Chemical Kinetics model we
compare the machine learning models to. Section 3 discusses the related works focusing on
emissions prediction for gas turbines. The dataset and methods are described in Section 4.
Section 5 presents the results and a thorough analysis and discussion of the findings.
Section 6 presents the concluding remarks and future direction.

2. Background
2.1. Gradient-Boosted Decision Trees

Gradient-boosted decision trees (GBDTs) are popular machine learning algorithms
that combine the power of decision trees with the boosting technique, where multiple weak
learners are combined in an ensemble to create highly accurate and robust models. Figure 1
depicts the process in which GBDTs build decision trees iteratively, correcting errors of the
previous trees in each iteration. Gradient boosting is used to combine the predictions of all
the decision trees, with each tree’s contribution weighted according to its accuracy. The
final prediction is made by aggregating the predictions of all the decision trees.

Initialisation

Single decision tree
makes prediction based

on input features

Evaluation

Model's performance is
evaluated on training data.

Errors are calculated

Correction

New decision tree is fit to
errors made by previous

tree, aiming to reduce the
errors

Update Model

New tree is added to the
model. Weights of each tree
are based on performance

on training data

Repeat until performance stops
improving, or predetermined
number of trees is reached

Predict

Final model used to
predict on test data

Figure 1. XGBoost initialisation, training, and prediction process.

XGBoost, or eXtreme Gradient Boosting [2], is a widely used implementation of
GBDTs, used for both classification and regression tasks. XGBoost is designed to be fast,
scalable, and highly performant, making it well-suited for large-scale machine learning
applications. One of the key features of XGBoost is its use of regularisation functions to
prevent overfitting and improve the generalisation of the model. XGBoost also uses a tree
pruning algorithm to remove nodes with low feature importance to reduce the complexity
of the model and improve accuracy.

XGBoost has been highly successful for tabular data analysis, and deep learning
researchers have been striving to surpass its performance.
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2.2. Attention and Transformers

Transformers, originating from Vaswani et al. [8], are a type of deep learning architec-
ture originally developed for natural language processing tasks and have been adapted for
use in the tabular domain. These models use self-attention to compute the importance of
each feature within the context of the entire dataset, enabling them to learn complex, non-
linear relationships between features. This is in contrast to GBDTs, where all features are
treated equally, and relationships are not considered between them. Attention mechanisms
are capable of highlighting relevant features and patterns in the dataset that are the most
informative for making accurate predictions.

Multi-head self-attention is a type of attention mechanism used in transformers. A
weight is assigned to each input token based on its relevance to the output, allowing
selective focus on different parts of the input data.

The attention mechanism is applied multiple times in parallel, with each attention
head attending to a different subspace of the input representation, allowing the model to
capture different aspects of the input data and learn more complex, non-linear relationships
between the inputs. The outputs of the multiple attention heads are then concatenated
and passed through a linear layer to produce the final output. This is depicted in Figure 2,
where the scaled dot-product attention is:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (1)

In Figure 2 and Equation (1), Q, K, and V are the query, key, and value vectors used to
compute attention weights between each element of the input sequence. dk is the dimension
of the key vectors.

Scaled Dot-Product
Attention

Linear Linear Linear

Scaled Dot-Product
Attention

Linear Linear Linear

Scaled Dot-Product
Attention

Linear Linear Linear

Q K V

Concat

Linear

h

Figure 2. Multi-head attention from [8], where h is the number of heads, and Q, K, and V are the
query, key, and value vectors.

SAINT [5], the Self-Attention and Intersample Attention Transformer, is a deep learn-
ing model designed to make predictions based on tabular data. SAINT utilises attention to
highlight specific features or patterns within the dataset that are most relevant for making
accurate predictions, helping models better understand complex relationships within the
data and make more accurate predictions.
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In their experiments, they find that SAINT, on average, outperforms all other methods
on supervised and semi-supervised tasks for regression, including GBDT-based methods,
on a variety of datasets.

Chemical Kinetics

Siemens Energy developed a Chemical Kinetics PEMS model [7] through mapping
emissions via a 1D reactor element code ’GENE-AC’ computational fluid dynamics model
of their SGT-400 combustor and converting this to a parametric PEMS model. This is
a first-principles-based method that uses factors such as pilot/main fuel split, inlet air
temperature, and inlet air pressure to calculate the predicted emissions.

3. Related Works
3.1. Gas Turbine Emissions Prediction
3.1.1. First Principles

Predictive emissions monitoring systems (PEMS) for gas turbines have been developed
since 1973 [9], in which an analytical model was developed using thermodynamics to
predict NOx emissions. Rudolf et al. [10] developed a mathematical model, which takes
into account performance deterioration due to engine ageing. They combined different
datasets, such as validation measurements and long-term operational data, to provide
more meaningful emission trends. Lipperheide et al. [11] also incorporated ageing of the
gas turbines into their analytical model, which is capable of accurately predicting NOx
emissions for power in the range of 60–100%. Siemens Energy developed a Chemical
Kinetics model [7] to accurately predict CO and NOx emissions for their SGT-400 gas
turbine. They used a 1D reactor model to find the sensitivity of the emissions to the
different input parameters as a basis for the PEMS algorithm. Bainier et al. [12] monitored
their analytical PEMS over two years and found a continuous good level of accuracy, noting
that training is required to fully upkeep the system.

3.1.2. Machine Learning

A number of machine learning (ML) methods have been used to predict emissions for
gas turbines and have been found to be more flexible for prediction than first-principles
methods. Cuccu et al. [13] compared twelve machine learning methods, including linear re-
gression, kernel-based methods, and feed-forward artificial neural networks with different
backpropagation methods. They used k-fold cross-validation to select the optimal method-
specific parameters, finding that improved resilient backpropagation (iRPROP) achieved
the best performance, and note that thorough pre-processing is required to produce such
results. Kaya et al. [14] compared three decision fusion schemes on a novel gas turbine
dataset, highlighting the importance of certain features within the dataset for prediction.
Si et al. [15] also used k-fold validation to determine the optimal hyperparameters for
their neural-network-based models. Rezazadeh et al. [16] proposed a k-nearest-neighbour
algorithm to predict NOx emissions.

Azzam et al. [17] utilised evolutionary artificial neural networks and support vector
machines to model NOx emissions from gas turbines, finding that use of their genetic
algorithm results in a high-enough accuracy to offset the computational cost compared
to the cheaper support vector machines. Kochueva et al. [18] developed a model based
on symbolic regression and a genetic algorithm with a fuzzy classification model to deter-
mine “standard” or “extreme” emissions levels to further improve their prediction model.
Botros et al. [19–21] developed a predictive emissions model based on neural networks
with an accuracy of ±10 parts per million.

Guo et al. [22] developed a NOx prediction model based on attention mechanisms,
LSTM, and LightGBM. The attention mechanisms were introduced into the LSTM model
to deal with the sequence length limitation LSTM faces. They eliminate noise through
singular spectrum analysis and then use LightGBM to select the dependent feature. The
processed data are then used as input to the LSTM while the attention mechanism enhances
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the historical learning ability of information. They added feature attention and temporal
attention to the LSTM model to improve prediction by allowing different emphases by
allocating different weights.

3.1.3. Machine Learning in Industry

Machine learning for other industrial applications has also been found to be useful for
prediction. For example, predicting the compressive strength of concrete containing nano
silica using support vector machines and Gaussian process regression [23], predicting the
mechanical behaviour of 3D-printed components [24], predicting elemental stiffness matrix
of functionally graded nanoplates [25], optimising industrial refrigeration systems [26],
forecasting strawberry yield [27], and non-intrusive nuclear reactor monitoring [28].

3.2. Tabular Prediction
3.2.1. Tree-Based

Gradient-boosted decision trees (GBDTs) have emerged as the dominant approach
for tabular prediction, with deep learning methods only beginning to outperform them in
some cases. Notably, XGBoost [2] often achieves state-of-the-art performance in regression
problems. Other GBDTs, such as LightGBM [3] and CatBoost [29], have shown success in
tabular prediction.

Deep learning faces challenges when dealing with tabular data, such as low-quality
training data, the lack of spatial correlation between variables, dependency on preprocess-
ing, and the impact of single features [30]. Shwartz et al. [4] concluded that deep models
were weaker than XGBoost, and that deep models only outperformed XGBoost alone when
used as an ensemble with XGBoost. They also highlighted the challenges in optimising
deep models compared to XGBoost. Grinsztajn et al. [31] found that tree-based models
are state of the art on medium-sized data (10,000 samples), especially when taking into
account computational cost, due to the specific features of tabular data, such as uninforma-
tive features, non-rotationally invariant data, and irregular patterns in the target function.
Kadra et al. [32] argued that well-regularised plain MLPs significantly outperform more
specialised neural network architectures, even outperforming XGBoost.

3.2.2. Attention and Transformers

Attention- and transformer-based methods have shown promise in recent years for
tabular prediction. Ye et al. [33] provided an overview of attention-based approaches for
tabular data, highlighting the benefits of attention in tabular models. SAINT [5] introduced
intersample attention, which allows rows to attend to each other, as well as using the
standard self-attention mechanism, leading to improved performance over GBDTs on a
number of benchmark tasks including regression, binary classification and multi-class
classification. TabNet [34] is an interpretable model that uses sequential attention to select
features to reason from at each step. FT-Transformer [35] is a simple adaption of the
Transformer architecture that has outperformed other deep learning solutions on most
tasks. However, GBDTs still outperform it on some tasks. TabTransformer [36] transforms
categorical features into robust contextual embeddings using transformer layers, but it
does not affect continuous variables. Kossen et al. [37] took the entire dataset as input
and used self-attention to reason about relationships between data points. ExcelFormer [6]
alternated between two attention modules to manipulate feature interactions and feature
representation updates and manages to convincingly outperform GBDTs.

Despite the promising results of these attention- and transformer-based methods,
deep learning models have generally been weaker than GBDTs on datasets that were not
originally used in their respective papers [4]. Proper pre-processing, pre-training [38], and
embedding [39] can enable deep learning tabular models to perform significantly better,
reducing the gap between deep learning and GBDT models.



Mach. Learn. Knowl. Extr. 2023, 5 1060

4. Materials and Methods
4.1. Data

The data are test bed data from the Siemens SGT400 gas turbines. These are tabular
data consisting of a number of different gas turbines tested over a wide range of operating
conditions. In total, there are 37,204 rows of data with 183 features, including process
parameters such as temperatures and pressures and the target emission variables NOx and
CO. All data are numerical values.

4.2. Pre-Processing

From the test bed dataset, two comparison sub-datasets were used: “Full” and
“Cropped”. The Cropped dataset consisted of a significant number of filters pre-applied
to the data by Siemens Energy for the Chemical Kinetics model, while the Full dataset
had no filters applied. Standard pre-processing was applied to both sets of data including
removing rows with missing data, removing negatives from emissions data, and removing
liquid fuel data. Features with a significant number of missing rows were also removed.
For the Full dataset, any features with more than 18,100 missing values were removed.
Similarly, for the Cropped dataset, features with more than 3000 missing values were
removed. These threshold values were chosen to be greater than the number of missing
values than the maximum number of missing values found in the emission columns.

Table 1 provides an overview of both sub-datasets and the number of rows and features
in each. Due to the prior pre-processing removing proportionally more missing values
through the original filters, the Cropped dataset ends with more rows of data compared to
the Full dataset, at the cost of reducing the number of features. When removing the same
features from the Cropped dataset as the Full dataset, only 2044 rows remain, so this was
not chosen to be used for modelling.

Table 1. Pre-processing process for the Full and Cropped datasets showing number of rows in
each dataset.

Action Full Cropped

Start 37,204 rows, 183 features 9873 rows, 183 features
Remove low data features Removes 9 features Removes 95 features
Remove liquid fuel data Removes 5752 rows No change

Remove negative emissions Removes 16,977 rows Removes 744 rows
Remove all missing values Removes 8615 rows Removes 2700 rows

End 5860 rows, 174 features 6429 rows, 88 features

We used XGBoost’s feature importance to order each feature from most to least im-
portant to create sub-datasets for both the Full and Cropped datasets. The most important
features for the Full dataset were Compressor exit pressure and turbine interduct tempera-
ture. The most important features of the Cropped dataset were the main/pilot burner split
and a pilot-tip temperature. Further feature details including each feature’s importance can
be found in Table A1.

The dataset is collected from 0% to 126% load, and pre-processing reduces this to 24%
to 126%. We utilise this full range for our comparisons.

Figure 3 depicts the spread of the data for the target emissions, NOx and CO, for both
sub-datasets. CO has many more outliers compared to NOx, with some particularly far
from the median.
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Figure 3. NOx and CO data spread for Full and Cropped datasets on a logarithmic scale.

4.3. Models

We compared a transformer-based model, SAINT [5], and GBDT XGBoost [2], against
the existing PEMS model used by Siemens Energy, a first-principles-based Chemical Ki-
netics model [7]. These models were both chosen due to their excellent prior performance
on tabular prediction on baseline models and on our preliminary study into gas turbine
emissions prediction [1].

4.3.1. SAINT

Figure 4 depicts the SAINT method. The features, [ f1, ..., fn], are the process parameters
from sensors within the gas turbine tests, where n is the number of features. Each xi is one
row of data, including one of each feature, where b is the batch size, 32. A [CLS] token
with a learned embedding is appended to each data sample. This batch of inputs is passed
through an embedding layer, consisting of a linear layer, a ReLU non-linearity, followed by
a linear layer, prior to being processed by the SAINT model L times, where L is 3. Only
representations corresponding to the [CLS] token are selected for an MLP to be applied to.
MSE loss is achieved on predictions during training. For our experiment, n is the number of
features for each experiment. L1 is the first linear layer, with 1 input feature and 100 output
features, and L2 is the second linear layer, with 100 input features and 1 output feature. The
embedding layer is performed for each feature.

SAINT accepts a sequence of feature embeddings as input and produces contextual
representations with the same dimensionality.

Features are projected into a combined dense vector space and passed as tokens into a
transformer encoder. A single fully connected layer with a ReLU activation is used for each
continuous feature’s embedding.

SAINT alternates self-attention and intersample attention mechanisms to enable the
model to attend to information over both rows and columns. The self-attention attends to
individual features within each data sample, and intersample attention relates each row to
other rows in the input, allowing all features from different samples to communicate with
each other.

Similar to the original transformer [8], there are L identical layers, each containing one
self-attention and one intersample attention transformer block. The self-attention block
is identical to the encoder from [8], consisting of a multi-head self-attention layer with
8 heads, and two fully connected feed-forward layers with a GELU non-linearity. A skip
connection and layer normalisation are applied to each layer. The self-attention layer is
replaced by an intersample attention layer for the intersample attention block. For the
intersample attention layer, the embeddings of each feature are concatenated for each row,
and attention is computed over samples rather than features, allowing communication
between samples.
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Figure 4. Proposed method based on SAINT [5].

As described in the original work [5],D = {xi, yi}m
i=1 is a tabular dataset with m points,

xi is an n-dimensional feature vector of process parameters, and yi is a target emission
value. A [CLS] token is appended with a learned embedding to each sample, such that
xi = [[CLS], f 1

i , f 2
i , ..., f n

i ] is a single data point with continuous features f {j}
i , and E is the

embedding layer which embeds each feature into Rd.
The SAINT pipeline is described as follows for a batch of b inputs, where MSA is

multi-head self-attention, MISA is multi-head intersample attention, LN is layer norm, and
FF is feed-forward layer:

z(1)i = LN(MSA(E(xi))) + E(xi) (2)

z(2)i = LN(FF1(z
(1)
i )) + z(1)i (3)

z(3)i = LN(MISA({z(2)i }
b
i=1)) + z(2)i (4)

ri = LN(FF2(z
(3)
i )) + z(3)i (5)

where ri is SAINT’s contextual representation output corresponding to data point xi, which
can be used in downstream tasks.

We use SAINT, as seen in Figure 4, in a fully supervised multivariate regression setting.
The code we based our experiments on can be found at (https://github.com/somepago/saint,
accessed on 14 February 2023). We used the AdamW optimiser with a learning rate of 0.0001.

4.3.2. XGBoost

XGBoost reduces overfitting through regularisation and pruning, using a distributed
gradient boosting algorithm to optimise the model’s objective function to make it more
scalable and efficient, and automatically handles missing values.

Decision trees are constructed in a greedy manner as a weak learner. At each iteration,
XGBoost evaluates the performance of the current ensemble and adds a new tree to the
ensemble that minimises the loss function through gradient descent. Each successive tree
implemented compensates for residual errors in the previous tree.

https://github.com/somepago/saint
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4.3.3. Chemical Kinetics

We compared our work to an updated Chemical Kinetics model, based on [7], using
the same sets of test data for comparisons. The predictions for the Chemical Kinetics model
are essentially part of the original dataset, with the number of features and rows of each
sub-dataset, described in Section 4.2, not affecting the raw predictions but eliminating the
varying rows depending on missing values due to features in the dataset.

4.4. Metrics and Evaluation

The metrics used to evaluate the models in this work are the mean absolute error
(MAE) and root mean squared error (RMSE).

MAE is expressed as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (6)

RMSE is expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (7)

We used randomised cross-validation to evaluate the performance of the machine
learning models, SAINT and XGBoost, whereby the data were randomly sub-sampled
10 times to obtain unbiased estimates of the models’ performance on new, unseen data on
which they were re-trained and tested. We report the average and standard deviation of
the MAE and RMSE for each sub-dataset, providing insight into the models’ consistency
and variation in performance. The Chemical Kinetics model is also compared on these test
sets to provide a relative benchmark for the performance of the models. The CO and NOx
emissions targets are individually trained to achieve specialised models for each target.

4.5. Impact of Number of Features

To assess the influence of the number of features compared to the number of rows of
data on prediction performance, we further split each dataset where each subset contained
a decreasing number of features, leading to fewer rows of missing data, allowing an
examination into the effect of removing less important features on the availability of data
points for training. Feature removal followed the order of decreasing feature importance
according to XGBoost, where the importance is calculated by XGBoost based on how often
each feature is used to make key decisions across all trees in the ensemble. The order of
importance for each feature can be found in Table A1.

5. Results and Discussion

Table 2 describes the average MAE and RMSE obtained from the 10 sub-samples of
the dataset with a varying number of features. XGBoost has on average the lowest MAE for
each emission and number of features, while SAINT has a lower RMSE on average. SAINT
and XGBoost have MAE results close to each other compared to the Chemical Kinetics
model for NOx. For example, with 174 features, SAINT has an MAE of 0.91, XGBoost has
0.62, and Chemical Kinetics has 4.46, and this trend continues for all numbers of features.
For CO, XGBoost significantly outperforms both SAINT and the Chemical Kinetics model
for MAE, with an MAE of 5.05 for 174 features compared to 11.37 for SAINT, and the
Chemical Kinetics model is several orders of magnitude higher. However, the standard
deviation for all models is much higher for CO too. The lower RMSE from SAINT in most
situations suggests it is better at handling outliers compared to XGBoost.
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Table 2. Tabular prediction results for each model on the two sets of data and four sets of number of
features used. Mean value for 10 dataset subsamples provided with standard deviation.

Methods SAINT XGBoost Chemical Kinetic

Metric MAE RMSE MAE RMSE MAE RMSE

N
O

x
Fu

ll

174 0.91 ± 0.11 2.82 ± 2.45 0.62 ± 0.14 4.08 ± 3.09 4.46 ± 0.15 6.59 ± 1.43
130 0.89 ± 0.21 2.92 ± 2.02 0.74 ± 0.18 4.48 ± 3.65 4.09 ± 0.10 6.14 ± 1.14
87 1.72 ± 0.70 3.83 ± 1.62 0.76 ± 0.12 4.04 ± 2.62 4.09 ± 0.10 6.14 ± 1.14
45 1.14 ± 0.38 2.96 ± 1.64 0.74 ± 0.08 3.00 ± 1.99 3.68 ± 0.12 5.55 ± 0.94

N
O

x
C

ro
pp

ed

88 0.54 ± 0.08 0.92 ± 0.1 0.47 ± 0.02 0.95 ± 0.17 2.67 ± 0.06 3.84 ± 0.33
45 0.56 ± 0.07 0.94 ± 0.07 0.44 ± 0.02 0.92 ± 0.16 2.67 ± 0.06 3.84 ± 0.33

C
O

Fu
ll

174 11.37 ± 6.61 117.61 ± 191.07 5.05 ± 6.45 117.83 ± 197.50 2.49 × 106 ± 7.54 × 105 3.79 × 107 ± 7.35 × 106

130 10.58 ± 5.84 164.20 ± 225.07 7.41 ± 8.09 220.53 ± 260.67 1.47 × 106 ± 5.98 × 105 2.85 × 107 ± 7.37 × 106

87 14.31 ± 6.33 152.70 ± 225.24 7.68 ± 10.80 214.44 ± 317.08 1.50 × 106 ± 5.98 × 105 2.85 × 107 ± 7.37 × 106

45 24.97 ± 30.58 292.55 ± 236.71 6.04 ± 6.30 219.92 ± 262.52 1.38 × 106 ± 8.93 × 105 2.64 × 107 ± 1.28 × 107

C
O

C
ro

pp
ed

88 2.46 ± 0.72 20.02 ± 10.14 0.59 ± 0.31 9.13 ± 8.15 5.97 × 105 ± 3.32 × 105 1.80 × 107 ± 9.34 × 106

45 2.73 ± 2.30 20.01 ± 10.15 0.63 ± 0.37 10.50 ± 9.31 5.96 × 105 ± 3.32 × 105 1.80 × 107 ± 9.34 × 106

Figures 5 and 6 show the normalised predictions compared to the real values for NOx
and CO. For Figure 6, the predictions above 1000 ppm were removed from view as these
were extremely anomalous and prevented the main results from being seen clearly. For both
emissions, the Chemical Kinetics model has significantly more spread compared to SAINT
and XGBoost. SAINT and XGBoost both follow the identity line closely for NOx, showing
that most predictions are within an accurate range for both low and high emissions. For CO
especially, XGBoost predictions are closer to the identity line compared to SAINT. SAINT
does not predict the higher emissions values for CO as well as XGBoost does, with the
largest real CO values not being predicted well at all, but it does manage to closely predict
the majority of the emissions. This is highlighted in Figure 7 where SAINT has a low
median MAE with more and larger outlier errors compared to XGBoost.

All models, especially the Chemical Kinetics model, have significant errors when
predicting CO. Further analysis of these results indicated that these large errors were
primarily driven by a small number of data points with extremely anomalous MAE values.
Figures 7 and 8 illustrate these outliers, with the logarithmic scale emphasising the limited
number of data points responsible for the higher mean MAE. Despite the presence of
outliers, the median MAE values for each model were not excessively high, with the
majority of data points exhibiting more accurate predictions for CO.

Figure 6 demonstrates that the majority of predictions generated by all models fall
within a reasonable range for accurate CO emission prediction for gas turbines. While
overall performance may be affected by the presence of outliers, the models do exhibit
good predictive capabilities for CO and NOx emissions.

In our evaluation, XGBoost provided the best prediction accuracy for both NOx and
CO, with both machine learning methods outperforming the original Chemical Kinetics
model. Prediction for NOx is significantly more accurate than CO prediction for all models.
This can be attributed to the wider spread of data points and greater presence of influential
outliers in the CO real values, as evident in Figure 3. The abundance of outliers in the CO
dataset made it inherently more challenging to predict accurately. The filters used for the
Cropped dataset particularly improved the RMSE of the machine learning models as it
removed some outlier inputs in the dataset such that outliers would have a smaller impact.
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Figure 5. Normalised real vs. predicted values for NOx for each model within one standard deviation.

0.0 0.2 0.4 0.6 0.8 1.0
Real Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 V
al

ue
s

(a) SAINT

0.0 0.2 0.4 0.6 0.8
Real Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 V
al

ue
s

(b) XGBoost

0.0 0.2 0.4 0.6 0.8 1.0
Real Values

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 V
al

ue
s

(c) Chemical Kinetic

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
st

an
ce

 fr
om

 P
re

di
ct

io
n 

to
 R

ea
l L

in
e

Figure 6. Normalised real vs. predicted values for CO for each model within one standard deviation
for the Full dataset with all features. Extreme anomalous real and predicted values above 1000 were
also removed, removing 14 data points.
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Figure 7. Box plots for MAE results for CO for each model on a logarithmic scale.
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Figure 8. Box plots for MAE results for NOx for each model on a logarithmic scale.
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5.1. Impact of Pre-Processing

The Cropped dataset consistently outperformed the Full dataset, suggesting that
careful and specific pre-processing is important for good prediction for gas turbine emis-
sions. As seen in Table 2, the standard deviation is significantly reduced when using
the Cropped dataset compared to Full, likely due to the extreme emissions values being
removed such that there is a smaller possibility for prediction. However, this may not
be useful in the long run for emissions prediction as real-life operational data will have
anomalous and varied data as in the test bed dataset, so using the Full dataset may provide
a more generalisable model.

5.2. Number of Features: Impact and Importance

Figure 9 displays the relationship between the MAE values and the number of features
in the analysis for the Full dataset, highlighting the potential impact of feature removal
and its effect on prediction performance. This provides further insights as to the feature
importance that can be seen in Table A1. For training, on average, between the 10 sub-
datasets, there were 3808 rows with 174 features, 5084 rows for 130 and 87 features, and
6223 rows for 45 features.

From this figure, it appears that the number of features and number of rows does
not significantly affect the MAE. Given that the sub-datasets with 130 and 87 features had
the same rows of data and that these extra features did not impact the prediction results
significantly, this may suggest that the models largely rely on the most important features in
the datasets, and the extra ones are less relevant for prediction. Therefore, from a practical
standpoint, the sweet spot in terms of performance is achieved with 45 features. Further
restricting the dataset to fewer high-importance features may provide further insight into
this finding.
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Figure 9. MAE compared to number of features for the Full dataset.

6. Conclusions and Future Work

We have compared two machine learning models, SAINT and XGBoost, against an
industry-used Chemical Kinetics model for gas turbine emissions prediction to demonstrate
improved predictive performance for both NOx and CO and to determine whether a deep
learning-based model or gradient-boosted decision tree model performed the best for
this task. XGBoost remained the best model for tabular prediction for this gas turbine
dataset for both NOx and CO, but the deep-learning-based model, SAINT, is catching up
in terms of performance, with lower RMSE scores indicating better outlier handling. Both
machine learning models outperformed the first-principles-based Chemical Kinetics model,
indicating that machine learning continues to show a promising future for gas turbine
emissions prediction. We also considered the impact of the number of features used in
the dataset leading to fewer rows of data available due to increasing missing values in
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each column and found that increasing features available did not significantly impact the
predictive capability of SAINT or XGBoost, potentially indicating that the high-importance
features are the most relevant for prediction.

Furthermore, to fully utilise the years of operational gas turbine data that is available
but unlabelled, a future step to improve gas turbine emissions prediction will be to include
self-supervised learning into the training process. Despite XGBoost displaying the best
performance here, attention-based deep learning methods such as SAINT will be easier to
combine with self-supervised learning by performing a pretext task such as masking to
predict masked sections of the operational data to learn representations of the data, which
can then be used in a downstream task using SAINT to create predictions.
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Appendix A

Table A1. Complete list of features in test bed dataset ordered from least to most missing values
with XGBoost importance order for Full and Cropped sub-datasets. Lower values indicate highest
XGBoost importance for the final model proposed. Number of features used to calculate importance
corresponds to Table 1.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Compressor exit pressure barg 6 0 80

Turbine interduct temperature ◦C 6 1 2

Pressure drop across exhaust ducting mbar 6 4 70

Exhaust temperature ◦C 6 5 51

Turbine interduct temperature ◦C 6 6 5

Turbine interduct temperature ◦C 6 7 23

Power turbine shaft speed rpm 6 18 76

Turbine interduct temperature ◦C 6 20 7

Pressure drop across inlet ducting mbar 6 21 11

Exhaust temperature ◦C 6 24 64

Turbine interduct temperature ◦C 6 37 34

Temperature after inlet ducting ◦C 6 38 21

Temperature after inlet ducting ◦C 6 39 62

Turbine interduct temperature ◦C 6 49 44

Exhaust temperature ◦C 6 58 67
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Exhaust temperature ◦C 6 59 24

Exhaust temperature ◦C 6 74 27

Compressor shaft speed rpm 6 78 12

Turbine interduct temperature ◦C 6 82 19

Exhaust temperature ◦C 6 83 75

Exhaust temperature ◦C 6 90 18

Exhaust temperature ◦C 6 91 41

Exhaust temperature ◦C 6 96 74

Temperature in filter house
(ambient temperature)

◦C 6 110 54

Exhaust temperature ◦C 6 111 86

Compressor exit temperature ◦C 6 112 68

Turbine interduct temperature ◦C 6 114 52

Compressor exit temperature ◦C 6 115 13

Exhaust temperature ◦C 6 125 48

Turbine interduct temperature ◦C 6 126 56

Temperature after inlet ducting ◦C 6 147 38

Turbine interduct temperature ◦C 6 149 16

Exhaust temperature ◦C 6 150 79

Turbine interduct temperature ◦C 6 153 25

Turbine interduct pressure barg 6 156 15

Turbine interduct temperature ◦C 6 159 26

Exhaust temperature ◦C 6 163 87

Turbine interduct temperature ◦C 6 171 58

Temperature after inlet ducting ◦C 23 32 30

Ambient pressure bara 33 40 49

Temperature after inlet ducting ◦C 50 105 22

Variable guide vanes position 58 3 39

Temperature after inlet ducting ◦C 88 36 28

Inlet air mass flow kg/s 214 41 43

Turbine inlet pressure Pa 219 22 82

Fuel mass flow kg/s 219 27 84

Calculated heat input
(fuel flow method) W 219 33 72

Turbine inlet temperature K 219 35 6

Mass flow into combustor
(after bleeds) kg/s 219 66

Power MW 219 109 83

Calculated heat input (heat
balance method) W 219 123 47
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Exhaust mass flow kg/s 219 151 66

Bleed mass flow kg/s 219 68 65

Lower calorific value of fuel kJ/kg 468 162 37

Combustor 2 pilot-tip temperature ◦C 970 12 1

Combustor 4 pilot-tip temperature ◦C 970 14 3

Combustor 6 pilot-tip temperature ◦C 970 29 8

Combustor 5 pilot-tip temperature ◦C 970 106 4

Combustor 1 pilot-tip temperature ◦C 970 121 36

Combustor 3 pilot-tip temperature ◦C 970 127 14

Firing temperature K 2178 79 42

Load % 1 % 2837 46 78

Load % 2 % 2837 30 59

Bleed valve angle % 2837 26 85

Main/pilot burner split % 3806 102 10

Fuel demand kW 3806 119 40

Main/pilot burner split % 3806 168 0

Bleed valve angle Degrees 3854 154 9

Gas Generator inlet journal bearing
temperature 2

◦C 4172 10 46

Gas Generator exit journal bearing
temperature 2

◦C 4172 70 57

Gas Generator Thrust Bearing
temperature 2

◦C 4172 73 20

Gas Generator Thrust Bearing
temperature 1

◦C 4172 113 63

Power Turbine Thrust Bearing
temperature 2

◦C 4597 64 29

Power Turbine exit journal bearing
temperature 2

◦C 4597 80 31

Power Turbine Thrust Bearing
temperature 1

◦C 4597 88 35

Power Turbine inlet journal bearing
temperature 1

◦C 4597 140 32

Compressor exit pressure bara 8973

Gas Generator inlet journal bearing
temperature 1

◦C 9389 77 45

Gas Generator exit journal bearing
temperature 1

◦C 9389 144 71

Power Turbine Exit Journal Y µm 9814 8 55

Power Turbine Exit Journal X µm 9814 11 50

Gas Generator Exit Journal Y µm 9814 13 81

Power Turbine Inlet Journal Y µm 9814 28 69
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Power Turbine exit journal bearing
temperature 1

◦C 9814 69 33

Gas Generator Exit Journal X µm 9814 75 73

Power Turbine Inlet Journal X µm 9814 87 77

Gas Generator Inlet Journal X µm 9814 101 53

Gas Generator Inlet Journal Y µm 9814 120 60

Power Turbine inlet journal bearing
temperature 2

◦C 9814 141 61

Combustor can 3, magnitude in
second peak frequency in band 2 psi 15,020 2

Combustor can 1, second peak
frequency in band 1 hz 15,020 9

Combustor can 3, magnitude in
third peak frequency in band 2 psi 15,020 15

Combustor can 5, magnitude in
first peak frequency in band 2 psi 15,020 16

Combustor can 1, first peak
frequency in band 1 hz 15,020 17

Combustor can 6, magnitude in
first peak frequency in band 1 psi 15,020 23

Combustor can 2, first peak
frequency in band 2 hz 15,020 25

Combustor can 2, first peak
frequency in band 1 hz 15,020 31

Combustor can 5, first peak
frequency in band 1 hz 15,020 42

Combustor can 4, magnitude in
first peak frequency in band 2 psi 15,020 43

Combustor can 4, third peak
frequency in band 2 hz 15,020 44

Combustor can 1, magnitude
inthird peak frequency in band 2 psi 15,020 45

Combustor can 3, first peak
frequency in band 2 hz 15,020 47

Combustor can 4, magnitude in
third peak frequency in band 2 psi 15,020 50

Combustor can 1, third peak
frequency in band 2 hz 15,020 54

Combustor can 6, magnitude in
second peak frequency in band 2 psi 15,020 55

Combustor can 6, first peak
frequency in band 2 hz 15,020 62

Combustor can 3, magnitude in
first peak frequency in band 2 psi 15,020 63
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Combustor can 4, second peak
frequency in band 2 hz 15,020 65

Combustor can 2, second peak
frequency in band 1 hz 15,020 67

Combustor can 1, second peak
frequency in band 2 hz 15,020 71

Combustor can 5, magnitude in
third peak frequency in band 2 psi 15,020 72

Combustor can 2, third peak
frequency in band 2 hz 15,020 76

Combustor can 5, magnitude in
first peak frequency in band 1 psi 15,020 81

Combustor can 6, second peak
frequency in band 2 hz 15,020 89

Combustor can 4, magnitude in
second peak frequency in band 2 psi 15,020 94

Combustor can 2, magnitude in
first peak frequency in band 1 psi 15,020 95

Combustor can 5, third peak
frequency in band 2 hz 15,020 97

Combustor can 1, magnitude in
second peak frequency in band 1 psi 15,020 98

Combustor can 3, magnitude in
first peak frequency in band 1 psi 15,020 99

Combustor can 6, first peak
frequency in band 1 hz 15,020 100

Combustor can 3, second peak
frequency in band 1 hz 15,020 104

Combustor can 3, magnitude in
second peak frequency in band 1 psi 15,020 107

Combustor can 2, magnitude in
second peak frequency in band 2 psi 15,020 108

Combustor can 5, second peak
frequency in band 2 hz 15,020 116

Combustor can 4, magnitude in
second peak frequency in band 1 psi 15,020 117

Combustor can 5, first peak
frequency in band 2 hz 15,020 118

Combustor can 4, magnitude in
first peak frequency in band 1 psi 15,020 129

Combustor can 1, magnitude in
first peak frequency in band 2 psi 15,020 130

Combustor can 6, magnitude in
first peak frequency in band 2 psi 15,020 132
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Combustor can 6, magnitude in
third peak frequency in band 2 psi 15,020 133

Combustor can 1, first peak
frequency in band 2 hz 15,020 134

Combustor can 2, magnitude in
third peak frequency in band 2 psi 15,020 135

Combustor can 6, third peak
frequency in band 2 hz 15,020 136

Combustor can 5, magnitude in
second peak frequency in band 2 psi 15,020 143

Combustor can 3, second peak
frequency in band 2 hz 15,020 145

Combustor can 4, first peak
frequency in band 2 hz 15,020 146

Combustor can 2, magnitude in
first peak frequency in band 2 psi 15,020 148

Combustor can 2, magnitude in
second peak frequency in band 1 psi 15,020 152

Combustor can 3, third peak
frequency in band 2 hz 15,020 155

Combustor can 1, magnitude in
second peak frequency in band 2 psi 15,020 157

Combustor can 2, second peak
frequency in band 2 hz 15,020 165

Combustor can 3, first peak
frequency in band 1 hz 15,020 166

Combustor can 4, first peak
frequency in band 1 hz 15,020 167

Combustor can 1, magnitude in
first peak frequency in band 1 psi 15,020 170

Combustor can 4, second peak
frequency in band 1 hz 15,020 172

Combustor can 6, second peak
frequency in band 1 hz 15,020 19

Combustor can 6, magnitude in
second peak frequency in band 1 psi 15,020 53

Combustor can 5, magnitude in
second peak frequency in band 1 psi 15,020 84

Combustor can 5, second peak
frequency in band 1 hz 15,020 139

Combustor can 3, magnitude in
third peak frequency in band 1 psi 15,020 131

Combustor can 3, third peak
frequency in band 1 hz 15,020 160

Combustor can 6, magnitude in
third peak frequency in band 1 psi 15,020 92
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Combustor can 6, third peak
frequency in band 1 hz 15,020 128

Combustor can 1, magnitude in
third peak frequency in band 1 psi 15,020 86

Combustor can 1, third peak
frequency in band 1 hz 15,020 161

Combustor can 4, magnitude in
third peak frequency in band 1 psi 15,020 85

Combustor can 4, third peak
frequency in band 1 hz 15,020 122

Combustor can 2, third peak
frequency in band 1 hz 15,020 34

Combustor can 2, magnitude in
third peak frequency in band 1 psi 15,020 124

Combustor can 5, magnitude in
third peak frequency in band 1 psi 15,020 51

Combustor can 5, third peak
frequency in band 1 hz 15,020 56

Center casing, magnitude in
first peak frequency in band 2 psi 16,226 93

Center casing, first peak frequency
in band 2 hz 16,226 164

Center casing, magnitude in second
peak frequency in band 2 psi 16,226 60

Center casing, second peak frequency
in band 2 hz 16,226 142

Center casing, third peak frequency
in band 2 hz 16,226 158

Center casing, magnitude in
third peak frequency in band 2 psi 16,226 173

Center casing, first peak frequency
in band 1 hz 16,226 48

Center casing, second peak frequency
in band 1 hz 16,226 52

Center casing, magnitude in second
peak frequency in band 1 psi 16,226 57

Center casing, magnitude in
first peak frequency in band 1 psi 16,226 103

Center casing, magnitude in
third peak frequency in band 1 psi 16,226 138

Center casing, third peak frequency
in band 1 hz 16,226 169

Combustion chamber exit mass flow kg/s 17,713 61 17

Lube Oil Pressure ◦C 18,021 137

Pressure drop across venturi mbar 19,528
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Table A1. Cont.

Description Unit Missing
Values

Full
Importance

Cropped
Importance

Center casing, first peak frequency
in band 3 hz 20,489

Center casing, second peak frequency
in band 3 hz 20,489

Center casing, third peak frequency
in band 3 hz 20,489

Center casing, magnitude in
first peak frequency in band 3 psi 20,489

Center casing, magnitude in second
peak frequency in band 3 psi 20,489

Center casing, magnitude in
third peak frequency in band 3 psi 20,489

Turbine interduct pressure bara 23,497
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