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A B S T R A C T

In multi-energy systems the full utilisation of the generated energy is a challenge. Integrating heat and
electricity supply at the system level design could provide an opportunity to address this challenge. In this
paper we introduce and examine two coupled thermal-electrical dispatch strategies for grid-connected hybrid
multi-energy systems supplying electrical and thermal demand loads. The dispatch strategy employs forecasting
of energy resources and demand loads to prioritise supplying the thermal load in times of renewable surplus.
Four forecasting algorithms, namely, baseline forecast, Facebook Prophet (FBP), Neural Prophet (NP), and
Long Short-Term Memory model (LSTM) are implemented and used to generate annual forecast data for solar
irradiance, wind speed, and thermal and electrical demand loads. To integrate forecast data within the dispatch
strategy, new parameters are proposed to quantify the expected available energy within the forecast time
horizon. A building complex for the Department of Education in the UK is used for conducting a system design
case study. A genetic algorithm-based multi-objective optimisation with the levelised costs of electricity and
heat as two objectives is conducted. The results show that the proposed dispatch algorithm produces systems
with reduced levelised costs compared to the base case of using utility gas and electricity. Forecasting is
particularly useful in reducing cost of heat, as it can prioritise supplying the thermal load in times of renewable
surplus. LSTM proved to be the most accurate forecasting algorithm for this case, where the data has strong
seasonality and trends. The main contribution of this work is to propose and demonstrate the effectiveness of
tightly coupling thermo-electrical dispatch algorithms of HRES from the design stage, and how to effectively
integrate forecast data within such algorithms.
1. Introduction

The cost of renewable electricity generation continues to fall glob-
ally. When put in perspective, the decline has been steep over a short
period of time. For example, between 2010 and 2021, the global
weighted average of levelised cost of electricity for PV fell by 88%,
for onshore wind fell by 68% and for offshore wind by 60% [1]. The
progress was mainly due to economies of scale, improved capacity
factors, and increased competitiveness. On the other hand, the decar-
bonisation of heat has been advancing at a slower rate than that of
electricity, mainly due to slow developments in new technologies and
insufficient policy support worldwide [2]. Given that heat (residential
and industrial) is the largest portion of the total energy demand of
developed economies (roughly half of the energy consumption in the
EU [3]), many governments started supporting the transition to clean
heating systems. For example, the UK government pledged to reduce
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direct emissions from all public sector buildings by 75% by 2037,
investing GBP1.425B in public sector decarbonisation schemes [4].

Opportunities to tackle the challenge of providing clean energy
(electricity, heating/cooling, transport) could be realised by integrat-
ing the currently separate energy carriers for electricity, heating, and
transport. These systems are called multi-energy systems (MES) [5] or
multi-carrier energy systems (MCES) [3]. One of the main aspects of
MES is distributed multi generation (DMG) whereby multiple energy
vectors are combined to provide several end-products for a spatially
defined region (i.e., a building, a district or a region) [6].

Energy systems with multiple generators, including renewables,
storage and/or backup have traditionally been termed Hybrid Renew-
able Energy Systems (HRES) [7]. HRES usually supplied electricity;
heating was either not considered or considered as a by-product of the
system. However, in the context of increased renewable electricity gen-
eration, a promising approach is to integrate different carriers [3]. In
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the context of electricity-heat integration, there are several hybrid heat-
ing technologies that are proposed, such as heat pump and boiler and
natural gas boilers equipped with water storage tanks that have electric
heating elements and sometimes with variable speed feed pumps [3].
In all these examples, electrification of heat is the overarching theme.

The control logic ensuring the balance of supply and demand within
MES is called dispatch strategy or energy management strategy. A well
designed dispatch strategy is vital, especially when variable renewables
are included in the system. In the context of grid-connected HRES, the
performance of the system is critically linked to the energy pricing
structure. Variable tariffs have been shown to be beneficial for the
adoption of HRES by improving the capacity factors and economic
value of HRES. In this context, Zhang and Tang [8] proposed two
power management strategies of grid-connected PV system with bat-
tery storage. The strategies are developed to work with ‘time of use’
tariff and ‘step’ tariff within the Chinese market. times and levels of
energy storage as opposed to export back to the grid are controlled
to achieve maximum economic gain for the household. Bigger returns
were observed when grid prices were higher. Liu et al. [9] developed
an innovative MES for high-rise buildings in congested coastal cities
(Hong Kong as a case study). The model includes a high-penetration
renewables grid coupled with pumped hydro storage in the building
and hydrogen production fuelling hydrogen taxis outside the building.
They performed multi-objective optimisation to find the optimal size
of the pumped hydro storage system. A novel Time of Use (ToU) tariff
structure is proposed and studied along an existing flat rate tariff
structure. The use of pumped hydro storage was found to improve
self-consumption by 12% and reduce energy bills by around 24%.

Different concepts were proposed for MES for residential energy
application. Zhao et al. [10] proposed a household multi-energy system
using electric-gas heating and cooking appliances and other domestic
electric loads. The renewable energy comes from rooftop PV panels.
They developed energy management strategies with the aid of Markov
chains and a deep reinforcement learning algorithm. The objective was
to minimise the cost of energy of the household. The load scheduling
algorithm was made up of fixed loads, power-shiftable loads such as
space heating and cooling, and time-shiftable loads such as washing
machines. Niveditha et al. [11] studied grid-connected HRES of net-
zero energy buildings with added objective of minimisation of the total
energy transfer between the grid and the building. This applies to
imports and exports to reduce the burden on the grid and maximised
the self-sufficiency of the building.

Studies with larger end-user, such as a district MES were also
proposed. Tostado et al. [12] presented a multi-energy micro-grid
model that combines electricity, hydrogen, and natural gas as energy
carriers. The interfaces between the different carriers include electrical
energy storage, gas to electricity converter (e.g. a turbine), electricity
to gas converter (e.g. alkaline electrolysis) and electricity to hydrogen
(e.g. electrolyser). The multi-energy microgrid also contains provision
for electrical vehicles charging. The energy management system was
tested on loading cases in the summer and winter.

Combined Heat and Power (CHP) is probably the oldest MES con-
cept. For example, Thompson et al. [13] studied the feasibility of in-
stalling different configurations of renewable-biomass-storage to supply
rural community in Canada. Biomass was found to be most economical,
given that the study was in 2009 and renewable technology prices were
significantly higher than the present. More recently, Ma et al. [14]
explored different HRES-CHP combinations for grid-connected systems
that supply residential districts in seven Chinese cities. PV-microturbine
systems were deemed to be more feasible in most locations with occa-
sional backup from the grid. Similarly, Shah et al. [15] used HOMER
software to study the performance of PV+ storage +CHP +boiler in
three regions of the USA (hot, mild, and cold). The system was off-grid
supplying residential load. High renewable penetration was achieved
in all three locations. However, the coupling between thermal and
2

electrical loads was not considered.
Given the many possible MES configurations and the complexity of
the interaction between supply and demand of different technologies,
arriving at the optimal size in a given situation is a challenging task.
Evolutionary algorithms and linear programming remain a popular
choice. Gabrielli et al. [16] studied a multi-energy system with seasonal
thermal storage to supply electricity and heat to a region in Switzer-
land. The system was grid-connected to gas and electrical networks
and included several storage and conversion technologies such as gas
turbines, fuel cells, and power-to-gas. The work focused on proposing
an optimisation framework that is accurate and computationally effi-
cient. They achieved this by proposing a two novel Mixed Integer Linear
programming models. It was found that the proposed system reduced
cost and emissions and that it was more suited to high penetration
renewable scenarios. He et al. [17] proposed a system with wind
and PV panels and thermal storage of molten salt that is charged by
electric heater and discharged by driving steam Rankine cycle. Heat
is also supplied from the storage. for the multi-objective optimisation,
they used NSGA-III combined with principal component analysis and
technique for order preference by similarity to an ideal solution to
evaluate and select a solution. The system was able to cover most of
electricity and heat load, except occasionally in the night. Furthermore,
the system had better economic and environmental performance than
traditional power system. Shen et al. [18] studied optimal sizing of
electrical and thermal energy storage within a multi-energy system
supplying a small community. The grid-connected multi-energy system
consisted of PV panels, a gas turbine, and a CHP unit. To coordinate the
sizing and operation of the system, they proposed a two-stage stochastic
programming model. It was found that addition of storage improves the
performance of the energy system, and that the thermal inertia of the
heat network provides more flexibility of the system and the balancing
between supply and demand.

Balancing the supply and demand can be challenging as they might
have a significantly different patterns. For example, the pattern of
demand in commercial building will be stirred by the working hours
and holidays. Machine Learning (ML) algorithms can help in analysing
the various patterns and forecast demand and supply [19]. For ML
algorithms, to accurately forecast the future, it requires a dataset that
has a large number of precise measurements. .3 The dataset would be
used by the ML to model the data and ‘learn’ the different patterns.
Afterwords, the learned patterns can be used to predict the future
measurements.

The pattern of generated energy from renewable resources, depend
on the source of the energy. Predicting the energy generated by wind
turbines can be achieved by forecasting the wind speed (as shown
in Section 2, which had been studied in several publications using a
wide range of methodologies such as support vector machines in [20],
deep neural networks [21], and recurrent neural network (RNN) [22].
Similar approaches had been proposed been used to forecast the solar
irradiance [23,24]. A wide range of algorithms had been proposed
in the literature to forecast the electrical and thermal demands, such
as econometric and time series models, neural networks and fuzzy
logic [25].

The importance of forecasting the supply and demand is easy to
see when integrating it to the energy systems as shown in the work
of Zhang et al. [26], artificial neural networks was used to forecast
solar irradiance, wind speed and ambient temperature. The forecasting
data was used for optimal sizing of a stand-alone solar wind hydrogen
HRES. The objective was to minimise the Total life cycle cost of
the system. It was found that the use of forecasting data combined
with the evolutionary search algorithm improved the sizing algorithm
and resulted in systems with smaller Total Life Span Cost (TLSC)
while maintaining the Loss Power Supply Probability (LPSP) at low
levels. Recently, Kahwash et al. [27] applied AI-enabled forecasting
with multi-objective optimisation in sizing Grid-connected HRES in the
context of healthcare facilities in the UK. The study found that PV-

grid systems were most economically feasible given the relatively high
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prices of battery storage. The cost competitiveness of different solutions
were mapped for five years and provided a basis to choose larger PV
systems than would be justified based on optimising in the present.
However, the study focused on electrical load only. Pascual et al. [28]
proposed an energy management system for residential microgrid sup-
plying renewable electricity and heat. The proposed system achieved
lower costs by reduction of the battery sizes required to balance the
grid-connected system. The proposed energy management system seeks
to balance the electrical grid by utilising batteries, thermal storage, and
forecasting. However, the algorithm is uncoupled since it calculates the
electrical balance first and then the thermal balance. The configuration
is (PV + WT + Bat) with thermal storage (with immersion heater) and
solar water heater. The coupling of the thermo-electrical system was
done through thermal storage and battery.

As was shown in this introduction and in previous work by the
authors [27], hybrid heating arrangements (excess renewable + boiler)
are effective in reducing the overall cost of energy and emissions of
the heating loads. However, the heating energy dispatch strategy was
not coupled with the electrical energy management strategy; leading to
large amount of renewable electricity to be dumped or higher usage of
boiler.

The aim of this paper is to reduce the overall cost of energy for
consumers by introducing a strongly coupled grid-connected HRES to
supply electricity and heat. This aim will be achieved by (i) developing
a coupled thermo-electrical energy dispatch strategy that is capable of
managing a complex HRES with grid connections while reducing the
levelised cost of energy. (ii) Incorporation of generation and consump-
tion forecasting by means of machine learning into the coupled dispatch
strategy.

The rest of the paper is organised as follows. Section 2 presents the
methodology of power and cost calculations of the HRES, followed by
the proposed coupled dispatch strategy algorithms and multi-objective
optimisation problem formulation using Genetic Algorithm. In order
to investigate the effect of foretasting, two versions of the dispatch
strategy, namely with and without forecasting are explained. The con-
sumption and generation data are then presented along with the various
machine learning algorithms used in producing the forecasting data.
Section 3 begins by showing the forecasting data and discusses the
accuracy of the different machine learning algorithms used. Then, the
optimum solutions for the two novel dispatch strategies are presented
and compared in detail. The effect of cardinal parameters on the results
is discussed, including the forecasting horizon and the energy cost.
In Section 4, concluding remarks, critique of the results and future
research directions are presented.

2. Methods

2.1. HRES system architecture

The proposed thermo-electrical HRES consists of renewable genera-
tors (wind turbine and PV), storage (battery bank and thermal storage
tank) and fossil fuel back up generators (CHP and boiler). Fig. 1 shows
a schematic of the proposed system architecture. PV and battery bank
are connected on the DC side, while the wind turbine and CHP are
connected on the AC side. DC and AC bus are connected through bi-
directional converter. The system can import and export electricity to
the grid with the same capacity. The thermal system has three sources,
namely, heat from CHP that passes to the thermal system through a
heat exchanger, the excess electricity which provides thermal energy
through an electrical heating element, a boiler that will cover the
3

thermal load in times of scarcity of other sources.
2.2. Power modelling

2.2.1. Wind turbine
The wind power output is calculated from tabulated data of the form

𝑃𝑤𝑡 = 𝑓 (𝑉ℎ𝑢𝑏). The values are normalised with respect to the rated
power. The power output is calculated by linear interpolation of the
normalised power curve, then multiplying by the rated capacity of the
wind turbine. This approach is accurate for modelling different sizes of
small wind turbines typically used in HRES. The wind velocity at hub
height is calculated from the logarithmic law of wind shear [29].

2.2.2. PV panels
The power output of the PV panels can be calculated from the

following equation [30]

𝑃𝑝𝑣 = 𝐴𝑝𝑣𝐺𝑇 𝜂𝑝𝑣
(

1 + 𝛼𝑝(𝑇𝑐 − 𝑇𝑐,𝑠𝑡𝑐 )
)

(1)

where, 𝐴𝑝𝑣[m2] is the surface area of the PV panels, 𝐺𝑇 [W/m2] is the
global irradiance incident on the plane of the PV panel, 𝜂𝑝𝑣 is the system
efficiency; 𝛼𝑝[%∕𝐶◦] is the panels’ temperature deration coefficient;
𝑐 is the temperature of the cell surface and 𝑇𝑐,𝑠𝑡𝑐 is the temperature
f the cell surface at Standard Test Conditions (STC). The last term
n Eq. (1) takes into account the effect of ambient temperature on
he efficiency of the panels by introducing efficiency correction term
roportional to the difference in cell surface temperature between the
tandard test conditions and the prevailing cell temperature onsite. The
odel assumes that Maximum Power Point Tracking is included, so as

o obtain maximum output at each irradiance level.

.2.3. Battery bank
In this study, we consider single-node storage model to calculate the

attery’s State of Charge (SoC) as follows [31,32]

𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 𝛥𝑡)(1 − 𝛿) +
(𝑃 − 𝐿) × 𝛥𝑇
𝑁𝑏𝑎𝑡𝑉𝑏𝑎𝑡𝐴𝑏𝑎𝑡

𝜂𝑏𝑎𝑡 (2)

where, 𝛿 is the internal self-discharge rate of the battery; 𝛥𝑇 is the
interval at which measurements are taken. In this work, 𝛥𝑇 = 1 h
unless otherwise stated. The term (𝑃 − 𝐿)𝛥𝑇 is the net energy flow
nto the battery bank during one hour. The term 𝑃𝑏𝑎𝑡,𝑛𝑜𝑚 = 𝑁𝑏𝑎𝑡𝑉𝑏𝑎𝑡𝐴𝑏𝑎𝑡

is the nominal capacity of the battery bank and 𝜂𝑏𝑎𝑡 is the round-trip
efficiency of the battery.

At each timestep in calculating the battery’s SoC, two quantities
are needed, namely, the extractable power from the battery 𝑃𝑏𝑎𝑡,𝑒 and
the power required to fill up the battery 𝑃𝑏𝑎𝑡,𝑓 . They are calculated as
follows:

𝑃𝑏𝑎𝑡,𝑒 =
(

𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑆𝑜𝐶𝑡−𝛥𝑡
)

𝑃𝑏𝑎𝑡,𝑛𝑜𝑚 (3)

𝑃𝑏𝑎𝑡,𝑓 =
(

𝑆𝑜𝐶𝑡−𝛥𝑡 − 𝑆𝑜𝐶𝑚𝑖𝑛
)

𝑃𝑏𝑎𝑡,𝑛𝑜𝑚 (4)

2.2.4. Grid power
In this work, the system can interact with the grid in a bi-directional

manner. Electricity is imported from the grid to provide the balance
of energy, when all system generators are unable to cover the load.
In times of high generation and low demand, excess electricity can be
exported back to the grid. Exports and imports are capped at the same
level. This is assumed to be equal to the maximum electrical demand
onsite. This is a reasonable assumption given that grid circuit breakers
are sized to fulfil the entire electrical demand in the absence of all other
sources. Transmission losses for imports and exports are neglected.

2.2.5. CHP unit
A Natural gas CHP unit is used in the system to provide electricity

in times of low renewable generation and heat through waste heat
recovery. Usually, heat can be recovered from engine coolant cycle,
engine lubrication cycle, and exhaust flue. Overall efficiency of such

systems is often in excess of 80% [33]. The electrical power output of
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Fig. 1. Schematic of system architecture.
the CHP can be calculated using the Heaviside step function as follows:

𝑃𝑐ℎ𝑝(𝑡) =
[

𝑃𝑐ℎ𝑝,𝑛(𝐿𝑒𝑙(𝑡) − 𝑃𝑐ℎ𝑝,𝑛) × 𝐿𝑒𝑙(𝑡)(𝑃𝑐ℎ𝑝,𝑛 − 𝐿𝑒𝑙(𝑡))
]

𝐿𝑒𝑙(𝑡)(𝐿𝑒𝑙(𝑡))

(5)

where, 𝑃𝑐ℎ𝑝,𝑛 is the nominal electrical capacity of the CHP unit. Fuel
consumption and thermal output were calculated following the proce-
dure in [7].

2.2.6. Boiler
A boiler is used to supply the thermal load in the absence of elec-

trical heating or storage. The boiler is assumed to run on natural gas,
which is the most common type in areas with existing gas networks.
The efficiency of the boiler is considered to be constant in this study
and used to calculate the power of the boiler as follows [34]

𝐻𝑏 =
𝐿𝑡ℎ(𝑡)
𝜂𝑏

(6)

where, 𝐿𝑡ℎ is the thermal load and 𝜂𝑏 is the efficiency of the boiler. Fuel
consumption is calculated as follows:

𝑉𝑓𝑢𝑒𝑙 =
3600 ×𝐻𝑏
𝐿𝐻𝑉

(7)

where, 𝐿𝐻𝑉 is the lower heating value of the fuel.

2.2.7. Thermal storage tank
The thermal storage is a cylindrical water-based tank. To calculate

the energy balance, a single-node, fully mixed model is adopted. The
tank runs between two predefined setpoints (in this study 45 ◦C and
75 ◦C) [35]. The temperature of the tank is calculated according to the
following formula:

𝑇𝑠𝑡(𝑡) = 𝑇𝑠𝑡(𝑡 − 𝛥𝑡) + 𝛥𝑡
𝑚𝑠𝑡𝑐𝑝

(𝑄𝑖𝑛 −𝑄𝑙𝑜𝑠𝑠 −𝑄𝑙𝑜𝑎𝑑 ) (8)

where, 𝑇𝑠𝑡 (K) is the average temperature in the tank, 𝑚𝑠𝑡 (kg) is the
mass of water in the tank, 𝑐𝑝 (J/kg-K) is the heat capacity of the water,
𝑄𝑖𝑛 is the input heat into the tank (from CHP, or excess electricity),
𝑄𝑙𝑜𝑠𝑠 is the heat loss from the walls of the tank and 𝑄𝑙𝑜𝑎𝑑 is the thermal
load served. Losses are calculated based on an average heat transfer
4

coefficient for the tank walls, and the tank is assumed to be cylindrical
with a length equal to the diameter.

2.3. Coupled thermo-electrical dispatch strategies

In this section, the novel energy dispatch strategies are presented.
At the beginning, several variables are proposed to enable the effec-
tive utilisation of the forecasting data into the strategies. Then the
algorithms are described.

2.3.1. Expected utilisation ratios
Assuming that the controller implementing the dispatch strategy has

access to forecast data of renewable generation and demand up to 𝑚
number of hours ahead. The window of time at which the forecast
data are available to the controller is called the the forecasting horizon.
Consequently, we propose a variable called expected electrical utilisation
ratio. At each time step of the calculation, it can be estimated as:

𝛹𝑗 =

∑𝑚
𝑖=𝑗+1 𝑃𝑟,𝑖 + 𝑃𝑏,𝑗
∑𝑚

𝑖=𝑗+1 𝐿̂𝑒𝑙,𝑖

(9)

where, 𝑗 is the current time of calculations; 𝑚 is the forecasting horizon
in hours; 𝑃𝑟 is the forecasted renewable generation within the specified
horizon; 𝑃𝑏,𝑗 is the extractable power from the battery at the current
time; and 𝑖 = 𝑗 + 1, which means that the forecast data start one hour
ahead of the current timestep.

At each point in time, the value of 𝛹 will help determine the
priorities of the algorithm. In the case where 𝛹 > 1+TOL, the forecasted
available energy will surpass the forecast demand over the chosen
horizon. In this case, less priority will be given to charging the battery
and more priority will be given to fulfilling thermal loads. TOL is a
small positive number used to account for uncertainty in the forecast
results.

Similarly for the thermal load, we define expected thermal utilisation
ratio as:

𝛤𝑗 =
max

(

∑𝑚
𝑖=𝑗+1 (𝑃𝑟,𝑖 − 𝐿̂𝑒𝑙,𝑖), 0

)

+𝐻𝑡,𝑗
∑𝑚 ̂

(10)

𝑖=𝑗+1 𝐿𝑡ℎ,𝑖
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Table 1
Subscripts used in DiStr1 and DiStr2 algorithms.
Subscript Meaning Subscript Meaning

𝑎𝑣 available (existing − minimum) 𝑓 full (max − existing)
𝑠𝑡 storage tank 𝑒𝑥𝑝 export
𝑑𝑢𝑚𝑝 dumped energy 𝑏 battery
↑ charging ↓ discharging
𝑏𝑜 Boiler 𝑐𝑟 critical

where, 𝐻𝑡,𝑗 is the extractable thermal energy from the storage tank, and
𝐿̂𝑡ℎ,𝑖 is the forecast thermal demand. The first term in the numerator is
the forecasted net surplus in renewable generation after fulfilling elec-
trical load. Whenever this quantity is positive, the surplus is diverted
to fulfil the thermal loads. The max function is used to exclude the
negative values, in which case there is no electrical surplus available
for thermal demand. In the case where 𝛤 > 1 + TOL, the forecasted
vailable energy will surpass the forecast demand over the chosen
orizon. In this case, less priority will be given to charging the tank and
ore priority will be given to charging the battery. When the demand

s very small or zero, 𝛤 → ∞, in this case, a large value is enforced to
revent the existence of ∞ in the calculations. This does not affect the
peration of the algorithm, given that any value beyond 1 + TOL will

trigger the same response (i.e., reduced priority). Finally, it is worth
noting that non-renewable thermal sources (e.g. boiler and CHP) are
not included in Eq. (10). This is mainly due to their dispatchability.

2.3.2. Storage level indicators
Storage level indicators are proposed here to quantify the urgency

of charging one of the two storage technologies. The electrical storage
level indicator 𝑆𝑜𝐶𝑐𝑟 is a set level where 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑐𝑟 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 In
this study, 𝑆𝑜𝐶𝑚𝑖𝑛 = 0.3 and 𝑆𝑜𝐶𝑚𝑎𝑥 = 1. When the battery’s 𝑆𝑜𝐶 falls
elow the value of 𝑆𝑜𝐶𝑐𝑟, charging the battery becomes a priority when
surplus generation exists. Similarly, the thermal storage level indicator
𝑐𝑟 where 𝑇𝑚𝑖𝑛 ≤ 𝑇𝑐𝑟 ≤ 𝑇𝑚𝑎𝑥 In this study, 𝑇𝑚𝑖𝑛 = 45 ◦C and 𝑇𝑚𝑖𝑛 = 75 ◦C.

When the temperature of the water in the tank falls below the value
of this parameter, charging the tank becomes a priority when there is
extra electrical/thermal power. In this study, the critical level is set as
average of the minimum and maximum values for the battery and tank.

2.3.3. Renewable surplus generation
To simplify the energy balance calculations, we define the following

variables:

𝑃ℎ𝑑 (𝑖) = 𝑃𝑟(𝑖) − 𝐿𝑒𝑙(𝑖) − 𝐿𝑡ℎ(𝑖) (11)

𝑃𝑑 (𝑖) = 𝑃𝑟(𝑖) − 𝐿𝑒𝑙(𝑖) (12)

When 𝑃ℎ𝑑 > 0, it means there is a renewable generation surplus over
the combined electrical and thermal demand (complete surplus). When
𝑃𝑑 > 0, this indicate surplus of renewable generation over electrical
demand only (partial surplus). 𝑃ℎ𝑑 is a subset of 𝑃𝑑 (if 𝑃ℎ𝑑 > 0 then
𝑃𝑑 > 0 but not vice versa).

2.3.4. DiStr1: Coupled thermo-electrical dispatch strategy
The coupled dispatch strategy without forecast is shown graphically

in Fig. 2. In general, the symbol 𝑃 refers to electrical supply, and 𝐻 to
thermal supply. Electrical and thermal loads are indicated by 𝐿𝑒𝑙 , 𝐿𝑡ℎ,
respectively. The use of (𝑖) indicates calculations over timesteps (i.e. ev-
ery one hour in this study). Subscript used in Figs. 2,3, are shown in
Table 1.

At each timestep, initial quantities are calculated, such as renewable
power and available energy stored in the battery bank and thermal
storage tank. The controller then checks if there is total surplus (𝑃ℎ𝑑 >
0), partial surplus (𝑃𝑑 > 0) or a deficit (𝑃𝑑 ≤ 0). In the times of surplus
energy, priority is given to the battery, then to the storage tank and
5

then to exporting back to the grid. When there is a deficit and there is
enough capacity in the storage, it will be used. If the electrical deficit is
large, the CHP is switched on. If the thermal deficit is large, the boiler
is switched on. When CHP is switched on, heat supply from it will be
prioritised to charge the tank. However, the CHP will not be switched
on in case of thermal deficit alone, since in general, the efficiency of
the boiler is higher than CHP.

As can be seen, there is strong coupling between the electrical and
thermal systems since the controller will take decisions after consider-
ing the state of both sub-systems in how to optimally balance the supply
and demand.

2.3.5. DiStr2: thermo-electrical dispatch strategy with supply and demand
forecasting

The graphical representation of DiStr2 is shown in Fig. 3 and in
Appendix A. Similarly to DiStr1, the controller starts by calculating
current state variables, including expected utilisation ratios (see Sec-
tion 2.3.1), and storage level indicators (see Section 2.3.2). In case of
complete surplus, there are two final states: (i) priority for thermal
storage charging, or (ii) priority for battery charging. The former is
triggered when 𝛹 is large, 𝛤 is small and 𝑇𝑠𝑡 < 𝑇𝑐𝑟. The latter is
triggered in all other situations. If surplus power remains after fully
charging the battery and tank, excess will be exported. If there is further
excess, it will be dumped.

In case of partial surplus, electrical load is covered as a priority. If
there is expected surplus, the combined partial surplus and tank will be
used to cover the thermal load; otherwise, the boiler will be switched
on to cover the thermal deficit.

In case of deficit, the priorities are similar to DiStr1, except in cases
where CHP is switched on and there is expected electrical deficit, then
the CHP is run as maximum capacity to charge the battery. CHP run
with better efficiency at higher loads. In case of thermal deficit only,
the boiler is switched on.

2.4. Cost modelling

To estimate the economic viability of the HRES, the system cost
are estimated. The cost components considered in this study are: (i)
Capital, (ii) Fixed Operation and Maintenance, (iii) Variable Operation
and Maintenance, (iv) replacement, and (v) salvage costs. Over the life
of the project, all cost components are combined to give the Total Life
System Cost (TLSC) and then the annualised system cost 𝐶𝑎𝑛𝑛,𝑡𝑜𝑡. The
calculations followed the procedure in [7].

In the current coupled system, the levelised cost of energy has two
components, the levelised cost of electricity (LCE) and levelised cost
of heat (LCH). The annualised cost for electrical components 𝐶𝑎𝑛𝑛,𝐸 is
calculated separately and the heat from the CHP is treated as revenue.
LCE is calculated as follows [34,36]:

𝐿𝐶𝐸 =
𝐶𝑎𝑛𝑛,𝐸 − 𝐶ℎ × 𝐿′

𝑡ℎ
𝐿𝑒𝑙 − 𝑈𝐿𝑒𝑙

(13)

The second term in the numerator is the avoided cost of heating by
utilising heat from the electrical side of the system. Heat is treated
as a by-product. The denominator represents the total served electrical
energy (total load - unmet load). 𝐶ℎ[ $∕kWh] is the cost of producing
one kWh of heat using the boiler [34]

𝐶ℎ =
𝐶𝑓𝑢𝑒𝑙 × 3600
𝜂𝑏 × 𝐿𝐻𝑉

(14)

where, 𝜂𝑏 is the boiler efficiency.
The LCH can be calculated in a similar way by using the annualised

cost of the thermal equipment and treating the electricity produced by
the CHP as revenue to be deducted as follows [7]

𝐿𝐶𝐻 =
𝐶𝑎𝑛𝑛,𝑡ℎ − 𝐶𝐸 × 𝐿′

𝑒𝑙 (15)

𝐿𝑡ℎ − 𝑈𝐿𝑡ℎ
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Fig. 2. Flowchart of the coupled dispatch algorithm without forecast (DiStr1).

Fig. 3. Simplified flowchart of the coupled dispatch algorithm with forecasting (DiStr2), details of the three main decision branches are shown in Appendix A.
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Table 2
Cost parameters used in the optimisation simulations.
Component Capital cost (CC) Installation (IC) Var O &M Fixed O&M Replacement Nominal life

Wind turbine 0.85 ($∕𝑊𝑛𝑜𝑚) [1] 0.75 x CC 0 0.002 ($∕kWh) (CC+IC) 25 years
PV Panels 50 ($∕m2) [1] 2 x CC 0 2 ($∕m2) (CC+IC) 25 years
Battery bank 350 ($∕kWh)[38] 0.5 x CC 0 0.01 x CC (CC+IC) 15 years or

3000 cycles
Grid 0 0 0.35($∕kWh)

[37]
0.065($∕kWh)
[39]

0 0 25 years

CHP 0.75 ($∕𝑊𝑛𝑜𝑚) [40] 1.0 x CC 0.1 ($∕m3) [37] 0.02 ($∕hr) (CC+IC) 15000 h
Boiler 0.2 ($∕𝑊𝑛𝑜𝑚) [7] 0.2 x CC 0.1 ($∕m3) [37] 0.002 x CC (CC+IC) 10 years
Therm. storage 2 ($∕kg𝑤) [7] 0.2 x CC 0 0.01 x CC (CC+IC) 25 years
t
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In this case, 𝐶𝐸 is the cost of importing from the grid, which is avoided
by switching the CHP on. 𝐿′

𝑒𝑙 is the total avoided electrical imports from
the grid.

2.4.1. Parameters of cost modelling
Accurate cost parameters are crucial for accurate optimisation. The

parameters used in cost modelling are presented in Table 2. High
prices for grid imports and natural gas are currently prevailing in the
UK [37] and are expected to rise further in the near future. The life of
battery bank is determined by nominal life (in years) or by throughput
(in cycles), i.e. the total energy that cycled through the battery. The
dispatched energy to and from the battery bank is monitored and the
replacement is calculated based on the minimum of either the nominal
life or the throughput.

2.5. Multi-objective optimisation

The sizing of the HRES is formulated as a multi-objective optimi-
sation problem. It is solved using the genetic algorithm (GA) coded in
MATLAB R2018a. The code utilises the built-in GA optimiser, which
uses a controlled, elitist genetic algorithm. It favours individuals with
greater fitness and individuals who can help increase the diversity of
the population, even if they have a lower fitness value [41]. Using
the built-in GA optimiser also enables using the parallel computing
capabilities of MATLAB, which significantly reduces the computation
time.

LCE (Eq. (13)) and LCH (Eq. (15)) are chosen as the two objectives
of the optimisation. Given the coupled nature of these two objectives, it
is expected that a negative correlation exists. The larger the electrical
side of the system will result in more renewable and CHP heat and
this in turn means higher LCE and lower LCH. There are six design
variables, representing the main system components sizes as follows:

𝐱⃗ = {𝑃𝑤𝑡,𝑛𝑜𝑚, 𝐴𝑝𝑣, 𝑁𝑏𝑎𝑡, 𝑃𝑐ℎ𝑝,𝑛, 𝑀𝑠𝑡, 𝑃𝑏}

The search space’s lower bound 𝐱⃗𝐿 = 𝟎. This allows the optimiser
to eliminate any component that is not effective. The upper bound for
each component is calculated as follows:

𝐱⃗𝑈 =

{

𝛼𝑤𝑡.max(𝐿𝑒𝑙)
1000

,
8𝛼𝑝𝑣.max(𝐿𝑒𝑙)

1000
, 𝛼𝑏𝑎𝑡

24
∑

𝑖=1

𝐿𝑒𝑙,𝑖

𝑃𝑏𝑎𝑡,𝑚𝑎𝑥
,
𝛼𝑐ℎ𝑝 max(𝐿𝑒𝑙)

1000
,

𝛼𝑠𝑡
24
∑

𝑖=1

𝐿𝑡ℎ,𝑖

𝐻𝑠𝑡,𝑚𝑎𝑥
,
𝛼𝑏 max(𝐿𝑡ℎ)

1000

}

(16)

The various 𝛼 parameters are reserve factors between 1.1 and 2.
They are used to expand the search space, which allows exploring
different architectures (e.g. a system with very large wind turbine could
be beneficial for the thermal side). The PV upper bound equation is
multiplied by 8, which represent the conversion factor between area
and nominal power of the PV panels (8 m2 ≈ 1 kW). The division
over 1000 indicates that the step size s is 1 kW rather than 1 W. The
upper bound for storage is calculated based on autonomy days, which is
taken = 2 in this study. Table 3 shows the main parameters used in the
7

Table 3
Main parameters for GA.
GA parameters Value GA parameters Value

Objectives [LCE, LCH] Max number of generations 800
Population size 400 Convergence criteria 1 × 10−5

Constraints tolerance 1 × 10−5 Pareto fraction 0.5
Crossover fraction 0.8 Max number of stalled generations 140
Variables lower bounds 𝐱⃗𝐿 Variables upper bounds 𝐱⃗𝑈

optimisation. The solution converged when the average change in the
Pareto solution was less than 1 × 10−5 (convergence criteria) over 140
generations (maximum number of stalled generations). Given the large
search space, the population size and maximum number of generation
was chosen to be high to ensure convergence. These parameters were
chosen after extensive numerical experiments to find the right balance
between accuracy and computational time.

The optimisation problem can then be formulated as follows:

min
{

𝐿𝐶𝐸(𝐱⃗), 𝐿𝐶𝐸(𝐱⃗)
}

S.T.
𝑁
∑

𝑖
𝐵𝑂𝑖 ≤ 𝐵𝑂𝑎𝑙𝑙 (17)

where, ∑𝑁
𝑖 𝐵𝑂𝑖 is the total (thermal and electrical) blackout hours in

he year.

.6. Forecasting algorithms

.6.1. Forecasting pipeline
To calculate the values of 𝛹 and 𝛤 , the forecast of supply and

emand must be accurate. The forecast in achieved by the pipeline
hown in Fig. 4. The first step is i. data collection in which it is critical
o collect an accurate data from the site. The collected data should
ave measurements for both the demand (electrical and gas) and the
upply (wind speed and solar irradiance). The datasets also must have
common periods in which they have readings (especially if the data
ere collected from various sources), and this common duration must
e ‘long’ enough to train the forecasting models.

.6.2. Data collection case study: Department for education building in
arlington, UK

To validate the proposed methodology we have applied the dis-
atch strategy on a building of the UK’s department for education in
arlington, UK. The building is no longer in use. It was chosen due

o the availability of long term, half hourly Electrical and thermal
onsumption data between 2011 and 2015 [42]. The building is located
t (54.523, −1.552). It has a central heating system for domestic hot
ater and space heating and is fully air conditioned. The building
osted around 400 employees that had access to the building between
he morning and night and no usual access during weekends.

The hourly values of irradiance and wind speed is taken from the
nline database PVGIS for the same location [43]. The readings are
ogged in the Radiation database: PVGIS-SARAH database. The set has
eading from 1st of January 2011 until 31st of December 2015. It
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Fig. 4. Forecasting main steps.
four parameters: G(i) Global incident irradiance (Wh/m2), 𝐻𝑠𝑢𝑛, the
elevation angle (deg), T2 m: the air temperature at 2 m height (◦C)
and WS10 m: wind speed at 10 m height (m/s).

2.6.3. Pre-processing
To ensure that the collected datasets are suitable to the learn from,

we must ‘clean’ the data. This is done by formatting the data and joining
various tables (if necessary) to form a well-structured dataset. The
energy loads datasets and the supply data have different time scales,
thus we have converted the loads data which has half-hourly readings
to hourly readings as the supply only has hourly one. Then we defined
the training period to be starting from 1st of April 2011 until 31st of
December 2012. While the testing dataset is between the 1st of January
2013 until the 31st of December 2013. These periods where chosen as
they are common in both datasets. The common period is 1005 days in
total thus 24 121 h (or data points). Afterwards, the dataset will be split
into training set and testing set, where training period starts from 1st
of April 2011 until 31st of December 2012. While the testing dataset
is between the 1st of January 2013 until the 31st of December 2013.
Thus the training set is approximately 65% of the data and the test set
is 35%. It is worth mentioning that the length of the sets are determined
by the required forecasting horizon for the optimisation, as shown in
the next sections.

To optimise the learning, it is important to make sure the training
dataset are standardised, which can be achieved using the standard
scalar [44], as follows:

𝑦̃(𝑡) =
(𝑦(𝑡) − 𝑦̄)

𝜎
; (18)

where 𝑦̃(𝑡) is the normalised value, 𝑦(𝑡) is the recorded value, 𝑦̄ is the
mean value, and 𝜎 is the standard deviation value. If the dataset has
outliers, it is critical to eliminate them, which can be done using the
Winsorization technique [45]. The Winsorization technique replaces
the highest and lowest 𝑥% of the data by the 100 − 𝑥% the data. The 𝑥
value can be determined by analysing the datasets, usually it is between
0% and 10%.

2.6.4. The models training
We have implemented four forecasting algorithms, i.e., Baseline

forecast, Facebook Prophet (FBP) [46], Neural Prophet (NP) [47], and
Long Short-Term Memory model (LSTM) [48]. The baseline model
uses reading from the past year, thus assuming that there would not
be a significant difference between the years. The FBP uses a time
series model with three main model components: trend, seasonality,
and holidays as follows [46],

𝑦̂𝐹𝐵𝑃 (𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝜖 (19)

where 𝑦(𝑡) is the forecast value at time 𝑡, 𝑔(𝑡) is the trend function
that models the non-periodic changes, 𝑠(𝑡) is the seasonality function
8

that models the periodic changes, ℎ(𝑡) represents the holidays, and 𝜖
represent the error.

Neural Prophet (NP) is an extension for the FBP which incorporate
deep learning algorithms and the FBP model to improve the forecasting
accuracy [47]. Its forecasted value is obtained by

𝑦̂𝑁𝑃 (𝑡) = 𝑇 (𝑡) + 𝐸(𝑡) + 𝐹 (𝑡) + 𝐴(𝑡) + 𝐿(𝑡) (20)

where 𝑇 (𝑡) is the Trend at time 𝑡, 𝑆(𝑡) is the Seasonal effects at time
𝑡, 𝐸(𝑡) is the Event and holiday effects at time 𝑡, 𝐹 (𝑡) is the Regression
effects at time t for future-known exogenous variables, 𝐴(𝑡) is the Auto-
regression effects at time 𝑡 based on past observations, and 𝐿(𝑡) is the
Regression effects at time𝑡 for lagged observations of exogenous vari-
ables. In our implantation of FBP and NP, we adapted the parameters
depending on the used dataset. For example the public holidays and
weekends would only affect the forecasting for the electric and thermal
loads.

The LSTM is an artificial neural network that has feedback connec-
tions [48]. It is one of the most used architectures for recurrent neural
network (RNN) that can process not only single data points (such as
images), but also entire sequences of data (such as time-series, speech
or video) [49]. The connection weights and biases in the network
change once per episode of training, and the activation patterns in the
network change once per time-step.

The used LSTM network has a single input feature and a single
output. The input layer a sequence layer followed up by an Keras
LSTM layer [50]. Then a dense layer. The solver is adaptive moment
estimation (Adam), that was trained for 20 epochs. To optimise the
number of neurons used, we conducted a grid search, whose results
are shown in Table C.7.

2.6.5. Post-processing,
After generating the forecasted values, we have applied a post-

processing step, in which we have inverted the standardisation done on
the pre-processing step, and replaced any negative value with a zero.
This step helps to increase the accuracy of the forecasting as the data
should not include negative values.

2.6.6. Evaluating the accuracy;
The accuracy of the forecasted values were evaluated using widely

used metrics, i.e., the determination coefficient (R2), Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and normalised RMSE
(nRMSE). The R2 is calculated as follows:

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦̂𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦̄ − 𝑦𝑖)2
(21)

where 𝑦𝑖 refers to the 𝑖th forecasted value (hour in this case), knowing
that 𝑖𝜖{1, 2,… , 𝑁}, where 𝑁 is the number of forecasted values in the
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Fig. 5. Solar irradiance and wind speed values between 01/04/2011 and 01/01/2014 (a) Global irradiance Power (wh/m2) and (b) Total Wind Speed at 10 m (m/s).
Fig. 6. Electrical and Gas consumption between 01/04/2011 and 01/01/2014 (a) Electricity Consumption (b) Gas Consumption.
future (forecast horizon). The measured value is 𝑦𝑖. The mean measured
value 𝑦̄ is calculated by 𝑦̄ = 1

𝑁
∑𝑁

𝑖 𝑦𝑖.
The forecast error indicates the difference between the forecasted

values and the measured ones, are evaluated using the MAE and the
RMSE, that is calculated using:

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦̂𝑖 − 𝑦𝑖| (22)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2 (23)

The RMSE is a commonly used performance metric, as it shows the
absolute error value and highlights the large errors while minimising
the small ones. As we have different dataset with different scales it is
insightful to have an error metric that can be used for the comparison,
thus we are using the normalised RMSE (𝑛𝑅𝑀𝑆𝐸), which shows the
error normalised by the interquartile range (𝐼𝑄𝑅) as follows:

𝑛𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸
𝐼𝑄𝑅

(24)

where

𝐼𝑄𝑅 = 𝑄3 −𝑄1

𝑄3 and 𝑄1 refers to the third and first quarterlies.

3. Results

3.1. Exploratory data analysis

The used data consist of four sets, two representing the energy
sources, i.e., global solar irradiance and wind speed, the other two sets
represent the energy consumption, i.e., electrical and heating demands.
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Table 4
Descriptive statistics for the used datasets after removing the outliers.

Solar Wind Gas Electricity

Mean 126.14 4.45 173.92 145.33
Std 214.82 2.26 301.78 92.92
Min 0 0.03 0 0
Q25% 0 2.69 0 79.3
Q50% 0 4.07 0 97.6
Q75% 158.02 5.9 204.1 225
Max 849.48 10.37 1114.15 354.3
Count 24121 24121 24121 24121

Initially we stared the analysis by pre-processing the datasets, as the
electrical and heating demands data where half-hourly reading, we
added them to have hourly reading similar to the supply datasets. The
solar irradiance and total wind speed are shown in Fig. 5, and the
electrical and heating demands are presented in Fig. 6.

As observed in Figs. 5,6, there is significant outliers in the datasets
(especially the electrical demand) which might have occurred because
of a high intensity loads. Thus in we have applied an outlier filter on
the datasets to reduce the affect of this outliers on the forecasting. The
outliers were removed using Winsorization technique to replace the top
2% of the data with the value of the data at the 98th percentile [45].
Removing the outliers can help the forecasting algorithms to obtain
accurate results; hence, the training dataset would be more constant
and representative of the datasets. Table 4 presents the descriptive
statistics of the data after removing the outliers.

The datasets have different patterns; for example, if we consider
the supply data, the global irradiance value is approximately zero after
sunset; on the other hand, it varies during the daytime, while the wind
speed varies most of the time. The average wind speed is 4.923 m/s and
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Fig. 7. Gas and electrical demand per hour (a) gas consumption per hour (kW) and (b) electricity consumption per hour (kW).

Fig. 8. Gas and electrical demand per day (a) gas Consumption per hour (kW) and (b) electricity consumption per hour (kW).

Fig. 9. Monthly energy consumption (a) gas consumption per hour (kW) and (b) electricity consumption per hour (kW).

Fig. 10. Solar irradiance and wind speed values per hour (a) global irradiance (wh/m2) and (b) wind speed at 10 m (m/s).
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Fig. 11. Solar irradiance and wind speed values per month (a) global irradiance power (w/m2) and (b) total wind speed at 10 m (m/s).
maximum value of 16.28 m/s. Furthermore the mean and median of the
Solar and Gas data significantly differ, which indicates that the data is
skewed and not normally distributed (The histograms of the datasets
are presented in Appendix B). Consequently the forecasting algorithms
must be suited to non normally distributed data.

Given the nature of the building, it starts to be heated around
7:00am just before office workers start their working day. The heating
load continues to decrease throughout the day as shown in Fig. 7-a.
This is probably caused by the heating from office activities, including
the presence of large number of employees and visitors with comput-
ers, printers and other office equipment. The electrical consumption
coincides with the usual working hours in offices, where the demand
is highest between 8:00 and 18:00 as shown in Fig. 7-b.

Thermal and electrical loads are affected by work days. As shown in
Fig. 8-a, the thermal load is minimised in the weekend. While Mondays
have the highest thermal consumption, therefore the in-building tem-
perature would be at its lowest point after the building has not been
heated on the weekend. The electric load is usually lower during the
week; however, since the electric load is generated by devices (such as
PCs) that might be kept working over the weekend, it is not significant
as in the heating load, as shown in Fig. 8-b.

Heating load observe strong seasonality as shown in Fig. 9-a. Where
highest demand is in January reaching maximum of around 90kWh-
th. The daily pattern is similar across the seasons with a spike in the
morning. While the electrical load has a similar pattern through the
months with a slight increase in winter as shown in Fig. 9-b. This could
be caused by the reduced natural lighting.

To assess the big picture and understand the loads pattern, we
combined the data shown in Figs. 7 and 9. Strong seasonality is evident
in the thermal load with minimum consumption in July and maximum
in January. Electrical load showed the same seasonality trend with sig-
nificantly reduced magnitude. This could be explained by the increased
need for lighting in the winter.

The energy supply data patterns different than the generation one,
as it not affected the working hours and holidays. The global irradiance
is affected by sunrise and set, as shown in Fig. 10-a, thus most of the
power is generated between 7 AM and 5 PM. While the wind power
is not as significantly affected by the sun rise and set, but nevertheless
we can still observe the slight increase in it toward midday, as shown
in Fig. 10-b.

The irradiance and wind power are affected by the seasons, as in the
summer months the number of daylight hours are much larger than in
the winter hours, as shown in Fig. 11-a. On the other hand, the wind
speed increases in the winter months as shown in Fig. 11-b.

To understand the relation between the different datasets, we have
conducted Pearson correlation analysis [51]. The analysis results pre-
sented in Fig. 12, shows the correlation between different datasets. For
11

example, the positive correlation between the global irradiance and the
Fig. 12. Correlation heat-map for all the used features from the datasets.

Table 5
Comparison of forecasting algorithms, showing the coefficient of determination 𝑅2 for
the forecast horizon.

Dataset Baseline Baseline’ FBP FBP’ NP NP’ LSTM

Gas 0.10 0.16 0.33 0.29 0.26 0.15 0.84
Electric −2.60 −0.13 −5.64 −0.07 −0.89 −1.33 0.97
Wind −0.73 −0.70 −0.58 −0.74 −0.11 −0.06 0.99
Solar 0.09 0.12 0.45 0.45 −0.86 −0.74 0.77

sun height (G(i) and 𝐻𝑠𝑢𝑛), also we can see the negative colouration
between the gas usage and the temperature (Gas and T2 m).

3.2. Forecasting results

Initially we conducted a comparative study for the forecasting al-
gorithms with and without eliminating the outliers to find the most
accurate forecast. The results for Baseline’, FBP’, and NP’, refers to
applying the algorithms to the datasets after eliminating the outliers.
The 𝑅2 results are summarised at Table 5. The LSTM has the highest
accuracy in most cases. As can be observed, the 𝑅2 performance for
the wind is considerably higher than the other data, as its distribution
is close to the normal distribution. The significant outliers in the
electric load (shown in Fig. 6) affected the forecasting performance,
which explains the difference in the FBP and FBP’ performance. The
forecasting error evaluated using the MAE, RMSE, and nRMSE is shown
in Figs. 13–15.

As shown in Table 5, and Figs. 13, 14, and 15, the LSTM has the
most accurate forecasting. As it is a RNN which is ideal for sequential
data, and in our case, its short and long term memory is particularly
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Fig. 13. Forecasting accuracy evaluated using the Mean Absolute Error (MAE).

Fig. 14. Forecasting accuracy evaluated using the Root Mean Squared Error (RMSE).

Fig. 15. Forecasting accuracy evaluated using the normalised Root Mean Squared Error
nRMSE).

seful as the data has strong seasonality and trends. Consequently we
sed LSTM to forecast the resources and demand, and use the generated
ata in DiStr2 dispatch strategy.

.3. Optimised solutions comparison

The forecasted data presented in Section 3.2 are used in DiStr2
lgorithm (see Section 2.3.5). The optimisation is carried out using
iStr1 and DiStr2 as per Section 2.5 and the results are shown in
ig. 16. The DiStr2 is generally producing better results, especially
ith respect to LCH. The spread of the front is larger for DiStr1 than
iStr2. This might be explained by the fact that closer integration of the

hermal and electrical side in DiStr2 is causing LCE and LCH to be less
onflicting than in the case of DiStr1. The horizontal and vertical lines
epresent the base case scenario when there is no HRES; i.e., electricity
rom the grid only and heating using a gas boiler. It is clear that most
f the solutions are superior to the base case for both electricity and
eat. It is also worth noting that the LCH falls below the zero line,
here is it expected that the system will generate revenue based on

he heating subsystem. This is a consequence of Eq. (15), where the
enerated electricity revenue from the CHP system is subtracted from
he cost of heating. When the CHP generation is high, the system is
heoretically generating profits.

Another important metric to evaluate the solutions is TLSC. This
arameter will show the overall cost of the system regardless of the
12
Table 6
Best solution for each dispatch strategy from Pareto front.

DiStr 𝑃𝑤𝑡 𝐴𝑝𝑣 𝑁𝑏𝑎𝑡 𝑃𝑐ℎ𝑝 𝑀𝑠𝑡 𝑃𝑏
( - ) (kW) (m2) (- ) (kW) (ton) (kW)

1 345 2878 103 81 24.5 1719
2 395 3869 129 105 14.3 1685

energy produced. The Pareto solutions shown in Fig. 16 were ranked
based on TLSC and the minimum solutions are highlighted in black,
representing ‘best’ solution for each DiStr. The configuration of the two
‘best’ solutions is shown in Table 6. DiStr2 solution contains larger
renewable generation and battery storage, while the DiStr1 solution
contains larger thermal storage and boiler. This indicates that the
DiStr2 solution has a higher proportion of clean heat than the DiStr1
solution.

Fig. 17 shows the boxplots for LCE (left) and LCH (right) for Pareto
solutions as a function of the dispatch strategy. For LCE, the median
for DiStr1 is 0.548$/kWh and for DiStr2 is 0.166$/kWh. 32.5% of
the solutions of DiStr1 fall below the grid cost, whereas 100% of the
solutions of DiStr1 fall well below the grid cost. As for LCH, The median
drops from −0.0173$/kWh to −0.0318$/kWh for DiStr1 and DiStr2,
espectively. In both cases, 100% of the solutions are below the base
ase of using gas boiler only. The savings in gas consumption and
he revenues from electrical generation of CHP contribute to the cost
eduction of heat generation.

Fig. 18 shows the effect of dispatch strategy on the optimum sys-
em size of each component. Some of the notable differences can be
ummarised as follows:

• DiStr2 produced systems with smaller batteries and larger storage
tanks.

• Renewable generation components were generally higher in
DiStr2 than DiStr1.

• Increased reliance on CHP in DiStr2 causes increased revenues
and therefore reduction in LCH.

• Both systems relied on large boilers that can serve more than 90%
of the maximum thermal load. This is attributed to the large spike
in demand in the early morning, making a large boiler the best
choice.

To study the difference between the ‘best’ solutions shown in Ta-
le 6, we show the electrical and thermal generation share differences
n Fig. 19. On the electrical side, most of the generation is local with
bout 13% and 7% imported from the grid for DiStr1 and DiStr2,
espectively. CHP contributed 32% and 28% for DiStr1 and DiStr2,
espectively. Given the relatively low operating cost of the CHP using
atural gas, it is an attractive solution for a case with large thermal load
ike our case study. Battery storage contribution was small with 1.5%
nd 6.3% for DiStr1 and DiStr2, respectively. This could be attributed
o the fact that excess electrical production has multiple uses, such as
xport back to the grid or be used in the thermal system. Given that
he two optimum systems have slightly different component sizes, it is
xpected that the contribution of each technology would be different.
or example, DiStr2 resulted in larger renewables and that is reflected
n the larger share in both electrical and thermal demands.

On the other hand, majority of the thermal load was covered by the
oiler (around 64% in both cases). For both solutions, the boiler has
nough capacity to cover the entire thermal load for > 90% of the time

throughout the year. The nature of the thermal load, with large demand
in the early morning hours and then no demand in the night favours
the highly dispatchable gas boiler. Renewables contributed 9% and
12% respectively. CHP contributed around 18% in both cases, whereas,
storage contributed 10% and 6% for DiStr1 and DiStr2, respectively.
The similarity is explained by going back to Fig. 16. It is clear that the
two ‘best’ solutions have similar LCH but different LCE.
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Fig. 16. Pareto front for the two dispatch strategies. The vertical line is the cost of electricity imported from the grid, the horizontal line is the cost of heating using gas boiler
only. The two lines represent the ‘base case’ scenario. The blacked circle and triangle show the ‘best’ solution of each Pareto front. DiStr1 solutions extend to around 𝐿𝐶𝐸 = 1,
ut were omitted for better clarity.
Fig. 17. Boxplot for LCE and LCH as a function of the dispatch strategy. The central red mark indicates the median bounded by a box showing the 25th and 75th percentiles.
The whiskers extend to the most extreme data points not considered outliers. The horizontal black dashed lines indicate the ‘‘business as usual’’ scenario, where grid/gas are used
exclusively.
Fig. 18. Boxplot showing the spread nominal size of each component as a function of the dispatch strategy. Values are taken from the Pareto solutions shown in Figure 6. DiStr2
eturns smaller battery bank size, larger tank and larger CHP size. This reflects increased ranking of thermal storage and increased revenues from the thermal system which favours
arger CHP units.
.4. Performance comparison of dispatch strategies

To compare the behaviour of the proposed dispatch strategies, an
ourly data comparison on sample dates is done. The dates are chosen
o highlight the difference between the two dispatch strategies, namely
13
by choosing time with high renewable generation. In other situations,
the two strategies behave similarly.

Figs. 20 and 21 show the electrical energy balance during the same
2-day period in January, for DiStr1 and DiStr2, respectively. The main
difference between the two algorithms is in the charging priority during
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Fig. 19. Generation share relative to the total load of (a) electrical and (b) thermal systems for the best two systems shown in Table 6 as a function of the dispatch strategy.
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imes of renewable energy surplus. DiStr1 always prioritises charging of
he battery and then the thermal storage (note the green bars between
ours 5 and 11 in Fig. 20). Conversely, in DiStr2, when the algorithm
s expecting surplus renewable generation, it will divert the excess
lectricity towards the thermal side by fulfilling the load directly and
hen charging the tank (note the light blue bars between hours 5 and 17
n Fig. 21). When there is expected deficit (Hours 24 to 28 in Fig. 21),
iStr2 charges the batteries.

The behaviour of the thermal system at the same interval under
iStr1 and DiStr2 is shown in Figs. 22 and 23, respectively. The main
ifference shown is that renewable contribution is larger for DiStr2
han DiStr1 (note the difference in hours 3 to 12). This is the period
hen DiStr2 expected surplus electrical generation, so it kept the
attery at minimum and diverted the excess energy to partially fulfil
he large, coexisting thermal load. Another difference is noted between
ours 24 and 26. DiStr1 diverted more surplus to the thermal side
han DiStr2. This is caused by the prediction by DiStr2 of deficit on
he electrical side, and therefore prioritising of battery charging at that
articular time. It should be noted that in the majority of the time,
iStr1 and DiStr2 will behave in a similar way; the difference is most
bvious in times of large surplus followed by sustained deficit.

.5. Performance of the GA optimiser

Establishing the robustness of the optimiser is an important step to
nsure accurate results. Ideally, exhaustive search should be carried out
o check where the GA solutions are located within the entire search
pace. However, in our case, the search space is prohibitively large. This
s a result of the system being in the order of 10 MWh/day. The upper
ound of the search space is set at [ 751, 6002, 8470, 413, 2583, 1787 ]
nd the lower bound is zero for all components. Given increments of 1
pplied to each of the components, there will be 7.2781×1019 solutions
n the search space. This is clearly infeasible to solve exhaustively.

Alternatively, we chose to repeat the optimisation multiple times
nd examine the variations in the obtained solutions. For each dispatch
trategy, 10 repetitions were made. A curve fit is constructed and is
hown in Fig. 24 with coefficients with 95% confidence bounds.

The goodness-of-fit measures are for DiStr1, 𝑅2 = 0.9968, 𝑅𝑀𝑆𝐸 =
.0007515 and for DiStr2 𝑅2 = 0.9933, 𝑅𝑀𝑆𝐸 = 0.002359. DiStr1 was
enerally better fit than DiStr2, mostly in the top left region where
ost of the solutions show an infliction point (change in direction of

urvature). This is shown in the values of RMSE, where DiStr2 is larger
y one order of magnitude than DiStr1. This shows that the setting
hosen for the GA are suitable and gives better confidence in the results.
14

i

3.6. Effect of forecasting horizon on DiStr2 solutions

The forecast horizon 𝑚 is a critical parameter affecting the perfor-
ance of DiStr2. To understand its effects, the optimisation is run using
iStr2 and varied the horizon in the set: 𝑚 ∈
1 4 7 10 13 16 19 22

]

. The same optimisation parame-
ers mentioned in Table 3 are maintained for these simulations.

Fig. 25 shows the main effects plots of LCE and LCH as a function
f the forecasting horizon. The total Pareto solutions are used in
onstructing each point (200 solutions each point). There is a clear
nverse relationship between the two measures, which supports the
otion that the two costs are conflicting in a coupled system. The
uitable horizon was chosen 𝑚 = 13, giving a compromise between com-
utational efficiency and accuracy. Larger horizon values will increase
he computational runtime due to the averaging of more points at each
teration of the simulation (refer to Eqs. (9),(10)).

Fig. 26 shows the effect of the forecasting horizon length on the
alues of 𝛹 . The top figure shows the balance between renewable
upply (in black) and demand (in green). The dashed lines show the
orecasted values and the solid lines show the actual values. The bottom
igure shows the corresponding values of 𝛹 at the same time interval
or 𝑚 = [1, 7, 13, 19] hours. The other hours are omitted for clarity of
he plot, however, the same analysis still hold.

It can be seen that longer horizon values causes 𝛹 to dampen and
hift ahead of the actual surplus and deficit, as per the direction of the
lack arrow on the Figure. This is expected as 𝛹 is a summation, so
arger horizons will contain both surplus and deficit therefore damp-
ning it around 𝛹𝑡ℎ𝑟𝑒. Smaller horizon are more accurate (for example,
ompare the actual surplus in sub- Fig. 26-a during hours 34–42 with
he values of 𝛹 at 𝑚 = 1 in sub- Fig. 26-b). However, as will be
hown later, better prediction accuracy does not necessarily lead to
etter management of the surplus.

The effect of the forecast horizon on the storage technologies in
he system (batteries and tank) is shown in Fig. 27. In sub Fig. 27-a,
he total energy stored in batteries and thermal tank is plotted against
he forecast horizon. Generally, the electrical energy is decreased and
hermal energy increased with increased forecast horizon. This is in
ine with the findings from Fig. 26, in which longer horizons produce
smoothed’ 𝛹 that spread the expected surplus over a longer period
f time. This in turn, will cause more energy to be diverted to the
hermal side, since the surplus forecast will reduce the priority of
attery charging. In sub Fig. 27-b, the effect of the horizon on the
requency of empty storage is shown. As the horizon increases, the
umber of hours where the battery is flat increases from around 1100 h
o 1600 h, while the thermal tank at minimum temperature will reduce

n frequency from 290 h to around 230 h. This trend is broadly in
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Fig. 20. DiStr1 electrical energy balance (top) and corresponding battery’s SoC (bottom) on 25–26 Jan. The system component size vector is [556, 3449 , 1635 , 110 , 1830 , 2429].

he forecasting horizon is 13 h. This figure should be compared with Fig. 21.
Fig. 21. DiStr2 electrical energy balance (top), corresponding battery’s SoC (middle) and the values of the electrical utilisation factor (𝛹 ) for the same system and parameters,
and over the same period as in Fig. 20. As long as (𝛹 ) is in the green region, fulfilling thermal demand is prioritised over charging the battery. Compare the SoC between the
two figures.
v
c
s

agreement with the change in dispatched energy with the length of the
horizon.

Fig. 28, shows the effect of the forecasting horizon on the bat-
tery charging decision. One day with surplus renewables is chosen to
highlight the differences. Sub Figs. 28-b-c show that shorter horizons
will produce more accurate prediction of the onset of deficit. Longer
horizons causes premature prediction of deficit and leading to the
battery charging priority to go up at the expense of the tank.

3.7. Effect of electricity and gas prices on the optimised solutions

Finally, we study the effect of electricity import price (𝐶𝑒𝑙) and gas
price (𝐶 ) on the optimum solutions of the system. In both cases, the
15

𝑔𝑎𝑠 v
price level is changed separately and the GA optimisation is run. 𝐶𝑒𝑙 is
studied at four levels, while 𝐶𝑔𝑎𝑠 is studied at five levels.

The price of electricity imports is changed within the set: 𝐶𝑒𝑙 =
[ 0.15, 0.25, 0.35, 0.45 ]. The base level of 0.35 $∕kWh is the current
prevailing price in the UK [37]. The lower two levels are reflective
of historical electricity prices that were prevailing in the last two
decades [52]. The highest level represent expected rise in electricity
price based on long term trends [27].

The price of natural gas imports is changed within the set: 𝐶𝑔𝑎𝑠 =
[ 0.06, 0.1, 0.14, 0.18, 0.22 ]. The base level that was used in all pre-
ious simulations is (0.1 $∕kWh). The lowest value was chosen to
orrespond to the gas price in the period 2014–2020, when low and
table prices prevailed. The higher values are chosen to anticipate more
olatile markets with price hikes [52].
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Fig. 22. DiStr1 thermal energy balance (top) and corresponding tanks temperature (bottom) on 25–26 Jan. The dashed lines are the maximum and minimum tank temperature.
he system component size vector is [556, 3449 , 1635 , 110 , 1830 , 2429]. The forecasting horizon is 13 h. This figure should be compared with Fig. 23.
Fig. 23. DiStr2 thermal energy balance (top) and corresponding tanks temperature (bottom) on 25–26 Jan. The dashed lines are the maximum and minimum tank temperature.
he system component size vector is [556, 3449 , 1635 , 110 , 1830 , 2429].
The effect of 𝐶𝑒𝑙 is summarised in sub Fig. 29-a. Average LCE in-
reased around 3 times, while LCH reduced from 0.05 to −0.07 $∕kWh.
he imports from the grid directly affects the electrical side, however,
t higher prices, the optimum system configuration returns larger CHP
nits, which generates revenue causing the LCH to drop. The effect
f 𝐶𝑔𝑎𝑠 is summarised in sub Fig. 29-b. LCE and LCH increase with
ncreased gas price. The LCE increase stabilises at high 𝐶𝑔𝑎𝑠, while LCH
eeps on rising. This alters the optimal configuration by reducing the
HP and boiler sizes as shown in Fig. 30).

The effect of gas price on average system sizes is shown in Fig. 30.
enerally, higher gas price resulted in lower component size for CHP
nd renewables. The drop in CHP size is expected as it becomes
ess competitive technology with increased gas price. The decrease in
enewables could be explained by the increased imports from the grid
nd decreased exports. Higher prices of gas are making importing from
he grid more attractive. In the case of higher gas prices, this is expected
o affect the price of electricity imports from the grid. However, in this
ection we assumed the price of electricity imports to be fixed. At the
16
highest price level, the size of the boiler is significantly reduced. It
is compensated by an increase in renewable generation and thermal
storage.

Fig. 31 shows the effect of electricity prices on the average size of
the components. A strong negative correlation is noticed for wind tur-
bine and PV array sizes. This could be related to the smaller difference
between imports and exports at the lower electricity costs. Given that
the export price was kept constant at 0.065 $∕kWh, there is an incentive
to export large quantities of electricity back to the grid, when the
difference between the import and exports is small. This effect becomes
negligible when the import price becomes significantly higher. On the
other hand, positive correlation exist between the cost of electricity
and storage size (both electrical and thermal), and also with the CHP
capacity. Higher electricity price creates incentive to minimise imports
from the grid by storing the excess renewable energy and producing
local power using the CHP, with the relatively cheaper natural gas.

Fig. 32 shows the interaction with the grid (imports and exports) as
a function of 𝐶 and 𝐶 . In Sub- Fig. 32-a, both components drop in
𝑒𝑙 𝑔𝑎𝑠
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Fig. 24. GA Optimiser performance for DiStr1 and DiStr2 showing the best fit line, a two-term power fit. Ten repetitions for each Dispatch strategy. The 𝑅2 value is above 0.99
in both cases.
Fig. 25. Main effects for LCE (left axis) and LCH (right axis) as a function of the forecasting horizon, note the different scales. The black line indicate the chosen horizon value.
There is clear conflict between LCE and LCH. Given that LCE is larger in absolute values, it was given larger weight in the choice of the horizon.
tandem with increased price level. The reduction of imports is directly
related to the increased price. On the other hand, the reduction of
the exports is somewhat surprising, given the expectation of increased
renewable and local generation. By comparing with Fig. 31, the sizes
of renewable generation is reduced with increased imports and at the
same time the size of electrical and thermal storage in the system is
increased. This indicate that higher grid import prices, coupled with
unfavourable export rates (0.065 $∕kWh) will push the system to act
as a stand-alone system by minimising interaction with the grid. The
increased cost of storage is offset by reduction in renewable generators
size. The effect of 𝐶𝑔𝑎𝑠 on imports and exports is shown in Sub- Fig. 32-
b. Increased gas prices will make the imports from the grid more
favourable, and will therefore reduce local generation and push the
exports down.

Finally, the effect of 𝐶𝑒𝑙 and 𝐶𝑔𝑎𝑠 on local fuel consumption (CHP
and boiler) is and is shown in Fig. 33. As 𝐶𝑒𝑙 increases the boiler
consumption decreases and the CHP consumption increases. This is
agreement with decrease in boiler and increase in CHP unit nominal ca-
pacity, as shown in Fig. 31. In addition, the increase in CHP generation
will be used in covering the thermal load and therefore reducing the
need for boiler. As for 𝐶 , the ratio of CHP consumption to boiler is
17

𝑔𝑎𝑠
around 4 to 6. This indicates that the CHP consumption is the dominant
component. The total consumption peaks at 0.14 and then drops at 0.18
and 0.22 $∕m3 despite sharp increase in the consumption of the boiler.

4. Final remarks and conclusion

In this work, we studied grid-connected HRES supplying heat and
electricity to a large commercial building. We developed two dispatch
strategies, a coupled thermo-electrical (DiStr1) and a coupled thermo-
electrical with forecasting of generation and demand data (DiStr2). A
case study of a governmental building in the UK is chosen, in which
long term electrical and thermal consumption data are openly avail-
able. We produced forecasting data for electrical and thermal loads,
in addition to solar and wind resources. We compared the accuracy of
four forecasting algorithms i.e, Baseline, FBP, NP, and LSTM. The most
accurate forecasting data were used in the dispatch strategy DiStr2.
We carried out extensive multi-objective optimisation simulations with
LCE and LCH as objectives; including sensitivity analysis of the most
important parameters on the results (forecasting horizon, gas price, and
electricity price). We found that in general, DiStr2 produced cheaper
systems, especially in terms of LCH. LSTM algorithm produced the most
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Fig. 26. (a) Actual and forecast generation (black) and consumption (green) for a sample two-day period in February and (b) the corresponding values of 𝛹 at different horizon
lengths. Values below 𝛹𝑡ℎ𝑟𝑒 indicate expected renewable generation deficit. Longer horizons dampen and shift 𝛹 values ahead of the actual surplus/deficit as per the direction of
the black arrow.
Fig. 27. Effect of forecast horizon on (a) the total energy stored in battery (blue) and tank (red) and (b) the annual number of hours of minimal charge of battery (blue) and
tank (red). Longer horizons tend to decrease the forecast deficit and therefore reduce the battery charging priority. This is shown in the downward trend of the battery energy in
subfigure (a) and in the increased frequency of flat battery in subfigure (b).
accurate forecasting among all the studied algorithms. Forecasting hori-
zon, price of gas and price of electricity imports have strong influence
on the results. Given the low cost of renewable generation, the system is
feasible in most of the studied levels. However, the studied parameters
will have a big impact on the component sizes of optimum system in
each case.
18
The contribution of this work can be categorised in two domains:
(i) energy management of HRES and (ii) AI-enabled forecasting of
generation and consumption data. In the energy management domain,
two novel and tightly coupled dispatch strategies were developed and
implemented. Excess electrical renewable energy was treated as a
source of electricity and heat at the same time. Generation and demand
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b

Fig. 28. Effect of forecast horizon on battery charging during high renewable generation. Subfigure (a) shows the actual and forecast supply vs demand. Subfigure (b) shows the
attery charging with DiStr2 at different forecasting horizons and subfigure (c) shows the values of 𝛹 corresponding to the forecasting horizon values in (b). The arrows show

when the deficit is expected in each case. The system under study is shown in Table 6 for ‘DiStr2’. Longer horizon predict the deficit earlier leading to increase in the battery
charging priority over the storage tank.
Fig. 29. Main effects plots for LCE and LCH as a function of (a) the electricity imports price and (b) the gas price..
forecasting are integrated into the optimiser. Furthermore, the proposal
of theoretical parameters of expected utilisation factors improved the
integration of forecasting data in energy management algorithms. As
was shown in Fig. 16, levelised cost of electricity and heat were
in general reduced (especially heat), confirming the effectiveness of
this approach. In the AI domain, the work stands out by conducting
comparative study using four forecasting algorithms. Furthermore, both
generations (solar and wind) and consumption (electrical and thermal)
were forecasted using all four algorithms. To the best knowledge of
the authors, this has not yet attempted in the context of HRES. The
detailed analysis of prediction errors provided valuable insights into the
strengths and weaknesses of each algorithm. Given the specific nature
of each datatype, this contribution will help future studies in choosing
the most appropriate forecasting method for renewable generation and
energy demand datasets of commercial applications.
19
The conflict between the optimisation objectives (LCE and LCH)
stems from the one-way coupling of generation (electrical-to-thermal),
whereby increased on-site electricity generation will increase LCE and
decrease LCH. The opposite is not true; the boiler can only provide
thermal energy and the CHP is governed by the electrical deficit,
not the thermal one. The chosen load profile of a commercial office
complex was a deliberate choice, given that such buildings usually
have a dedicated equipment room, a large roof space, and potentially
surrounding empty space (e.g. a green space or car parking area).
This enables the installation of the proposed HRES. However, the
proposed dispatch algorithms are general and would apply to different
applications where electricity and heat are needed (e.g. residential or
industrial). The same system can also be easily adapted to stand-alone
systems by eliminating the grid connection and including reliability of
power supply as a constraint on the system design.
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Fig. 30. Main effects plot for component sizes as a function of gas prices..

Fig. 31. Main effects plot for component sizes as a function of electricity prices.

Fig. 32. Main effects plots of electricity imports and exports as a function of (a) electricity import prices and (b) gas import price.
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Fig. 33. Main effects plots for the fuel consumption in the boiler and the CHP units as a function of (a) electricity price and (b) gas price.
The complexity of the dispatch algorithm drops exponentially by
educing the number of decision variables, i.e. the number of genera-
ors and storage equipment. In our case study, the optimiser did not
liminate any of the components (despite having the built-in capability
o do so), indicating that all technologies have positively contributed to
he performance of the system. The complexity of the system should be
onsidered as a limiting factor, especially when it comes to implement-
ng the proposed dispatch strategies in real-time controller (a future
esearch effort for the authors).

The results presented in the earlier sections allow us to conclude the
ollowing observations:

• The two proposed dispatch strategies achieved the aim of the
paper by reducing the cost of energy to the consumer. By inte-
grating electricity and heat at the system design level, significant
reduction is achieved by exploiting the complementarity of the
two sides of the system.

• Data forecasting improved the results by reducing the overall
cost of energy and especially on the thermal side. The forecasted
data allowed the dispatch strategy (DiStr2) to divert the excess
generation in the best way according to the anticipated levels of
generation and demand. However, the accuracy of the forecasting
is highly dependent on the quality and length of the datasets.

• The proposed system allowed for revenues to be realised through
exports back to the grid and by offsetting imports from the
electrical and gas grids.

• Sensitivity analysis of electricity and gas prices shows that large
fluctuations in energy prices lead to a high uncertainty about the
benefits of the proposed system. However, such system is still jus-
tified on the grounds of ‘future-proofing’ the energy supply to the
consumer. If energy prices continue to increase, local generation
will be cheaper. Conversely, if the energy prices stabilised or are
reduced, this will create incentive to export back to the grid. The
latter could be easily achieved by up-ranking the priority of the
exports at the expense of local consumption. Finally, planned tax
on carbon and target emissions in many countries point to the
feasibility of investing in low carbon local generation.

• The introduction of forecasting lead to a significant reduction
in the spread of Pareto solutions. This is potentially significant
because it indicates that the conflict between LCE and LCH is re-
duced. In future work, combined levelised cost of energy (LCOE)
could be used and the problem converted into single-objective
optimisation.

• The interaction of the forecast horizon with the optimiser is of
complex nature and need to be better understood. However, half-
diurnal and diurnal intervals seem to provide the best results. This
is inline with the consumption patterns at the chosen site.

• The increased complexity of the system is a weakness, but might
21

be unavoidable as the complexity of energy systems is increasing.
Finally, we propose some directions for future research as follows:

- Testing the forecasting accuracy at other case studies (datasets)
to generalise the finding that LSTM provided the most accurate
predictions.

- Improving the expected utilisation parameters. The proposed pa-
rameters, 𝛹 and 𝛤 could be made more meaningful by adding
weights to the forecast values over the horizon 𝑚. The weight of
the first forecast data-point should be higher than the weight of
data-points many hours in the future.

- Modifying DiStr1 and DiStr2 to stand-alone HRES.
- Developing real-time controller that achieves the function of

DiStr1 and DiStr2.
- Adding environmental or other considerations to the study, for

example, optimise for LCOE and CO2 emissions.
- Improving the accuracy of the modelling approach by introducing

uncertainties and longer term forecasting.
- Investigating the corollary of our research question: given a spe-

cific HRES architecture, what would be the optimal dispatch
strategy if the situation changed over time (e.g. increased loads,
change in climate conditions, equipment downtime).

- Previous studies (e.g. [9]) showed that a well-designed tariff
structures such as Time of Use (ToU) would decrease the cost of
energy to consumers. However, we did not include this aspect in
our model, since it is within the grid regulator’s scope and not up
to the end user to decide.
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Appendix A. Detailed DiStr2 algorithm

A.1. Complete surplus

A.2. Partial surplus
22
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A.3. Deficit
23
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Appendix B. Data-sets histograms

The histograms of the datasets are show in Figs. B.34 and B.35.

Fig. B.34. Typical meteorological year solar irradiance and wind resources Histogram with 10 bins each, at site, i.e., Lat: 54.536, Long: −1.599 [43] (a) Solar irradiance and (b)
Wind speed.

Fig. B.35. Demand datasets histogram with 10 bins each (a) Gas Consumption (b) Electricity Consumption.

Appendix C. LSTM optimisation

Table C.7
LSTM optimisation.

Number of neurons

Gas 1 5 10 20 50 100 150 200 250

R2 0.823 0.825 0.836 0.829 0.830 0.818 0.778 0.799 0.801
MAE 0.164 0.169 0.177 0.185 0.175 0.241 0.287 0.241 0.239
RMSE 0.421 0.420 0.406 0.414 0.413 0.428 0.473 0.450 0.447
nRMSE 0.814 0.811 0.785 0.800 0.798 0.826 0.914 0.869 0.865

Elec 1 5 10 20 50 100 150 200 250

R2 0.956 0.933 0.924 0.922 0.917 0.911 0.911 −79.301 0.907
MAE 0.133 0.169 0.179 0.183 0.190 0.191 0.221 8.438 0.204
RMSE 0.198 0.244 0.260 0.263 0.271 0.281 0.281 8.443 0.288
nRMSE 0.129 0.159 0.170 0.172 0.177 0.184 0.184 5.513 0.188

Wind 1 5 10 20 50 100 150 200 250

R2 0.986 0.987 0.987 0.987 0.987 0.987 0.987 0.986 0.804
MAE 0.073 0.067 0.070 0.069 0.069 0.068 0.068 0.068 0.419
RMSE 0.121 0.116 0.117 0.117 0.117 0.117 0.114 0.119 0.450
nRMSE 0.086 0.082 0.083 0.083 0.083 0.083 0.081 0.084 0.319

Sun 1 5 10 20 50 100 150 200 250

R2 0.719 −19.301 0.717 0.442 −106.512 −118.679 0.738 0.736 0.723
MAE 0.249 4.331 0.257 0.608 10.024 10.577 0.256 0.267 0.274
RMSE 0.513 4.361 0.515 0.723 10.037 10.589 0.495 0.497 0.509
nRMSE 0.817 6.945 0.820 1.151 15.981 16.861 0.788 0.792 0.811
24
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