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H I G H L I G H T S  

• Machine-learning used to segment X-ray tomograms of lithium-ion battery electrodes. 
• Focused-ion-beam/scanning electron microscopy used as correlative imaging technique. 
• Phase fraction variation between users reduced compared with traditional methods. 
• 10–25% coverage on 5% of tomogram sufficient to reduce variation in phase fraction.  
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A B S T R A C T   

X-ray computed tomography (CT) is an important tool for studying battery electrode microstructures but relies 
on robust segmentation for validity. Here, several approaches to applying accessible machine-learning seg-
mentation software to segment open-source lithium-ion battery (LIB) electrode tomograms are followed to 
identify the optimised methodology that minimises variation in active material volume fraction quantification 
across three users. Iterative, manual training across seven cross-sectional slices (<5%) of a tomogram is iden-
tified as an optimal balance between variance and user interaction, where 10–25% of each slice was trained. This 
approach is applied to lab-based X-ray CT data and compared with data obtained by focused-ion beam/scanning 
electron microscopy slice-and-view tomography. Variation in active material volume fraction between users is 
lower for at least one of these two approaches (10% or 25%) when applied to raw LIB cathode tomograms, versus 
unsupervised techniques such as simple and watershed segmentations. On average, the absolute volume fraction 
values are closer to that acquired by the correlated technique, most closely matching for high-resolution data. 
The present analysis provides an optimised approach for using open-source software to apply machine-learning 
segmentation when quantifying active material volume fractions in cutting-edge LIB electrodes, providing a more 
robust route to active material quantification.   

1. Introduction 

Lithium-ion batteries (LIB) play an increasingly vital role in our 
everyday lives, from personal electronics to portable power, but they 
also feature highly in our global transition towards net-zero emissions, 
in the face of climate change, energy security concerns, and rising local 
air pollution [1]. LIBs are a mature technology that will be even more 

widely applied as an energy storage solution as more intermittent 
renewable energy generation is implemented, alongside increasing de-
mand from electric vehicle uptake [2]. Understanding how their 
microstructure and material properties influence performance and 
durability, in terms of thermal, electrochemical, and mechanical as-
pects, is vital in the pursuit of next-generation batteries that remain safe 
and affordable but have greater energy and power densities [3]. 
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To inspect the internal microstructure of lithium-ion battery com-
ponents, such as electrodes and separators, it is important to use tech-
niques that provide reliable three-dimensional information that do not 
depend on stochastic approximations or stereological inferences. This is 
particularly the case when it comes to transport properties and perco-
lation of the constituent phases. Although there have been valuable in-
sights drawn from early two-dimensional work on the solid electrolyte 
interphase [4], intercalation [5], and estimated volume fractions [6,7], 
more recent analysis has demonstrated that stereological techniques are 
likely to be associated with ambiguity and significant error [8]. There-
fore, to accurately capture the three-dimensional microstructure of LIB 
electrodes, tomographic techniques such as transmission electron mi-
croscopy (TEM) tomography [9,10], focused-ion beam/scanning elec-
tron microscopy (FIB-SEM) slice-and-view tomography [11], and X-ray 
computed tomography (CT) [12], are now increasingly implemented. 

Since TEM tomography has a very limited field-of-view, many 
studies have combined the high-resolution power of scanning electron 
probes with ion-milling, by use of FIB-SEM slice-and-view tomography. 
Wilson et al. first captured the three-dimensional microstructure of a 
LiCoO2 positive LIB electrode showing evidence of internal particle 
cracking from the cell formation step [13]. Nonetheless, the analysis was 
restricted to two phases and only centred on three particles. Further 
FIB-SEM studies have since elucidated the three-phase microstructure of 
different chemistries, such as LiCoO2 [14], LiFePO4 [15], and 
LiNi1/3Mn1/3Co1/3(NMC) [16], and have provided input for simulations 
[17] or hierarchical approaches combined with X-ray CT [18]. One 
method of note is the use of alternative impregnation materials to 
enhance the contrast between the active material (AM), carbon binder 
domain (CBD) and pore space [15,19]. Despite providing insight into 
connectivity, tortuosity factor, and providing access to fine micro-
structural features, the inherently destructive nature of FIB-SEM sli-
ce-and-view has meant that initial studies looked only at one 
microstructure, and even the more recent “3.5D” studies [16] suffer 
from inescapable sample-to-sample variations. 

X-ray CT is a non-destructive method to image LIB electrode 
microstructure [20], allowing for evolving structures to be imaged 
in-situ/operando consecutively, and larger volumes to be studied versus 
FIB-SEM tomography. X-ray CT analysis of LIB electrodes was first 
demonstrated by Shearing et al. who characterised a graphite negative 
electrode using a lab-based source, providing a measure of pore size 
distribution and connectivity [21], followed later by a multi-layer study 
of pouch and cylindrical cells [22] and a comparison of tortuosity in 
power and energy cells [23]. LIB positive electrode chemistries were 
subsequently investigated, including LiMn2O4

24, LiFePO4
25, Li-NMC [26] 

and Li-LCO-NMC [27] (all <40 nm nominal voxel dimensions) using 
synchrotron radiation. Novel LIB negative electrodes were also studied 
using a synchrotron source: LiVO2 anodes before and after oxidation 
[28], and mesocarbon microbead anodes using enhanced contrast 
labelling [29], illustrating the potential of X-ray CT to monitor 
three-dimensional microstructural evolution and capture phases with 
low X-ray attenuation, respectively. A wide variety of microstructural 
parameters have been extracted from such studies, including phase 
fractions [21,24–26,28–30], specific surface areas [24–26,28,29], 
geometrical tortuosities [21,25,26,28,30] or tortuosity factors [29,31], 
particle/pore size or PSD [26,28,30], particle shape analysis [30], 
connectivity [24,29], and chemical speciation [32]. 

More recent work has optimised sample preparation for lab-based X- 
ray CT [33], performed multi-scale [34–37] and multi-modal studies 
[18,37–42], and has also explored other chemistries such as Li-sulfur 
systems [43] and silicon-based anodes [44,45]. Related work has been 
concerned with developing analysis tools [46–48] and using tomograms 
as inputs for a wide range of simulations [17,25,41,49–51], as well as 
the development and implementation of advanced techniques such as 
X-ray diffraction computed tomography (XRDCT) [52,53] and Bragg 
coherent diffraction imaging (BCDI) [54]. 

Most data acquired by X-ray CT must undergo a segmentation step, 

to convert grayscale images into phase-defined objects that are subse-
quently analysed. The most common type is semantic segmentation, 
whereby each voxel (3D pixel) of an image is associated with a class 
label. Often an interim processing step is employed to reduce noise and 
improve the likelihood of reliable phase distinction, but both the pro-
cessing and segmentation steps vary widely from study to study, and 
sometimes go unreported. A significant number of studies employ seg-
mentation by “unsupervised” techniques, such as simple thresholding or 
watershed segmentation. Simple thresholding involves the selection of a 
single (binary) or multiple (ternary, quaternary etc.) thresholds, such 
that voxels that lie below or above are allocated to a particular phase. 
The next level of unsupervised complexity is to rely on the grayscale 
gradient, or the difference between adjacent voxels, which often takes 
the form of a watershed segmentation [55,56], wherein voxels that can 
be reliably allocated to certain phases become “seeds”, which are 
“grown” to gradient boundaries following the watershed algorithm. 
However, these methods are often not powerful enough to capture the 
microstructure to a satisfactory level of accuracy from the acquired 
tomogram; both methods are open to systematic errors deriving from 
thresholds that are defined globally (for the entire process in the case of 
simple thresholding, or for seed selection in the case of watershed seg-
mentation). This is particularly true in the case of low signal-to-noise 
ratio (SNR), whereby the distinction between the features of interest 
and the background is less pronounced, either as a result of unoptimised 
imaging parameters or dynamic scanning with reduced scan times. 
Although shading corrections [57] may help, often more local infor-
mation is needed to correctly identify features poorly segmented by only 
voxel intensity or nearest neighbour gradients. 

Consequently, researchers have looked to machine-learning (ML) 
[58] to perform semantic segmentation [59] that is often based on 
convolutional neural networks [60] or random forest techniques [61] 
that learn from user training inputs on selected image slices (so-called 
“supervised” learning). In particular, the biomedical field has acceler-
ated the use of ML segmentation for a wide variety of applications [62], 
from brain structure scans [63,64] to cell image analysis [65]. There are 
recent examples in the geological field comparing unsupervised and 
supervised segmentation approaches on X-ray CT images of concrete 
[66], cements [67], various rocks [68,69], and the mineral phases 
therein [70]. In both fields, results show that these supervised methods, 
although more computationally demanding, often give rise to more 
visually convincing segmentations, even with minimal user input. 
Although significant progress has been made in both materials discovery 
and design by ML techniques [71], there is currently limited literature 
on semantic segmentation for materials science applications. While ML 
has aided the analysis of some four-dimensional imaging experiments in 
recent years [72–74], the potential for its widespread use in the field has 
not yet been fully realised. With regards to batteries, in particular, 
research interest in ML is nonetheless growing across a wide range of use 
cases [75]. Li-ion diffusion mechanisms in solid-state batteries have 
been explored by data mining of molecular dynamics simulation results 
[76] and low-strain cathode materials for LIBs have been screened by 
establishing a quantitative structure-activity relationship for volume 
changes based on data from ab-initio calculations [77]. 

With regards to image-based classification tasks, recent work has 
included automatic crack detection [78,79], analysis of the 
particle-carbon binder detachment [80], material identification in 
all-solid-state batteries [81] and grain boundary enhancement [82]. 
There are now very recent examples of semantic segmentation, both of 
pores in Li-metal batteries [83] and of graphite-silicon LIB anodes [84]. 
To date, however, there is no dedicated analysis on the application of ML 
techniques for the semantic segmentation of traditional LIB electrode 
tomograms and direct comparison with unsupervised approaches, which 
is the focus of this work. 

First, an approach to ML-based semantic segmentation is developed 
and applied to open-source data previously collected by the authors [85, 
86]. This optimised approach is subsequently applied to acquired 
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lab-based X-ray CT tomograms of a fabricated electrode, which is also 
subjected to focused-ion beam/scanning electron microscopy (FIB-SEM) 
slice-and-view tomography for correlative analysis. To examine vari-
ability attributable to human interation with the data, and therefore to 
assess the impact of segmentation approach on producing binarised 
datasets for extracting the important microstructure metric of volume 
fraction in LIB electrodes, three individual users each applied traditional 
segmentation and variants of the developed ML approach. To the au-
thors’ knowledge, this is the first in-depth, statistical comparison of ML 
segmentation versus more traditional techniques for distinguishing 
active from non-active materials in LIB electrode microstructures. 

2. Methods 

2.1. Data sources 

Four open-source battery electrode microstructures from NREL’s 
Battery Microstructures Library [87] were subjected to a processing, 
segmentation, and analysis pipeline, which was used to develop an 
understanding of each of these stages on extracted metrics. The sample 
set consisted of two calendered Li-ion NMC cathodes (Toda NMC532: 
1-CAL and 2-CAL) and two calendered Li-ion graphite anodes (Conoco 
Phillips A12 Graphite: 5-CAL and 6-CAL). The cathode microstructures 
were acquired at a nominal isotropic voxel dimension of 397 nm and the 
anode microstructures were acquired at a nominal isotropic voxel 
dimension of 126 nm. A subvolume consisting of 200 × 200 × 200 
voxels was extracted from each dataset to minimise computational load, 
giving a total analysed volume of ca. 500,000 μm3 and 16,100 μm3 for 
the cathodes and anodes, respectively. Three users independently car-
ried out the segmentation procedures to assess the degree of error due to 
human subjectivity. The application of ML semantic segmentation was 
the focus of this work; however, simple and watershed thresholding 
were also carried out on all volumes, acting as standard benchmark 
procedures with which to compare the results derived from ML seg-
mentation. Various parameters, such as level of image coverage and 
amount of training data were explored for the data, yielding specific 
subroutines identified as giving more satisfactory segmentation results. 

This led to a more refined methodology, which used the most 
promising subset of the previous procedures to segment new X-ray CT 
data acquired by the authors. This sample set consisted of tomograms 
acquired by scanning an NMC622 cathode at two different resolutions – 
with a nominal isotropic voxel dimension of 371 nm on a Zeiss Xradia 
520 Versa instrument and with a nominal isotropic voxel dimension of 
126 nm on a Zeiss Xradia 810 Ultra instrument. The cathodes were 
fabricated by slurry-casting following the procedures as reported in 
previous studies [88–90]. The cathode slurry consisted of 96 wt% 
LiNi0.6Mn0.2Co0.2O2 (NMC622, BASF), 2 wt% PVDF (Solvay) and 2 wt% 
C65 (Imerys). A THINKY mixer (ARE-20, Intertronics) was used to mix 
the cathode binder solution, NMC622, and C65 to form a slurry with a 
solid content of ~60 wt%. The homogeneous slurry was degassed in the 
THINKY mixer at a speed of 2000 rpm for 2 min before being coated onto 
a piece of aluminium foil with thickness ~16 μm (PI-KEM) using a 
doctor blade thin-film applicator (calibrated with a metal shim). The 
slurry-cast coatings were subsequently dried on a pre-heated hotplate 
(Nickel-Electro Clifton HP1-2D) at 60 ◦C. X-ray CT sample preparation 
was carried out using laser-micromachining, as described in a previous 
publication [33]. A summary of the datasets examined in this work is 
shown in Table 1. 

2.2. Sample preparation 

For the new sample set investigated by X-ray CT in this work, disks of 
ca. 750 μm in diameter were cut from an electrode sheet using an A 
Series/Compact Laser Micro-machining System (Oxford Lasers, Oxford, 
UK), and then glued on steel dowels, as described previously [33]. After 
micro-scale imaging, these pillars were milled to ca. 60–100 μm disks for 

nano-scale imaging with the same laser micro-machining tool. 
For the sample investigated by FIB-SEM, the electrode was mounted 

in cross-section using a metal clip and epoxy-impregnated (EpoFix, 
Struers, UK) under vacuum. The sample was left to cure overnight in a 
desiccator before grinding (SiC of progressively finer grade) and pol-
ishing (3, 1, and 0.5 μm diamond paste). The top surface was Au-coated 
using a SC7620 Mini Sputter Coater/Glow Discharge System (Quorum 
Technologies, UK) to reduce charging. 

2.3. Image acquisition 

Micro-scale CT imaging was performed using a Zeiss Xradia 520 
Versa X-ray micro-CT instrument (Carl Zeiss, CA, USA) with an accel-
erating tube voltage of 80 kVp. The machine utilises a stationary tung-
sten anode on a copper substrate, producing a polychromatic beam with 
a characteristic emission peak at 58 keV (W-Kα). An exposure time of 28 
s was used, for all 601 projections, with a 20 × magnification lens. 
Reconstruction of the data was carried out via Zeiss Scout-and-Scan 
Reconstructor (Carl Zeiss, CA, USA), utilizing cone-beam filtered back- 
projection algorithms, resulting in a nominal isotropic voxel dimen-
sion of ca. 371 nm. 

Nano-scale CT was performed using a Zeiss Xradia 810 Ultra X-ray 
nano-CT instrument (Carl Zeiss, CA, USA) utilizing a quasi- 
monochromatic beam and a Cr characteristic emission energy of 5.4 
keV and a 64 μm × 64 μm field-of-view. An exposure time of 47 s was 
used for all 1601 projections, with a camera binning of 2. Post-imaging, 
each projection was reference and centre-shift corrected. Reconstruction 
was carried out using parallel-beam, filtered back-projection algorithms 
within Zeiss Scout-and-Scan Reconstructor, resulting in a nominal 
isotropic voxel dimension of ca. 126 nm. 

For FIB-SEM slice-and-view tomography, the Au-coated epoxy puck 
was loaded into a JIB-4700F MultiBeam FIB-SEM instrument (JEOL Ltd., 
Japan) at the Research Complex at Harwell. FIB milling was performed 
with a beam current of 10 nA, SEM imaging was conducted at an 
accelerating voltage of 15 kV, giving 338 slices with a nominal thickness 
of 256 nm and x-y voxel dimensions of ca. 55 nm. 

2.4. Image processing 

Each of the four open-source sample datasets was filtered using a 3D 
Gaussian filter with a kernel size factor of 2 and standard deviation of 
1.1 voxels, creating eight datasets (unfiltered and filtered images) to 
which the various segmentation approaches were applied. Each of the 
two newly acquired datasets underwent the same filtering step (yielding 
four datasets in total). The SEM micrographs acquired using FIB-SEM 
were aligned, shear-corrected, cropped, and ‘decurtained’ in GeoDict 
(Math2Market GmbH, Germany) before watershed segmentation in 
Avizo (Thermo Fisher Scientific, U.S.). The rectangular voxels were 
resampled, with interpolation, and cropped to give a volume composed 
of 568 × 456 × 1180 voxels with a nominal isotropic dimension of ca. 
55 nm. 

2.5. Segmentation approaches 

Standard unsupervised segmentation approaches include simple 

Table 1 
Provenance, type, and voxel dimension information for all X-ray CT data ana-
lysed in this work.  

Data Source Electrode Sample name Material Voxel size (nm) 

Open source Cathode NMC-1 NMC532 397 
NMC-2 397 

Anode GRA-1 Graphite 126 
GRA-2 126 

Acquired Cathode NEX-V NMC622 371 
NEX-U 126  
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thresholding – whereby either a user selects one or more grayscale 
thresholds, or an automated threshold selection is made by Otsu’s al-
gorithm [91] – and watershed segmentation. The latter morphological 
segmentation approach relies on a flooding algorithm of “catchment 
basins” defined by thresholding the gradient transform of the acquired 
tomogram [92]. The supervised segmentation procedures in this work 
were carried out in Ilastik [93] (University of Heidelberg) using a 
random forest classifier in the learning step, whereby voxel neigh-
bourhoods are characterised by a set of non-linear features in 3D. Details 
of subroutines within the ML segmentation procedure were explored as 
detailed in Section 2.5.3. 

2.5.1. Simple threshold segmentation 
Simple thresholding was carried out manually by assigning a discrete 

range of grayscale values to a label (corresponding to a desired phase) 
using Avizo. The balance of grayscale values was then applied to the 
other phase. The choice of this threshold was left to the individual user, 
not an algorithm. Segmentations were made at the user-preferred 
threshold (S2) as well as at 10 grayscale values below (S1) and 10 
grayscales above (S3), to explore the impact of a systematic error by eye. 

2.5.2. Watershed segmentation 
The watershed segmentation methodology was carried out in Avizo, 

and to apply the algorithm, seeding of the two phases (active and non- 
active material) was required. The seeds were generated by the alloca-
tion of labels to each phase using thresholding. However, a region in the 
tomographic histogram was omitted and left for assignment by the 
watershed algorithm. The internal variability of this method was 
assessed by altering the extent of the omitted region when thresholding. 
Therefore, two watershed segmentations were carried out, one con-
taining a small window of omitted grayscale values (generous water-
shed, gWS), giving the watershed algorithm very few voxels to segment. 
The second segmentation was given a larger region of omitted grayscale 
values (conservative watershed, cWS), wherein the watershed algorithm 
is given a larger window in which to predict the labelling of voxels. The 
sizes of the windows in both were at the discretion of the user and two 
approaches were taken to reduce the likelihood that a systematic under- 
or over-seeding would mask the efficacy of the watershed approach. 

2.5.3. Machine-learning segmentation 
ML segmentation was carried out using open-source software, Ilastik 

[93]. To use the ML-based segmentation algorithm, a training dataset is 
required which establishes a starting point for the algorithm and is based 
on a priori knowledge of the microstructure. It should be noted that, 
compared with ML techniques used, for example, for lattice constant 
prediction, the input data is restricted to a dimensionality of four - three 
spatial co-ordinates (x,y, and z) and the individual grayscale values for 
each voxel – thus reducing the computational complexity of model 
generation. For providing training data, the user has two choices: (a) use 
thresholded seeds to train the algorithm, or (b) input phases manually by 
‘drawing in’ one or multiple slices of the tomogram. The ML segmen-
tation procedures were first carried out using method (a) but subsequent 
analysis using method (b) almost always led to reduced variation in 
extracted phase fraction across users. During preliminary segmenta-
tions, the location and degree of coverage appeared to have a marked 
effect on the resulting segmentations, and it was also discovered that a 
central, rather than the first or last slice, should be favoured in the 
training datasets, to avoid edge effects. Hereafter, only segmentations 
produced via method (b) are discussed, albeit with important differences 
between subroutines. It is also worth noting that a balance between user 
time and accuracy was pursued, such that larger training dataset sam-
ples for ML model generation may give rise to improved reproducibility 
but at a cost of greater user time. 

In this second method, all seeds were manually allocated within 
Ilastik, based on users’ inferences from selected 2D slices, with location 
and extent of seeding as primary foci. Another notable parameter was 

the use or not of ‘iterative interaction’ with pre-segmented data. Once a 
training dataset is established, the ML algorithm can be initiated, and a 
segmented image produced. However, the ML algorithm can be further 
trained by interaction with the initial output overlaid on raw data, 
improving the predicted segmentation through learnings from previous 
attempts. This approach was found to reduce variability in almost all 
cases. This interim interactivity allows for model improvement by giving 
the user the ability to correct for glaring segmentation errors, before 
applying the generated model, for example, to further datasets. There-
fore, in each subroutine, the middle slice was trained, and a segmented 
image was produced. Further interaction was carried out on six more 
slices (equally spaced either side of the central slice), a balance between 
increasing segmentation fidelity and minimising laborious user input. 
The workflow for this procedure is shown in Fig. S1. Preliminary work 
showed a small reduction in variance between three and seven slices of 
user input, and although further reduction may lie beyond seven slices, 
this was deemed too time-consuming; analysis of further interaction is 
beyond the scope of this work. The level of coverage was varied, 
whereby 10%, 25%, 35%, 50%, and 65% of each of the seven slices was 
applied to unfiltered NMC-2 and unfiltered GRA-2 datasets to ascertain 
which level minimised user variance and where the best compromise 
between variance and user effort lay. A summary of approaches is given 
in Table 2, where ‘MLX##’ represents the ‘iterative interaction’ 
approach with ##% slice coverage in the training step. 

2.6. Volume fraction analysis 

Particle volume fraction is typically of significant interest when 
considering battery electrode materials as it tends to dictate the total 
amount of lithium that may be stored in an electrode. Herein, we refer to 
this phase as the active material and place emphasis on its volume 
fraction. Volume fractions were extracted by counting the voxels in each 
labelled phase, normalised relative to the total number of voxels in each 
image and was carried out in Avizo. Two complementary methods were 
used to assess the user variability of each segmentation approach: 
variation analysis in bulk volume fraction (standard deviation); and by 
comparing pairs of images from different users (image subtraction). 

2.6.1. Standard deviation 
Each of the three users (n = 3) produced a value for the active ma-

terial volume fraction that was used to calculate a standard deviation, 
Sx, using Equation (1). 

Sx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2

n − 1

√

1 

Table 2 
Details of the various segmentation types and subroutines applied in this work.  

Segmentation 
Type 

Subroutine Description Comment 

Simple Simple-2 User-specified. By eye 
Watershed 

segmentation 
GenWS Small window of 

omitted values. 
By eye 

ConsWS Large window of 
omitted values. 

Machine- 
learning 
Development 

ML1 First slice with 
thresholded seeds. 

See SI 

ML2 Six equally spaced 
slices with differing 
thresholded seeds. 

ML3 Entire volume with 
thresholded seeds. 

Machine- 
learning 
Coverage 
Sweep 

MLX10 Central slice, manually 
drawn seeds, plus 
interaction with six 
more slices after initial 
output, different 
coverages. 

Open-source: one 
unfiltered cathode 
and one unfiltered 
anode; In-house: 
MLX10 and MLX25 
applied. 

MLX25 
MLX35 
MLX50 
MLX65  
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where xi are the individual values and x is the arithmetic mean. This 
bulk value of standard deviation served as a proxy for segmentation 
accuracy in the absence of a base truth, acknowledging that significant 
variation between users deems a method unreliable but little variation 
does not necessarily imply a high-fidelity segmentation, just a repro-
ducible one. 

2.6.2. Image subtraction 
To compare the difference in segmentation between users, a MAT-

LAB script was developed. In this script, the full TIFF stack of the 
segmented volume for user A is subtracted from that of user B. The 
voxels in the segmented stack either have a value of 1 (active material) 
or 2 (pore and CBD). After subtraction, a new stack is created, containing 
the following values: − 1 (active material for user A and pore for user B), 
0 (same phase assigned) or 1 (pore for user A and active material for user 
B). The absolute values in the new stack are found, which gives the 
number of voxels where the two stacks differ. Summing this value, and 

then dividing by the total number of voxels available, gives the per-
centage of voxels where the two users have differing segmentations. This 
is repeated for A – C and B–C to get a comparison for the three users and 
the differences between the three pairs is then averaged. Fig. 1 shows 
example slices from segmented data for the open-source data and ac-
quired data using the MLX25 approach, as well as associated subtraction 
images. 

3. Results and discussion 

3.1. Open-source data 

Despite a lack of access to the samples themselves, and therefore no 
opportunity for FIB-SEM tomographic investigation, the open-source 
data from NREL’s Battery Microstructures Library [87] provided 
ample opportunity to compare unsupervised approaches (simple and 
watershed) with various ML subroutines (see Table 2) on data produced 

Fig. 1. Central 2D segmented orthoslices from each user from MLX25 segmentation of a)-c) open-source data (scalebar is 40 μm), and their associated absolute 
difference images: d) User A – User B; e) User A – User C; f) User B – User C, and d-f) acquired data (scalebar is 20 μm), and their associated absolute difference 
images: j) User A – User B; k) User A – User C; l) User B – User C. 
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on lab-based X-ray CT instruments, some with significant levels of noise. 
Thus, the results in this section are for internal comparison, aiming to 
identify the route to the least variation across users as an imperfect 
proxy for segmentation accuracy. 

3.1.1. Simple thresholding and watershed segmentation 
A single central xy-orthoslice from the open-source data subvolumes 

and their filtered counterparts are shown in Fig. 2 a) – h), which displays 
the different morphologies inherent to the materials used in typical LIBs 
(metal oxide and graphite) and highlights the varying contrast between 
the active and non-active materials in each of the samples (see Fig. S1 for 
histograms). Moreover, it illustrates that the level of noise in each 
sample differs, likely as a function of the sample thickness, as well as 
inhomogeneities inherent to lab-based X-ray sources. From the histo-
grams in Fig. S1, it is clear that the application of the Gaussian filter 
enhances the distinction between two peaks (corresponding to active 
and inactive material) in each case, but that the improvement in this 
distinction is not equal across all cases. In fact, the raw NMC-1 and GRA- 
1 do not have clearly distinguishable peaks in their histograms, consis-
tent with lower SNRs than those for NMC-2 and GRA-2. The visually 
noisier data for NMC-1 and GRA-1, shown in Fig. 2 a) and c), are most 
improved by the application of the filter (Fig. 2 e) and g) and Fig. S1). 

Simple thresholding (S1, S2, and S3) and two watershed segmenta-
tion approaches (gWS and cWS) were applied to all eight datasets by 
three users; segmented central xy-orthoslices for NMC-1 and GRA-1 by a 
simple thresholding (S2) and a watershed segmentation (cWS) approach 
are shown in Fig. 2 i)-p). These images highlight the importance of 
applying a denoising filter to noisy raw data when attempting to 

segment with simple thresholding; high-grayscale noise from the back-
ground is otherwise erroneously segmented as small NMC particles. To 
account for this, these segmented ‘speckles’ can be removed by 
reviewing particle size distribution histograms after segmentation, and 
selecting an appropriate cut-off size, but this introduces additional 
human-error and additional processing time. S1 and S3 datasets showed 
similar variation to S2; only S2 is discussed hereafter. The impact of 
noise is less evident for the watershed segmentation datasets (Fig. 2 m)- 
p)) where conservative seed selection reduces the over-segmentation of 
high-grayscale noise in the first place. 

There was significant variation between users when applying a single 
threshold value to segment any of the four unfiltered datasets, which is 
quantified as the standard deviation across the three users, as shown in 
Fig. 3. The individual data can be seen in Fig. S2 and Fig. S3. For the 
noisier NMC-1 case (Fig. 2 a)), the application of the filter reduces user 
variability for all segmentation approaches, but this is not the case for 
NMC-2, which is less noisy to begin with. This is replicated in GRA-2 but 
not GRA-1, illustrating that filtering data does not guarantee a seg-
mentation less biased by the user. In fact, this highlights that user 
variability plays a significant role in determining the resultant volume 
fraction when applying either of these unsupervised approaches to data 
with low SNR. 

It should be noted that it is feasible that low variability between users 
may still provide a reproducibly erroneous segmentation, such that close 
inspection of the segmented volume and comparison with the processed 
volume must also be factored in. Comparison with a “base truth” and the 
balance between reproducibility and accuracy will be explored further 
in Section 3.1.2. 

Fig. 2. Central xy-orthoslice from raw tomograms for a) NMC-1; b) NMC-2; c) GRA-1; and d) GRA-2; filtered tomograms for e) NMC-1; f) NMC-2; g) GRA-1; h) GRA-2; 
simple-threshold (S2) segmented tomograms for i) NMC-1 raw; j) NMC-1 filtered; k) GRA-1 raw; l) GRA-1 filtered; and watershed-segmented (cWS) tomograms for m) NMC-1 
raw; n) NMC-1 filtered; o) GRA-1 raw; p) GRA-1 filtered. 
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3.1.2. Machine-learning segmentation 
With the aim of reducing user variability in extracted volume frac-

tion, a ML approach to segmentation was refined using open-source 
software, Ilastik. The first generation of ML was based on thresholded 
seeds as training inputs (method (a) described in Section 2.3.3) and was 
applied to all samples by three users, and then compared to manual 
training on selected samples (method (b) in Section 2.3.3). The results 
from method (a) are summarised in terms of standard deviation in 
Fig. S4, and given explicitly in Fig. S5. Regardless of whether applied to 
a single slice, multiple slices, or the full volume, thresholded seeds only 
yielded a decrease in user variation for half of the samples examined. As 
a result, method (b), using user-defined seeds, is followed hereafter. 

A similar approach to ML1 was carried out, only seeds were input by 
the user manually “painting” a single slice; the central slice was chosen 
to minimise edge effects. It was not time-effective for the user to interact 
with every slice manually. However, since it was observed that the user 
variation was lower for ML2 (multiple slices) than ML1 (one slice only), 
a multi-slice approach was adopted. Balancing improved accuracy and 
the time required by the user, a total of seven slices was chosen, six of 
which were equally spread across the volume in the z-direction (e.g., for 
a 200-slice stack, at slices 25,50,75,100,125,150,175). It is important to 
note that variation between users may be reduced further by provision 
of a larger sample for model generation (i.e., annotations on a greater 
number of slices), but there is a compromise to be made between ac-
curacy and user time, given the manual nature of the training and the 
potential need to follow this approach for any new dataset of different 
acquisition parameters. Iterative training was used to improve seg-
mentation fidelity - an initial segmentation was output after “painting” 
the central slice (100), whereafter the other six slices were further 
refined based on discrepancies between the raw data and initial output. 
A total of five different levels of coverage were applied, by three users, 
on two samples, giving rise to 30 datasets in this second-generation ML 
approach. Each user added training annotations to the central slice (and 
subsequently to the other six slices), covering 10%, 25%, 35%, 50%, and 
65% of the total pixel count of each slice. These approaches were applied 
to unfiltered and filtered versions of both NMC-2 and GRA-2, as a bal-
ance between user-interaction time and understanding how these su-
pervised approaches work on different electrode microstructures. Fig. 4 
a) shows the standard deviations for active material volume fraction for 
all five coverage values within this ML approach for all four samples. It 
was found that the variation was least, on average, for coverage values 
of 10% and 25%, with the variation across this metric for the three users 
shown in more detail in Fig. S6. 

The standard deviation in active material volume fraction across 
users was <0.06 in all cases, whereas this value was as high as 0.13 in 

the unsupervised analogues. There was no clear monotonic trend to-
wards lesser variation as the amount of coverage is increased, suggesting 
that the quality of the user-training input is more important than its 
quantity. For this metric, the coverage that gave the single lowest 
standard deviation across all four samples was 10% for unfiltered NMC- 
2, the same coverage that gave the second-lowest variation for unfiltered 
GRA-2, after 35%. In the filtered cases, the trend was different, with the 
highest coverage (65%) giving a slightly lower standard deviation than 
the 10% coverage subroutine. This implies a likely interdependency 
between processing (filtering) and optimum user-training coverage. 
These results suggest that less user-variation may be achieved by 
applying lower coverage user-training to unfiltered datasets with lower 
SNR, thus reducing user workload whilst optimising the segmented 
output, at least in terms of phase fraction for NMC cathodes and graphite 
anodes imaged by lab-based XCT. The implication is that ML 

Fig. 3. Standard deviation plot across all simple and WS segmentation approaches for active material volume fraction.  

Fig. 4. a) Standard deviation and b) image subtraction plots across second- 
generation machine-learning segmentation approaches, for active material 
volume fraction. 
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segmentation may be most effective when applied to noisy data, which 
may result from unoptimised imaging parameters, relatively large 
sample sizes, or from using short scanning times to capture dynamic 
processes or increase sample throughput. 

Fig. 4 b) shows the average variation between users (mean of three 
image subtraction calculations) in terms of segmented voxels. Similar to 
the bulk standard deviation metric, the single lowest percentage dif-
ference across all four samples was 10% coverage for unfiltered NMC-2, 
with 3.5% voxels differing between users on average. However, unlike 
the bulk metric, where 65% coverage led to much greater variation, the 
average percentage difference in voxels was approximately the same 
(also 3.5%). Conversely, 50% coverage, although demonstrating only a 
marginal increased standard deviation for phase fraction, presented a 
significantly higher percentage difference in voxels (10.1%), demon-
strating that these two metrics are required for robust analysis of seg-
mentation variaiblity. It is worth noting that four out of five ML 
approaches gave rise to lower percentage differences than unsupervised 
approaches (simple, 7.6% and watershed, 4.6%). It is thought that at 
higher coverages, there is greater opportunity for erroneous classifica-
tion in the training step, but the low variability for 65% coverages 
suggest that this is not necessarily the case. The trend in percentage 
difference for the filtered NMC-2 case mimics that of standard deviation 
and the absolute values are similarly higher than the unfiltered case, also 
supporting the hypothesis that this ML approach is most effective on 
unfiltered data with low SNR, suggesting this ML procedure facilitates 
segmentation of high throughput, short-acquisition-time scanning. 

For the unfiltered and filtered GRA-2 samples, all ML approaches 
yielded percentage difference values lesser than those resulting from 
unsupervised approaches (see Table S1). Here, the trend was not the 
same in terms of coverage when compared with NMC-2 samples, with 
35% coverage giving the lowest percentage difference (3.8%), suggest-
ing that each microstructure may have its own optimal coverage. It 
should be noted that although the lowest percentage difference was 
found for 35% and 65% coverage for the unfiltered and filtered GRA-2 
samples, respectively, mirroring the standard deviation results, there 
was greater variation in voxel segmentation in the lower coverage ap-
proaches than was indicated by relatively low standard deviation values. 

In summary, the ML segmentations with thresholded seeds did not 
show a net improvement over the results obtained from following the 
unsupervised segmentation approaches. However, using manually 
applied seeds, the ML approaches on multiple slices on average yielded 
lower standard deviations and percentage differences in terms of voxels 
than the simple thresholding or watershed segmentations. Overall, low 
coverages for 10–25% gave the most promising results, in particular 
when applied to unfiltered datasets with lower signal-to-noise, such as 
the unfiltered NMC-2, as shown in the comparison plots in Fig. 5, 
combining less user interaction and mostly lower variability. It should 
be noted that since learning datasets have comprised several slices from, 
in each case, one X-ray CT tomogram, the resultant models may only be 
expected to perform well on related tomograms insofar as they are ac-
quired on the same instrument with similar acquisition parameters. An 
extended model generated by exposure to various datasets acquired with 
different parameters on different instruments is beyond the scope of this 
work. 

In the next section, these approaches (MLX10 and MLX25) are 
applied to in-house data, for which a “base truth” dataset was also 
collected by FIB-SEM slice-and-view tomography. 

3.2. Newly acquired data 

3.2.1. Establishing a baseline using FIB-SEM 
To establish a baseline against which to compare extracted volume 

fractions via different segmentation approaches applied to the tomo-
grams of newly acquired datasets, higher-resolution FIB-SEM tomogra-
phy was performed. The large difference in secondary electron yield for 
the active (NMC622 particles) and non-active constituents (CBD or pore) 

gave rise to a high level of contrast, facilitating ready segmentation by a 
watershed segmentation approach. Fig. S7 a) shows a top-down scan-
ning electron micrograph, displaying the current collector and the 
NMC622 particles, Fig. S7 b) displays the milled U-shaped trench and 
both the top and face of the volume of interest and Fig. S7c) shows an 
ion-generated image, that also gives contrast between the CBD and pore 
regions in the inactive areas, highlighted red and blue, respectively. A 
representative image from the slice-and-view tomography after pro-
cessing is given in Fig. S7 d). 

A volume rendering of the watershed segmentation of the FIB-SEM 
slice-and-view tomography of the NMC622 samples is shown in 
Fig. S8. For the FIB-SEM data, the voxels were anisotropic (55 nm × 55 
nm × 256 nm), whereas the voxels for the acquired X-ray CT data were 
isotropic (126 × 126 × 126 nm). Nonetheless, the overall volume per 
voxel was approximately half in the FIB-SEM case and a higher resolu-
tion of the active particle surfaces was achieved in the x-y plane. Due to 
the higher resolution and improved contrast, internal pores were 
detected more often with the FIB-SEM technique than with X-ray CT. For 
fairer comparison between the datasets, the internal pores are virtually 
filled in the FIB-SEM case and the voxel size was resampled to 126 ×
126 × 126 nm. 

The volume fraction of active material (NMC622) was 50.8%, which 
can be used as a benchmark figure for comparison with the values 
extracted with the simple, watershed, and refined ML segmentation 
approaches applied to the acquired lab-based X-ray CT datasets. 
Although the NMC material in the open-source data was NMC-532, this 
discrepancy is not thought to cause any significant impact on the 
application of the refined ML segmentation approaches as the attenua-
tion of particles constituting 5:3:2 Ni:Mn:Co is very similar to that for a 
ratio of 6:2:2, and the morphology is consistent. 

3.2.2. Simple thresholding and watershed segmentation 
A single central xy-orthoslice from the newly acquired data sub-

volumes, their filtered and segmented counterparts are shown in Fig. 6, 
both for simple thresholding (S2) and watershed segmentation (cWS). 

Fig. 5. a) Standard deviation and b) image subtraction plots comparing second- 
generation machine-learning segmentation approaches (MLX10 and MLX25) 
with simple threshold (S2) and watershed segmentation (cWS) approaches for 
active material volume phase fraction in NMC-2 and GRA-2 datasets. 
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On comparing NEX-V (voxel dimension = 371 nm) with NMC-1 (voxel 
dimension = 397 nm), the data quality clearly improved, potentially due 
to smaller sample dimensions or optimised imaging parameters, result-
ing in a higher SNR tomogram. Nonetheless, the same phenomena can 
be seen whereby there are instances of high-grayscale background noise 
erroneously segmented as small NMC particles (Fig. 6 e)), which is 
eliminated by the application of the Gaussian filter (Fig. 6 f)). 

As shown in Fig. 7, the variation across users is reduced in these 
newly acquired datasets versus the open-source datasets when using the 
unsupervised methods of S2 and cWS. The raw tomograms of NEX-V and 
NEX-U are less noisy than all of the raw open-source tomograms, though 
the application of the Gaussian filter still reduces user variability for the 
S2 approach. However, for cWS, user variability increases in the lower- 
resolution case (NEX-V), but is reduced in the higher-resolution case 
(NEX-U), implying a complex interplay between voxel resolution, SNR, 
and segmentation approach. 

3.2.3. Machine-learning segmentation 
For the ML segmentation of the newly acquired data, MLX10 and 

MLX25 approaches were pursued on unfiltered datasets, since it has 
been shown that the greatest improvement is found when ML ap-
proaches are used over traditional approaches on low-signal-to-noise 
datasets. The standard deviations for the simple, watershed, and both 
ML methods are shown in Fig. 8 a) for unfiltered data (NEX-V and NEX- 
U). When applied to NEX-V, the volume fraction variability was large for 
MLX10, ~0.04, but lowest for the MLX25, <0.01. When moving to the 
higher-resolution NEX-U data, both ML approaches showed improve-
ment versus the unsupervised approaches, with both datasets having 
standard deviations of <0.01. Compared to unsupervised methods, the 
higher coverage ML method consistently outperformed simple and 
watershed segmentations in terms of repeatability between users, 
although compared with the open-source datasets, the variability for the 
unsupervised methods was lowered, likely due to improvements in 

Fig. 6. Central xy-orthoslice from tomograms for a) unfiltered NEX-V; b) filtered NEX-V; c) unfiltered NEX-U; and d) filtered NEX-U; simple-threshold (S2) segmented 
tomograms for e) unfiltered NEX-V; f) filtered NEX-V; g) unfiltered NEX-U; h) filtered NEX-U; and watershed-segmented (cWS) tomograms for i) unfiltered NEX-V; j) 
filtered NEX-V; k) unfiltered NEX-U; and l) filtered NEX-U. 

Fig. 7. Standard deviation plot across simple (S2) and WS (cWS) segmentation approaches, for active material volume fraction in NEX-V and NEX-U samples.  
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imaging parameters between the acquisition of the two sample sets. The 
lower coverage (MLX10) had 2–4 × more variation for NEX-V, but 2–3 
× lower variation for NEX-U. This indicates that with lower coverage, to 
accurately extract volume fractions, a higher resolution is preferable, 
and if the resolution is lower, lower user variation can be achieved 
through a greater degree of coverage. In summary, user variability for 
both MLX10 and MLX25 is dependent upon the noise level and resolu-
tion of the acquired data. In the case of lower-resolution data, fewer 
projections or short exposure times, 25% coverage is advantageous over 
10%, but for higher-resolution data, 10% coverage is sufficient to give 
less user variability, albeit with diminishing gains as the SNR ratio is 
increased. 

Fig. 8 b) shows the average percentage difference in voxels across the 
three users for two datasets. In the lower-resolution NEX-V case, an 
interesting result is seen when comparing the simple and MLX25 results. 
Whereas the MLX25 approach yields the lowest standard deviation in 
bulk phase fraction, the image subtraction analysis reveals that there is 
greater variation in the voxels that are segmented as active material, 
suggesting that the user segmentations may vary but result in similar 
phase fractions. This supports the need for comparison with the base 
truth. In the higher-resolution NEX-U case, it can be observed that the 
ML approaches yield the same or lower variability at the voxel level, but 
the order changes – MLX25 appears the least variable by phase fraction, 
but MLX10 results in segmentations with fewer voxel differences be-
tween the three users (10.3% versus 15.3%). It is also evident that the 
absolute values are significantly higher in the higher-resolution case 
when compared to the lower-resolution case, which is thought to reflect 
a much greater number of voxels representing the boundary between 
active and non-active material. This observation reflects the appreciable 
impact that the choice of segmentation method has on absolute values 
for volume-specific surface area, even in cases where a similar volume 
fraction is determined. Further details of how the unsupervised and 
supervised approaches compare in terms of average percentage differ-
ences in voxels can be found in Table S2. 

For the recently acquired samples, it was possible to compare the 

extracted volume fractions with a “base truth” via a complementary 
technique, FIB-SEM. The FIB-SEM volume fraction value was compared 
to the average result from the three users, averaging both length-scales, 
and calculating a percentage difference between them. Across all users, 
the NEX-U data gave results closer to this value, as expected for higher- 
resolution imaging. Both ML methods performed better than unsuper-
vised approaches, with MLX25 being within 1.5% of the base truth on 
average (2.4% for NEX-V and 0.6% for NEX-U) and MLX10 within 1.6% 
(3.1% for NEX-V and 0.1% for NEX-U). The traditional methods of 
simple and watershed were 2.6% (4.1% and 1.0%) and 2.7% (4.9% and 
0.5%) from the base-truth, respectively. Despite large user variation for 
MLX10 applied to NEX-V, the users’ average value was closer to the 
base-truth value. For this metric, ML is expected to provide a means to 
achieve a more reproducible segmentation, but voxel resolution is found 
to have more of a dominant effect in the case of high-quality data. 

The variation from the base-truth highlights how each segmentation 
methodology must be considered individually. ML approaches appear to 
perform best for volume fraction calculations when applied to data with 
low SNR, perhaps because the user can iteratively improve the seg-
mentation process as it is carried out, making it as accurate as possible. 

4. Conclusion 

A comprehensive quantitative assessment of applying ML segmen-
tation to extract active material volume fractions was carried out on 
open-source X-ray CT data, and from the insights gained, two ML ap-
proaches were applied to acquired X-ray CT data and compared with 
results from FIB-SEM tomography. It was shown that although applying 
a filter to noisy raw data reduces erroneous segmentation of small fea-
tures, denoising the data in this way does not guarantee less user vari-
ation in the extracted phase fraction value when performing 
unsupervised segmentation. Variation between users on noisy data can 
be reduced by applying supervised ML segmentation, though the 
training datasets must be applied manually and not as thresholded seeds 
to achieve this. It was found that these ML approaches were only 
appreciably effective when applied to unfiltered data and approaches 
involving training coverages of 10% and 25% were identified for 
application to acquired data, giving low standard deviations and mini-
mised user time. Application of these techniques to recently acquired 
data, with higher signal-to-noise ratio, inidicated only minimally lower 
variation than unsupervised approaches, and only with greater coverage 
in the lower-resolution case. Importantly, when applying simple, 
watershed, or ML segmentation approaches, the latter yielded a closer 
value to the “base truth” volume fraction in all cases, showing very little 
(0.1%) deviation in the higher-resolution case. This work suggests that 
for the identification of the volume fraction of LIB electrode active 
material, the application of an iterative ML segmentation approach that 
involves manual training covering 10–25% of ca. 3% of the total number 
of slices, yields a more reliable result than simple or watershed seg-
mentations, but only in cases of data with lower signal-to-noise ratio. 
The additional user effort, using accessible open-source software, is 
therefore most justified when processing noisier data, which may result 
from intentionally short scans, for time-lapse tomography experiments, 
or high-throughput imaging. Moreover, it was shown that greater 
coverage in ML segmentation approaches was required when applied to 
coarser data to achieve less variability versus unsupervised techniques. 
These conclusions apply to the application of this methodology to the 
pristine state of LIB electrodes and further work would be required to 
explore its applicability to cycled electrode materials. 

Overall, it has been shown that a segmented image can exhibit sig-
nificant variation amongst users and across the various demonstrated 
segmentation methodologies. Given that metric extraction and 
microstructure-level simulations rely on accurate representations of the 
electrode active material, it is imperative that segmentation procedures 
undergo careful consideration to avoid uncertainty. This may, for 
example, consist of repetitive segmentation by an individual or team (as 

Fig. 8. a) Standard deviation and b) image subtraction plots comparing S2, 
cWS, MLX10, and MLX25 segmentation approaches, for active material volume 
fraction in NEX-V and NEX-U samples. 
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one does when carrying out experiments), analysis of the image SNR 
levels and filtering methods that are available, or careful examination of 
the extent of manual user training during a ML segmentation. Further 
work is also required to more precisely understand the accuracy of both 
X-ray CT and FIB-SEM tomography as techniques for characterising 
important metrics within LIB electrodes, which should entail measure-
ments across multiple replicates of a range of active material composi-
tions, including representative volume element analysis. 
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