
Online Goal Recognition in Discrete and Continuous
Domains Using a Vectorial Representation

Douglas Antunes Tescha, Leonardo Rosa Amadoa and Felipe Meneguzzib,a

aPontifical Catholic University of Rio Grande do Sul
bUniversity of Aberdeen

ORCiD ID: Douglas Antunes Tesch https://orcid.org/0000-0003-3037-919X, Leonardo Rosa
Amado https://orcid.org/0000-0001-6119-4601, Felipe Meneguzzi https://orcid.org/0000-0003-3549-6168

Abstract. While recent work on online goal recognition efficiently
infers goals under low observability, comparatively less work focuses
on online goal recognition that works in both discrete and continuous
domains. Online goal recognition approaches often rely on repeated
calls to the planner at each new observation, incurring high compu-
tational costs. Recognizing goals online in continuous space quickly
and reliably is critical for any trajectory planning problem since the
real physical world is fast-moving, e.g. robot applications. We de-
velop an efficient method for goal recognition that relies either on a
single call to the planner for each possible goal in discrete domains or
a simplified motion model that reduces the computational burden in
continuous ones. The resulting approach performs the online compo-
nent of recognition orders of magnitude faster than the current state
of the art, making it the first online method effectively usable for
robotics applications that require sub-second recognition.

1 Introduction

Goal recognition aims to anticipate an agent’s behavior and infer its
goal based on (possibly flawed) observations of an agent’s behav-
ior [24, 14, 13]. The ability to anticipate an agent’s behavior is criti-
cal for autonomous agents working cooperatively and competitively.
In cooperative settings, effective goal recognition allows agents to
obviate explicit communication to coordinate their joint plans. By
contrast, effective goal recognition in non-cooperative settings al-
lows agents to anticipate an opponent’s moves and counter them in a
timely fashion. In robot football, for instance, this is critical in antic-
ipating the opponent’s trajectory and developing a winning counter-
strategy. Similarly, for cooperation within a match, team members
can choose plans that ease recognition of their goals to others in the
same team, minimizing explicit communication [27].

The current state-of-the-art in online goal recognition for con-
tinuous and discrete domains stems from approaches from Vered
at al. [25, 26]. These methods use an off-the-shelf planner to dy-
namically compute the probabilities of goal hypotheses as new ob-
servations arrive. While these methods use a heuristic to minimize
the number of calls to the planner during the online phase, it still
needs some calls to a full-fledged planner. These calls, however
few, can still be arbitrarily expensive, making this approach unsuit-
able for fast recognition under certain conditions. Recent research
on goal recognition substantially improves efficiency for both do-
mains [12, 17, 16]. However, these approaches formulate the problem

in a discrete space using a planning formalism (typically STRIPS) or
rely on a discretization of continuous space [9]. By contrast, robotics
applications where the state of the agent includes specific configu-
rations of a robot’s degrees of freedom (position, translations, and
angular rotation) cannot be trivially discretized.

Most work on online goal recognition for continuous domain ap-
plications considers only the path-planning problem, disregarding
dynamics characteristics of the agents, so the plan consists only of
a geometric collision-free path [12, 9]. However, trajectory planning
is a complex continuous motion planning problem where the compu-
tation of a collision-free path requires all dynamics and constraints of
the agent. Here, processing a single new goal hypothesis probability
as the observations arrive can take many minutes. Thus, in practical
robotics scenarios, the state-of-the-art goal recognition approach is
unsuitable for robots recognizing the goals of other robots while in
motion since relying on calls to a motion planner incurs an unaccept-
able computational cost [8].

We address these problems through a novel formulation for online
goal recognition that works in continuous (path and trajectory plan-
ning problem) and discrete (STRIPS) domains. Our contribution is
threefold. First, we develop an online inference method to compute
the probability distribution of the goal hypotheses based on the work
of Ramírez at al. [19] and Masters at al. [12] that obviates the need for
calls to a planner at run-time. We base our inference method on the
Euclidean distance between a pre-computed sub-optimal trajectory
and observations of the real agent. Second, we employ a predefined
approximation of the agent’s motion model for motion applications
that obviates the need for costly pre-computations of sub-optimal
paths. Third, we adapt our continuous formulation to recognize goals
in discrete domains, overcoming a limitation of previous approaches
for goal recognition.

2 Online Goal Recognition Problem
We adapt notation from Vered at al. [25], and expand it with the no-
tion of time critical to real applications, i.e., robotics. An online goal
recognition problem is a quintuple R := ⟨W, I,G,O,M⟩, where
W : Rn is an n-dimensional continuous state space, e.g., position,
angles, velocity, acceleration, time, etc.1 By convention, we always
use time as the last dimension and omit time in examples in which
time is irrelevant (e.g., initial states). For improved readability, we

1 In Section 4 we use n = 10.

ar
X

iv
:2

30
7.

07
87

6v
1

 [
cs

.A
I]

 1
5

Ju
l 2

02
3

https://orcid.org/0000-0003-3037-919X
https://orcid.org/0000-0001-6119-4601
https://orcid.org/0000-0003-3549-6168

denote a particular state sampled at a discrete-time k as w[k] ∈ Rn.
I ∈ W is the initial state of the agent in the zero-time step. G ⊂ W
is a set of hypotheses goals with size N , where gn ∈ G is a par-
ticular goal state in the set with unknown final time step k and
n ∈ [1, 2, . . . ,N]. O ⊆ W is a discrete-time set of observations
with unknown a priori size, i.e., the set size increases at each new
sample observation, where o[k] ∈ O is an observation sampled at
time k. Finally, M ⊆W is a set of all possible trajectories.

A trajectory is a sequence of K discrete timed states as mgn
I =

[w[0], w[1], . . . , w[K − 1]], i.e., it is a set of states mgn
I ⊆ W or-

dered by the last component of each w ∈ mgn
I . Thus, Mgn

I ⊆M is a
set of all possible trajectories starting in the initial state I and finish-
ing in gn; mgn

I ∈Mgn
I is one particular trajectory to a goal gn; R is

an offline problem when the final time step k is known; otherwise, R
is an online problem. A solution to the online goal recognition prob-
lem R is a hidden goal gn reachable through a trajectory mgn

I , where
w[K−1]∩G = gn, and which maximizes the conditional probabil-
ity given the current observation set O defined in Equation (1), where
mgn

I
R is the solution trajectory.

mgn
I

R = argmax
m

gn
I

∈M

P (mgn
I | O) (1)

Note that the problem formulation is similar to Ramírez at al. [20].
The main difference is that we search for a trajectory mgn

I instead
of a plan. The main concern about the formulation Equation (1) is to
find a feasible trajectory where the more it matches the observations,
the more we see an increase in the conditional probability.

We follow Ramírez at al. [20] and Kaminka at al. [9] formulation
using the Bayes rules. But unlike them, we use Bayes rule to compute
an mgn

I that matches the observations and maximizes P (mgn
I | O).

This formulation makes three key assumptions: i) agents pursue a
single goal that does not change over time; ii) agents always prefer
the cheapest cost trajectories; and iii) all goal hypotheses are mutu-
ally exclusive.

P (mgn
I | O) =ρP (O | mgn

I)P (mgn
I) (2)

=ρP (O | mgn
I)P (mgn

I | gn)P (gn)

Thus, we compute the conditional probability in Equation (2),
where P (gn) is a uniform distribution indicating the probability that
the robot is pursuing the goal gn; ρ is a normalization to avoid com-
puting P (O). To solve Equation (2), we need to compute P (mgn

I |
gn) and P (O | mgn

I). We can compute the first term by synthesiz-
ing an optimal trajectory hypothesis mgn

I
∗ that disregards the ob-

servations and aims for the final goal gn ∈ G. Note that, for ev-
ery goal gn, the conditional probability of P (mgn

I
∗ | gn) is max-

imum. The second term can be computed using again the optimal
trajectory mgn

I
∗ and using the following function to approximate the

conditional probability of P (O | mgn
I

∗), from Equation (3), where
dist(·, ·) is a spatial distance calculation, e.g., Euclidean distance;
N ∈ N is the actual number of observations at this moment; mgn

I
∗[k]

is the state in the optimal trajectory associated with observation o[k]
at the discrete step-time k. The conditional probability P (O | mgn

I
∗)

must increase as the observations O get closer to an optimal trajec-
tory mgn

I
∗. Thus the value of P (O | mgn

I
∗) gives us a representation

of how much the observations belong to the trajectory mgn
I

∗ and the
Equation (3) is inversely proportional to the average error among all
terms in the observations set O and the optimal state trajectory in the

same instant of discrete-time k.

P (O | mgn
I

∗) := 1− e


−

1
1

N

∑
o[k]∈O

dist(o[k],mgn
I

∗[k])


, (3)

n ∈ [1, . . . ,N]

Now, the conditional probability of Equation (2) can be redefined
as shown in Equation (4), and the most likely goal hypothesis gn is
that with the highest P (mgn

I
∗ | O) value. In a real-time implementa-

tion, the optimal trajectory for each goal hypothesis can be computed
in an offline stage, and at each new observation, we can compare the
observations with the optimal trajectory to recognize the most likely
goal hypothesis. We do this by averaging the distances between this
optimal trajectory and the observation samples using only the Equa-
tions (3-4), with no online calls to a planner. Therefore, inference
in online goal recognition depends only on the number of goal hy-
potheses in the set G, which differs from previous work that depends
on the number of observations O and goals G in the sets. We note
that while Masters at al. [12] show the last observation is enough
to compute the conditional probability for path-planning problems,
we average over the entire sequence of observations to improve the
method’s robustness to outliers and noisy observations.

P (mgn
I

∗ | O) = ρP (O | mgn
I

∗)P (mgn
I

∗ | gn)P (gn), (4)

n ∈ [1, . . . ,N]

3 Trajectory Planning Approximation

Our online approach to goal recognition needs an optimal trajec-
tory mgn

I to compute the goal hypotheses. However, generating
an optimal collision-free trajectory in continuous Cartesian space
is a problem of trajectory planning that has a high computational
cost [2, 8, 18], which we mitigate by approximating the optimal tra-
jectory mgn

I
∗ and directly applying it to Equation (4). We approxi-

mate mgn
I

∗ generically, and such that is feasible for dynamical multi-
dimensional systems. A dynamical system, in this paper, is an en-
vironment whose behavior can be described by sequential ordered
differential equations [15]. Thus, a trajectory mgn

I
∗ is a sequence

of states that describes the agent’s movement within such a dynami-
cal system. To navigate such a system, the agent needs a policy that
applies a correct control input that drives the states to the desired
goal [15].2 Computing a precise trajectory mgn

I
∗ in any dynamical

model requires motion planning to generate such control inputs over
time. However, this has a high computational cost, especially for op-
timal trajectories [21]. We avoid running a motion planner by ap-
proximating mgn

I
∗ through a method of trajectory generation from

robotics [3], which computes a trajectory using fewer motion param-
eters to reduce the dimensionality of the optimization problem.

The motion parameters are the agent’s desired dynamics charac-
teristics or state at a specific time used to compute a full continuous
trajectory between two points [11]. These motion parameters depend
on the type of trajectory to be computed, e.g., linear, trapezoidal, and
polynomial. In this paper, we use a polynomial trajectory that takes
as motion parameters the desired time duration and position, veloc-
ity, and acceleration in the initial and final states of a trajectory.

2 In dynamical systems, a set of goal states is called a reference.

2

3.1 Polynomial Trajectory

In an obstacle-free environment, we only need a single trajectory
to describe the movement of an agent between two points. How-
ever, in an environment with obstacles, in most cases, a single
low-polynomial trajectory cannot reach the goal without violating
some restrictions. A common approach to generating such trajecto-
ries while keeping the polynomial degree low is to compute sepa-
rate sub-trajectories that, when sequenced, form a full trajectory be-
tween the initial and desired final state [11]. To compute each sub-
trajectory, we use the concept of a via point, which is a vector that
includes some motion parameters, as shown in Equation (5), where
i ∈ [1, 2, . . . , q]; q ∈ N∗ is the number of via points in the trajec-
tory; the terms in the vector vi are the position, velocity, acceleration
in the respectively Cartesian axes per via point i, and tdi is the time
duration of one single trajectory corresponding by via points i and
i+ 1. Two via points have all parameters to compute a single trajec-
tory. To generate a full trajectory, we define a sequence of via points,
starting with the desired initial state I and ending with the final goal
state g, which we define in Equation (6).

vi =
[
xi yi ẋi ẏi ẍi ÿi tdi

]T (5)

V |gnI =
[
v1 v2 . . . vq

]
(6)

The next step is to compute a trajectory between each via point of
Equation (6) using a model that approximates the agent dynamics.
We chose a fifth-degree polynomial equation for two key reasons.
First, this type of trajectory can handle the agent’s dynamic con-
straints, such as position, velocity, and acceleration. Second, fifth-
degree polynomials are the most complex polynomial without dis-
continuities that have computationally cheap analytical solutions [3].
Equations (7-12) define the resulting model, where x|i+1

i (t) and
y|i+1

i (t) are the positions, ẋ|i+1
i (t) and ẏ|i+1

i (t) are the velocities,
and ẍ|i+1

i (t) and ÿ|i+1
i (t) are the accelerations in instant of time t in

X and Y Cartesian axes; afi and bfi are unknown coefficients where
f ∈ [1, 2, . . . , 5]. x|i+1

i (t) refers to the trajectory on the X axis (and
respectively y|i+1

i (t) on the Y axis) with initial in vi and final in vi+1

via points.

x|i+1
i (t) = a5it

5 + a4it
4 + a3it

3 + a2it
2 + a1it+ a0i (7)

y|i+1
i (t) = b5it

5 + b4it
4 + b3it

3 + b2it
2 + b1it+ b0i (8)

ẋ|i+1
i (t) = 5a5it

4 + 4a4it
3 + 3a3it

2 + 2a2it+ a1i (9)

ẏ|i+1
i (t) = 5b5it

4 + 4b4it
3 + 3b3it

2 + 2b2it+ b1i (10)

ẍ|i+1
i (t) = 20a5it

3 + 12a4it
2 + 6a3it+ 2a2i (11)

ÿ|i+1
i (t) = 20b5it

3 + 12b4it
2 + 6b3it+ 2b2i (12)

The coefficients awi and bwi in the model trajectory of Equa-
tions (7-12) can be computed analytically by Equations (13-21),
where xi and xi+1 are the position; ẋi and ẋi+1 are the velocity; ẍi

and ẍi+1 are the acceleration in via points vi and vi+1, respectively;
tdi is the desired time duration in seconds of a trajectory compound
by via points vi and vi+1. To save space, we omit the computation
of the coefficients bwi of Equations (8), (10), and (12), but note that

they exactly as above, but just changing the work axes to Y.

a5i =
1

2tdi
5

[
tdi [(ẍi+1 − ẍi)tdi − 6(ẋi+1 + ẋi)] (13)

+12(xi+1 − xi)
]

(14)

a4i =
1

2tdi
4

[
tdi (16ẋi + 14ẋi+1 + (3ẍi − 2ẍi+1)tdi) (15)

+30(xi − xi+1)
]

(16)

a3i =
1

2tdi
3

[
tdi ((ẍi+1 − 3ẍi)tdi − 8ẋi+1 − 12ẋi) (17)

+20(xi+1 − xi)
]

(18)

a2i =
ẍi

2
(19)

a1i = ẋi (20)

a0i = xi (21)

After computing each trajectory of Equations (7) and (8) using the
via points sequence of Equation (6), we can concatenate all of them
to synthesize a full path between initial and goal states as shown
in Equations (22) and (23), where ⊗ is the concatenation operator;
X|i+1

i and Y |i+1
i are the vectors from Equations (7) and (8), respec-

tively. Thus, we derive the approximate trajectory by sequencing the
vectors as Equation (24).

X|q1 = X|21 ⊗X|32 ⊗ . . .⊗X|qq−1 (22)

Y |q1 = Y |21 ⊗ Y |32 ⊗ . . .⊗ Y |qq−1 (23)

m̂gn
I =

[
X|q1 Y |q1

]
(24)

3.2 Finding the via points parameters

To compose the trajectory using the via points from Equation (6), we
need to find all motion parameters of each via point in the sequence
V |gnI , i.e., position, velocity, acceleration, and time duration. The
position can be obtained through an optimal geometric planner such
as Rapidly-exploring Random Trees (RRT∗) [10], Batch Informed
Trees (BIT∗) [6], and Sparse Roadmap Spanner (SPARS) [4], for
example. Given the initial position state I and the goal position state
gn, a geometric planner can produce a sequence of via point position
parameters, even in an environment with obstacles.

We compute the remaining via points parameters of V |gnI by an
RL-based optimization defined by Equations (25-27) that enforces
the agent’s dynamic constraints [1], where h(si, ui, si+1) = tdi is
the cost function; Vmax is a maximum velocity vector for the trajec-
tory; si and ui are states and actions set defined by the Equations (28-
29), where si, ui ∈ R.

µ∗ = argmin
u∈U

(Jµ(si)) , (25)

Jµ(si) = h(si, ui, si+1) + Jµ(si+1) i = 1, 2, . . . , q − 1. (26)

subj. to : ||
[
ẋ|i+1

i (t) ẏ|i+1
i (t)

]
|| ≤ Vmax, ∀t ∈ (0, tdi] (27)

si =
[
ẋi ẏi ẍi ÿi

]T
, (28)

ui =
[
tdi ẋi+1 ẏi+1 ẍi+1 ÿi+1

]T (29)

The states and actions of Equations (28-29) comprise the discrete
system defined by Equation (30), where the velocities and accelera-
tions in the instant of time tdi are obtained through Equations (9-12).

3

Here, with one set of states si, actions ui, and position via points in
vi and vi+1, it is possible to compute a single trajectory of X|i+1

i

and Y |i+1
i from Equations (22-23).

ẋi+1

ẏi+1

ẍi+1

ÿi+1

 =


ẋ|i+1

i (tdi)
ẏ|i+1

i (tdi)
ẍ|i+1

i (tdi)
ÿ|i+1

i (tdi)

 (30)

We formulate the optimization to find high velocities while pe-
nalizing violation of its maximal constraint and to minimize the tra-
jectories’ overall time duration tdi. The optimization process from
Equations (25-27) is often done incrementally. This requirement is
due to the continuous states from the formulation. The resulting it-
erative optimization process finds the velocities, accelerations, and
time duration terms of Equation (6) for each vi, and thus yields opti-
mal actions µ∗ = [u∗

1, u
∗
2, . . . , u

∗
q−1] that minimize a cost function

Jµ(s1). We can use them to roll out the discrete system of Equa-
tion (30) and finally determine all via points of Equation (6).

4 Experiments in Continuous Domains
We use a simple but realistic simulated environment to compare our
method with the state-of-the-art in online goal recognition for con-
tinuous domains. Our experiments use a benchmark scenario from
Moving-AI [22] based on the Starcraft map and shared by Masters
et al. [12]. We conducted the experiments using a six-core Intel i7
running at 2.2GHz with 24GB RAM, using Linux.

We define the scenario with a space of 10 × 10 meters in Carte-
sian X and Y axes and spread eight manually-selected points in the
map periphery as shown in Equations (31-38). Here, the first and
second terms are the Cartesian position x and y, respectively, and the
third is the orientation in radians. The experiment consists of gener-
ating a number of recognition problems using all combinations of the
points in the scenario, with the remaining points being goal hypothe-
ses. Figure 1 shows this scenario named “BigGameHunters”: white
represents spaces that can be walked around, and marks represent
potential initial and goal positions points from Equations (31-38).

p1 =
[
0.47 0.98 0.78

]
(31)

p2 =
[
8.62 0.98 2.35

]
(32)

p3 =
[
9.19 4.32 3.14

]
(33)

p4 =
[
9.45 7.84 3.14

]
(34)

p5 =
[
4.31 9.17 5.49

]
(35)

p6 =
[
0.94 9.19 5.49

]
(36)

p7 =
[
1.01 5.98 5.49

]
(37)

p8 =
[
3.00 1.40 0.00

]
(38)

The experiment samples the observations from a simulated model
of a common robot with a two-wheeled motor and a one-directional
wheel defined by Equation (39), where α(t) is the velocity control
and ω(t) is the angular control rate. xr(t) and yr(t) are the positions
in Cartesian axes and θr is the orientations in radians. We chose a
sampling period of 0.1 seconds and disregarded dynamics such as
wheel friction, motor dynamics, and elastic deformations.

ẋr(t) = α(t)cos(θ(t)),

ẏr(t) = α(t)sin(θ(t)), (39)

θ̇r(t) = ω(t).

Figure 1: BigGameHunters map base on Starcraft map. Marks repre-
sent potential positions from Equations (31-38).

Each recognition problem uses two points to serve as the actual
planning problem solved by the robot, with the remaining points be-
ing additional goal hypotheses. Thus, we have one problem where
the ground truth is a problem from p1 to p2, with p2 to p8 being goal
hypotheses, another one with p8 to p7 with p1 to p7 as goal hypothe-
ses, and so on. This yields 56 goal recognition problems using the
Cartesian positions x and y of each point pn from Figure 1.

We assume that the agent pursues a goal with an optimal trajectory
regarding some known and computable cost function, i.e., shorter
distance, time, and clearance. Specifically, agents optimize total mo-
tion time following the dynamical robot model of Equation (39) de-
fined by Equations (40-44), where tf is the total simulation time;
ωlim is the maximal angular velocity; gn is a goal in Cartesian posi-
tion x, y; W (xr(t), yr(t)) is a function that measures the Euclidean
distance from the robot position to its nearest wall obstacle at time
t; Wlim is the minimum separation between the robot and an obsta-
cle. For our experiments, we define ωlim to be 3 rad/s, gn is sam-
pled from Equations (31-38) with free angular orientation, and Wlim

is 0.01 meters for all experiments. We represent the complete ob-
servation from the initial state I and finish in goal state gn as Ogn

I .
Figure 2a exemplifies the robot’s optimal trajectory obtained through
optimization in the simulated environment. In this example, the robot
is pursuing the goal point g2 with initial point p1 with full observ-
ability so that Ogn

I = mg2
p1

∗.

α∗, ω∗ = argmin
α, ω

tf (40)

subj. to :
[
xr(tf) yr(tf)

]
= gn (41)

|α(t)| ≤ Vmax, (42)

|ω(t)| ≤ ωlim, (43)

W (xr(t), yr(t)) ≥Wlim ∀ t ∈ [0, tf] (44)

4.1 Computing the Via Point Parameters

We use the Open Motion Planning Library (OMPL) [23] with the
RRT ∗ geometric planning algorithm to compute all the position pa-
rameters of Equation (6). This off-the-shelf planner provides a cost-
minimal sequence of via point positions from an initial position to
a goal. Calls to RRT ∗ have a 5-second time limit and use distance
as the cost function so that the via points are part of one shortest
path to the goal. Figure 2b shows an example of an output provided
for the RRT ∗ planner, where the initial and goal states are p1 and
g2, respectively. Circles are the via points positions provided by the
RRT ∗ planner, and the dashed line connects them in sequence.

4

(a) Robot optimal trajectory obtained
thought optimization from initial point p1
to goal point g2.

(b) Example of output from RRT ∗ consid-
ering initial and goal states as p1 and g2.

(c) Comparison between the approximated
trajectory m̂g2

p1 and the observation Og2
p1 .

Figure 2: Example of trajectories generated in different stages of the experimental scenario.

Figure 3: Convergence example of Jµ(s) Equation (26) in a problem
with initial and goal states points as p1 and g2. The dashed line rep-
resents the optimal motion time for this problem.

The next stage is finding the velocity parameters of each via point.
We implemented a Python version of the optimization previously de-
scribed in Equations (25-27), which is executed with the SciPy li-
brary using the default configuration. The optimization settings are:
maximum velocity vector of Vmax = 1; random initial actions µ;
all acceleration terms in the via points being zero. For example, Fig-
ure 3 shows the evolution of the cost function Jµ(s) (in seconds) of
Equation (26) throughout the iterations for the problem starting at
p1 with goal state g2. As a reference, we include the optimal mo-
tion time for this problem trajectory, obtained from the optimization
of Equations (40-44). Note that we expect this difference in motion
time since our strategy for trajectory generation uses a polynomial
approximation as the robot dynamics model.

Having computed all via points, we use them to compute the ap-
proximate trajectory m̂g

I from Equation (24). Figure 2c shows the
trajectory difference between an estimated trajectory m̂g2

p1 and its re-
spectively observation Og2

p1 . The final stage of our method is to com-
pute the conditional probability of Equation (4) using the estimate
trajectories m̂gn

I instead of the optimal for each goal at each new
observation, allowing us to infer the most likely goal hypotheses.
Figure 4 illustrates the conditional probability values P (m̂gn

p1 | O
g2
p1)

of Equation (4) for all goals points in the set at each instant in time.

4.2 Results

We compare our method of online goal recognition with those of
Kaminka at al. [9] and Vered at al. [25]. The first approach uses one
call to a planner at each new observation and one additional plan-
ner call to each goal in the set G, totalizing (|O| + 1)|G| planner

Figure 4: Conditional probabilities P (m̂gn
p1 | O

g2
p1) for all goals in the

set in a problem with the initial point at p1 and goal point at g2.

calls. The second approach is similar to the formulation of the first
approach but differs by creating a heuristic to decide whether to call
a planner at each observation; in practice, the number of calls is be-
tween |G| and (|O|+ 1)|G|.

Table 1 compares our method with the Baseline of Kaminka at
al. [9] and the Recompute plus Prune (R+P) of Vered at al. [25]. The
table shows the positive predictive value (PPV) of the correct goal
in percentage and the number of planner calls to get this result for
each goal in the set. We group results by problems with the same
goal, showing that all goal hypotheses have broadly similar recog-
nition probabilities in most methods. Nevertheless, our approach is
less accurate overall, albeit with increased accuracy for some goals.

Table 1: Comparison over 56 problems with eight goals each. PPV.
represents the precision in recognizing each goal gn, calls report the
number of planner calls.

Baseline R+P Estimation
Goal PPV Calls PPV Calls PPV Calls
g1 50 343 40.48 225 52.38 49
g2 47.62 343 42.86 235 54.76 49
g3 57.14 343 54.76 218 45.24 49
g4 59.52 343 57.14 193 50 49
g5 54.76 343 76.1 205 52.38 49
g6 64.29 343 69.05 201 40.48 49
g7 64.29 343 57.14 224 57.14 49
g8 61.90 343 73.81 199 52.38 49

Avg 57.44 343 58.93 212.15 50.6 49

5

Figure 5: Dashed line represents the full observed trajectory Og2
p1 and

the circles are the test observations sampled to realize the evaluation.

Figure 6: Online accuracy (and error) from different approaches.

We divide each of the 56 observable trajectories into six points
equally spaced in time, named test observations, to compare the per-
formance of online recognition. Thus, each problem has six sampled
points used as observations ({o1, . . . , o6}), which we can use to mea-
sure online recognition accuracy (convergence to the correct goal)
over time. For example, Figure 5 shows the six sample observations
over a complete trajectory with initial and goal states as p1 and g2.
Figure 6 shows the average goal recognition PPV (and its margin of
error with a confidence level of 95%) at each of the six sample ob-
servations for each method. Results indicate that our method has a
similar (error adjusted) accuracy to other methods.

Table 2: Run-time comparison (in minutes).

Baseline R+P Estimation
Online run-time 2889.6 1713.48 4.62e− 4
Offline run-time 481.6 513.52 123.76

Table 2 compares the run-time for three methods of online goal
recognition, separating the online and offline parts of the algorithm.
This table shows the critical advantage of our method: while the of-
fline computations have a fourfold speed up, the online computations
improve by seven orders of magnitude.

5 Discrete Domains
Our approach from Section 3 works exclusively for an online goal
recognition formulate in a vectorial representation (continuous do-

main). At first glance, it may not seem trivial to directly apply it
to discrete domains, which comprise the largest goal recognition
datasets openly available [16]. However, to apply the inference de-
veloped in this work, we develop a conversion of the discrete state
into a vectorial continuous state space representation, allowing us to
apply our recognition approach.

We consider a discrete domain to be a STRIPS-style PDDL de-
scription with the same semantics of Fikes et al. [5] asD, with typed
objects set Z and a set of typed predicates R. A classical planning
problem can be described as P = ⟨F ,A, I,G⟩, where: F is the set
of facts (instantiated predicates from Z);A is the set actions with ob-
jects from Z; I ∈ F is the initial state; and G ⊆ F is the goal state.
A discrete goal recognition problem is a tuple L = ⟨D,O, I,G⟩,
where: D is the domain defined above; O ⊆ F is a set of observa-
tions. A trajectory in a discrete domain is a sequence of ordered states
(represented by a set of fluents F), while a plan π is a sequence of
ordered actions (represented by possible actions A of the domain).
Plans here match exactly their definition from classical planning [7].

Algorithm 1 describes the online goal recognition process. In an
offline stage of the inference, a classical planner solves the problem
P for each goal hypothesis to compute a plan πn (Line 3). Then, we
roll out the resulting plan to generate intermediary states (Line 4).
The states computed in the previous step are converted to a vec-
torial continuous state space using the function described in Algo-
rithm 2 (Lines 5-6). Line 7 constitutes the run-time goal inference
at each new observation, which consists of converting the symbolic
observations to vector form (Line 9) and computing the conditional
probability of each goal following the Bayesian formulation of goal
recognition. The RANK function (Line 10) is a direct computation of
Equation (3) for each goal hypothesis.

Algorithm 2 requires as input the set of predicatesR, the set of ob-
jects Z, and the state S to be converted. At the end of the conversion
process, the algorithm provides a vector with a length of |R| × |Z|,
where each position represents the occurrence frequency of a conju-
gate predicate and object in the current time step k.

Algorithm 1 Discrete Online Goal Recognition in Vector Represen-
tation
Require: P = ⟨F ,A, I,G⟩,R, Z

1: function ONLINEVECTORINFERENCE(P,R, Z)
2: for all gn ∈ G do ▷ Offline precomputation of optimal plans
3: πn ← PLANNER(P, gn)
4: states← rollout(P, πn)
5: for allS ∈ states do
6: mgn

I .append(STRIPSTOVEC(R, Z, S))
7: while New ok ∈ O is available do ▷ Online recognition
8: for all gn ∈ G do
9: Ov ← {STRIPSTOVEC(R, Z, o) | o ∈ O}

10: P (O | mgn
I)← RANK(Ov,m

gn
I)

6 Experiments in Discrete Domains

We evaluate our inference method empirically against two online
goal recognition methods. The first method is Mirroring by Kaminka
at al. [9], which we use as a Baseline. The second method is an exten-
sion of the baseline approach, Mirroring with Landmarks by Vered at
al. [26], which is the current state-of-the-art. Our experiments use an
openly available goal and plan recognition dataset [16]. This dataset
contains thousands of recognition problems comprising large and

6

Table 3: Comparison among online goal recognition methods for discrete domains.

Online
Mirroring

Online Mirroring
with Landmarks

Vector
Inference

|O| |G| |S| PPV ACC SPR T PC PPV ACC SPR T PC PPV ACC SPR T PC
FERRY 18.83 6.33 1.00 0.59 0.87 1.75 16.95 126.08 0.54 0.85 1.75 13.80 98.41 0.65 0.90 1.59 0.68 6.33

DRIVERLOG 12.16 6.66 1.00 0.66 0.89 1.69 17.47 86.16 0.66 0.89 1.65 7.55 48.66 0.69 0.90 1.68 1.03 6.66
MICONIC 16.33 6.00 1.00 0.59 0.87 1.77 17.38 104.00 0.38 0.77 1.68 9.57 80.75 0.67 0.89 1.63 0.74 6.00
IPC-GRID 11.87 7.50 1.00 0.58 0.86 2.04 19.07 100.00 0.48 0.82 2.07 17.12 91.12 0.59 0.86 2.03 1.27 7.50
ROVERS 10.83 6.00 1.00 0.57 0.86 1.79 70.92 71.00 0.39 0.78 1.77 56.21 56.00 0.74 0.93 1.41 13.13 6.00

ZENO 12.00 6.00 1.00 0.63 0.89 1.62 20.23 78.00 0.53 0.85 1.55 15.32 40.75 0.68 0.90 1.58 3.39 6.00

Algorithm 2 STRIPS to Vectorial Continuous Domain

1: function STRIPSTOVEC(R, Z, S)
2: v[|R)| ∗ |Z|]← 0
3: i← 0
4: for all predicate ∈ R do
5: for all object ∈ Z do
6: for all s ∈ S do
7: if predicate, object ⊆ s then
8: v[i]← v[i] + 1

9: i← i+ 1

10: return v

non-trivial planning problems (with optimal and sub-optimal plans
as observations) for 15 planning domains, including domains and
problems from datasets from Ramírez at al. [20]. All planning do-
mains in these datasets use the STRIPS fragment of the Planning
Domain Definition Language (PDDL). Domains include realistic ap-
plications (e.g., DWR, ROVERS, LOGISTICS), and hard artificial
domains (e.g., SOKOBAN). Each problem in these datasets contains
a complete domain definition, an initial state, a set of candidate goals,
and a correct hidden goal in the set of candidate goals.

Table 3 shows the result of our empirical evaluation of these meth-
ods against our online goal recognition formulation for discrete do-
mains, All results are averages over 12 problems for each experiment
domain. The table includes the following information: |O| is the ob-
servation set size, which represents the whole plan that achieves the
hidden goal, i.e., having observed 100% of the actions; |G| is the goal
hypothesis set size; |S| is the solution set size; positive predictive
value (PPV); overall accuracy (ACC) for each experiment; spread
(SPR) is the size of the hypothesis solution set chosen by recogni-
tion method; (T) is the sum of online and offline time, and (PC) is
the number of planner calls during the whole recognition process.
Figure 7 compares results among the methods at four points during
observation (and its margin of error with a confidence level of 95%),
at 30%, 50%, 70%, and 100% of their respective full observation.
All results shown in the Figure 7 are averages over the problems of
each experiment domain. For example, partial observation problems
(30%, 50%, and 70%) have an average of 36 problems for each do-
main, and the full observation has an average length of 12 actions. We
generate observations and optimal plans using the Fast Downward
planner running A∗ with the LM-cut heuristic. Results indicate that
our approach is faster across the board, using substantially fewer calls
to the planner than all other approaches. Importantly, our approach
provides superior accuracy (substantially so in some domains) and
PPV, with a marginally higher spread in only two domains.

7 Conclusion

This paper introduces an online goal recognition approach suitable
for continuous and discrete domains. Our approach is suitable for

Figure 7: PPV percent and margin of error from different approaches
over observation percentages.

recognition of agent motion in continuous environments with ob-
stacles. If we know the observed agent’s initial states and a set of
possible goals a priori, almost all computations can be executed in
an offline stage. At each new observation, a simple equation exe-
cutes the inference process in milliseconds providing the probability
distribution over the goals. We develop a mechanism for discrete do-
mains to convert STRIPS-style problems into vectors amenable to
our function approximation.

Our evaluation shows that our method needs fewer planner calls
than other methods while yielding comparable, and often superior,
recognition results. Our method is seven orders of magnitude faster
than the state-of-the-art and four times faster than the state-of-the-art
in the preprocessing stage. This advantage in execution time is due
to our method using a smaller number of fixed planner calls (|G|),
replacing most of the original planner calls by an approximate model
of motion. By contrast, the baseline uses a much larger fixed number
of planner calls of (|O| + 1)|G|, and the R+P method have a vari-
able number of planner calls between |G| and (|O| + 1)|G|. While
our approach is slower than the fastest approaches for discrete do-
mains [16], it is the only approach with similar runtime characteris-
tics that works for continuous and discrete domains.

Empirical results showcase the difference between computing an
optimal trajectory and using an approximated one. Computing an op-
timal trajectory is often a complex task for any continuous domain
optimization; using an approximation naturally reduces the overall
optimization complexity. The major drawback of using an approx-
imation is a reduction in accuracy. However, we argue that the or-
ders of magnitude speed-up we obtain more than compensates for
the penalty imposed on accuracy. Specifically, any method that takes
minutes to perform online goal recognition in a moving robot is im-
practical. The variance shows similarities among the methods, which
indicates that the developed method has a similar density probabil-
ity but is bias-polarized by the estimation. Finally, our goal recog-
nition method for continuous domains sets us up to a new class of
goal recognition methods suitable for applications where recognition
must happen in milliseconds (e.g., for robots in motion).

7

References

[1] Dimitri Bertsekas, Reinforcement learning and optimal control, Athena
Scientific, 2019.

[2] Howie Choset, Kevin M Lynch, Seth Hutchinson, George A Kantor,
and Wolfram Burgard, Principles of robot motion: theory, algorithms,
and implementations, MIT press, 2005.

[3] John J Craig, Introduction to robotics: mechanics and control, Pearson
Educacion, 2005.

[4] Andrew Dobson and Kostas E Bekris, ‘Sparse roadmap spanners for
asymptotically near-optimal motion planning’, The International Jour-
nal of Robotics Research, 33(1), 18–47, (2014).

[5] Richard E Fikes and Nils J Nilsson, ‘Strips: A new approach to the ap-
plication of theorem proving to problem solving’, Artificial intelligence,
2(3-4), 189–208, (1971).

[6] Jonathan D Gammell, Timothy D Barfoot, and Siddhartha S Srinivasa,
‘Batch informed trees (bit*): Informed asymptotically optimal anytime
search’, The International Journal of Robotics Research, 39(5), 543–
567, (2020).

[7] Malik Ghallab, Dana S. Nau, and Paolo Traverso, Automated planning
- theory and practice, Elsevier.

[8] Avik Jain, Lawrence Chan, Daniel S Brown, and Anca D Dragan, ‘Opti-
mal cost design for model predictive control’, in Learning for Dynamics
and Control, pp. 1205–1217. PMLR, (2021).

[9] Gal A Kaminka, Mor Vered, and Noa Agmon, ‘Plan recognition in con-
tinuous domains’, in Thirty-Second AAAI Conference on Artificial In-
telligence, (2018).

[10] Sertac Karaman and Emilio Frazzoli, ‘Sampling-based algorithms for
optimal motion planning’, The international journal of robotics re-
search, 30(7), 846–894, (2011).

[11] Kevin M Lynch and Frank C Park, Modern Robotics: Mechanics, Plan-
ning, and Control, Cambridge University Press, 2017.

[12] Peta Masters and Sebastian Sardina, ‘Cost-based goal recognition for
path-planning’, in Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp. 750–758, (2017).

[13] Felipe Meneguzzi and Ramon F. Pereira, ‘A survey on goal recognition
as planning’, in Thirtieth AAAI Conference on Artificial Intelligence,
(2021).

[14] Reuth Mirsky, Sarah Keren, and Christopher Geib, ‘Introduction to
symbolic plan and goal recognition’, Synthesis Lectures on Artificial
Intelligence and Machine Learning, 16(1), 1–190, (2021).

[15] Saeed B Niku, Introduction to robotics: analysis, control, applications,
John Wiley & Sons, 2020.

[16] Ramon Pereira, Nir Oren, and Felipe Meneguzzi, ‘Landmark-based
heuristics for goal recognition’, in Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, (2017).

[17] Ramon Pereira, Nir Oren, and Felipe Meneguzzi, ‘Landmark-based ap-
proaches for goal recognition as planning’, Artificial Intelligence, 279,
103217, (12 2019).

[18] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly, ‘Differentially
constrained mobile robot motion planning in state lattices’, Journal of
Field Robotics, 26(3), 308–333, (2009).

[19] Miguel Ramírez and Hector Geffner, ‘Probabilistic plan recognition us-
ing off-the-shelf classical planners’, in Twenty-Fourth AAAI Conference
on Artificial Intelligence, (2010).

[20] Miquel Ramírez and Hector Geffner, ‘Plan recognition as planning’, in
Twenty-First AAAI Conference on Artificial Intelligence, (2009).

[21] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus, ‘Planning
and decision-making for autonomous vehicles’, Annual Review of Con-
trol, Robotics, and Autonomous Systems, 1(1), 187–210, (2018).

[22] Nathan R Sturtevant, ‘Benchmarks for grid-based pathfinding’, IEEE
Transactions on Computational Intelligence and AI in Games, 4(2),
144–148, (2012).

[23] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki, ‘The Open Motion
Planning Library’, IEEE Robotics & Automation Magazine, 19(4), 72–
82, (December 2012). https://ompl.kavrakilab.org.

[24] Gita Sukthankar, Christopher Geib, Hung Hai Bui, David Pynadath, and
Robert P Goldman, Plan, activity, and intent recognition: Theory and
practice, Elsevier, 2014.

[25] Mor Vered and Gal A Kaminka, ‘Heuristic online goal recognition in
continuous domains’, in Twenty-Sixth AAAI Conference on Artificial
Intelligence, pp. 4447–4454, (2017).

[26] Mor Vered, Ramon Fraga Pereira, Gal Kaminka, and Felipe Rech
Meneguzzi, ‘Towards online goal recognition combining goal mirror-

ing and landmarks’, in Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, p. 10–15, (2018).

[27] Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti,
Hankz Hankui Zhuo, and Subbarao Kambhampati, ‘Plan explicabil-
ity and predictability for robot task planning’, in 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1313–1320,
(2017).

8

https://ompl.kavrakilab.org

	Introduction
	Online Goal Recognition Problem
	Trajectory Planning Approximation
	Polynomial Trajectory
	Finding the via points parameters

	Experiments in Continuous Domains
	Computing the Via Point Parameters
	Results

	Discrete Domains
	Experiments in Discrete Domains
	Conclusion

