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Abstract
In this article, the blast response of structures by the Single Degree of Freedom (SDOF) method is revisited. The existing 
literature in which the Biggs’ chart is used to determine the ductility ratio is examined in detail. The numerical method 
determines the SDOF response by considering the elastic perfectly plastic behaviour of the structure. The numerical values 
of the ductility ratio in various plastic Dynamic Load Factors (DLF) in each td/T ratio are collected. Such verifiable data can 
represent the whole chart in the elastic and plastic regions. The only available implicit formula suitable for sharp pulses is 
tested. It is shown that substantial inaccuracy exists in the formula. Since the error in the existing formula is up to 100%, an 
alternative formula is suggested to reduce the error. The new nonlinear surrogate model describes the chart by introducing 
3 regions. In each region, an approximate formula is developed. The model computes the ductility ratio with less than 2% 
error. The newly suggested functions are nonlinear quadratic types and have been developed by using high-order polynomial 
optimization. In the numerical example, the result of the new surrogate model is commented on in comparison with SDOF 
and FEM. It is shown that it can be used in the computational design of protective structures without using Biggs’ chart. It 
is concluded that similar surrogate models can be developed for unsymmetrical blast pulses.

Keywords Blast response · SDOF · Least square · Optimisation · Dynamic Analysis

Introduction

Modern technologies for condition monitoring of assets are 
growing fast. They are based on a new concept known as 
digital twins [1] of real physical assets. Each component of 
the asset requires a dynamic model that is included in the 
digital twin.

Improvement in the twin capability, for fast prediction of 
the outputs, is an active field of research. The tool is based 
on expressing the results of the simulation of underlying 
dynamical systems, via the tailored surrogate models [2]. 
Such surrogate models are under investigation in the field 
of structural dynamics [3].

The blast-resistive protective structures are included in 
all offshore platforms. They are faced with possible hydro-
carbon explosions. In the design of protective structures, a 
mixture of analytical, numerical, and graphical methods is 

used [4]. The blended approaches in the design can use an 
accurate surrogate model.

The initial design of any protective structure is based on 
SDOF analysis, in which one can calculate the ductility ratio 
from Biggs’ chart [5]. The chart is still a tool for designers, 
in blast wall design [6]. It is desirable to replace the chart 
with a surrogate function, such that it can be used not only 
for designers but also for the digital twin of the protective 
structure.

There is an alternative simple method to SDOF which is 
known as the Pressure-Impulse (P-I) diagram method and 
is described in [4]. The method is graphical, it is appropri-
ate when a linearly decreasing blast pulse is applied [7–9].

The P-I method is based on curves that are enveloped in 
horizontal asymptotes (long pulses) and vertical asymptotes 
(short pulses). Therefore, they are accurate for short and 
long pulses only. In order to make the P-I diagram accurate, 
it can be developed individually for particular structures by 
using high-fidelity models [10, 11].

The P-I model can also be modified to include different 
material models [12]. However, in the blast pulses where 
pressure rising time is significant (like gas explosions), the 
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corresponding P-I diagram should be modified and redevel-
oped using the SDOF method [13].

The SDOF method is not graphical and can be used for 
a variety of blast pulses. It is described in [4, 5]. SDOF 
method requires the equivalent mass and stiffness, that can 
be found via simple methods [14–16].

High-fidelity models may also be required to provide the 
appropriate equivalent mass and stiffness [6, 17]. For the 
nontriangular pulse shape and nonlinear material model, 
the SDOF can also be implemented successfully [18]. The 
validity of the method is also tested, see for example [19].

In this article initially, the elastic perfectly plastic 
model in SDOF analysis is revisited and the ductility ratio 
is determined and stored as verifiable data that can accu-
rately express the Biggs’ chart. Thereafter it is shown that 
the existing surrogate function for the chart in [4] is sub-
stantially inaccurate and therefore it should be updated.

The new nonlinear quadratic surrogate function is devel-
oped by using a high-order polynomial optimization tech-
nique. Thereby 3 surrogate functions are found for 3 regions 
of the chart. In each region, the computed ductility ratio 
indicates less than a 2% error.

Region III which covers the elastic region, provides a 
surrogate expression for the elastic dynamic factor and was 
previously reported by the author in [20]. In this article, 
regions I and II are also developed that provide the surrogate 
expressions for ductility ratio in plastic regions.

It is discussed that the existing Biggs’ chart assumes the 
blast pulse is a symmetrical isosceles triangular type, and this is 
a hypothetical assumption. The approach in this article is based 
on practically accepted pulses with unsymmetrical shapes. It is 
concluded that similar surrogate functions can be developed for 
unsymmetrical pulses via the approach in this article.

SDOF Response to an Unsymmetrical Pulse 
Force

When an unsymmetrical triangular pulse is applied to a 
mechanical system in Fig. 1 with mass M and the stiffness k 
the equations of motion in the SDOF approach are:

Equations (1) are valid when the system is in elastic status 
i.e. ( x ≤ xel ). However, when the system faces plastic defor-
mation, where the material model is Elastic Perfectly Plastic 
E-P-P material model, Eqs. (1) will change to:

(1)

M
d2x

dt2
+ k x =

Fmaxt

𝛼 td
t < 𝛼 td M

d2x

dt2
+ k x = 0 t > td

M
d2x

dt2
+ k x =

(

t − td
)

Fmax

(𝛼 − 1) td
𝛼 td < t < td

The maximum resistance Rm in Eq.  (2) depends on 
maximum elastic deflection xel and the stiffness k , via this 
formula:

The plastic dynamic load factor depends on maximum 
resistance Rm  and is defined by this equation:

The natural period of structure T is given by:

Considering dimensionless parameters x = x

xel
 , � =

t

td
 and 

�d =
td

T
 the Eqs. (1) and (2) can be converted into the follow-

ing dimensionless form:
In the elastic region, i.e. for x < 1

In perfectly plastic region i.e. for x > 1

(2)M
d2x

dt2
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Fmaxt

𝛼 td
t < 𝛼 td

M d2x
dt2
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t − td
)

Fmax

(� − 1) td
� td < t < td

M d2x
dt2

+ Rm = 0 t > td

(3)Rm = k xel
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Fmax

(5)T = 2�

√
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K
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Fig. 1  Mass spring system with unsymmetrical pulse force
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From the numerical solution of the equations in the 
elastic region (6) and plastic region (7) the history of the 
ductility ratio x(�) can be found and the ductility ratio in 
the Biggs’ chart is:

The full derivation of Eqs. (6, 7) from equations. (1, 2) 
is shown in Appendix A.

1

4𝜋2
⋅

d2x

d𝜏2
+ 1 =

1

(DLF)R

(

𝜏 − 𝜏d
)

(𝛼 − 1) 𝜏d
𝛼 𝜏d < 𝜏 < 𝜏d

(8)
� = xmax =

DLFE

(DLF)R
if (DLF)R ≥ 1 and

� = xmax if (DLF)R ≤ 1

Revisiting Existing Empirical Formula

The Biggs’ chart was first developed by the US Army in [21] 
but appeared to the public in a book written by Biggs [5]. It 
is known by some authors as design chart [22]. It is devel-
oped by analogue computers and the results are graphical. In 
Fig. 2 the chart shows the ductility versus other parameters 
[4, 5]. The force pulse for this chart is isosceles triangu-
lar type i.e.� = 0.5 . It can be reproduced by Eq. (8) in this 
article.

The only empirical formula that can express the chart 
is given by Newmark [23]. It is used as an alternative to 
pressure impulse diagram [24] and is written as:

Fig. 2  Biggs’ chart for isosceles 
triangular pulse
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This formula (9) is good for α = 0, but it was also used 
for any types of pulses for few decades [4, 25], to esti-
mate ductility without using Biggs’ chart. Herein we have 
tested Eq. (9) to see if the results are matching with (8) 
and the comparison is shown in Fig. 3.

Figure 3 shows that the approximate formula (9) over-
estimates the values of the ductility ratios substantially. 
The accuracy is acceptable only if (DLF)R < 0.5 i.e. for 
strong blast forces whereas when the loading approaches 
the elastic limit i.e. (DLF)R = 1 the overestimated error 
sometimes is above 100% so (9) is not appropriate, since 
it is valid for α = 0 only.

New Surrogate Expressions

By using accurate surrogate models, engineers and research-
ers in field of blast response, do not need to learn sophis-
ticated tools like digital spreadsheet analysis SBEDS. This 
tool is developed by the US Army and employs a numerical 

(9)1

(DLF)R
≅

√

2� − 1
�

td
�

T

�

�
+

�

1 − 1∕2�

�

�

td
�

T

�

�

td
�

T

�

+ 0.7

time-stepping procedure to solve the equation of motion of a 
mass-spring system. Some predictions of SBEDS are shown 
in [26].

In order to find an accurate surrogate expression, that can 
predict ductility ratio, a new polynomial optimization tech-
nique is used that is valid for 0 < α < 1. To present the whole 
chart, a high-order nonlinear quadratic form is required. 
However, for lowering the order, it is required to divide that 
chart into 3 regions and find the surrogate function in each 
region. The method herein is new in this field but used 
before at [27] to predict the surface of the satellite mirrors 
for online position control. It has been successful and has 
been updated recently in [28]. The 3 regions are identified 
by examining the data that is generated from (8) which picks 
up the maximum from the numerical solution of (6) and (7). 
These 3 regions represent all the data in Fig. 2. Looking at 
Fig. 2, we set the vertical axis y = DLFR and horizontal axis 
�d =

(

td

T

)

 , then in the following range (I):

The ductility ratio can be approximated with the follow-
ing polynomial:

(10)y = DLF
R

Fig. 3  Ductility ratios comparison using Eq. (8) and (9)
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However, in this range (II):

The ductility ratio can be approximated with the follow-
ing polynomial:

In the region III (elastic) with y ≥ 1 , the polynomial is in 
terms of �d only, such that:

The coefficients of the polynomials (11–13) can be found 
from multiple regression analysis with arbitrary terms based 
on least square method. The procedure is explained in many 
references including [27–29] and is based on minimising 
the following error:

Then the parameters pa,b in (14) can be found from the 
following system of equations:

In (14) the N is the number of data point that is gen-
erated by (8). In (15) n is the number of parameters. The 
Eqs. (11–13) are rewritten into the following form:

Region I 0.2 ≤ (DLF)R ≤ 0.75.
For region I the formulae includes 11 terms as follows:

(11)

� ≅ � =p0,0 + p1,0 y + p2,0 y
2 + p1,1 y�d + p0,1 �d

+ p0,2 �2d + p2,1 y
2 �d + p1,3 y �3d

+ p1,2 y �2d + p−1,2 y
−1�2d + p2,2y

2�2d

0.2 ≤ y ≤ 0.75

0.75 ≤ y ≤ 1

(12)

� ≅ � = p0,0 + p1,0 y + p2,0 y
2 + p1,1 y �d

+ p2,1 y
2 �d + p1,2y �2d +

8
∑

i=1
p0,i� id

(13)� ≅ � =
1

y

18
∑

i=1

ai �
18−i
d

DLFE ≅

18
∑

i=1

ai �
18−i
d

(14)R =

N
∑

k=1

(

�k − �k

(

pa,b, �d,k, yk
))2

(15)Lj =
� R

�pa,b
= 0 j = 1, 2,⋯ , n

� =

[

0 1 2 1 0 0 2 1 0 −1 −2

0 0 0 1 1 2 1 2 3 2 2

]

0.2 ≤ (DLF)R ≤ 0.75

(16)
� ≅

11
∑

i=1
(DLF)�(1,i)

R

( td
T

)�(2,i)
p�(1,i),�(2,i)

0.2 ≤ (DLF)R ≤ 0.75

p0,0 = −16.4841 p1,0 = 61.3146 p2,0 = −49.6227 p1,1 = −154.2891

Region II  0.75 ≤ (DLF)R ≤ 1:
For region II the formulae include 14 terms as follows:

Region III  (DLF)R > 1:
For region III (elastic region) the formulae include 18 terms 

as follows

In order to test the expressions (16) and (17), the Fig. 4 
is produced. It shows that the results are comparable with 
Eq.  (8). In both regions I and II there is perfect match 
between two sets of the results and the maximum error does 
not exceed 2%.

p0,1 = 53.0262 p0,2 = 16.3883 p2,1 = 113.3643 p1,2 = −8.7045

p0,3 = 0.0132 p−1,2 = −13.7996 p−2,2 = 4.8972

� =

[

0 1 2 1 0 0 2 1 0 0 0 0 0 0

0 0 0 1 1 2 1 2 3 4 5 6 7 8

]

0.75 ≤ (DLF)R ≤ 1

(17)

� ≅
14
∑

i=1
(DLF)�(1,i)

R

( td
T

)�(2,i)
p�(1,i),�(2,i) 0.75 ≤ (DLF)R ≤ 1

p0,0 = −127.2959 p1,0 = 296.2837
p2,0 = −171.5619 p1,1 = −181.9689

p0,1 = 86.447 p0,2 = −4.1853 p2,1 = 103.7386 p1,2 = −1.4646

p0,3 = 0.9485 p0,4 = 0.5586 p0,5 = −0.3119 p0,6 = 0.0672

p0,7 = −0.0075 p0,8 = 4.3157 × 10
−4

(18)

� ≅ 1
(DLF)R

18
∑

i=1

( td
T

)18−i
ai

DLFE ≅
18
∑

i=1

( td
T

)18−i
ai (DLF)R > 1

a1 = −5.3453 × 10−10 a2 = 5.2161 × 10−8

a3 = −2.3092 × 10−6 a4 = 6.1438 × 10−5

a5 = −0.0011 a6 = 0.0139 a7 = −0.1284
a8 = 0.8806 a9 = −4.5012 a10 = 17.0873

a11 = −47.6367 a12 = 95.6827 a13 = −134.6187 a14 = 127.3124

a15 = −75.3144 a16 = 22.739 a17 = −0.1595 a18 = 0.1548
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It is obvious that, Eqs. (16, 17) can replace the Biggs’ 
chart in Fig. 2. Such formulas can be stored in calculators 
or inside the other computational software to determine the 
ductility ratio. Ultimately there is no need to refer to Fig. 2, 
and the whole design procedure can be computerised and 
inserted into a digital twin for online prediction of the dam-
age in a protective structure. Moreover, formulas are suit-
able for design engineers and removes the errors that can be 
produced by visual examination of the chart in Fig. 2.

The author claims that Eq. (8) can reproduces the Biggs’ 
chart by using digital computers, whereas the Biggs’ chart 
in Fig. 2, is produced by analogue computers in 1957 [21]. 
Therefore, we assume that Eq. (8) provides an accurate result 
for the Biggs’ chart with zero error.

Numerical Example and FEM Verification

A triangular pressure pulse with peak of pmax = 1.933 bar 
and duration of td = 58 ms is applied to a steel blast wall. The 
pitch is p = 1.2 meter and the other dimensions are shown 
in Fig. 5. It is one of the existing profiles of blast wall that 
is described in [6]

The second moment of cross section I = 8.767 × 10−5 m4 , 
the section modulus Wpl,y = 4.37 × 10−4 m3 , mass per pitch 

M = 410 kg, Young modulus E = 210 GPa, and yield stress 
f ∗
y
= 400 MPa, the length L = 3 m. According to instruc-

tions in [6], the natural period for the blast wall is calculated 
T = 16.1 ms. The SDOF model for this blast wall results 
the deflection ymax = � xel ≅ 58.4 mm and μ is found from 
Eq. (8). This is shown in Table 1.

In order to verify the SDOF result a comparison is done 
by using FEM technique via ABAQUS modelling [30] for 
the blast wall in this example. The meshing is shown by a 
snapshot in Fig. 6. In this model there are 6500 shell type 
S4R elements, each with nine internal integration points. 
Moreover, there are substantial FEM outputs, including the 

Fig. 4  Ductility ratios comparison using Eq. (8) and (16, 17)

Fig. 5  A typical cross section (one pitch) of a blast wall [6]
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local buckling details in bottom flanges as shown by red 
colour in Fig. 6.

The only result that can be compared with SDOF anal-
ysis is the displacement of the node in middle of the top 
flange. This has been extracted from output files and is 
ymax ≅ 52.99 mm . Since ductility ratio is not defined the in 
ABAQUS, the Table 1 is provided to compare the (maxi-
mum deflection) in each approach.

The  2nd row of the Table 1, is found from history of the 
displacement of the middle of the top flange of the blast 
wall. In the  3rd row of the table, the displacement is found by 
using ymax = � xel ≅ 62.4 mm and � is found from surrogate 
Eq. (16). This shows that Eq. (16) provides a conservative 
result as well.

Conclusions

In this article a surrogate formula is developed that replaces 
the Biggs’ chart in structural impact analysis. Although 
the original chart is developed for symmetrical triangular 
force pulse, that may not be practically viable, it is still 
used by designers. However, any blast load can be repre-
sented by an unsymmetrical force pulse. The approach in 
this article introduces a pulse index in the beginning, by 
which index 0.5 represent symmetrical and other indices 
represent unsymmetrical pulses. It is shown that similar for-
mulas can be developed for any unsymmetrical pulse with 
any indices. Although the formula is not short, it enables the 

computational designers to predict the damage accurately. 
The Eqs. (16–18) in the paper are valid for all the parameters 
indicated at Biggs’ chart in Fig. 2. Similar expressions can 
be developed for any other chart by using the method in this 
paper.

Appendix A

Dimensionless governing Eqs. (6, 7)
The elastic dynamic load factor depends on maximum 

deflection xmax and is defined by this equation:

In (A-1) the xst is the static deflection of the system which 
is given by:

By substituting (A-2) into (A-1) we have:

In (A-3) Fmax and k are the maximum force and the stiff-
ness per unit length of the protective structure. Therefore it 
can be expressed by Fmax = pmaxLE , where pmax is the maxi-
mum pressure and LE is the equivalent length.

The plastic dynamic load factor depends on maximum 
resistance  Rm and is defined by this equation:

In (A-4) Rm depends on maximum elastic deflection xel 
and is given by this equation:

(A-1)DLFE =
xmax

xst

(A-2)xst =
Fmax

k

(A-3)DLFE =
k xmax

Fmax

(A-4)DLFR =
Rm

Fmax

Fig. 6  FEM meshing of the 
blast wall (displacement map 
in m)

Table 1  Comparison of the results (Maximum deflection)

The method used Maximum deflection

SDOF simulation using Eq. (8) ymax ≅ 58.4 mm

FEM analysis via ABAQUS ymax ≅ 52.99mm

Using surrogate expression Eq. (16) ymax ≅ 62.4mm
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The structure remains in elastic status if the following 
inequality holds:

The inequality (A-6) can be expanded as follows:

Substituting (A-5) into (A-4) and the result into (A-7), 
also using (A-3) and (A-1) in right side of (A-7) yields to:

By numerical simulation we can find the maximum 
deflection and we can check if (A-6) or (A-8) holds, then 
we can find if the structure is in elastic or plastic status.

When an unsymmetrical triangular pulse is applied to a 
mechanical system with mass M and the stiffness k the equa-
tions of motion in SDOF approach are:

The equations (A-9) are valid when they system is in 
elastic status i.e. x ≤ xel . However, when x > xel the system 
facing plastic deformation. For the Elastic Perfectly Plastic 
E-P-P material model, the equations (A-9) will change to:

The maximum resistance Rm is defined by equation (A-5).
The equations in (A-9) and (A-10) can be changed to:

(A-5)Rm = kxel

(A-6)xel > xmax

(A-7)k xel > k xmax ⇒
k xel

Fmax

>
k xmax

Fmax

(A-8)DLFR > DLFE

(A-9)

M
d2x

dt2
+ k x =

Fmaxt

𝛼 td
t < 𝛼 td M

d2x

dt2
+ k x = 0 t > td

M
d2x

dt2
+ k x =

(

t − td
)

Fmax

(𝛼 − 1) td
𝛼 td < t < td

(A-10)M
d2x

dt2
+ Rm =

Fmaxt

𝛼 td
t < 𝛼 td

M d2x
dt2

+ Rm =

(

t − td
)

Fmax

(� − 1) td
� td < t < td

M d2x
dt2

+ Rm = 0 t > td

(A-11)
M

k

d2x

dt2
+ x =

Fmax

k
⋅

t

𝛼 td
= xst ⋅

t

𝛼 td
t < 𝛼 td

M

k

d2x

dt2
+ x =

Fmax

k
⋅

(

t − td
)

(𝛼 − 1) td
= xst ⋅

(

t − td
)

(𝛼 − 1) td
𝛼 td < t < td

(A-12)

M

k

d2x

dt2
+

Rm

k
=

Fmax

k
⋅

t

𝛼 td
= xst ⋅

t

𝛼 td
t < 𝛼 td

However, M
k
 can be expressed in terms of natural period 

of structure T as follows:

Substituting (A-13) into (A-11) and (A-12) results:

Substituting (A-5) into (A-15) then dividing the result by 
xel results (A-17). Similarly dividing (A-14) by xel results 
(A-16).

Considering dimensionless parameter, and together with 
substitution of equations (A-2), (A-4) and (A-5) changes the 
equations (A-16) and (A-17) into this form:

M
k

d2x
dt2

+
Rm

k
=

Fmax

k
⋅

(

t − td
)

(� − 1) td

= xst ⋅
(

t − td
)

(� − 1) td
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(A-13)M

k
=

T2

4�2

(A-14)
T2

4𝜋2

d2x

dt2
+ x = xst ⋅

t
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T2

4𝜋2

d2x

dt2
+ x = xst ⋅

(
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)

(𝛼 − 1) td
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(A-15)
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4𝜋2

d2x

dt2
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k
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t
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T2
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dt2
+
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k
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(
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)
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(A-16)
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dt2
1
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+

x
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=

xst
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⋅

t
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T2
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(
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)
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(A-17)
T2
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(
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⋅
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dt2
+ x =

1

(DLF)R
⋅

(

t − td
)

(𝛼 − 1) td
𝛼 td < t < td
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Further dimensionless parameters � =
t

T
 and �d =

td

T
 are 

introduced which yields to:

Considering (A-20) the equations (A-18) will change in 
elastic region, i.e. for to:

Also equations (A-19) will change in perfectly plastic 
region i.e. for x > 1 to:
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(A-19)
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d2x

dt2
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