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Abstract: Increasingly complex multi-electrode arrays for the study of neurons both in vitro and
in vivo have been developed with the aim of tracking the conduction of neural action potentials
across a complex interconnected network. This is usually performed through the use of electrodes to
record from single or small groups of microelectrodes, and using only one electrode to monitor an
action potential at any given time. More complex high-density electrode structures (with thousands
of electrodes or more) capable of tracking action potential propagation have been developed but
are not widely available. We have developed an algorithm taking data from clusters of electrodes
positioned such that action potentials are detected by multiple sites, and using this to detect the
location and velocity of action potentials from multiple neurons. The system has been tested by
analyzing recordings from probes implanted into the locust nervous system, where recorded positions
and velocities correlate well with the known physical form of the nerve.

Keywords: neural probe; neuroprobe; recording; implant

1. Introduction

Since the first development of action potential measurement in the 1950s [1], instru-
ments have been developed to enable the monitoring of single action potentials (APs).
Whilst original recording devices comprised thin wires, since the 1970s, the predominant
approach to neural recording electrodes has been through the use of micromachined silicon
electrodes constructed using techniques developed in the semiconductor industry. As
manufacturing techniques have improved, it has been possible to increase the number of
electrodes on each device in order to enable recording from multiple neurons simultane-
ously, either in in vivo or in vitro settings [2–5]. When recording from complex structures
containing many neurons, it is important to be able to discriminate between different neural
sources. Where single electrodes are used in multi-neuron settings, this is commonly per-
formed by classifying the sources according to amplitude to determine proximity, though
this is only effective for AP sources adjacent to the electrode; as distance increases, so does
the likelihood of multiple sources being at similar distance from the electrode in any given
direction; such single electrode systems (or multi-electrode systems with inter-electrode
spacings of hundreds of microns) are unable to give spatial information about these sources,
such as location or velocity. Pickard et al. demonstrated that a single implanted multi-
electrode probe can detect many action potentials by comparing the relative magnitudes
of the potential “spike” [6]. This approach has been used by other groups to discriminate
between APs, but the typical wide spacing between microelectrodes of implantable devices
(typically multiple hundreds of microns) means that AP spikes can be detected by only one
electrode at a given point in time (e.g., [7]).
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Where spatial information such as AP location, detection and velocity are required,
multiple electrodes must be used. A common approach to this is to track APs using large
multiple-electrode arrays (MEAs), such that individual APs pass near many electrodes
and can consequently be identified, tracked and measured. However, such MEAs typically
use high levels of redundancy, with many electrodes (sometimes extending to hundreds)
required to track each AP, and each electrode recording from a small number of sources [8].
Whilst in vitro MEAs can be manufactured to fit the size of a brain slice or cultured neural
structure, in vivo devices are more limited in order to maximize proximity to neuron
sources without causing significant damage to the neural tissue. Consequently, for in vivo
electrodes, a more efficient approach to detection of APs is required, using smaller numbers
of electrodes in close proximity to one another and use triangulation techniques in order
to identify multiple AP sources. This has been used to measure the position of multiple
sources in two dimensions using parallel metal wires [9], though the nature of the very
long electrodes placed parallel to the direction of neural processes means the approach is
only able to classify forces radially, and relies on the electrode direction being completely
parallel to the neural sources. Another approach developed by Hughes et al. [10] used
point electrodes to measure action potential velocity by measuring the time taken to travel
between electrodes placed along the nerve.

In this paper, we present an approach to detecting action potentials from multi-unit
recordings that allow us to track the axon source across a nerve with as few as three
electrodes by triangulating the signals from multiple electrodes, and comparing their
timings and amplitudes. In order to evaluate the usefulness of the algorithm, we have
validated the model by applying it to signals recorded using a microelectrode device
implanted into a locust ventral nerve cord, a complex network of non-myelinated nervous
systems with defined physical dimensions and with action potential travelling along a
defined afferent-efferent direction of travel. The result demonstrated a clear correlation
between the analyzed results and the nerve geometry. This has the potential to provide
a new approach to multi-unit neural recordings, simplifying the production of electrode
arrays for the analysis of very large numbers of neurons without the requirement for
commensurately large numbers of electrodes.

2. Detection Algorithm

We aimed to develop a method of AP tracking that minimizes the number of electrodes
required for neural monitoring, by using three electrodes arranged on a penetrating probe
with a maximum distance between the furthest electrodes of less than 100 µm. These were
used not only to identify individual APs, but also to calculate their position, direction and
velocity. The analysis approach is derived from a model of the movement of an AP past
multiple electrodes.

In order to explain the analysis method, we will describe the model on which it is
based, which can be seen in Figure 1. At its simplest, we can model an AP as a charge Q
travelling in a linear axon parallel to the probe surface. From Coulomb’s law, the potential
caused by a charge at a point a will be inversely proportional to the distance between that
point and the charge. At the scale of the probe, a nerve can reasonably be considered linear
and the position of the probe can be made as to satisfy the condition of parallelism.

As our electrodes are in planar arrays, we can define them purely in the x–y plane.
We can simplify the electrodes by considering them as a recording point with position
→
Mi = xi.

→
u x + yi.

→
u y. The potential at each electrode at time t depends on the distance Di

between the charge and the electrode, which can be expressed as a function of the position
s of the charge along the axon and on the minimum distance between the electrode and the
axon. Taking into account the AP velocity

→
v = vx.

→
u x + vy.

→
u y, one obtains the following:

→
Di = −

→
Mi +

→
s o + t ·→v (1)

where
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→
s 0 = x0.

→
u x + y0.

→
u y + z0.

→
u z is a reference point on the axon defined by the position

of the AP at time 0.
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Figure 1. A schematic representation of the model used in this processing technique. An action po-
tential with vector S travels with respect to multiple electrode sites (here shown on a schematic of a 
neural probe, in grey). 
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The coordinates for the electrode i and the origin are known, but not the velocity or 
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Equation (5) has two unknown variables, vx and vy, and therefore one more electrode 
(here terms electrode k) is required. Using Equation (5) for both pairs of electrode gives 
the following: 

Figure 1. A schematic representation of the model used in this processing technique. An action
potential with vector S travels with respect to multiple electrode sites (here shown on a schematic of
a neural probe, in grey).

The potential at the electrode reaches its maximum value when the charge is at the
point of the axon closest to the probe. We call this point

→
s m,i with coordinates xm,i, ym,i, zm,i,

where m corresponds to ‘minimum’ and i describes reference number of the electrode. Since
the probe is parallel to the axon, one can write:

→
Mi·

→
s m,i = 0 = (xm,i − xi)· t· vx +

(
ym,i − yi

)
.t.vy (2)

We can now introduce the time ti taken for the action potential to reach point
→
s m,i

from the reference
→
s 0 related to the position of the action potential at time 0 so that:

xm,i = x0 + ti · υx
ym,i = y0 + ti · υy

zm,i = z0

(3)

By combining the equations above, it is possible to find the position of the minimum
approach point

→
s m,i in terms of the velocity, the electrode coordinates (xi,yi) and the arbi-

trary reference point (xo,yo); the z-coordinate is invariant due to its orthogonal orientation
to the plane of the electrodes.

xm,i =
xi ·vx

2+vx ·vy(yi−yo)+xo ·vy
2

vx2+vy2

ym,i =
yi ·vy

2+vx ·vy(xi−xo)+yo ·vx
2

vx2+vy2

(4)

The coordinates for the electrode i and the origin are known, but not the velocity
or the position of the reference point. We can use the information provided by another
electrode, say electrode j; by introducing ∆xij =

(
xm,i − xm,j

)
, ∆yij =

(
ym,i − ym,j

)
and

∆tij =
(
ti − tj

)
one obtains, after some calculations:

∆tij · (vx
2 + vy

2) = vx · ∆xij + vy · ∆yij (5)
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Equation (5) has two unknown variables, vx and vy, and therefore one more electrode
(here terms electrode k) is required. Using Equation (5) for both pairs of electrode gives
the following:

vx
vx2+vy2 =

∆tij ·∆yik−∆tik ·∆yij
∆yij ·∆xik−∆xij ·∆yik

= Kx
vy

vx2+vy2 =
∆tij ·∆xik−∆tik ·∆xij
∆yij ·∆xik−∆xij ·∆yik

= Ky
(6)

It is useful at this stage to introduce the following complex number:

Kx − i.Ky =
vx − i.vy

v2
x + v2

y
=

1
(vx + i.vy)

(7)

Such that:
vx + i.vy =

1
Kx − i.Ky

(8)

This complex variable can provide the velocity of the action potential by taking the
real and imaginary part of its inverse. The values Kx and Ky depend on two variables:
the position of the electrodes, and the difference in time between the observation of the
maximum signal of an AP at the two different electrodes, assuming that the probe is
inserted such that the general direction of neural travel is in the direction of the x-axis, and
that the difference in times of an action potential seen by two electrodes can be calculated
from the recordings. It is therefore possible to process Kx and Ky and to estimate the velocity;
one can also determine the position of the neuron by using the model of propagation of the
electric field, since the potential due to a charge q is given by the expression

Vi(t) =
1

4πεε0

q
Di

=
q′
Di

(9)

where q′ = q/4πεε0. This expression is difficult to solve in this form, but can be simplified
by using a local frame of reference {X, Y, Z} rotated by an angle α = arctan(vy/vx), such
that the neuron is aligned with the X-axis. This reduces the number of unknowns to three,
the coordinates Y and Z and the charge q. This can be further simplified by considering
the potential Vi for each electrode when the action potential is at the point

→
s m,i so that no

coordinates along the X-axis appear in the equations. Under these conditions, combining
Equations (1) and (9) for all the electrodes in the local frame of reference provides the
following solution:

q2 =

(
Y2

i

(
Yj−Yk

)
+Y2

j (Yk−Yi)+Y2
k

(
Yi−Yj

))
S−2

i (Yk−Yj)+S−2
j (Yi−Yk)+S−2

k (Yj−Yi)

Y = 1
2

S−2
i (Y2

k−Y2
j )+S−2

j (Y2
i −Y2

k )+S−2
k (Y2

j −Y2
i )

S−2
i (Yk−Yj)+S−2

j (Yi−Yk)+S−2
k (Yj−Yi)

Z2 = q2

S2
i
− (Y−Yi)

2 = q2

S2
j
−
(
Y−Yj

)2
= q2

S2
k
− (Y−Yk)

2

(10)

where the variables Si, Sj and Sk represent the maximum amplitudes of an aAP seen by
electrodes i, j and k at positions Yi, Yj and Yk. The coordinates Y and Z are expressed in the
local frame and must be rotated back to the initial frame.

This preliminary model is made using an assumption that the AP can be represented
by a single point charge, which is a coarse estimation. It is possible to improve this by
introducing the shape of the action potential. We can consider the action potential as a
distribution of charges Q along the neuron, or, Q′ = Q/4πεε0 which is a function of time t
and position s. Equation (9) then becomes:

Vi(t) =
∫

neuron

Q′(t−s/v)
Di(s)

ds

=
∫

neuron

Q′(t−s/v)

Dm,i

√
1+(s−sm,i)

2/Dm,i
2
ds

(11)
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where Dm,i is the minimum distance between probe i and the neuron. Mathematically,
Equation (11) can be regarded as a convolution between the charge function Q′ and a
function F defined by:

F(s) =
1√

1 +
(

s−sm,i
Dm,i

2

)2
(12)

Then, Equation (11) becomes:

Vi(t) =
1

Dm,i

(
Q′F

)
(t) =

qe,i
′(t)

Dm,i
(13)

where
q′e,i(t) =

∫
Q′(t− s/v).F(s)ds (14)

Equation (13) for Vi is similar to Equation (9) for a point charge, but here the equivalent
charge depends on the position of the electrode and time. This makes the analytical
calculation of the electric potential much more difficult. However, using Equation (12),
it is possible to avoid this problem by estimating the first-order error provided by the
point-charge approximation. One can note the following:

∂qe,i′(t)
∂Dm,i

=
∫
s

Q(t− s/v)F(s)
1

Dm,i

1

1 + D2
m,i/(s− si)

2 ds (15)

We can set an upper bound to the value of the fraction under the integrand as follows:

1

1 + D2
m,i/(s− si)

2 <
1

1 + D2
m,i/smax2

(16)

And then: ∣∣∣∣∂q′i(t)
∂Dm,i

∣∣∣∣ < 1
Dm,i

1
1 + D2

m,i/smax2 |q′i(t)| (17)

smax can be estimated from the value of the velocity and the AP duration using a plot
of function F, then one can express the first-order Taylor series of the electric potential as:

Vi(t) ≈
q′(t)
Dm,i

(
1 +

1
Dm,i

1
1 + D2

m,i/s2
max
|Di − D|

)
=

q′(t)
Dm,i

(1 + εi) (18)

The error εi can be processed from the estimated values in order to estimate the error
in the position of the neuron.

The resolution of the system is defined by the sampling rate and electrode spacing; for
example, if the signals are sampled at 40 kHz, then only differences in time higher than
25 µs can be detected; if in this instance the distance between electrodes is 80 µm then the
maximum detectable velocity would be 3.2 m s−1, which is sufficient for non-myelinated
nervous systems, such as neural cultures or invertebrate study. A 1 MHz, 100 µm system
would be required to detect the fastest 100 m s−1 action potentials.

3. Methods

In order to test the model, we analyzed recordings from implantable neural probes
inserted into the ventral nerve cords of desert locusts. The locust model was selected due to
the fact that it allowed recordings from a large number of unmyelinated neurons organized
in a structure that is both spatially limited (to the dimensions of the cord) and directionally
well defined (with axons generally running along the cord axis). The approach was used
with a variety of triode penetrating electrode arrays, with electrodes in triangular arrays
ranging between 20 and 80 µm apart and with areas between 64 and 177 µm2 [11–13],
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manufactured with recording surfaces in either gold or iridium. Past investigation of the
effects of varying electrode size and positioning suggests our electrodes were suitable for
positioning, being sufficiently small to avoid averaging of the peak in transit, and large
enough to minimize errors due to electrode impedance [14].

The probes were mounted into a headstage amplifier with further remote amplifi-
cation stages being applied before sampling; details of the recording setup can be found
elsewhere [15]. The signal was acquired using an AT-MIO 16-F National Instruments acqui-
sition (Austin, TX, USA) card at 40 kHz/channel using a LabView (National Instruments,
USA) and saved for later analysis. Recordings were taken from the ventral nerve cord,
metathoracic ganglia and jumping leg nerve of the desert locust (L. Migratoria). The exper-
imental protocol for recording can be found elsewhere [15]; experiments were performed
in compliance with the relevant laws and University of Surrey guidelines.

Locusts were anaesthetized, decapitated and dissected to expose the cavity where
the nerve cord was found, which was filled with locust saline [12] at room temperature.
The probe was inserted into the nerve using a micromanipulator such that the electrode
plane was parallel to the direction of the nerve. If no spontaneous signals were observed,
a gentle touch was applied to the leg, or warm saline (at 28–30 ◦C) was poured over the
body. When the signals started appearing, recordings were taken.

The recorded signals from the locust model were input into a MatLab (the Mathworks,
Natick, MA, USA) program to implement the detection routine described above. Prior to
analysis, frequencies below 100 Hz were removed from the signal using a FFT function,
followed by wavelet de-noising using the wavelet sym5, selected for its resemblance to
an action potential. A total of eight recording sessions were performed; during each
of which, significant numbers of APs were recorded. Following analysis, nerves were
examined histologically and measured. An example of an AP appearing in multiple
electrode channels with different amplitudes and peak times can be seen in Figure 2.
Peaks were detected by thresholding, and then tracked through multiple frames, with the
amplitude and duration being extracted for each electrode.
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4. Results and Discussion

The implementation of the algorithm is shown in Figure 3 for a typical neural recording.
On the top right the figure is a 3D diagram representing the space above the probe. The
probe, as illustrated, sits on the x–y plane pointing towards the positive part of the y axis.
The line crossings represent the position of the axons with color indicating the velocity of
the action potentials corresponding to a given axon. The plane on top of the probe is a
transverse section of the space above the probe where neurons are crossing. The box shows
a section of the nerve, the top left and bottom diagrams present the different views of nerve.
The top left is a superior view; the bottom left a transverse section and the bottom right
a lateral view. The blue crosses represent the position of the neurons at closest approach
to the probe. In the analysis, the large majority of lines are running parallel to the probe,
indicating that the probe was inserted with an angle parallel to the nerve, as was indeed
the case.

We found that with a small percentage (typically 5–10% across multiple experiments)
were observed to lie at distances outside the estimated boundary of the ventral nerve cord
as estimated using histology. We found that a similar number showed estimated velocity
vectors that were at significant variance from the majority. It should be noted that in such
cases, greater distance from the probe is determined by smaller signal amplitude, which in
turn means the signals are more susceptible to noise.
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Figure 3. Presentation of two sets of results for the neural processing program when applied to a
locus ventral nerve cord. The positions of action potential closest approach in the X–Y axis (top left)
corresponds closely to the dimensions of the nerve cord; the velocity and direction correspond well
with both previously published work and with the anatomy of the cord. All dimensions in mm.

The locust ventral nerve cord is well characterized in terms of the distributions if
neurons of different diameter [15–20]. Since action potential velocity varies with neuron
diameter, this gives an indication of the distribution of anticipated action potentials, and
provides a method of assessing whether the system provides results in line with expec-
tations. The distribution of measured velocities for a typical experiment can be seen in
Figure 4. It should be noted that given the nature of the experiment (decapitation followed
by stimulation of the leg) that we would anticipate that only afferent signals (heading
to the brain) would be generated, with no efferents (in the direction of signals coming
from the brain) except reflex arcs. This is in line with observations, in which 93% of
signals were observed in one direction. This approach can be expanded to include AP
velocity. In an average locust ventral nerve cord [19], 64% of neurons have diameters
greater than 4 µm and corresponding velocities greater than 1 ms−1; 24% have diameters
between 2 and 3 µm and velocities of 0.5–1 ms−1; and 12% have diameters below 2 µm
and velocities below 0.5 ms−1. Our figures showed 74% having greater than 1 ms−1, 15%
having velocity between 0.5 and 1 ms−1; and 11% with velocities below 0.5 ms−1. This is
in general good agreement with expectations, but suggests the system is more sensitive
to large-diameter, rapid neurons than small-diameter, slower neurons. It could be noted
that visual inspection of the curve on Figure 4 suggests an unusual spike at ca. 1.2 ms−1,
which may be attributable to significant numbers of APs from a single neuron skewing
the results, and without which the measured and estimated numbers would be more alike.
Alternatively, the discrepancy may be attributed to different size ratios being used for
afferents vs. efferents, since only the former will be present here (to any significant degree),
which are not accounted for in the anatomical studies described above. Examination of
the size distribution of a typical analysis (Figure 4b) reveals capture across a radius of
approximately 100 µm, but also highlights multiple collocated spikes (indicated by darker
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markers). This may have an impact on the velocity distribution in Figure 4a, but also
suggests the system is effective in classifying neural sources by observing multiple firings
at similar special locations.
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There are a number of issues that affect the accuracy of the approach. We have
investigated variability according to electrode size [14] and fabrication material [21] and
found that variability in these over the ranges we have considered does not significantly
affect the signals acquired by these electrodes.

The proposed algorithm uses a simple model of field propagation that does not account
for discrepancies that might be caused by differences in the tissue environment or the
electrical properties of the extracellular medium [22,23]. As outlined above, the necessity
for identifying the peak makes the system susceptible to electrical noise, particularly
where the AP is relatively small (such as at a distance from the probe, or where the neural
diameter is small). Whilst the effect will also be present for signals that pass near the
electrode but start at a distance from it, such errors can be eliminated by identification of
the signal at closest approach. Conversely, classification by monitoring the AP as it moves
through space and time offers advantages over methods that relay on a “snapshot” of
nearby APs; for example, whilst the shapes of APs will be different at different positions
in space (electrodes). The use of “point” electrodes (ca. >20 µm across) reduces the effect
of “flattening” observed with larger electrodes, making the identification of peak timing
easier, whilst the taking of multiple frames of the same AP makes identification of the
true “peak” detection down to a fraction of a millisecond simpler. This offers significant
benefits over “traditional” spike classification studies that only use a single electrode and
use amplitude and shape characteristics to sort spikes to specific neurons

However, given the reach of the algorithm (taking a snapshot across a region ca.
200 µm in diameter as seen in Figure 4b), it may be more applicable to the detection of
whole nerve patterns rather than identification of individual neurons, enabling the use of
pattern recognition to identify patterns relating to specific functions. Such approaches are
in common use in the central nervous system for the identification of intention [24–27]; our
technology would enable a similar approach to be taken in both central and peripheral
nervous systems. It can also be noted that although the system presented here is designed
for detection of APs in non-myelinated nervous systems, the principles of triangulation
using multiple electrodes simultaneously tracking APs by amplitude and length has appli-
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cation in the identification of nodes of Ranvier in the region of detection for application
in myelinated systems. Alternatively, the work demonstrates that multiple electrodes
can be used to track multiple AP sources in, for example, a planar electrode array for
in vitro neural analysis, particularly where an interlayer (such as a thin gel) could be used
to increase the triangulation effect by increasing the z-dimension between electrode and
neuron planes.

5. Conclusions

We have developed a model that can be used to track the movement of action potentials
in a non-myelinated nervous system. The model developed has been applied to the
detection of action potentials in a locust nerve, in which it has detected the positions of
the neurons with some success when compared with known anatomy of the nerve. Once
fully developed, such a system may also be applied to the more complex issue of tracking
action potentials in myelinated nerve tissue, with evident applications in neural recording
for interfacing with prostheses.
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