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Abstract

Neuronal interactions give rise to complex dynamics in cortical networks, often described in

terms of the diversity of activity patterns observed in a neural signal. Interestingly, the com-

plexity of spontaneous electroencephalographic signals decreases during slow-wave sleep

(SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-

vivo recordings from neocortical and hippocampal neuronal populations in rats and show

that the complexity decrease is due to the emergence of synchronous neuronal DOWN

states. Namely, we find that DOWN states during SWS force the population activity to be

more recurrent, deterministic, and less random than during REM sleep or wakefulness,

which, in turn, leads to less complex field recordings. Importantly, when we exclude DOWN

states from the analysis, the recordings during wakefulness and sleep become indistin-

guishable: the spiking activity in all the states collapses to a common scaling. We comple-

ment these results by implementing a critical branching model of the cortex, which shows

that inducing DOWN states to only a percentage of neurons is enough to generate a

decrease in complexity that replicates SWS.

Introduction

Cognition and behaviour drastically change across the sleep-wake cycle [1]. During wakeful-

ness, animals are able to interact with their environment, but lose this ability as they fall asleep.

During sleep, there is an alternation between slow-wave sleep (SWS), associated with dimin-

ished cognitive capacities, and rapid eye movement (REM) sleep, an active state where most

dreams occur [2, 3]. The electroencephalogram (EEG) concomitantly changes along with

behavior: fast and desynchronised activity appears during wakefulness and REM sleep, while

slow quasi-synchronous patterns characterize SWS. Nevertheless, in spite of having well-docu-

mented, state-dependent EEG signatures, their underlying mechanisms remain to be fully

understood.

In the last decade, there has been a significant rise in the use of complexity metrics (which

often measure the diversity of patterns in a signal) capable of revealing hidden non-linear
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effects in electrophysiological recordings. These tools have repeatedly shown that the complex-

ity of EEG signals decreases during unconscious states, such as during sleep [4–15] or anaes-

thesia [14, 16–23]. However, these macroscopic signals have major limitations: they tend to be

contaminated by confounding variables (e.g., muscular activity or eye movements) and recov-

ering their exact neural source is often impossible. Thus, the neural patterns driving complex-

ity changes across the sleep-wake states have not been elucidated.

A possible mechanism causing the complexity reduction during sleep is the emergence of

DOWN states, defined as synchronous periods of spiking silence [24–29] which generate the

extracellular slow waves characteristic of SWS [24–31]. These states are hypothesised to disrupt

neural interactions [32], and have been shown to directly alter the complexity of evoked corti-

cal responses [33, 34]. However, no direct analysis of in-vivo neuronal populations has shown

that DOWN states reduce the complexity of spontaneous cortical activity during sleep.

Here, we analyse in-vivo recordings of neuronal populations in the neocortex and hippo-

campus, quantifying their spontaneous ensemble dynamics in terms of their phase-space

recurrences. Our analyses, along with neuronal modelling, show that DOWN states fully

account for the complexity decrease during SWS, while a common spiking regime character-

ises all sleep-wake states in the neocortex and hippocampus.

Results

We study in-vivo neuronal recordings from the neocortex and hippocampus of 15 rats cycling

through the states of wakefulness (Wake), slow-wave sleep (SWS), and rapid-eye movement

(REM) sleep (Fig 2A). We analyse’1600 neurons, corresponding to 31 independent sessions

with 51±5 neurons simultaneously recorded (details in Methods: Datasets). We use recurrence

quantification analysis (RQA) to characterise the evolution of the whole population firing

counts in each session during each sleep-wake state, extending the characterisation of a popu-

lation activity beyond a single measure (such as Hurst exponent, entropy, or fractal dimension)

or an aggregate of individual neurons. We complement the RQA with coherence and entropy

analyses of local field potentials (LFP), spike avalanches, and a critical branching model.

Recurrence analysis reduces high-dimensional dynamics to a 2D

representation

The population activity from a cortical location at any given time is a high-dimensional vari-

able detailing the system instantaneous state, i.e., the spiking activity of all neurons (Fig 1A,

left). Its evolution gives a trajectory in the N-dimensional phase-space, which has the firing

counts of each neuron as its components (Fig 1A, right). An attractor is evidenced as a mani-

fold that attracts different trajectories of the system to the same region of the phase-space; the

more convoluted (fractal) the attractor is, the higher the temporal complexity of its trajectories.

The trajectory of a cortical area is typically high-dimensional, since 50 neurons from any given

experimental session results in N = 50-dimensional phase-space. By applying Recurrence

Quantification Analysis (RQA), we reduce these dimensions to the analysis of 2-dimensional

recurrence plots (RP) (Fig 1C).

We construct a recurrence plot as follows. Let f~xðt1Þ; ~xðt2Þ; . . . ; ~xðtnÞg be a trajectory,

where~xðtiÞ is the state-vector whose components are firing counts, xk(ti), for each neuron k in

the population (k = 1, . . ., N) at time ti with i = 1, . . ., T, T being the number of 50 ms time

bins. We choose this time-bin width to match the definition of a neocortical OFF-period, i.e., a

period� 50 ms without spikes. Hence, our firing counts are integer variables that can range

from 0 up to 50 (assuming a maximum of 1 spike per ms). A recurrence plot is then defined by

a symmetric matrix whose entries are R(i, j) = 1 if k~xðtiÞ � ~xðtjÞk < �, or R(i, j) = 0 otherwise,
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with i, j = 1, . . ., T and � > 0 defining closeness. A recurrence happens whenever the system

trajectory returns to the same region of phase-space up to �. We set � = σp (σp being the stan-

dard deviation of the population activity during wakefulness) to guarantee a sufficiently sparse

plot but with sufficient points to carry statistical analyses. Nevertheless, our results are robust

to changes in � or time-bin width (S1 Fig).

Two generic structures appear in a recurrence plot: diagonal lines, originating from peri-

odic trajectories, and vertical lines, originating from trapped (frozen) trajectories. These struc-

tures help to differentiate between periodic, random, or chaotic trajectories (corresponding

panels in Fig 1C), which can be quantified by different metrics (see RQA in Methods). We use

RQA to measure (i) Recurrence Rate (density of points), RR, (ii) Determinism (proportion of

points forming diagonal lines), DET, (iii) Laminarity (proportion of points forming vertical

lines), LAM, (iv) Trapping Time (average length of vertical lines), TT, and (v) Divergence

(inverse of the longest diagonal line, excluding the identity line), DIV.

To illustrate how the RQA metrics behave, we compute them for the examples of Fig 1C.

RR is slightly larger for the periodic system since it recurs more often into similar states than

the other examples, while the chaotic trajectory recurs more than the random example. DET

and LAM, on the other hand, are maximal for periodic and chaotic systems because all points

form vertical and diagonal structures, while these drop near zero for the random system

since recurrent times are rarely connected. Moreover, TT is larger for the periodic system

since there are no isolated recurrent times (all points form small vertical structures). TT

decreases in the chaotic system due to isolated recurrent times and lowers even further for

the random system because recurrences occur by chance and rarely form any vertical struc-

ture. Finally, DIV is the largest for the random system since no diagonal structures are

formed, while DIV plummets to near zero for the periodic system since all points form long

diagonal lines. DIV lies in-between for the chaotic system since it forms short diagonal lines.

Thus, predictability in the system trajectory is quantified by RR, DET, LAM, and TT, where

the larger [smaller] their values, the more [less] predictable. On the other hand, randomness

is quantified by DIV, where the larger [smaller] its value, the more divergent [convergent]

the trajectory.

Fig 1. Recurrence example of population activity. A Left Example of spike trains for 3 neurons (N1-N3). The continuous line on top shows the firing

counts of each spike train. Right Resultant phase-space trajectory (evolution), where the axes represent the firing counts of each neuron. For every pair of

points in the trajectory, their distance (d) is computed (the dashed lines illustrate two such distances); If the distance is less than a predefined � value, a

recurrence between the time points is defined to occur. Two recurrent times are shown in red (ti,tj), while two non-recurrent times are shown in blue (tk,

tl). B Recurrence plot for the trajectory shown in panel A. Red and blue time pairs are now depicted as coordinates in the resulting map. C Example

recurrence plots from periodic, random, and chaotic trajectories. On top of the recurrence plot, we show the phase-space of the example; below we illustrate

how the RQA metrics behave for each trajectory type. RR: Recurrence Rate, DET: Determinism, LAM: Laminarity, TT: Trapping Time, DIV: Divergence.

https://doi.org/10.1371/journal.pone.0290146.g001
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The complexity of neuronal dynamics is reduced during slow-wave sleep

Fig 2A shows the LFP and spike trains of frontal cortex neurons in a session for a representa-

tive animal under each sleep-wake state. The corresponding recurrence plots for 10-second

trajectories are shown in Fig 2B. Note that SWS exhibits a denser plot than Wake or REM

sleep, implying that SWS has firing patterns recurring more often than Wake or REM sleep.

Also, SWS shows a distinctive square-shaped recurrence pattern, which points to the existence

of time windows when the trajectory of the population activity is frozen (or practically

unchanged). The RQA metrics applied to all available 10-second trajectories for all recorded

sessions confirm that frontal cortex activity (*900 neurons in total) is significantly more pre-

dictable and less random during SWS than Wake or REM sleep (Fig 2C; see statistics in S1

Table in S1 File).

Specifically, SWS has the largest RR, DET, LAM, and TT, indicating high predictability of

the neuronal activity, whereas it has the smallest DIV, suggesting that SWS is less random than

Wake or REM sleep. Noteworthy, these RQA changes during SWS correlate with the number

of recorded neurons (S2 Fig), suggesting the complexity reduction is a population-level phe-

nomena. Also note that the RQA differences across states are not due to a change of the attrac-

tor’s topology (S3 Fig). Moreover, the RQA results hold true when dividing the frontal cortex

into specific areas (Fig 2D and 2E) or when analysing the population activity from the hippo-

campus (S2 Table in S1 File). In fact, when comparing the RQA metrics among the secondary

Fig 2. Recurrence quantification analysis (RQA) of in- vivo population activity from the frontal cortex and hippocampus. A Local field potentials

(LFP) and spike-train raster plots (1s interval) for a representative rat during Wake (left), SWS (middle), and REM sleep (right). B Recurrence plots

constructed from a 10s interval of the population activity (see Methods for details). C 5 RQA metrics for the sleep-wake states; boxplots show results from

the pool of 24 sessions across 12 animals (outliers are not shown). *p< 0.001, **p< 0.0001, ***p< 0.00001 (corrected for multiple comparisons). D

Example recurrence plots for different cortical locations sleep-wake states. ACC: anterior cingulate cortex; OFC: orbito-frontal cortex; mPFC: medial

prefrontal cortex; M2: secondary motor cortex; CA1: hippocampus. E RQA metrics for the sleep-wake states in each cortical area shown in the previous

panel.

https://doi.org/10.1371/journal.pone.0290146.g002
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motor cortex (M2), medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cin-

gulate cortex (ACC) and the CA1 hippocampus region, we find no statistical differences (Krus-

kal-Wallis test across cortex: RR [p = 0.68], DET [p = 0.39], LAM [p = 0.69], TT [p = 0.21] and

DIV [p = 0.46]), suggesting that the complexity reduction in the spiking activity is conserved

across brain regions. Thus, these results demonstrate that SWS is the least complex spiking

state, consistent with previous reports of decreased EEG complexity during sleep [4–15] or

anaesthesia [14, 16–22].

Neuronal recurrences during SWS are mainly driven by DOWN states

The square-shaped recurrences appearing during SWS in Fig 2 can be generated by two possi-

ble mechanisms. Either a subset of the neurons (or even all) remains constantly active for a

period of time, or the neurons remain silent (null firing counts) corresponding to a trajectory

in the origin of the phase space. Next, we show that the latter is true and is mainly due to

DOWN states.

DOWN states are the neural substrate underlying slow-wave activity (0–4Hz) [24–26, 28,

30]. Therefore, a correlation between recurrent trajectories and DOWN states provides a phys-

iological mechanism for the loss of complexity during sleep. For the neocortex, DOWN states

can be obtained by finding OFF- periods [26, 28, 29], i.e., periods�50ms when almost all neu-

rons remain silent [26] (Fig 3A left). For the hippocampus, we obtain DOWN states by select-

ing the times when less than 10% of the recorded neurons fired since hippocampal neurons

maintain a minimal firing activity during DOWN states [35] (Fig 3A right).

The time-series of DOWN states in the neocortex match the times when the trajectory has a

recurrence (see the pink and black curves in Fig 3B bottom panel). We find a significant corre-

lation between these time-series (R = 0.77 ± 0.02, p< 10−64 for all sessions). This means that

the majority of the SWS recurrences is due to DOWN states. We observe a similar scenario in

the hippocampus (right panels in Fig 3A and 3B), where we find an even higher correlation

between the time-series of DOWN states and that of the recurrences (R = 0.84 ± 0.01,

p< 10−64 for all sessions).

Notably, SWS becomes more complex if we exclude DOWN states; namely, if we employ a

trajectory containing only the population UP states. The corresponding recurrences and met-

rics are shown in Fig 3D and 3E; note that RR, DET, LAM, TT and DIV significantly change

and become comparable to those of Wake and REM sleep (S4 Fig and Fig 2C). Overall, these

results support the hypothesis that neuronal trajectories are similar in SWS UP states to Wake

and REM sleep [36, 37].

Neocortical DOWN states explain the EEG complexity reduction during

sleep

We next investigate how the population activity results translate to the EEG and LFP signals

simultaneously recorded from the freely moving animals. To that end, we create synthetic

local field potentials (sLFP) (Fig 4) from the actual excitatory spiking activity, in which we

assume that each spike generates an exponentially decaying PSP. The motivation behind this

method is that it allows to precisely control the sources which dictate the field potential and

avoid the influence of any external variable not directly related to spiking activity (such as

EMG contamination and volume-conducted signals [38]). Since LFPs primarily reflect post-

synaptic potentials (PSPs) [39], we average the modelled PSPs over the population of neurons

at each time in order to obtain the instantaneous sLFP (Fig 4A).

We find that sLFPs have asynchronous low-amplitude activity during Wake and REM

sleep, but have synchronous activity during SWS with periodic high-amplitude waves (Fig 4B).
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These waves correspond to slow-oscillations of 0–4Hz (Fig 4C top), coherent to the LFP activ-

ity (Fig 4C bottom). Thus, our sLFP recovers the slow-wave activity oscillatory profile present

in the real LFP recordings, including a peak in the delta band particularly visible during SWS

(compare Fig 4C and S5 Fig).

We then quantify the temporal-complexity of LFPs and sLFPs by using Sample Entropy

(SE) [40], Permutation Entropy (PE) [41], and Lempel-Ziv Complexity (LZ) [42]. Fig 4D

shows that results are independent of the chosen complexity measure. The true LFP activity is

significantly less entropic during SWS than during REM or Wake (left panels in Fig 4D; S4

Table in S1 File), consistent with previous EEG and electrocorticogram (ECoG) results [4–15].

Accordingly, the sLFP exhibits similar temporal-complexity values (right panels of Fig 4D; S3

Table in S1 File), and also shows a significant decrease during SWS. Importantly, the complex-

ity reduction during SWS is not easily observed for single units: some neurons decrease while

others increase their spiking complexity (S6 Fig), suggesting that the temporal coordination

among neurons is necessary for the LFP/sLFP complexity results.

Interestingly, when constructing SWS sLFP only employing UP states (i.e., excluding

DOWN states) or actually excluding DOWN state periods from the LFP activity, we find that

the decrease in complexity during SWS is lost (Fig 4D, S3 Table in S1 File). In fact, the SWS

UP states have significantly higher levels of complexity than the SWS sLFP or LFP containing

Fig 3. Correlation between recurrent spiking activity and DOWN states in the neocortex and hippocampus during SWS. A Example of LFP (different

calibrations) and spiking activity in the neocortex (left) and hippocampus (right) exhibiting DOWN states during SWS. B Recurrence plots for the

corresponding population activity. The number of recurrences per time (sum over columns) is shown in the bottom panel along with the DOWN state

periods. C Scatter plot between RQA metrics and the average duration of the DOWN state in each recording session, the different colours depict different

individual sessions; solid lines indicate the LOWESS regression estimate taking into account all sessions. D SWS recurrence plots computed using the

whole period (DOWN + UP) or discarding the DOWN states (UP only) for the neocortex (Neo) and hippocampus (Hip). E Boxplots of the RQA metrics

for DOWN + UP vs. UP only. Neo, N = 24 sessions; Hip, = 9 sessions; *p< 0.00001.

https://doi.org/10.1371/journal.pone.0290146.g003
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both UP and DOWN states, reaching values comparable to those from Wake or REM states.

Therefore, we conclude that DOWN states are necessary for the complexity reduction

observed in field recordings since spiking periods are similar across states.

Spiking periods across states exhibit similar avalanches

Our previous results show that DOWN states disrupt population dynamics in the neocortex

and hippocampus (Figs 2–4). We next complement these results by analysing spike avalanches

to understand the factors underlying spiking complexity across sleep-wake states. Avalanches

are cascades of activity in quiescent systems [43–50], which in our case correspond to active

spiking periods within a brain region; by definition, avalanches exclude DOWN states.

Fig 5A shows a neuronal population exhibiting an avalanche, where the time bin defining

its occurrence is set as the average inter-spike interval (ISI). By definition, an avalanche starts

after a time bin without spikes and finishes when another empty time bin is reached. Two

Fig 4. Construction and analysis of synthetic local fieldpotentials (sLFP) during Wake, SWS, and REM sleep. A The sLFP is

defined as the average of the convolutions between spike trains and a decaying exponential function. B Examples of sLFP resulting

from Wake, SWS, and REM sleep population activity. C sLFP power spectra(top) and coherence between sLFP and LFP (bottom) for

the different sleep-wake states (colour coded). D Boxplots of Sample Entropy (top), Permutation Entropy (middle), and Lempel-Ziv

Complexity (bottom) of the sLFPs and LFPs in each state (N = 24 sessions). *p< 0.05, **p< 0.01, *** = p< 0.001.

https://doi.org/10.1371/journal.pone.0290146.g004
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parameters commonly characterise an avalanche: its size, i.e., the total number of spikes, and

its duration, i.e., the time interval from start to finish. The avalanche statistics for each sleep-

wake state are derived from the probability distribution of these parameters [44, 45].

Fig 5B and 5C show minimal differences between the probability distribution of avalanche

duration and size during Wake, REM sleep, or SWS in the neocortex and hippocampus,

respectively. For instance, avalanches occurring during SWS tend to be shorter due to DOWN

states. The power-law exponents for the avalanche duration (τt) and size (τ) are related by the

crackling noise relationship,
tt � 1

t� 1
, which is a more stringent criticality statistics [45]. Consider-

ing all sleep-wake states, we get
tt � 1

t� 1
¼ 1:19 (inter-quartile range, IQR = 0.33) for the neocortex

and
tt � 1

t� 1
¼ 1:24 (IQR = 0.37) for the hippocampus, with no significant differences across states

(p = 0.31 and 0.68, respectively). More importantly, we find that the avalanche size and dura-

tion distributions collapse to the same scaling function resembling a power-law behaviour

characterised by the exponent 1/σνz[45] (right panels in Fig 5B and 5C). This suggests that the

spiking periods (UP states) have a common behaviour across sleep-wake states. We find that
1

snz ¼ 1:11ðIQR ¼ 0:05Þ for the neocortex with no significant differences across sleep-wake

states (p = 0.21). Similarly, 1

snz ¼ 1:20ðIQR ¼ 0:02Þ for the hippocampus (p = 0.09 for state

differences).

Thus, once the spiking activity is initiated, it follows a common avalanche regime irrespec-

tive of the sleep-wake state. Consequently, complexity differences in the sleep-wake states

should originate from DOWN states where no spikes occur. Noteworthy, these results restrict

the possible mathematical models which can describe cortical dynamics, since the model must

be able to reproduce DOWN states (during SWS) and the avalanches appearing for any state

during spiking activity.

Fig 5. Avalanche distributions for Wake, SWS and REM sleep. A Example of a neuronal avalanche. The average ISI is used to bin the raster plot (shaded

rectangles) and count the number of spikes per bin. B Avalanche statistics for the neocortex. Left: distribution of avalanche duration, used to estimate the τt
exponent. Middle: distribution of avalanche size, used to estimate τ. Right: avalanche size as a function of its duration, from which the 1

snz exponent is

estimated. C As in B but for hippocampal avalanches. For each state (colour coded), the mean distributions are shown in solid lines with a shaded area

depicting the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0290146.g005
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Critical branching model for the spiking activity in the cortex

Here, we show that cortical spiking patterns during wakefulness and sleep can be captured by

a critical branching model, known to exhibit universal behaviour [51], when implemented

using exponents matching our in-vivo results (see Methods). The critical branching model

consists of interacting discrete units whose internal state may be resting, spiking, or refractory.

The units evolve in time according to the excitation coming from neighbouring units (as con-

trolled by a branching parameter) as well as due to a noisy drive set by a Poisson distribution,

which can randomly make a unit fire at any given time. The branching parameter, σ, deter-

mines the probability of a spike from unit A at time t affecting unit B at time t + 1. When σ = 1,

the system is critical; the network exhibits a phase transition from a sub- critical quiescent

state for σ< 1 (activity dies out after a small transient) to a super-critical active state for σ> 1

(activity is self-sustained). The interplay between units interacting due to branching and noise

recreates a network of higher-order neurons that receives inputs from lower areas such as the

thalamus [52]. To reproduce an SWS state, we add to the branching model a periodic silencing

of the noisy drive for some (adjustable percentage of) units in order to model DOWN states.

Fig 6A shows an example of the resultant spike trains for the branching model without (left

panel) and with (right panel) the periodic silencing. These results are obtained using 50 units

(similar size to the experimental ensembles recorded) and setting the branching parameter at

Fig 6. Critical branching model for neuronal activity during Wake and SWS. A Left: Population activity (raster plot) and synthetically generated local-

field potential (sLFP, as in Fig 4) of a critical branching model with 50 interacting units. The branching parameter is set at σ = 1 (critical); an excitatory

Poisson noise drive each unit independently. Right: DOWN states are generated by periodically silencing (4Hz) the noisy drive of a percentage of units. B

Resultant recurrence plots for the data in A. C Average (± standard deviation) results from 100 simulations using different network connectivity and initial

conditions. Each simulation consisted of 106 iterations in time. Top left: RQA metrics for the original model (i.e., without silencing) as function of σ; shaded

[unshaded] area shows the sub-critical [super-critical] phase. Remaining panels: differences (Δ) between RQA metrics of the original model and the model

with periodical silencing as a function of the percentage of neurons having their noise drive silenced (referred to as % of neurons in DOWN state). The

horizontal dashed lines show the difference between the actual SWS RQA metrics (Fig 2C) and those of the critical branching model.

https://doi.org/10.1371/journal.pone.0290146.g006
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the critical point σ = 1. The respective recurrence plots are shown in Fig 6B. For the modified

branching model, we periodically silence the noise input arriving at a given set of units during

a 250ms interval (similar to Ref. [44]) and call it Critical + DOWN. This external silencing is

enough to synchronize the network to a state of inactivity (Fig 6A), trapping the population

trajectory into recurrent square-like patterns (Fig 6B), similar to the experimental results from

the neocortex and hippocampus (Fig 2).

We use RQA to quantify the differences between the original and modified branching mod-

els. The top left panel of Fig 6C displays RQA metrics for the branching model with 50 units as

a function of σ, where the shaded area marks the sub-critical phase. For σ = 1, the model has

RR’ 0.02, DET’ 0.2, LAM’ 0.4, DIV’ 0.3, and TT’ 2.5, which are comparable to the

average RQA values of Fig 2C during Wake and REM sleep. The remaining panels show the

change in the RQA metrics when the periodic noise-silencing is added to the model—changes

are shown as a function of the percentage of units having their noise periodically silenced. The

horizontal dashed lines show the difference between the SWS RQA metrics and those of the

critical branching model. In other words, this relative SWS metric is found by taking the value

obtained from the experimental average RQA metric shown in Fig 2C and subtracting the crit-

ical branching model RQA metric from the top left panel in Fig 6C. Using this, we can find the

percentage of units with periodically-silenced noise that are needed to reproduce the experi-

mental values found for SWS.

We find that as the number of units with a DOWN state increases (i.e., number of neurons

with periodical silencing), the RQA metrics cross those observed during SWS from the in-vivo
recordings (horizontal dashed line) (Fig 2C). When the model is at the critical point (σ = 1), a

periodic noise-silencing to 40–60% of the units is enough to reproduce the RQA values during

SWS (intersection of the Δ RQA metrics with the corresponding horizontal dashed lines), with

the exception of RR, which requires 80%. On the other hand, both the sub- (σ = 0.2) and

super-critical (σ = 1.8) models need a considerably larger percentage of silencing (80–100%) to

reproduce the observed SWS values. Therefore, these results suggest that: i) the branching

model needs to be close to σ = 1 (criticality) to reproduce the recurrent properties observed

during Wake or REM sleep, and ii) that the inclusion of a periodic silencing of the noisy drive

to 40–60% of the units reproduces the recurrent properties observed during SWS.

Discussion

Our main findings can be summarised in the following points. The complexity of neuronal

dynamics in rats is reduced during SWS owing to spiking patterns repeating more often (i.e.,

greater recurrences). This spike pattern repetition occurs during DOWN states, thus bridging

the decrease in complexity observed in the cellular and field recording levels (such as local

field potentials or EEG). Moreover, we reveal a common behaviour in the population spike

avalanches appearing across the sleep-wake states (which by definition exclude DOWN states).

This scaling makes the sleep-wake states indistinguishable from each other, and demonstrates

that the DOWN periods are responsible for the complexity reduction which characterises

SWS. Finally, we reproduce these experimental results by numerical experiments employing a

critical branching model, suggesting that criticality may favor transitions between states.

Recurrence quantification analysis improves the study of cortical

population dynamics

Our study is based on the analysis of the spiking activity from in- vivo population recordings

of the neocortex and hippocampus. To that end, we employ RQA, which leads to clear results

and interpretations (see Fig 1), is robust to parameter tuning (e.g., changing the tolerance
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parameter or time bin width; S1 Fig), and is computationally efficient (e.g., 10s windows are

enough to distinguish states). Importantly, RQA allows analysing a population of neurons

using various complementing non-linear metrics, such as randomness, entropy, or fractal

dimension. This extends the typical characterisation of neuronal dynamics based on single

neurons and single metrics (such as the basal firing rate, coefficient of variation, or

rhythmicity).

We also compared our results with those provided by topological data analyses (S3 Fig). In

particular, persistent homology analyses the topology of a high-dimensional cloud of points

(manifold) in phase space [21, 53]. Interestingly, by using this analysis we find that the low-

dimensional topology of the neocortical phase-space attractor appears to remain unchanged

throughout the sleep-wake cycle (S3 Fig). This contrasts with results from the anterior nucleus

of the thalamus which exhibits a ring-like structure during Wake and REM sleep, but not dur-

ing SWS [53]. Thus, our observations suggest that the dynamical differences across states are

still contained within the same manifold.

Population DOWN states reduce the complexity of cortical activity during

SWS

In contrast to the unchanged attractor topology (S3 Fig), our results show that the evolution of

neocortical and hippocampal spiking activity is significantly altered during SWS. We show

that the cause for this alteration is (mainly) due to the appearance of synchronous DOWN

states that disrupt the population spiking patterns and force them into a recurrent, determin-

istic state. We find a strong correlation between the duration of DOWN states and the number

of recurrences in the population activity (Fig 3B and 3C). Then, we show that the decrease in

complexity is lost once we discard the DOWN states from the SWS analysis (Fig 3D and 3E),

making SWS spiking-patterns similar to those from REM sleep or wakefulness.

DOWN states appear to disrupt neuronal patterns in neocortical and hippocampal areas

similarly, although both regions have different mechanisms for the generation of DOWN

states [25, 35]. During SWS, hippocampal neurons oscillate between long, quiescent, stable

periods (without clear membrane hyperpolarization [25]) and bursts of spiking activity (dur-

ing sharp-wave ripples). In contrast, neocortical neurons oscillate between stable periods of

spiking activity and unstable periods of quiescence (associated with hyperpolarization [25]). In

spite of these differences, both populations have spiking patterns that are consistent with excit-

able UP/DOWN states [35].

For individual neocortical neurons, the complexity of firing patterns decreases during SWS

[6]. In principle, this decrease could be expected due to the DOWN states, as their appearance

causes neurons to remain silent during synchronous intervals. Here, however, when we ana-

lyse the firing patterns of individual neurons independently, we find that a considerable num-

ber maintain complex patterns even during SWS (S6 Fig). This can occur because either there

are DOWN state active neurons, as previously shown in [54], or because the complexity reduc-

tion is a collective phenomenon that can only be studied at the population level. We support

this latter argument by showing that the difference in complexity between Wake or REM sleep

and SWS increases with the number of analyzed neurons (S2 Fig).

Measuring complexity from synthetic and experimental field recordings

The complex nature of brain recordings—and the decrease in complexity during unconscious

states—has been reported using classical neuroscience approaches [55, 56]. For instance, the

EEG power spectrum shows a power-law decay, f−α, for a broad range of frequencies, referred

to as 1/f noise. Interestingly, the exponent α becomes greater than 1 (a more pronounced
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decay) during sleep and anaesthesia [55, 56] since DOWN states and slow oscillations promote

the appearance of low-frequency power, leading to a steeper spectral decay.

These observations match our sLFP analyses, which recover both the slow oscillations pres-

ent in true LFPs during sleep (Fig 4C), and their entropy variations during the sleep-wake

cycle (Fig 4C)—independently of the chosen entropy metric (i.e., permutation entropy [41],

sample entropy [40], and Lempel-Ziv complexity [42]). Notably, the decrease in complexity

during SWS is lost when we eliminate the DOWN states from the LFPs and sLFPs (Fig 4E),

implying that DOWN states are responsible for reducing the complexity of field recordings

during SWS. Consistent with our results, the slow-wave activity (0.1–4Hz) has been associated

with the loss of complex neuronal interactions during sleep [32, 57, 58] and is caused by syn-

chronous neuronal DOWN states [24–31]. Of note, the similarities in slow-wave activity [25,

28, 30, 31], and neural complexity [4, 5, 9, 15] between rodents and humans suggest that

related mechanisms could also act in the latter during sleep.

It should be noted that estimating neural complexity directly from field recordings might

lead to spurious results since there are major differences between the exponent variations in

ECoGs and LFPs. For instance, we also find a f −α behaviour in the power spectra of LFPs and

ECoGs (S5 Fig) and get similar decay exponents during SWS and REM (αsleep’ 2). Neverthe-

less, for ECoGs, we find a significant difference in exponent values from Wake (when αwake’

1), while, for LFPs, αsws’ 2 as during sleep. Thus, this could point to the presence of extra-

neural sources during Wake that alter the ECoG power spectrum decay but do not influence

the LFP recording level. Therefore, we argue that complementing field recordings with spiking

activity is necessary to unveil and study genuine neural complexity.

Spiking periods show similar dynamics across states

An important result verified through complementing approaches (Figs 3–5) is that while spik-

ing activity is occurring, SWS behaves similar to Wake or REM sleep. Thus, we suggest near-

critical dynamics might be a necessary (but not sufficient) condition for neural complexity.

We show that neuronal avalanches of length t contain an average of g(t) spikes, where g is a

scaling function independent of the sleep-wake state. This means that avalanches from the

frontal cortex and hippocampus of rats across states follow a close behaviour that resembles a

power law (Fig 5B and 5C), similar to previous results in the visual cortex [44]. We find that

the exponents 1

snz and
tt � 1

t� 1
are relatively close in both areas (which follows the crackling noise

relationship, claimed as a more stringent criticality test [45]). Specifically, for the neocortex,

we have 1

snz ¼ 1:11 and
tt � 1

t� 1
¼ 1:19, and for the hippocampus, we have 1

snz ¼ 1:20 and
tt � 1

t� 1
¼ 1:24. These similar exponents are expected if the system is close to a critical point and

have been reported for intermediate levels of spiking variability in anaesthetized rats and freely

behaving mice [45]. Therefore, our results support the hypothesis that complex cortical activity

arises from near-critical dynamics [43–47, 49, 50, 59–62].

DOWN states are sufficient to reproduce the complexity reduction in a

critical model of the cortex

To complement our in-vivo results, we show that introducing DOWN states into a critical

branching model is sufficient to generate an SWS-like state (Fig 6A and 6B). We achieve this

by periodically silencing the noisy drive to a given percentage of units, thus mimicking the syn-

aptic input reduction to pyramidal cells during SWS in the neocortex [63]. This reduction is

likely caused by a pre-synaptic GABAb inhibition of the excitatory inputs arriving at the apical

dendrites of principal cells [64], coordinated by the thalamus [65]. In contrast to neocortical
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mechanisms, UP/DOWN states in the hippocampus are related to sharp-wave ripple genera-

tion, where low-spiking DOWN states predominate, and UP-states are initiated by recurrent

excitation from CA3 neurons [66]. Therefore, in the hippocampus, the periodic silencing

reproduces DOWN states occurring between sharp-wave ripples.

In our model, there is no need to silence the input to 100% of the neurons to reproduce the

experimental results, consistent with the lack of hippocampal OFF-periods and minimal firing

levels during DOWN states [35]. Additionally, we note that a similar strategy has been

employed to model slow-wave oscillations during anaesthesia [44]. Moreover, we find that

being near the critical point (Fig 6C) allows for more flexible transitions to the SWS-like state

with respect to the sub- or super-critical model. Specifically, silencing the input to 40–60% cre-

ates a decrease in complexity similar to that observed experimentally. Notice further that,

despite the subcritical model requiring less silenced neurons to achieve RR levels, it fails to cap-

ture LAM and DIV SWS values. These results further add to the idea of criticality in the brain,

which would explain increased complexity [67], information processing and transmission

[43], and dynamical range [60].

Conclusion

Complexity has been suggested as a necessary condition for cognition [14, 68]. Accordingly, it

has been widely reported that during SWS the complexity of brain dynamics decreases [4–14].

However, the reason why brain signals are complex when animals are awake or why this com-

plexity is lost during unconscious remains controversial [69]. In the present work, we conclude

that DOWN states fully account for the complexity decrease during SWS, while a common

underlying spiking regime describes all sleep-wake states in the neocortex and hippocampus.

Materials and methods

Datasets

Datasets We analyse 2 datasets: Watson et al. (neocortex, available at CRCNS.org/fcx) [70];

and Grosmark and Buzsaki (hippocampus, available at CRCNS.org/hc) [71]. The reader is

referred to the original publications for details about experimental methods. We provide a

summary below.

For the neocortex dataset [70], silicon probes were implanted in frontal cortical areas of 11

male Long Evans rats. Recording sites included medial prefrontal cortex (mPFC), anterior cin-

gulate cortex (ACC), pre-motor cortex/M2, and orbitofrontal cortex (OFC). Recordings took

place during light hours in the home cage (25 sessions, mean ± SD duration of 4.8 ± 2.2 h). We

note that we exclude BWRat19_032413 from the analysis since it did not contain REM sleep.

Data was sampled at 20 kHz. To extract LFPs, recordings were low-pass filtered and re-sam-

pled at 1.25 kHz. To extract spikes, data was high-pass filtered at 800 Hz, and then threshold

crossings were detected. Spike sorting was accomplished by means of the Klusta-Kwik soft-

ware. Sleep-wake states were identified by means electrophysiological and EMG analyses [70].

OFF periods were extracted as periods of population silence lasting at least 50ms and no more

than 1250ms. Conversely, ON periods consisted of periods of population firing between OFF

periods with at least 10 total spikes and lasting 200–4000ms.
For the hippocampus dataset [72], 7 silicon probes were implanted in the dorsal CA1 of 4

male Long Evans rats. LFP and spikes were extracted the same way as in the neocortex dataset;

similar criteria were employed to identify the sleep-wake states. DOWN [UP] states were iden-

tified during SWS selecting the times when less [more] than 10% of neurons fired.
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Recurrence quantification analysis

Prior to analyse the recurrences of the neuronal population [73–75], we bin the spike train of

each neuron using 50ms non-overlapping spike count windows. The dynamics of the neuronal

population is then described by the evolving firing counts of all neurons, which defines a tra-

jectory (with a time resolution of 50ms) in the population phase space (that has N dimensions

for N neurons).

A recurrence plot of the evolving firing counts is defined by the symmetric matrix

Rði; jÞ ¼ 1; if k~xðtiÞ � ~xðtjÞk � �;

Rði; jÞ ¼ 0; otherwise;

(

ð1Þ

where~xðtiÞ [~xðtjÞ] is the phase-space vector containing the firing counts of all neurons at the

time bin ti [tj], with i = 1, . . ., T (T being the number of 50ms bins that are available from the

spike-train signals, e.g., T = 200 when using 10s windows) and � > 0 is the tolerance parameter

defining closeness. We set � = σP, where σP is the standard deviation (across time) of the

summed firing counts (across neurons) during wakefulness. R(i, j) = 1 corresponds to having

the trajectory of the neuronal population at time ti returning to the same region (up to �) of

phase space that it was at time tj; that is, a recurrence happens after ti − tj.
To quantify the patterns arising from recurrences, we employ common measures from

Recurrence Quantification Analysis (RQA) [73–75]. The metrics we use are: recurrence rate

(RR), determinism (DET), laminarity (LAM), trapping time (TT) and divergence (DIV),

which are defined by

RR ¼
1

N2

XN

i;j¼1

Ri;j; DET ¼
PN

l¼lmin
lPðlÞ

PN
l¼1

lPðlÞ
; LAM ¼

PN
v¼vmin

vPðvÞ
PN

v¼1
vPðvÞ

;

TT ¼
PN

v¼vmin
vPðvÞ

PN
v¼vmin

PðvÞ
; DIV ¼

1

Lmax
;

where P(l)[P(v)] indicates the probability of finding a diagonal [vertical] line of length l[v], and

Lmax indicates the longest diagonal line excluding the identity line.

Synthetic LFPs and field complexity measures

We construct synthetic Local Field Potentials (sLFPs) by averaging the convolutions between

spike counts in 80ms non-overlapping bins of each excitatory neuron and an exponentially

decreasing kernel. Namely, Cn(t) = Sn(t) ? exp(−t/τ), where Sn(t) is the n-th neuron spike

count time series, τ = 24ms is the characteristic time-scale of the kernel (typical mEPSP time

for pyramidal neurons in the frontal cortex [76]), and ? the convolution operator.

The resultant sLFP is then obtained from

sLFPðtÞ ¼
1

N

XN

n¼1

CnðtÞ; ð2Þ

where N is the number of simultaneously recorded neurons.

For the frequency analysis, we compute the power spectrum of the sLFP using Welch’s algo-

rithm. We apply the signal.welch scipy python 3 function (scipy.org), with a 1s moving

Hanning window (without overlap), and a 1Hz frequency resolution. For computing the

sLFP-LFP coherence, we first downsample the LFP recordings to 125Hz and average them
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across channels; we then employ the signal.coherence scipy function, using the same

parameters as the power spectrum. We note that the 80ms spike count bin equals a 125 Hz

sampling frequency.

For measuring sLFP and LFP complexity, we use Permutation Entropy (PE) [41], Sample

Entropy (SE) [40], and Lempel-Ziv (LZ) [42] Complexity, implemented through the

antroPy python 3 package (github/antropy). Prior to computing these measures, we also

downsample the LFP recordings to 125Hz and average them across channels.

PE [41] requires dividing the sLFP or the average LFP signal, {x(t), t = 1, . . ., T}, into b(T −
D)/Dc non-overlapping vectors of D data points, with D� T (shorter than the time-series

length). Then, each vector is classified as a symbol α according to the number of permutations

needed to order its D elements. We employ τ = 5, where τ is the distance between consecutive

time-stamps inside each vector containing D = 3 time points. Finally, the PE [41] is the Shan-

non entropy [77] of the resultant symbolic sequence; that is, H = −∑α p(α) log [p(α)], where p
(α) is the probability of finding symbol α in the signal.

Similar to PE, SE [40] consists of dividing a time-series into a series of D-sized vectors

(~yDðiÞ ¼ fxðtiÞ; xðtiþ1Þ; . . . ; xðtiþD� 1Þg) and is defined as SE ¼ � log A
B

� �
, where A and B are,

respectively, the number of times that d½~yDþ1ðiÞ; ~yDþ1ðjÞ� < r and d½~yDðiÞ; ~yDðjÞ� < r for all i, j
vector pairs, and d is the Chebyshev distance and r> 0 is a tolerance parameter (0.1 * SD of

the signal). In our case D = 3, and we downsample the signals by a factor of 5 in order to

match τ from PE.

LZ [42] complexity is estimated by the LZ-76 algorithm. We start by creating a binary

sequence from the mean value of the sLFP or the average LFP recording—all points larger

than the signal mean are converted to 1, and 0 otherwise. Then, we count the number of differ-

ent binary sub-strings from beginning to end, #substrings. The LZ complexity is given by LZw

= (#substrings)/(w/ log(w)), where w is the length of the binary sequence.

Neuronal avalanches

We quantify neuronal avalanches following previous studies [44, 45]. First, population activity

is binned employing the average inter-spike interval. Then, we measure the time (duration)

and number (size) of spikes between one empty bin (0 spikes) to the following empty bin. We

use the powerlaw (pypi.org/powerlaw) python 3 package to construct the probability distri-

butions and obtain their exponents: τt and τ. We also compute the average number of spikes as

a function of the avalanche duration, and obtain the exponent 1

nsz by means of an ordinary least

square fit on the log-log scale distribution.

Critical branching model

The critical branching model consists of 50 interacting units randomly connected in an Erdös-

Rényi topology with a 0.03 attachment probability (i.e., each pair of units has a 0.03 probability

of having a link). The time step was set as 1ms. Each unit has 3 possible states: resting, firing or

refractory. The transition between resting and firing can either occur from the excitation com-

ing from a connected neuron firing in the preceding time, or by the intrinsic Poisson noise

that each neuron receives independently. The excitatory Poisson noisy drive is set by generat-

ing a random matrix whose values come from a [0, 1] uniform distribution, and then setting

for each entry a spike if the value is less than 1 − e−λ (λ = 0.014). We periodically silenced the

Poisson noise for 250ms at a 4Hz frequency to create a SWS-like state. Once a neuron fires, it

goes to the refractory state and it cannot be excited again. After one step in the refractory state,

the neuron goes to the resting state and becomes excitable again. The propagation of spikes is

controlled by the branching parameter σ, which regulates the overall excitability of the system.
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For instance, if neuron i fires, the probability that a connected unit fires is defined as Pprop = σ/

hkji, where hkji is the average node degree across all units j.

Statistics

We present data as boxplots showing the median, the 1st and 3rd quartiles, and the whiskers

corresponding to 1.5 times the inter-quartile range. Because of the non-Gaussian distributions

of the complexity metrics, we employ non-parametric statistics. We use the Friedman test

available with the scipy.stats from python 3 package to compare the results among

states, i.e., Wake-SWS-REM (Wake-SWS-SWSup-REM, Fig 4D), with the Siegel post-hoc test

applying the Benjamini-Hochberg false discovery rate correction available with the

scikitlearn (scikit-learn.org). We set p< 0.05 for a result to be considered significant. In

addition to p-values, we also report Cohen’s d, which quantifies the magnitude of a result in

terms of a standardised difference between conditions; an effect size is considered to be large if

Cohen’s d is> 0.8. For the power spectra and avalanche results, we present the data as the

mean with the 95% confidence interval (obtained through bootstrap sampling). For the corre-

lation analysis, we employ LOWESS regression to fit the best estimate to the scatter plot by

means of the regplot python 3 function available at seaborn.pydata.org. As LOWESS

regression has no associated p value, we employ a linear regression for each session and con-

sider the result as significant only if p< 0.05 for all sessions. Additionally, to correlate the

DOWN states to the recurrence sum, we employ the point-biserial correlation

pointbiserialr function available at scipy.org.

Supporting information

S1 Fig. RQA differences among states are robust to parameter choice. A RQA metrics for

different tolerance levels � defining recurrence in phase space. We vary � from 0 std to 4 std of

the population firing counts. Setting � to 0 means that a recurrence occurs between two times

for the exact same neuronal firing pattern. The time bin is kept fix at 50 ms. B RQA metrics for

different time binning of the population activity. Time bins are changed from 20 ms to 200 ms

in order to define the firing counts for each neuron. The � is kept fix at 1 std. The mean and its

corresponding 95% confidence intervals are shown for each plot.

(TIF)

S2 Fig. RQA differences between states correlate with the number of neurons recorded.

Absolute RQA differences between states as a function of the number of simultaneously

recorded neurons. Each dot shows a recording session while the solid line the linear regression

estimate with its 95% confidence interval. A shows the SWS-Wake difference, while B the

SWS-REM difference.

(TIF)

S3 Fig. Persistent Homology cannot distinguish the sleep-wake states in the neocortex.

Top panels: Point clouds obtained after dimensionality reduction. A representative animal is

shown during Wake, SWS and REM sleep. Bottom panels: Betti 0 (HO) and Betti 1 (H1) bar-

codes for the same animal shown in the top panel. The length of each bar shows the level of

persistence of each Betti 0 and 1 component.

(TIF)

S4 Fig. UP state recurrences are similar to Wake or REM sleep. A Recurrence plots con-

structed from a 10s interval of the population activity using. B 5 RQA metrics for the sleep-

wake states; boxplots show results from the pool of 24 sessions across 12 animals (outliers are
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not shown).

(TIF)

S5 Fig. Power spectrum slope differs among states. A LFP [ECoG] recordings coming from

the frontal cortex [M1 cortex] during the states of Wake, SWS and REM sleep. The mean and

its corresponding 95% confidence intervals are shown for each plot. B Power spectrum expo-

nents calculated through ordinary least-squares fit on a log-log scale (OLS) or through the

FOOOF parametrized spectra (FOOOF) [78] which only includes the aperiodic component.

(TIF)

S6 Fig. Single neurons deviate from the ensemble behaviour. Lempel-Ziv Complexity of sin-

gle neuron firing pattern between Wake and SWS. Each bar shows the total number of neu-

rons or sessions whose temporal complexity decreased or increased during sleep. Left: LFP

recordings. Middle: sLFP recordings- Right: Single unit recordings.

(TIF)

S1 Text. Supplementary methods [9, 21, 53].

(PDF)

S1 File.

(ZIP)
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Writing – original draft: Joaquı́n González, Nicolás Rubido.

Writing – review & editing: Joaquı́n González, Matias Cavelli, Adriano B. L. Tort, Pablo Tor-

terolo, Nicolás Rubido.

References
1. Koch C., Massimini M., Boly M. & Tononi G. Neural correlates of consciousness: progress and prob-

lems. Nat Rev Neurosci. 17, 307–321 (2016,5) https://doi.org/10.1038/nrn.2016.22 PMID: 27094080

2. Dement W. & Kleitman N. The relation of eye movements during sleep to dream activity: an objective

method for the study of dreaming. J Exp Psychol. 53, 339–346 (1957,5) https://doi.org/10.1037/

h0048189 PMID: 13428941

3. Siclari F., Baird B., Perogamvros L., Bernardi G., LaRocque J., Riedner B., et al. The neural correlates

of dreaming. Nat Neurosci. 20, 872–878 (2017,6) https://doi.org/10.1038/nn.4545 PMID: 28394322

4. Ouyang G., Dang C., Richards D. & Li X. Ordinal pattern based similarity analysis for EEG recordings.

Clin Neurophysiol. 121, 694–703 (2010,5) https://doi.org/10.1016/j.clinph.2009.12.030 PMID:

20097130

PLOS ONE Sleep reduces spiking complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0290146 August 17, 2023 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0290146.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0290146.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0290146.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0290146.s008
https://doi.org/10.1038/nrn.2016.22
http://www.ncbi.nlm.nih.gov/pubmed/27094080
https://doi.org/10.1037/h0048189
https://doi.org/10.1037/h0048189
http://www.ncbi.nlm.nih.gov/pubmed/13428941
https://doi.org/10.1038/nn.4545
http://www.ncbi.nlm.nih.gov/pubmed/28394322
https://doi.org/10.1016/j.clinph.2009.12.030
http://www.ncbi.nlm.nih.gov/pubmed/20097130
https://doi.org/10.1371/journal.pone.0290146


5. Nicolaou N. & Georgiou J. The use of permutation entropy to characterize sleep electroencephalo-

grams. Clin EEG Neurosci. 42, 24–28 (2011,1) https://doi.org/10.1177/155005941104200107 PMID:

21309439

6. Abásolo D., Simons S., Silva R., Tononi G. & Vyazovskiy V. Lempel-Ziv complexity of cortical activity

during sleep and waking in rats. J Neurophysiol. 113, 2742–2752 (2015,4) https://doi.org/10.1152/jn.

00575.2014 PMID: 25717159

7. Schartner M., Pigorini A., Gibbs S., Arnulfo G., Sarasso S., Barnett L., et al. Global and local complexity

of intracranial EEG decreases during NREM sleep. Neurosci Conscious. 2017, niw022 (2017) https://

doi.org/10.1093/nc/niw022 PMID: 30042832

8. Bandt C.A New Kind of Permutation Entropy Used to Classify Sleep Stages from Invisible EEG Micro-

structure. Entropy. 19 (2017), https://www.mdpi.com/1099-4300/19/5/197 https://doi.org/10.3390/

e19050197
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76. Povysheva N., Gonzalez-Burgos G., Zaitsev A., Kröner S., Barrionuevo G., Lewis D. et al. Properties of

excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat pre-

frontal cortex. Cereb Cortex. 16, 541–552 (2006,4) https://doi.org/10.1093/cercor/bhj002 PMID:

16033926

77. Shannon C.A mathematical theory of communication. The Bell System Technical Journal. 27, 379–423

(1948) https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

78. Donoghue T., Haller M., Peterson E., Varma P., Sebastian P., Gao R. et al. Parameterizing neural

power spectra into periodic and aperiodic components. Nat Neurosci. 23, 1655–1665 (2020,12) https://

doi.org/10.1038/s41593-020-00744-x PMID: 33230329

PLOS ONE Sleep reduces spiking complexity

PLOS ONE | https://doi.org/10.1371/journal.pone.0290146 August 17, 2023 21 / 21

https://doi.org/10.1002/hipo.22488
http://www.ncbi.nlm.nih.gov/pubmed/26135716
https://doi.org/10.3389/fphys.2016.00425
http://www.ncbi.nlm.nih.gov/pubmed/27729870
https://doi.org/10.1126/science.282.5395.1846
https://doi.org/10.1126/science.282.5395.1846
http://www.ncbi.nlm.nih.gov/pubmed/9836628
https://doi.org/10.1523/JNEUROSCI.1910-19.2019
http://www.ncbi.nlm.nih.gov/pubmed/31776211
https://doi.org/10.1016/j.neuron.2016.03.036
http://www.ncbi.nlm.nih.gov/pubmed/27133462
https://doi.org/10.1126/science.aad1935
http://www.ncbi.nlm.nih.gov/pubmed/27013730
https://doi.org/10.1016/j.neuron.2012.08.015
http://www.ncbi.nlm.nih.gov/pubmed/22998869
https://doi.org/10.1209/0295-5075/4/9/004
https://www.sciencedirect.com/science/article/pii/S0370157306004066
https://www.sciencedirect.com/science/article/pii/S0370157306004066
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1063/1.5136246
https://doi.org/10.1093/cercor/bhj002
http://www.ncbi.nlm.nih.gov/pubmed/16033926
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1038/s41593-020-00744-x
http://www.ncbi.nlm.nih.gov/pubmed/33230329
https://doi.org/10.1371/journal.pone.0290146

