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This paper studies the active damping of the oscillations of lightly damped linear systems whose param-
eters are indeterminate or may change through time. Systems with an arbitrary number of vibration
modes are considered. Systems described by partial differential equations, that yield an infinite number
of vibration modes, can also be included. In the case of collocated feedback, i.e. the sensor is placed at the
same location of the actuator, a simple fractional order differentiation or integration of the measured sig-
nal is proposed that provides an effective control: (1) it guarantees a minimum phase margin or damping
of the closed-loop system at all vibration modes, (2) this feature is robustly achieved, i.e., it is attained for
very large variations or uncertainties of the oscillation frequencies of the system and (3) it is robust to
spillover effects, i.e., to the unstabilizing effects of the vibration modes neglected in the controller design
(especially important in infinite dimensional systems). Moreover, the sensitivity of the gain crossover fre-
quency to such variations is assessed. Finally, these results are applied to the position control of a single
link flexible robot. Simulated results are provided.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Linear undamped systems appear in many scientific and tech-
nological areas, and their oscillations often have undesirable
effects. Then, these oscillations have to be damped either by pas-
sive or active methods. In the first case, the system is redesigned
by adding elements that physically damp the oscillations. In the
second case, a feedback control law is closed around the undamped
system in such a way that the oscillations of the whole system are
reduced. These methods are tailored to the oscillation frequencies
of the system, which are assumed to be time invariant.
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However, there are many applications in which the frequencies
of the oscillations are time varying (TVF oscillations). In these
cases, both passive and active dampers become untuned and their
performances are significantly degraded. The need of damping TVF
oscillations appears in many fields. Some examples are given next.
In electrical engineering, TVF oscillations appear in the flexible AC
transmission systems used to damp power system oscillations
whose frequencies vary as consequence of changes in the operating
target setpoint of the nonlinear power network or changes in the
characteristics of some generators [1]. In power electronics, oscil-
lations have to be damped in voltage compensation using dynamic
voltage restorers (DVR), in which the ac source may experience
variations of �2 Hz [2]. Combustion driven oscillations may appear
in industrial combustors, where their frequencies vary according to
the temperature and velocity distribution of the involved fluids [3].
Controllers of mechanical systems have to deal with TVF oscilla-
tions in tasks such as the sway reduction of bridge and granty
cranes in which the frequencies change with the length of the
suspension cable [4]. TVF oscillations whose frequencies change
largely can only be damped by active systems.

Frequency methods are often used to design control laws for the
active damping of oscillations in linear time invariant (LTI) sys-
tems. Phase and gain margins are measures of the relative stability
of a system. Moreover, some temporal features of the closed-loop
system are related to features of the open-loop frequency response.
In particular, phase margin / is related to damping and gain cross-
over frequency xc to system bandwidth and, hence, to speed of
response ([5]).

Robust controllers based on the frequency domain methods have
been designed to tackle the problem of damping TVF oscillations.
Some mechanical examples are given next. Robust controllers were
developed for structural vibration suppression using H1 methods in
[6], for a compact disc player using the l-framework in [7] and for
flexible manipulators using the QFT method in [8].

Another approach to the robust damping of oscillations is to
attain a frequency response that has a flat phase around the nom-
inal gain crossover frequency. This feature achieves a constant
phase margin when some plant parameters change. This is called
the isophase margin property and implies that the closed-loop sys-
tem damping and overshoot also remain approximately constant.
Fractional-order control laws that attain this local isophase margin
property (a survey is [9]) have been used to actively damp TVF
oscillations. For example, Ref. [10] proposed a fractional-order
proportional-derivative controller for the attitude control of a flex-
ible spacecraft and [11] a fractional-order derivative controller for
vehicle suspensions.

Nonlinear control techniques have been used to damp TVF oscil-
lations too, like adaptive control in [12], neural network controllers
in [13], or sliding controllers in [14]. Adaptive control has the
drawbacks of: (a) the difficulty of guaranteeing closed loop stabil-
ity, which usually requires a complicated Lyapunov stability anal-
ysis; (b) needing a persistent excitation in order to achieve an
accurate estimation of the system parameters; (c) the worsen of
the transient response during the term from the beginning of the
transient until the plant parameters are estimated and the con-
troller is retuned, which leads to tracking errors that may be unac-
ceptable. Drawbacks of neural network control are that it is also
difficult to guarantee the stability of the control system and it
requires a previous - often laborious - network training process.
Application of sliding control needs the fulfilment of the so called
matching condition, which means that the uncertainties must
remain in the space range of the control input to ensure an invari-
ance property of the system behavior during the sliding mode,
which sometimes may be troublesome. Moreover, the performance
of the system is not well controlled during the term of reaching the
sliding surface.
The previous controls damp TVF oscillations with small fre-
quency variations, but they fail and even unstabilize the system
if the oscillation frequencies experience very large variations or
have very large uncertainties (of more than a decade above or
below their nominal values). Moreover, these controllers are well
suited only for systems having a finite (usually low) number of
oscillations. They could be applied to systems having an infinite
number of vibrations - like flexible mechanical structures - only
if their infinite dimensional models were truncated yielding
reduced order models with a finite number of oscillations. Such
oscillations are damped by these controllers, but the neglected
oscillations could unstabilize the closed-loop system. This is called
the spillover effect, it can be hardly avoided using the above men-
tioned control techniques, and it is nearly impossible to deal with
if the oscillation frequencies vary largely.

Systems with an infinite number of oscillations can be
damped using control techniques based on the pole-zero inter-
lazing (PZI) property. PZI property is achieved if the actuator
and sensor of the closed-loop system are placed exactly at the
same position. This configuration is denoted collocated feedback
and yields controllers insensitive to spillover effects. Using this
property, passivity (e.g. [15]), flatness (e.g. [16]) based feedback
laws have been developed, as well as the integral resonant con-
trol (a recent nonlinear version of this is [17]). These techniques
guarantee robust stability but do not achieve phase margin
robustness, i.e, approximate damping robustness of all the
vibration modes.

Some results have recently been obtained using fractional
order controllers combined with the PZI property that improve
the active damping robustness of systems with an arbitrary
number of oscillation modes. In [18] the integrator of the integral
resonant control was substituted by a fractional-order integrator.
This improved the robustness of the damping of the lowest four
vibration modes in the sense that the phase margins associated
to these four modes were increased and the changes of these
phase margins produced by changes of up to �40% of the oscilla-
tion frequencies were lower than if the integral resonant control
were used. In [19] a fractional-order controller combined with a
passivity property was designed in order to obtain the local
isophase margin property in the first vibration mode of flexible
link robots. This outperformed significantly the damping robust-
ness achieved with the previous controller to frequency changes
in that mode. These two control systems have spillover robust-
ness, i.e, the infinite modes neglected in the controller design
remained stable, but the damping of these modes could not be
designed. Finally, a very simple fractional-order controller was
proposed in [20] for undamped systems that is robust to spillover
and guarantees a constant phase margin of an arbitrary number
of vibration modes, i.e, the same damping could be designed for
all the modes, when the frequencies and gains of all the vibration
modes change arbitrarily.

In this article, the results of [20] for undamped systems are
extended to damped systems. Moreover, the robustness of the gain
crossover frequency is assessed.

The paper is organized as follows. Section 2 recalls the results of
[20] used here. Section 3 studies the gain crossover frequency
robustness of the proposed controllers in the case of undamped
systems. Section 4 obtains phase margin and gain crossover fre-
quency robustness conditions for damped systems. Section 5
applies these results to control a single link flexible robot and some
conclusions are exposed in Section 6.

Preliminary results

Consider a single-input single-output linear plant whose trans-
fer function can be split into two factors:



Fig. 2. Feedback control system.
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G s;pð Þ ¼ bG sð ÞP s;pð Þ: ð1Þ

The factor bG sð Þ is a rational transfer function that contains the
known part of the plant, which is assumed to be stable and mini-
mum phase. The factor P s;pð Þ is a rational transfer function that
contains the uncertain part of the plant, in which vector p 2 P rep-
resents the set of uncertain parameters, being P the region of
admissible parametric vectors.

Assume that P s;pð Þ is an oscillatory system with n undamped
vibration modes:

P s;pð Þ ¼ b
s2 þ a21

Yn�1

i¼1

s2 þ z2i
s2 þ a2iþ1

 !
ð2Þ

whose parameters are grouped as p ¼ b; a1; a2; . . . ;ð
an; z1; z2; . . . ; zn�1Þ being sorted in order of increasing values:
ai < aiþ1 and zi < ziþ1, 8i. Assume that all these parameters are pos-
itive, which is expressed as p > 0. The nominal transfer function
P s;p0ð Þ is defined by the nominal parameters b0; ai;0 and zi;0;8i.

The magnitude of the frequency response of P s;pð Þ is repre-
sented by

! x;pð Þ ¼ P jxxc0;pð Þj j ð3Þ

where x ¼ x=xc0 is the normalized frequency with respect to
xc0; xc0 being the gain crossover frequency desired for the con-
trolled system in the case of the nominal parameters p0.

The pole-zero interlacing property on the imaginary axis is defined
as the pattern that some transfer functions of undamped or lowly
damped systems have of alternating the values of the imaginary
components of their poles and zeros. This pole-zero pattern will
hereafter be denoted by the PZI property. Assume that P s;pð Þ has
the PZI property, i.e, transfer function (2) verifies that
ai < zi < aiþ1;1 6 i < n� 1.

Fig. 1 shows the frequency response of a system (2) that verifies
the PZI property (the case of n ¼ 3 is represented).

The following results are recalled from [20] and are the starting
point of this article. The feedback control structure used in this
article is shown in Fig. 2.

Lemma 1. A transfer function P s;pð Þ of the form (2) verifying the
PZI property can always be expanded as

P s;pð Þ ¼
Xn
i¼1

ki
s2 þ a2

i

; ki > 0;1 6 i 6 n; ð4Þ

and any transfer function that can be expanded in the form (4) ver-
ifies the PZI property.

Theorem 1. Consider a plant G s;pð Þ of the form (1), (2) where
P s;pð Þ verifies the PZI property for any p > 0;p 2 P, representing
P the set of all possible plants. The simplest controller C sð Þ, which:
Fig. 1. Nyquist plot of P(s,p) verifying the PZI property.
1. maintains a desired phase margin /0 (0 < /0 6 p=2 rads) of
G s;pð ÞC sð Þ in the entire range of variation of p,

2. yields a desired gain crossover frequency value xc0 defined in
the range a1;0 < xc0 < z1;0 for the nominal set of parameters p0,

consists of the series connection of a fractional-order differentiator
controller (hereafter denoted as the FD controller) and the inverse
of the well determined part of the dynamics of the plant:

C sð Þ ¼ 1
! 1;p0ð Þxa

c0
sa|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

FD controller

bG�1 sð Þ ð5Þ

where a is a positive value:

a ¼ 2
p
/0 ð6Þ

Moreover, the function xc ¼ f pð Þ that describes the relationship
yielded by this controller between the gain crossover frequency
xc and the varying parameters is implicitly given by

xa! x;pð Þ ¼ ! 1;p0ð Þ; x ¼ xc

xc0
ð7Þ

where ! is defined by (3). In the interval a1
xc0

; z1
xc0

� �
, Eq. (7) has only

one real positive solution x for any value p 2 P, which verifies that

max
a1
xc0

; x�
� �

< x <
z1
xc0

ð8Þ

being x� the solution of the equation ! 1;p0ð Þx2�a ¼ ! x;pð Þ x2 � a21
x2

c0

� �
Fig. 3a shows the Nyquist plot of L jx;pð Þ ¼ G jx;pð ÞC jxð Þ. It

illustrates that /0 can not be higher than 90� because, in that case,
the Nyquist plot at interval 0 6 x < a1 would cross the unit circle
in the second quadrant, at a point closer to the negative real semi-
axis than the point at which the Nyquist plot at interval
a1 6 x < z1 crosses the unit circle. This invalidates the /0 phase
margin specification.

Theorem 2. Consider a plant G s;pð Þ of the form (1), (2) where
P s;pð Þ verifies the PZI property for any p > 0;p 2 P, representing
P the set of all possible plants. The simplest controller C sð Þ, which:

1. maintains a desired phase margin �/0 (0 < /0 6 p=2 rads) of
G s;pð ÞC sð Þ in the entire range of variation of p,

2. yields a desired gain crossover frequency value xc0 defined in
the range xc0 < a1;0, for the nominal set of parameters p0,

consists of the series connection of a FD controller and the inverse
of the well determined part of the dynamics of the plant given by
expression (5), in which a is a positive value:

a ¼ 2� 2
p
/0 ð9Þ

Moreover, the function xc ¼ f pð Þ that describes the relationship
yielded by this controller between the gain crossover frequency
and the varying parameters is implicitly given by (7). In the interval

0; a1
xc0

� �
, Eq. (7) has only one real positive solution for any value

p 2 P.



Fig. 3. Nyquist diagrams of the open-loop responses with controllers of: (a) Theorem 1 and (b) Theorem 2.
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Fig. 3b shows the Nyquist plot of L jx;pð Þ ¼ G jx;pð ÞC jxð Þ. It
illustrates that /0 can not be higher than 90� because, in that case,
the Nyquist plot at interval a1 6 x < z1 would cross the unit circle
in the third quadrant, at a point closer to the negative real semiaxis
than the point at which the Nyquist plot at interval 0 6 x < a1

crosses the unit circle. This invalidates the �/0 phase margin
specification.
The f pð Þ function

The previous theorems are useful to design controllers that
guarantee an invariant phase margin in the case of large changes
of parameters (either gains or vibration frequencies) of up to
infinite-dimensional oscillatory systems (n in (2) is an arbitrary
number that could be 1). But no attention was paid to the gain
crossover frequency robustness attained with these controllers.
This is the objective of this section. The starting point is expression
(7). Achieving robustness on the gain crossover frequency means
that large variations in p involve small variations in the xc yielded
by the function xc ¼ f pð Þ. The following two theorems develop
some results about this issue.

Theorem 3. Consider a plant G s;pð Þ of the form (1), (2) where
P s;pð Þ verifies the PZI property, and p 2 P such that p > 0 and P

represents the set of all possible plants. Assume a controller C sð Þ
given by expressions (5) and (6) of Theorem 1. The sensitivity of
the gain crossover frequencyxc to changes in the plant parameters
has the following properties:

1. Function f pð Þ is an increasing function in the parameters
pk;1 6 k 6 2, (b; a1) and nþ 2 6 k 6 2n, (zi) and is decreasing
in the parameters pk;3 6 k 6 nþ 1, (a2 . . . an).

2. The sensitivity of the gain crossover frequency xc , i.e., the vari-
ation of xc around xc0 when parameters p vary around p0,
increases if the design phase margin /0 increases.

Proof. According to (8),xc belongs to the interval a1 < xc < z1, i.

e, its normalized value x belongs to a1
xc0

; z1
xc0

� �
. Since function

! x;pð Þ ¼
b

x2
c0

x2 � a1
xc0

� �2Yn�1

i¼1

zi
xc0

� �2
� x2

aiþ1
xc0

� �2
� x2

0B@
1CA ð10Þ

is positive in that interval, it is obtained that

ln ! x;pð Þð Þ ¼ ln b
x2

c0

� �
� ln x2 � a1

xc0

� �2� �
þ

Xn�1

i¼1

ln zi
xc0

� �2
� x2

� �
� ln aiþ1

xc0

� �2
� x2

� �� � ð11Þ
Differentiating this expression with respect to x and denoting
@!=@x as !x yields that

!x x;pð Þ
2x! x;pð Þ ¼ � 1

x2� a1
xc0

� �2 �
Xn�1

i¼1

aiþ1
xc0

� �2

� zi
xc0

� �2

zi
xc0

� �2

�x2

� �
aiþ1
xc0

� �2

�x2

� � ð12Þ

which is negative in the interval x 2 a1
xc0

; z1
xc0

� �
because

aiþ1
xc0

� �2
� zi

xc0

� �2
zi
xc0

� �2
� x2

� �
aiþ1
xc0

� �2
� x2

� � > 0;1 6 i < n� 1 ð13Þ

as consequence of the verification of the PZI property. Then

!x x;pð Þ < 0 in x 2 a1
xc0

; z1
xc0

� �
.

Upon differentiating (7), the variation of x with regard to a and
p is obtained:

dx ¼ � x ln xð Þ! x;pð Þ
a! x;pð Þ þ x!x x;pð Þda�

X2n
k¼1

x!k x;pð Þ
a! x;pð Þ þ x!x x;pð Þdpk ð14Þ

where 2n is the dimension of p and !k ¼ @!=@pk. The denominator
of this expression verifies, substituting (12) there, that

a! x;pð Þ þ x!x x;pð Þ ¼

! x;pð Þ � a� 2x2

x2� a1
xc0

� �2 �
Xn�1

i¼1

2x2
aiþ1
xc0

� �2

� zi
xc0

� �2
� �

zi
xc0

� �2

�x2

� �
aiþ1
xc0

� �2

�x2

� �
0BB@

1CCA < 0
ð15Þ

in x 2 a1
xc0

; z1
xc0

� �
because in that interval: ! x;pð Þ > 0, (13) is verified

and, since 0 < a 6 1,

a� 2x2

x2 � a1
xc0

� �2 ¼ �
2� að Þx2 þ a a1

xc0

� �2
x2 � a1

xc0

� �2 < 0 ð16Þ

Next, terms !k x;pð Þ are calculated in x 2 a1
xc0

; z1
xc0

� �
:

1. Gain b, (k ¼ 1):
!1 x;pð Þ ¼ ! x;pð Þ
b

> 0 ð17Þ

2. Coefficients ai;1 6 i 6 n, (k ¼ iþ 1):

!k x;pð Þ ¼ 2ai
x2

c0

x2 � ai
xc0

� �2
 !�1

! x;pð Þ ð18Þ

which verify that !2 x;pð Þ > 0 and !k x;pð Þ < 0 if 3 6 k 6 nþ 1.
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3. Coefficients zi;1 6 i 6 n� 1, (k ¼ iþ 1þ n):
!k x;pð Þ ¼ 2zi
x2

c0

zi
xc0

� �2

� x2
 !�1

! x;pð Þ > 0 ð19Þ

Note that �x= a! x;pð Þ þ x!x x;pð Þð Þ > 0 because of inequality
(15). Then the sign of @x=@pk coincides with the sign of
!k x;pð Þ in expression (14), which justifies Assertion 1 of the
theorem, and the sign of term @x=@a coincides with the sign
of ln xð Þ, which implies that for a given set of parameters p:

� In the case that x > 1, increasing a (i.e., increasing /0, in accor-
dance with (6)) increases the value of x. This means that x is
moved away (reaching larger values) from 1 as /0 increases.

� In the case that x ¼ 1, increasing a does not produce any change
in x, which is obvious as xa in (7) is 1 for any value of a.

� In the case that x < 1, increasing a (i.e., increasing /0, in accor-
dance with (6)) decreases the value of x. This means that x is
again moved away (reaching smaller values) from 1 as /0

increases.

Consequently, if xc changes as consequence of parameter varia-
tions, its deviation from xc0 is amplified if large values of /0 are
used in the controller design. Then Assertion 2 of the theorem
has been proven. �

Theorem 4. Consider a plant G s;pð Þ of the form (1), (2) where
P s;pð Þ verifies the PZI property, and p 2 P such that p > 0 and P

represents the set of all possible plants. Assume a controller C sð Þ
given by expressions (5) and (9) of Theorem 2. The sensitivity of
the gain crossover frequencyxc to changes in the plant parameters
has the following properties:

1. Function f pð Þ is an increasing function in the parameters
pk;2 6 k 6 nþ 1, (ai) and is a decreasing function in the param-
eters pk; k ¼ 1, (b), and nþ 2 6 k 6 2n, (zi).

2. The sensitivity of the gain crossover frequency xc , i.e., the vari-
ation ofxc aroundxc0 when parameters p vary, increases if the
design value /0 (the opposite of the desired phase margin)
increases.

Proof. According to Theorem 2;xc belongs to the interval

0 < xc < a1, i.e, its normalized value x belongs to 0; a1
xc0

� �
. Since

function

! x;pð Þ ¼
b

x2
c0

a1
xc0

� �2
� x2

Yn�1

i¼1

zi
xc0

� �2
� x2

aiþ1
xc0

� �2
� x2

0B@
1CA ð20Þ

is positive in that interval, taking logarithms in this expression,
after differentiating with respect to x and following a procedure
similar to the one of Theorem 3, the theorem is proven. �

Damped systems

This section studies the damped system

G s;p;qð Þ ¼ bG sð ÞP s;p;qð Þ ð21Þ
where

P s;p;qð Þ ¼
Xn
i¼1

ki
s2 þ 2aifisþ a2i

ð22Þ

is a generalization of the partial fraction expansion (4) and bG sð Þ is a
rational transfer function that contains the known part of the plant,
which is assumed to be stable and minimum phase. All the param-
eters of (22) are grouped in two uncertainty vectors:
p ¼ a1; a2; . . . ; an; k1; k2; . . . ; knð Þ 2 P being P the region of admissi-
ble parametric vectors, whose elements are positive, and
q ¼ f1; f2; . . . ; fnð Þ 2 Q, being Q the region of admissible parametric
vectors, whose elements are non negative. The first condition is rep-
resented by p > 0 and the second one by q P 0. Coefficients fi of q
have been sorted according to their corresponding ai. The nominal
plant G s;p0;q0ð Þ is defined by using the nominal parameters
ai;0; fi;0 and ki;0. Lemma 1 states that condition p > 0 guarantees
that the PZI property is verified in P s;p;0ð Þ.

Robust phase margin

The following result guarantees a minimum phase margin in
the case of damped systems if controllers with the structure (5)
and (9) were used.

Theorem 5. Consider system (21), (22) in which p 2 P;q 2 Q

verify that p > 0;q P 0, where P;Qð Þ is the set of all possible
plants. A controller has to be designed that achieves a desired nom-
inal gain crossover frequency xc0 (for p0, q0) and:

1. In the case that a1;0 < xc0 < z1;0, preserves a phase margin
/ P /0 in all the range of variation of p and q, where /0 is a
design value (0 < /0 6 p=2 rads).

2. In the case that 0 < xc0 < a1;0, preserves a phase margin
�/ 6 �/0 in all the range of variation of p and q, where /0 is
a design value (0 < /0 6 p=2 rads).

The simplest controller that verifies these conditions is of the form

C sð Þ ¼ KcsabG�1 sð Þ ð23Þ
where a is given by (6) in the first case and by (9) in the second case.
The gain of this controller is given by

Kc ¼ 1
xa

c0 P jxc0;p0;q0ð Þj j ð24Þ

Proof. Upon operating one of the terms of the partial fraction
expansion (22), its imaginary component is obtained:

I
ki

jxð Þ2 þ j2 � ai � fi �xþ a2i

( )
¼ �2kiaifix

a2i �x2
� �2 þ 4a2i f

2
i x2

6 0 ð25Þ

Since this inequality is verified by all the terms of (22) because
p > 0 and q P 0, the imaginary component of P jx;p;qð Þ must be
negative or zero.

The frequency response of the open-loop transfer function of
system (21), (22) with controller (23) is L jx;p;qð Þ ¼
P jx;p;qð ÞKcxaej

p
2a. Since the imaginary component of P jx;p;qð Þ

is negative or zero, its phase would be non positive and would
be included in the interval �180�;0�ð Þ. Then the phase of
L jx;p;qð Þ would be included in �180� þ 90að Þ�; 90að Þ�ð Þ because
the effect of sa in the phase of L is a counterclockwise rotation of
90að Þ� of the frequency response of P. The specifications of the
cases 1 and 2 are thus verified if a takes the values stated in the
theorem.

Upon imposing the condition of a desired gain crossover fre-
quency to the nominal open-loop transfer function, jL jxc0;ð
p0;q0Þj ¼ 1, gain (24) of controller (23) is obtained. �.

Figs. 4 show how the Nyquist plots of Figs. 3a and b are respec-
tively modified as consequence of the controllers proposed in The-
orem 5 when damped systems are considered.

Gain crossover frequency sensitivity

Let the plant (22) be expressed in the factorized form



Fig. 4. Nyquist diagrams of the open-loop responses of a damped plant with the controllers of Theorem 5: (a) in Case 1 and (b) in Case 2.
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P s;p;qð Þ ¼ b

Yn�1

i¼1

s2 þ 2zinisþ z2i
� �

Yn
i¼1

s2 þ 2aifisþ a2i
� � ð26Þ

in which any parameter b; zi and ni depends on all the parameters
ki; ai and fi;1 6 i 6 n, of (22). In this case function ! becomes

! x;p;qð Þ ¼ b
x2

c0

Yn�1

i¼1

zi
xc0

� �2
� x2 þ j2ni

zi
xc0

� �
x

				 				Yn
i¼1

ai
xc0

� �2
� x2 þ j2fi

ai
xc0

� �
x

				 				 ð27Þ

where x ¼ x=xc0.
Next a theorem that relates the gain crossover frequencies of

the system with and without damping is proposed.
Theorem 6. Consider a system (22) in which the magnitude of its

frequency response is given by (27). Consider also a controller C sð Þ
of the form (23), (24). Assume that x�c is the normalized gain cross-
over frequency of the system G s;p;0ð ÞC sð Þ (undamped system) and
xc is the normalized gain crossover frequency of the system
G s;p;qð ÞC sð Þ (damped system). Moreover, assume that the factors
of (27) have bounded damping coefficients:

0 6 fi; nl 6 e 6 1ffiffiffi
2

p ;1 6 i 6 n;1 6 l 6 n� 1 ð28Þ

and that

zi � z�i ;1 6 i 6 n ð29Þ
where z�i are the values zi corresponding to q ¼ 0.

Then an approximate bound for the relative deviation between
xc and x�c is:

xc � x�c
x�c

				 				 6 D x�c ;p;a
� � ¼ 2e2max k�; kþ½ 	

k0j j ð30Þ

where

k0 ¼ aþ 2x�c
2
Xn
i¼1

1
ai
xc0

� �2
� x�c

2
�
Xn�1

i¼1

1
zi
xc0

� �2
� x�c

2

0B@
1CA ð31Þ

k� ¼
Xn�1

i¼1

zi
xc0

� �2
zi
xc0

� �2
� x�c

2

� �2 ; kþ ¼
Xn
i¼1

ai
xc0

� �2
ai
xc0

� �2
� x�c

2

� �2 ð32Þ
Proof. Eq. (7) is expressed in the undamped case, with the con-
troller obtained from Theorem 5, as

x�c
� �a

! x�c ;p;0
� � ¼ ! 1;p0;q0ð Þ ð33Þ

and can be extended to the damped case as

xcð Þa! xc;p;qð Þ ¼ ! 1;p0;q0ð Þ ð34Þ
Taking logarithms in these two expressions and substracting them
yields

a ln x�c
� �þ ln ! x�c ;p;0

� �� � ¼ a ln xcð Þ þ ln ! xc;p;qð Þð Þ
¼ a ln xcð Þ þ ln b

x2
c0

� �
þ

1
2

Xn�1

i¼1

ln zi
xc0

� �2
� x2c

� �2

þ 4n2i
zi
xc0

� �2 !
�

1
2

Xn
i¼1

ln ai
xc0

� �2
� x2c

� �2

þ 4f2i
ai
xc0

� �2 !
ð35Þ

Approximate (35) by the first term of its expansion into a Taylor
series about the values without damping, given by x�c and
q ¼ q0 ¼ 0, and substitute z�i by zi according to (29):

0 ¼ a
x�c

xc � x�c
� �� 2x�c

Xn�1

i¼1

1

zi
xc0

� �2

�x�c
2

�
Xn
i¼1

1

ai
xc0

� �2

�x�c
2

0B@
1CA xc � x�c
� �þ

2
Xn�1

i¼1

zi
xc0

� �2

zi
xc0

� �2

�x�c
2

� �2 n
2
i � 2

Xn
i¼1

ai
xc0

� �2

ai
xc0

� �2

�x�c
2

� �2 f
2
i

ð36Þ
Substituting (31) in this expression and rearranging terms gives
that

k0
2x�c

xc � x�c
� � ¼Xn

i¼1

ai
xc0

� �2
ai
xc0

� �2
� x�c

2

� �2 f
2
i �

Xn�1

i¼1

zi
xc0

� �2
zi
xc0

� �2
� x�c

2

� �2 n
2
i

ð37Þ
Taking into account (28), and that all the summands of the summa-
tions of the right hand side of (37) are non negative, inequality (30)
is obtained. �

Note that the upper bound of this theorem also applies for the
relative deviation of xc from x�

c , were we denote from now on
the gain crossover frequency of the undamped system
G s;p;0ð ÞC sð Þ by x�

c .
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Theorem 6 allows the application of previous Theorems 3 and 4
- that were developed for undamped systems - to damped systems
provided that the bound of (30) is small enough.

Consequently, the following controller design procedure can be
summarized:

1. Based on the desired damping, or relative stability, choose the
phase margin specification.

2. Choose the fractional order of the controller according to (6) or
(9).

3. Tune the gain of the controller in accordance with (24).
According to Theorem 5, the designed controller guarantees that
the phase margin is equal or bigger than the value chosen in step
1) for any set of parameters p > 0 and q P 0 ) phase margin
robustness has been achieved.

4. Obtain the range of variation of the gain crossover frequency
with the parametric variation in the case of the undamped sys-
tem: p > 0 and q ¼ 0.

5. Determine the modification of the previous range caused by
adding damping q P 0. This modification is determined by
the bound D x�c ;p;a

� �
that is calculated using Theorem 6.

6. Check if the obtained range of variation of the gain crossover
frequency with the parametric variation p > 0 and q P 0 is
adequate:
� If yes ) the gain crossover frequency robustness has also

been achieved and the design procedure ends.
� If not ) go back to step 1) and slightly diminish the phase

margin.
The phase margin specification is being diminished until the gain
crossover frequency achieves the desired robustness. In this process,
if the phase margin goes below a minimum allowed value, the proce-
dure stops because desired simultaneous robustness of the phase mar-
gin and gain crossover frequency cannot be achieved.

Control of a single-link flexible robot

This section develops an application in which the previous
results are used to damp the vibrations that appear during the fast
movement of a very lightweight and slender robot as consequence
of its flexibility.

Dynamic model

The robot consists of a DC motor, a slender arm that is attached
to the motor hub and two masses floating on an air table. One mass
is attached to the middle of the arm and the other to its tip. Fig. 5
shows the arrangement of this two-mass beam. The arm is a piece
of music wire (12in. long and 0:047in. in diameter) clamped to the
motor hub. Both masses are fiberglass disks whose centers are
attached to the middle and end of the arm with freely pivoted
Fig. 5. Scheme of the single-link flexible robot.
pin joints. The middle disk has a mass m1 of 0:12lb. and the tip
mass m2 can be changed using a set of disks whose masses range
from 0:01lb. to 0:23lb. These disks float on the air table with small
friction. Since the mass of the arm is small in comparison to that of
these disks and the pinned joints prevent generation of torques in
the middle and at the end of the link, this mechanical system
behaves practically like an ideal, two-lumped mass flexible arm.
A nominal tip mass value m20 ¼ 0:12lb. is considered.

In Fig. 5, hm represents the motor angle, h1 the angle of the mid-
dle mass and h2 the angle of the tip mass. The measured variables
are hm and the moment Cc at the base of the arm. A dynamic model
of this arm was proposed in [21] for the case in which there is no
friction at the disks neither internal damping at the link. It is
expressed by the following transfer functions, given in function
of the tip mass m2:

h1 sð Þ
hm sð Þ ¼ G1 sð Þ ¼

545:7 s2 þ 12:733
m2

� �
s4 þ 1455:2þ 21:83

m2

� �
s2 þ 6948:4

m2

ð38Þ

h2 sð Þ
hm sð Þ ¼ G2 sð Þ ¼

� 5:457
m2

s2 � 1273:3
� �

s4 þ 1455:2þ 21:83
m2

� �
s2 þ 6948:4

m2

ð39Þ

Cc sð Þ
hm sð Þ ¼ Gc sð Þ ¼

4:11s2 s2 þ 636:65þ 19:1
m2

� �
s4 þ 1455:2þ 21:83

m2

� �
s2 þ 6948:4

m2

ð40Þ

This model shows two oscillation frequencies xn1 and xn2, that
depend on the value of the carried load m2, and are obtained from
the denominator of these transfer functions.

A high gain loop can be closed around the motor in order to
remove the effects of the nonlinear Coulomb and the time varying
dynamic frictions, and obtain a very fast response. In order to
achieve this, a PID feedback control of the motor position hm can
be implemented that includes compensation terms of the Coulomb
friction and the motor-link coupling torque, which is the measured
variable Cc (see details in [21]). This yields an approximate closed-
loop transfer function of the form

hm sð Þ
h�m sð Þ ¼ Gm sð Þ ¼ 1

1þ 0:0071sð Þ2
ð41Þ

where h�m tð Þ is the reference for the closed-loop motor position con-
trol system. Gm sð Þ is a second order critically damped system with
its two poles in �140. Since the coupling torque is compensated
in this motor control scheme, Gm sð Þ is independent of the value of
m2.

Moment Cc is feedback for vibration control. Then a transfer
function G s;pð Þ that relates h�m sð Þ to Cc sð Þ is defined by the product
of transfer functions (40) and (41). G s;pð Þ can be decomposed
according to (1) into

P s;pð Þ ¼
4:11 s2 þ 636:65þ 19:1

m2

� �
s4 þ 1455:2þ 21:83

m2

� �
s2 þ 6948:4

m2

¼ b s2 þ z21
� �

s2 þ a21
� �

s2 þ a22
� � ð42Þ

and

bG sð Þ ¼ s2

1þ 0:0071sð Þ2
ð43Þ

Parameters in (42) vary as consequence of tip mass changes, being
their ranges: z1 2 26:83;50:46½ 	; a1 ¼ xn1 2 4:44;14:22½ 	; a2 ¼ xn2 2
39:12;58:62½ 	 and b is the constant value 4:11. Note that the highest
value of xn1 is more than three times higher than its lowest value,
denoting a significantly large variation of the first vibration mode.
Substituting the nominal mass m20 in expression (42), the nominal



Fig. 6. PZI property of transfer function (42).

Fig. 7. Control scheme of the flexible robot.

Fig. 8. Bode diagrams of Q sð Þ ¼ 1þ0:0142s
1þ0:0071sð Þ2.
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values of z10 ¼ 28:21rad=s, a10 ¼ 6:014rad=s; a20 ¼ 40:011rad=s and
b0 ¼ 4:11 are obtained. Fig. 6a plots the evolution of parameters
a1; z1 and a2 in function of m2, illustrating that the PZI property is
verified in (42).

This dynamics is completed with a damping model of Rayleigh
type:

f xnð Þ ¼ 1
2

0:059
xn

þ 2:9 � 10�5 �xn

� �
ð44Þ

whose parameters have been tuned from experimental data. If the
partial fraction expansion of (42) is carried out:

P s;pð Þ ¼ k1
s2 þx2

n1

þ k2
s2 þx2

n2

ð45Þ

this expression is modified to

P s;p;qð Þ ¼
k1

s2þ2f1xn1sþx2
n1
þ k2

s2þ2f2xn2sþx2
n2
¼ b s2þ2n1z1sþz21ð Þ

s2þ2f1a1sþa21ð Þ s2þ2f2a2sþa22ð Þ
ð46Þ

where the damping coefficients fi are obtained from (44) substitut-
ing the vibration frequencies xni. Fig. 6b shows the variation of
f1; n1 and f2 in function of m2.

Control system

Strain (moment) feedback has already been used to achieve
robust control of single link flexible robots whose parameters
undergo large changes. Feedback of a linear combination of the tor-
que at the base of the arm and its integral was reported in [22]. A
nonlinear controller based on the feedback of these two signals
was reported in [23] and a linear controller that also uses these
two signals was proposed in [24] which was based on a passivity
property of the arm. Strain feedback laws proposed in [22,24] basi-
cally implement PI controllers that guarantee stability robustness
to large parametric changes. The controller developed here guaran-
tees not only stability - as the other control design methods do -
but also a desired minimum phase margin (or damping) when
large parametric variations are produced.

In this paper, the combined feedforward-feedback control sys-
tem shown in Fig. 7 is proposed. The feedforward term F sð Þ and
the feedback term C sð Þ of this figure have to be designed.

Closed-loop controller design: C sð Þ
A controller with the following specifications is desired:
1. A damping coefficient f̂0 ¼ 0:7. The phase margin that yields
this damping is obtained from the expression /0 �
100f̂0 ¼ 70�, which was originally developed for second-order
systems (e.g., [5]).

2. A nominal settling time of ts0 ¼ 0:4s. Application of the approx-
imate relation xc � 4=ts yields a gain crossover frequency
xc0 � 10rad=s.

3. Zero steady state error to a step reference of the tip angle h�2 tð Þ.
4. Robust isophase margin condition: it is desired to maintain a

phase margin / P /0 of the two vibration modes for any value
of m2 in the range 0:01lb. to 0:23lb.

Since the chosen xc0 verifies that a10 < xc0 < z10, the first case of
Theorem 5 is applied to obtain the parameters of (23). Then for-
mula (6) yields a value a � 0:8 and (24) yields a value Kc � 5:31.

Controller (23) is therefore

C sð Þ ¼ 1þ 0:0071sð Þ2
s2

5:31s0:8 ð47Þ

Factor 1þ 0:0071sð Þ2 can be approximated by 1þ 0:0142s in the
range of frequencies of interest 0;60½ 	 rad/s (it is up to the highest
vibration frequency, that corresponds to the second vibration mode
in the case of m2 ¼ 0:01lb.). Fig. 8 illustrates the closeness of the
Bode diagrams of these two factors in that frequency range by plot-

ting Q jxð Þ ¼ 1þ j0:0142xð Þ= 1þ j0:0071xð Þ2. The maximum devi-
ation from unity of Q jxð Þ in that range is þ0:91 dB in magnitude
and �5:5� in phase, which is considered acceptable. Then controller
(47) can be approximated by

C sð Þ ¼ 5:31 1þ 0:0142sð Þ
s1:2

ð48Þ

Denote as xc1 and xc2 the values of the gain crossover frequencies
associated to the first and second vibration modes respectively, and
/1 and /2 their corresponding phase margins. Table 1 shows the
values of xc1;xc2;/1 and /2 of the compensated open-loop transfer
functions



Table 1
Frequency specifications with the fractional-order controller.

m2 lbð Þ xc1 rad=sð Þ /1
�ð Þ xc2 rad=sð Þ /2

�ð Þ
0:01 19:2 72:2 60:4 68:4
0:12 10 72:5 43:4 70:2
0:23 8:6 72:5 42:6 70:3

Fig. 9. Frequency responses of the overall closed-loop control of the nominal
systems H sð Þ using fractional and integer order control systems.

Fig. 10. Responses to the command signal (53) of: (a) the moment Cc at the base of
the arm and (b) the tip angle h2, for different payloadsm2, when the fractional-order
control system is used.
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L s;p;qð Þ ¼ Gm sð ÞGc sð ÞC sð Þ
¼ 5:31s0:8P s;p;qð ÞGm sð Þ 1þ 0:0142sð Þ ð49Þ

in the cases of the lowest, nominal and highest values of the tip
mass m2. This table shows that specification xc0 ¼ 10 rad/s is veri-
fied in the case of the nominal payloadm2 ¼ 0:12 lb. (it corresponds
to the value xc1 of the table). Moreover, specification /0 ¼ 70� is
verified by the two gain crossover frequencies xc1 and xc2 in the
case of the nominal m2. The results in the case of the nominal pay-
load that are shown in this table slightly differ from the design
specifications. It is caused by the small difference existing between
the exact value of the fractional order of the differentiator in (47),
which is 0:78, and the rounded value of 0:8 that is being used,

and by the approximation carried out of the factor 1þ 0:0071sð Þ2.
Note that the phase margins associated to the two vibration modes
in the cases of the two extreme payloads remain always close to
70�, as expected from the fulfillment of Theorem 5.

Feedforward term design: F sð Þ
The closed-loop transfer function of the scheme of Fig. 7 is

H sð Þ ¼ h2 sð Þ
h�2 sð Þ ¼

F sð ÞGm sð ÞG2 sð Þ
1þ C sð ÞGm sð ÞGc sð Þ ð50Þ

In order to improve the speed of response of this system, a proper
feedforward term is proposed of the form

F sð Þ ¼ 1þ f ns
b

1þ f ds
;b 2 R ð51Þ

Specification 3 is verified if H 0ð Þ ¼ 1. Since F 0ð Þ ¼ Gm 0ð Þ ¼
G2 0ð Þ ¼ 1, the specification is accomplished if C 0ð ÞGm 0ð ÞGc 0ð Þ ¼ 0,
which is true if a > 0. Since a ¼ 0:8 in our design, the specification
is verified.

Parameters b; f n and f d are given by an optimization process in
which the frequency range at which the magnitude of H jxð Þ is
inside a bandwidth of �0:3 dB around 0 dB is maximized. It is car-
ried out for the nominal plant under the following constraints:
0 6 f n;0 < f d, and 0 < b 6 1. The resulting optimal prefilter is

F sð Þ ¼ 1þ 0:116s0:55

1þ 0:011s
ð52Þ

that yields the overall frequency response shown in Fig. 9. The
closed-loop system bandwidth (defined with a threshold of 3 dB
on the magnitude of the H jxð Þ) of the nominal plant using prefilter
(52) is 10 rad/s, which is considered adequate to provide a fast
response.

Overall performance
The following command signal h�2 is defined in order to carry out

simulations of the time performance of the controlled system:

h�2 tð Þ ¼ 0:5 1� cos p
T t
� �� �

;0 6 t 6 T

h�2 tð Þ ¼ 1; t > T

(
ð53Þ

which is a smoothed unity step command, in order to avoid
unbounded velocities and accelerations. A value T ¼ 0:1 s is used.

Fig. 10 shows the responses to the command signal (53) of the
moment Cc at the base of the arm and the tip angle h2 in the cases
in which the payloadm2 has its nominal and extreme values, when
the control system of Fig. 7 is used with controller (48) and pre-
filter (52).
Comparison with an integer order controller

For comparison purposes, a PI controller has also been designed
that verifies the same Specifications 1 to 3 for the nominal plant as
before. This design is carried out taking into account the complete

dynamics P s;p;qð ÞbG sð Þ, and yields:

C sð Þ ¼ �0:072þ 3:29
s

ð54Þ

Table 2 shows the values of the gain crossover frequencies
xc1;xc2, associated to each of the two vibration modes and their
corresponding phase margins, /1;/2, in the cases of the three pre-
viously considered tip payloads. Specifications xc0 ¼ 10 rad/s and
/1 ¼ 70� are verified in the case of the nominal payload
m2 ¼ 0:12 lb. The phase margin /1 changes noticeably with m2,
but its value is maintained high enough in all the cases. However,
/2 is very low in all the cases, being the second vibration mode
unstable when m2 ¼ 0:01 lb. (a negative phase margin is shown).



Table 2
Frequency specifications with the PI controller.

m2 lbð Þ xc1 rad=sð Þ /1
�ð Þ xc2 rad=sð Þ /2

�ð Þ
0:01 20:2 50 62:1 �10:5
0:12 10 70 45:9 9:1
0:23 8:4 73:2 45:2 10
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Repeating the optimization process carried out to tune the
parameters of prefilter (51), but taking into account that the PI con-
troller (54) is used now, yields that

F sð Þ ¼ 1þ 0:025s
1þ 0:017s

ð55Þ

It is mentioned that the range of search for b was increased later to
0 < b 6 1:2 in order to check if b ¼ 1 really yielded the global max-
imum. In that new search, the optimal order of b was again 1 with
the coefficients of (55). Then the integer order filter is the optimal
filter in this case. The overall frequency response H jxð Þ of the con-
trol system using the PI controller (54) and prefilter (55) is shown in
Fig. 9 labeled as ’H jxð Þ with integer-order control’. Its bandwidth
(defined with a threshold of 3 dB) is 8:6 rad/s, which is lower than
the one achieved using the fractional-order control.

It is easy to check that controller (54) verifies the condition
C 0ð ÞGm 0ð ÞGc 0ð Þ ¼ 0, needed to obtain that H 0ð Þ ¼ 1. Then Specifi-
cation 3 is verified by this control system.

Fig. 11 shows the responses to the command signal (53) of the
moment Cc at the base of the arm and the tip angle h2 in the cases
in which the payloadm2 has its nominal and extreme values, when
the control system of Fig. 7 is used with the PI controller (54) and
prefilter (55).

Comparing Figs. 10 and 11, it is observed that:

� The first mode is quickly removed in the cases of the three
masses using both fractional and integer order controllers.

� The responses of Fig. 11 are significantly more oscillatory than
the responses of Fig. 10. This is more noticeable in the responses
of Cc: since the moment at the base of the arm is directly related
to angular accelerations and accelerations are the second
derivative of angular positions, the vibrations of the tip angle
can be observed highly amplified in Cc . In particular, the second
Fig. 11. Responses to the command signal (53) of: (a) the moment Cc at the base of
the arm and (b) the tip angle h2, for different payloads m2, when the integer-order
control system is used.
vibration mode, which is the main oscillation observed in these
figures, is damped more quickly in Fig. 10 than in Fig. 11 for the
three tip masses.

� The PI controller is very inefficient in damping the oscillations
of the second mode when low payloads have to be carried. In
fact, the vibrations are amplified (unstable system) in the case
of the lowest value of m2.

Comparison with a controller designed with other phase margin

The theorems developed in this paper can also be applied in the
integer order case, which corresponds to a design phase margin
/0 ¼ 90� that yields a value a ¼ 1. This suggests that an integer
order controller (5) or (9) could be used instead of a fractional
order controller, that would increase the phase margin attained
with (48), would maintain the previously mentioned robustness
properties and could be much more easily implemented than (48).

Then a controller is designed with the same specifications of
(48) except for the phase margin specification, which is now
/0 ¼ 90�. This controller is

C sð Þ ¼ 3:35 1þ 0:0142sð Þ
s

ð56Þ

The gain crossover frequency robustness of the system with this
controller is studied next.

Consider the undamped system. Expression (40) shows that
parameters a1; a2 and z1 of (42) diminish as m2 increases (it can
also be observed in Fig. 6a) while b remains constant. Then, accord-
ing to the first part of Theorem 3, the f pð Þ function must be
decreasing with m2 and, according to the second part of this theo-
rem, the range of variation of x�

c must increase with the value of
the phase margin specification.

Functions x�
c ¼ f pð Þ of the undamped system obtained with

controllers (48) and (56) - designed for a xc0 ¼ 10 rad/s and nom-
inal phase margins /0 ¼ 70� and /0 ¼ 90� respectively - were cal-
culated numerically. These functions agree with the results
predicted by Theorem 3: decreasing curves are obtained and the
range of variation of x�

c is higher in the case of the controller
designed for /0 ¼ 90� than in the case of the controller designed
for /0 ¼ 70�. In the case of /0 ¼ 90�, this range is 8:4;20½ 	 rad/s
and in the case of /0 ¼ 70�, is 8:6;19:2½ 	 rad/s. It means that using
the integer-order controller increments the range obtained with
(48) in 9:4%, and reduces therefore the robustness of x�

c in this
percentage. The x�

c range is 8:7;18:5½ 	 rad/s in the case of the con-
troller designed with a /0 ¼ 50� (a ¼ 0:56). The use of the integer
order controller (56) reduces in 18:4% the x�

c robustness attained
by this last controller.

Subsequently, the bound D defined in (30) is calculated. Fig. 6b
shows that an upper bound of the damping coefficients for all the
range of variation of m2 is e ¼ 0:007. Moreover, it is easy to prove
analytically that z1 ¼ z�1 in the case of n ¼ 2, and then condition
(29) becomes an identity in the case of our robot. Coefficients
k0; k� and kþ are calculated for each value of m2 using (40) and
the functions x�

c ¼ f pð Þ previously obtained (which allow to calcu-

late x�c as x�
c=xc0). Function D m2ð Þ has a maximum of 2:1 � 10�5 in

the case of controller (48) and of 2:2 � 10�5 in the case of (56). These
very low values guarantee that the relative error between xc and
x�

c is very low for all the range of parametric variations and, then,
the results obtained for the undamped plant regarding the gain
crossover frequency robustness can also be extended to our lightly
damped system. Functions xc ¼ f p;qð Þ were calculated numeri-
cally later just for validation purposes. They are very close to
x�

c ¼ f pð Þ. Then the validity of extending the results obtained for
the undamped system to our damped system is confirmed.
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Conclusions

This article has addressed the problem of robustly damping the
vibrations of oscillatory systems with large uncertainties in their
parameters. Moreover, general solutions have been searched that
allow to confront systems with an arbitrary number of vibration
modes. In theory, the proposed controller is able to robustly damp
vibrations of systems with an infinite number of vibration modes
(just make n ¼ 1 in model (2)). This implies that our control sys-
tem is robust to spillover effects, i.e., to the unstabilizing effects
caused by the vibration modes that are usually neglected in the
controller design (this may be especially important in infinite
dimensional systems represented by partial differential equations).

Our controller outperforms other robust control systems in the
sense that it not only guarantees closed-loop stability but also a
desired damping of all the vibration modes, defined by a minimum
phase margin specification for all the vibration modes (robust iso-
phase margin control).

It was proven in a previous paper of [20] that the controller
used here has the above robustness properties if the transfer func-
tion of the system has the so called pole-zero interlacing property
on the imaginary axis. This is not an intrinsic property of an oscil-
latory system. It depends on the input and output (measured) vari-
ables that are chosen.

The results shown in Theorems 1 and 2 of [20] were obtained
for undamped systems and focused on the phase margin robust-
ness. The contributions of the present paper are: (1) an analysis
of the gain crossover frequency robustness of the proposed
fractional-order controllers carried out for undamped systems in
Theorems 3 and 4, (2) the extension of the previous phase margin
robust control results to damped systems in Theorem 5 and (3) the
extension of the gain crossover frequency robustness analysis per-
formed in 1) to damped systems in Theorem 6.

A consequence of Theorems 3 and 4 is that values of a closer to
unity produce larger variations in the gain crossover frequency
when parameters change (which implies larger variations of the
speed of the response). Moreover, the controller amplifies the high
frequency noise of the system more as a increases. These two con-
siderations advise the use of controllers with fractional orders sen-
sibly lower than unity (further away from the integer-order
controller). Then a gain crossover frequency such that
a1;0 < xc0 < z1;0 is suggested in order to obtain a value of a lower
than 1 as well as the use of Theorem 1, since the use of Theorem 2
would yield a controller with a fractional order higher than 1.

It was mentioned in the Introduction that other methods have
been developed to design fractional-order controllers that achieve
isophase margin robustness. However, these methods provide only
a local isophase margin property, i.e, the phase plot of the fre-
quency response of the open-loop transfer function is flat only in
a small range of frequencies around the design gain crossover fre-
quency. This implies that the phase margin is maintained constant
only when small parametric changes are produced. Instead, our
method is the only one that achieves a global isophase margin
property, i.e, the phase plot of the frequency response of the
open-loop transfer function is flat in all the frequency range
0 6 x < 1with the exception of a finite number of isolated points.
This implies that the phase margin is maintained constant even in
the case that very large parametric variations are produced.

Theorems 1 and 2 proved that any controller that achieves the
global isophase margin property in an undamped system (1)–(2)
must contain a factor of a fractional-order nature. Moreover, the
same result was proven in Theorem 5 for a damped system (21)-
(22) (in this case the global isophase margin property is redefined
as the property of achieving a phase margin bigger than a given
value in all the range 0 6 x < 1, i.e, a damping bigger than a given
value).

Then, it is remarked that the above global robust specification
cannot be obtained using integer order controllers and, hence,
well-known robust techniques like the H1 method or the l-
framework are precluded. In order to achieve the global robust
phase margin specification, the whole Nyquist plot of the open-
loop frequency response has to be adequately shaped. Our method
allows such shaping, unlike the mentioned robust controller design
methods, that only attain desired values of some norms of the
open-loop frequency response.

QFT techniques are the only ones that allow shaping the Nyquist
plot in a large range of frequencies. However, in our robustness
problem, in which large variations of parameters and an arbitrary
number of resonant modes are considered, the shaping must be
carried out in all the frequency range 0 6 x < 1. Any QFT design
that attempts to achieve this specification using standard
integer-order controllers yields very high order transfer functions
that are simply approximations of our proposed fractional-order
exact controllers. This was illustrated in [25], where a fractional-
order controller similar to the ones developed in this paper was
designed in order to achieve the global isophase margin property
and cope with very large changes of a time constant. The obtained
controller was compared to a QFT design, which yielded a con-
troller transfer function of very high order that was able to pre-
serve the robust phase margin specification in only a limited
interval of values of the time constant. Then, if the global isophase
margin condition is pursued, the only alternative to our fractional-
order controller is using integer order controllers of very high order
(which could imply controller fragility and implementation
problems).

These results have been applied to the design of a robust con-
troller for the vibration free movement of a robot with a flexible
link whose payload is time varying. This variation produces large
changes in the frequency of the first vibration mode (the highest
value is more than three times higher than the lowest value).
The use of most of the developed theorems has been illustrated
in this example.

Finally, it should be mentioned that fractional-order controllers
can be implemented using a variety of techniques, e.g., [26], and
their practical realizations with computers do not imply any par-
ticular problem.
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