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B cells are frequently found in the margins of solid tumours as organized follicles in 
ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS 
have been found to correlate with improved patient survival and response to immune 
checkpoint blockade (ICB), the underlying mechanisms of this association remain 
elusive1,2. Here we investigate lung-resident B cell responses in patients from the 
TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy)  
and other lung cancer cohorts, and in a recently established immunogenic mouse 
model for lung adenocarcinoma3. We find that both human and mouse lung 
adenocarcinomas elicit local germinal centre responses and tumour-binding 
antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins 
as a dominant anti-tumour antibody target. ERV-targeting B cell responses are 
amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) 
in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends 
survival in the mouse model, and ERV expression predicts the outcome of ICB in 
human lung adenocarcinoma. Finally, we find that effective immunotherapy in the 
mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic 
CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our 
findings provide a possible mechanistic basis for the association of TLS with 
immunotherapy response.

Lung cancer remains the leading cause of cancer-related deaths 
worldwide, despite major advances in targeted therapies and immu-
notherapies. Predicting responses to immune checkpoint blockade 
(ICB) remains a challenge, with 70% of patients failing to respond 
despite high mutational burden4. Recent studies have identified ter-
tiary lymphoid structures (TLS), ectopic lymphoid organs containing 
B and T cells in the tumour-adjacent stroma, as strong predictors of 
ICB response in several cancer types1,2, including in lung adenocar-
cinoma (LUAD)5,6, where their presence and density independently 
correlate with longer overall and recurrence-free survival1,2. How-
ever, cause-and-effect relationships of the associations between 
TLS, patient survival and immunotherapy response have not yet been  
established1,2.

TLS contain structures that resemble germinal centres (GCs) 
found in lymphoid organs, where B cells iteratively mutate their  

B cell receptors (BCRs) with help from T follicular helper (TFH) cells, in 
a process that increases the affinity of the antibody response7. GCs are 
dependent on the CXCL13–CXCR5 chemokine axis for organization of 
B cell follicles, and we and others have identified CXCL13 as a predictor 
of ICB response8–10. While the mechanisms by which TLS improve ICB 
response remain incompletely understood, the requirement for an 
active GC reaction implies the contribution of anti-tumour antibod-
ies. Anti-tumour antibodies are frequently induced in multiple cancer 
types, targeting both internal and tumour cell-surface antigens. These 
tumour-associated antigens (TAAs) include non-mutated differentia-
tion antigens and shared tumour antigens, as well as antigens derived 
from endogenous retroviruses (ERVs)11. Although such non-mutated 
antigens are effectively autoantigens, their low expression in healthy 
tissues and upregulation in the altered epigenetic landscape of cancer 
result in incomplete immunological tolerance and immunogenicity 
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in cancer, respectively12. The immunogenicity of cancer-associated 
ERV antigens has been instrumental in the discovery of this class of 
TAAs, as well as of infectious retroviruses produced by mouse cancer 
cells over three decades ago13–15, but the consequence or protective 
capacity of B cell response to this or other TAA classes has not been 
fully delineated.

Here we evaluate the contribution of TLS, B cells and anti-tumour 
antibodies to immune protection from treatment-naive and 
immunotherapy-treated LUAD in patients and immunotherapy- and 
targeted therapy-treated LUAD in a new mouse model3 and uncover an 
important role for lung-resident B cell responses against ERV envelope 
glycoproteins.

B cell responses in a new LUAD model
To study the role of B cells and TLS in tumour progression and ther-
apy response, we used a newly established LUAD model based on 
transplantation and orthotopic growth of KPAR cells, derived from 
a KrasLSL-G12D/+Trp53 fl/fl (KP) background3. Immunofluorescence stain-
ing showed B220+ B cell aggregates around KPAR lung tumour edges, 
while CD3+ T cells infiltrated into tumour masses (Fig. 1a). Perivascu-
lar mature TLS were found in the proximity of KPAR tumours, with 

discernible segregation of T and B cell areas, the latter of which com-
prised dark and light zones based on Ki67 staining, and exhibiting 
peanut agglutinin (PNA) positivity, in line with active GC responses 
(Fig. 1b,c and Extended Data Fig. 1a,b). In comparison, lungs bearing 
conventional non-immunogenic Trp53 fl/flKrasLSL-G12D/+ KPB6 tumours3 
contained no discernible TLS (Fig. 1c and Extended Data Fig. 1a,b).

Flow cytometry in lungs bearing KPAR tumours showed marked 
elevation of B220+GL7+CD95+ GC B cells and of TCRβ+CD4+PD-1+CXCR5+ 
TFH cells, which correlated with GC B cell levels (Fig. 1d and Extended 
Data Fig. 1c). By contrast, GC B and TFH cells were found at back-
ground levels in lungs bearing KPB6 tumours (Extended Data Fig. 1d). 
These data demonstrate that KPAR tumours, but not KPB6 tumours, 
stimulate TLS formation and a GC response, as observed in human  
lung cancer16,17.

To confirm GC formation, which defines mature TLS18, we trans-
planted KPAR cells into AicdaCreERT2Rosa26LSL-EYFP (AID-EYFP) mice, which 
selectively fate-map GC B cells following expression of the AID enzyme. 
Tamoxifen administration labelled 75–85% of B220+GL7+CD95+ B cells, 
as assessed by flow cytometry (Extended Data Fig. 1e). EYFP+ cells 
became detectable within the B220+ population in tumour-bearing 
lungs and draining lymph nodes at day 7 after KPAR challenge and 
continued to increase in number until the endpoint, mirroring TFH 
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Fig. 1 | B cell responses in mouse LUAD. a, Immunostaining of B220 (B cells), 
CD3 (T cells) and TTF1 (tumour cells) in lungs from mice bearing KPAR tumours 
(scale bars, 500 µm). Representative images of five mice. b, B220 and CD3 
immunofluorescence and DAPI staining in KPAR tumour-bearing lungs (scale 
bars, 20 µm). Representative images of six mice. c, Quantification of PNA+ 
mature TLS and GCs by histochemistry in KPB6 (n = 10) and KPAR (n = 4) tumour- 
bearing lung lobes. d, Flow cytometry quantification of B220+GL7+CD95+ GC  
B cells and TCRβ+CD4+PD-1+CXCR5+ TFH cells in naive and KPAR tumour- 
bearing lungs (n = 12 mice per group from three experiments). e, Time-course 
quantification by flow cytometry of B220+EYFP+ and TFH cells in KPAR lungs and 
draining lymph nodes (dLNs) from AicdaCreERT2Rosa26LSL-EYFP mice (n = 6 mice per 
time point from one experiment). f, Time-course quantification of KPAR- 
binding IgM, IgG and IgA from KPAR serum (n = 6). Dashed lines denote the mean 
staining intensity of naive serum. MFI, mean fluorescence intensity. g, Survival 

of KPAR recipient mice treated with pooled serum from KPAR tumour- 
bearing or naive donor mice (n = 12 mice per group from two experiments).  
h, Representative images (scale bars, 50 µm) and quantification of intratumoural 
NCR1+ NK cells in KPAR recipients that were untreated or treated with naive or 
KPAR serum (n = 8 mice per group from two experiments). i, Flow cytometry 
quantification of NK1.1+CD16+ NK cells in lungs of KPAR recipients that were 
untreated or treated with naive or KPAR serum (n = 6 mice per group). j, Survival 
of KPAR recipient mice treated with naive serum (n = 14) or with KPAR serum 
and anti-NK1.1 (n = 6), anti-CD8 (n = 8) or isotype control (n = 14) (from two 
experiments). Data in c–f,h,i are represented as mean ± s.e.m. P values were 
calculated by two-sided Mann–Whitney rank-sum test in c and d (left), two-sided 
Student’s t test in d (right), one-way ANOVA with Bonferroni correction for 
multiple comparisons in h,i and log-rank test in g,j.
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cell kinetics (Fig. 1e). The kinetics of GC formation were additionally 
confirmed using Ighg1CreRosa26LSL-Confetti mice (Extended Data Fig. 1f).

Accompanying these B cell responses, endpoint sera from KPAR- 
challenged mice, but not naive or KPB6-challenged mice, contained 
KPAR-binding IgG and IgA antibodies (Extended Data Fig. 2a,b). 
KPAR-binding IgM antibodies peaked at day 14 following KPAR chal-
lenge and declined thereafter, whereas class-switched IgG and IgA 
antibodies continued to increase in abundance in parallel with the 
GC reaction (Fig. 1f).

To investigate the potential anti-tumour activity of KPAR-binding 
antibodies, we transferred serum from KPAR-challenged donors to sec-
ondary KPAR-challenged recipients. Compared with naive serum, trans-
fer of KPAR serum significantly prolonged the survival of recipients 
(Fig. 1g). KPAR serum did not alter the survival of KPB6-challenged recip-
ients, and KPB6 serum did not affect the survival of KPAR-challenged 
recipients (Extended Data Fig. 2c,d).

The anti-tumour activity of KPAR serum was associated with sig-
nificant increases in the number of tumour-infiltrating natural killer 
(NK) cells, histologically quantified by NCR1 expression (Fig. 1h), 
as well as NK cells expressing CD16, the Fc receptor involved in 
antibody-dependent cellular cytotoxicity (ADCC), as quantified by 
flow cytometry (Fig. 1i). Supporting a role for NK cells in mediating the 
anti-tumour activity of KPAR serum, depletion of NK cells in recipients 
of KPAR serum abolished its protective effect (Fig. 1j). By contrast, 
depletion of CD8+ T cells had no effect in this setting (Fig. 1j). In addi-
tion to ADCC, KPAR serum also triggered complement-dependent 
cytotoxicity (CDC) against KPAR cells in vitro, which was diminished 
by serum heat inactivation (Extended Data Fig. 2e).

Together, these results demonstrate that KPAR tumours, but not 
KPB6 tumours, induce the recruitment and activation of B cells and 
the production of potent anti-tumour antibodies.

 
Anti-tumour antibodies target an ERV
To probe the specificity of anti-tumour antibodies in the KPAR model, 
we first considered putative cell-surface antigens not shared by the 
non-immunogenic KPB6 cells. One such class of antigen is ERVs, includ-
ing endogenous murine leukaemia virus (MLV) envelope glycoproteins, 
which are expressed at considerably higher levels in KPAR than in KPB6 
cells3. We found that KPAR serum specifically stained mouse cancer 
cell lines known to express high levels of endogenous MLV envelope 
glycoproteins15, but not those lacking such expression or human lung 
cancer cell lines that also lack MLV envelope glycoproteins (Fig. 2a and 
Extended Data Fig. 2f).

As with other transplantable mouse cell lines15, the elevated expres-
sion of endogenous MLV envelope glycoproteins in KPAR cells was 
probably due to the presence of MLVs with restored infectivity, 
derived from the replication-defective ecotropic MLV (eMLV) provi-
rus Emv2. Indeed, we isolated an infectious MLV, which we refer to as 
KPAR-associated retrovirus (KARV), by passaging KPAR supernatant in 
Mus dunni cells, which became strongly reactive with the endogenous 
MLV envelope-specific 83A25 antibody (Extended Data Fig. 2g), as well 
as with serum from KPAR tumour-bearing mice (Fig. 2b).

To determine the fraction of KPAR-binding antibodies that targeted 
the KARV envelope glycoprotein, we pre-incubated KPAR cells with 
83A25, which causes internalization specifically of endogenous MLV 
envelope glycoproteins19. This treatment abolished staining with KPAR 
serum (Fig. 2c), establishing KARV as the predominant antibody target.

Survival of KPAR-challenged wild-type mice was significantly 
extended by therapeutic treatment with 83A25, and KPAR tumour 
growth was delayed in Emv2-deficient mice, which lack immuno-
logical tolerance to eMLV envelope glycoprotein20 (Fig. 2d). Further-
more, Cas9-mediated deletion of Emv2-derived proviruses in KPAR.
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eMLV−/− cells accelerated tumour growth after subcutaneous injec-
tion into wild-type, but not T and B cell-deficient, recipients3. Similar 
results were obtained after intravenous injection, leading to orthotopic 
growth in wild-type recipients (Fig. 2e), concomitant with a significant 
reduction in GC, TFH and anti-tumour antibody responses elicited by 
KPAR.eMLV−/− cells (Fig. 2f). Therefore, an aberrantly expressed ERV 
is the main target of spontaneously elicited protective anti-tumour 
antibodies against KPAR tumours.

PD-L1 blockade boosts anti-ERV response
We next examined whether GC reactions and anti-tumour antibodies 
were contributing to the therapeutic effect of PD-1 or PD-L1 blockade 
in this model3. Whereas genetic studies have established a critical role 
for the interaction between PD-L1+ GC B cells and PD-1+ TFH cells in GC 
formation and function21,22, the effect of blocking antibodies on these 
processes has not yet been examined. We first explored the role of ICB 
in GC B cell responses independently of secondary effects of tumour 
growth by immunizing mice with sheep red blood cells (SRBCs). Com-
pared with an isotype control, mice treated with an anti-PD-L1 antibody 
showed an increase in splenic GC B cells and TFH cells and in the prolifera-
tive dark zone GC population (Extended Data Fig. 3a). PD-L1 blockade 
increased the size but not the number of individual GCs, indicating an 
effect on the expansion of pre-existing responses rather than de novo 
induction (Extended Data Fig. 3b). PD-L1 blockade modulated GC B 
cell responses more potently than CTLA-4 blockade (Extended Data 
Fig. 3c), and we therefore used anti-PD-L1 monotherapy in subsequent 
tumour experiments.

Blockade of PD-L1 significantly prolonged survival of KPAR- 
challenged mice (Fig. 2g), similar to blockade of its receptor PD-1 (ref. 3).  
It also expanded local GC B cell and TFH cell responses (Fig. 2h), and 
these effects were reproduced by PD-1 or CTLA-4 blockade (Extended 
Data Fig. 4a). PD-L1 blockade significantly increased the titres of 
tumour-binding IgG and IgA class-switched antibodies (Fig. 2i), in 
line with the reported increase in GC responses and antibody titres 
in PD-L1-deficient mice following model antigen immunization21. In 
contrast to the reduced affinity of the antibodies elicited in immunized 
PD-L1-deficient mice21, we found that PD-L1 blockade increased, rather 
than decreased, the overall avidity of antibody binding to KPAR cells 
(Extended Data Fig. 4b). To validate antibody function in vivo, we tested 
the therapeutic activity of sera from anti-PD-L1-treated donors. We first 
confirmed that these sera no longer contained anti-PD-L1 antibodies 
(Extended Data Fig. 4c). PD-L1 blockade in donor mice further pro-
longed survival of KPAR-challenged secondary recipients, compared 
with recipients of serum from isotype-treated KPAR donors, which 
in turn prolonged survival compared with recipients of serum from 
naive donors (Fig. 2j), supporting the functionality of the anti-tumour 
antibodies induced by PD-L1 blockade.

Sera from anti-PD-L1-treated KPAR-challenged mice showed elevated 
IgG and IgA binding to KARV-infected M. dunni cells (Extended Data 
Fig. 4d), indicating an augmented response to this ERV antigen. For 
direct interrogation of specificity, we sequenced BCRs from single B 
cells isolated from the pooled lungs of treated KPAR-challenged mice. 
We identified a dominant clone in this pool, referred to here as J1KK, 
encoded by the VH13-2 segment and of the IgA isotype, that accounted 
for 20% of all Igh complementarity-determining region 3 (CDR3) 
sequences (Fig. 2k). Recombinant J1KK monoclonal antibody bound 
the surface of KPAR cells, as well as that of KARV-infected M. dunni cells, 
pointing to KARV envelope glycoprotein as the target antigen (Fig. 2l). 
Mass spectrometry analysis of peptides bound by J1KK confirmed their 
eMLV envelope origin (Extended Data Fig. 4e). In vitro incubation of 
KPAR cells with J1KK and naive serum triggered CDC (Extended Data 
Fig. 4f), and in vivo treatment of KPAR-challenged mice with either 
an IgA or IgG1 version of J1KK significantly extended survival, in an 
NK cell-dependent manner (Fig. 2m). Combined, these data establish 

the contribution of anti-ERV antibodies to untreated and ICB-treated 
KPAR tumour rejection.

B cell responses in targeted therapies
To examine whether anti-tumour B cell responses contribute to the 
therapeutic effect of treatments other than ICB, we used targeted 
therapies, including a highly selective KRAS(G12C) inhibitor (G12Ci)23. 
We first introduced the Kras mutation encoding the G12C substitution 
into the KPAR cell line (KPARG12C), and the resulting cells were used 
for these experiments3. Transcriptional analysis of KPARG12C tumours 
showed strong upregulation of immunoglobulin and GC B cell-related 
gene transcription in tumours treated with the G12Ci MRTX-849 
(Fig. 3a). Cellular deconvolution indicated an enrichment of B cells 
in G12Ci-treated tumours, as verified by flow cytometry for GC B cells 
and further supported by histological detection of TLS (Fig. 3b–d).

Although KRAS(G12C) and mitogen-activated protein kinase kinase 
(MEK) inhibitors are often considered to be in the same therapy class, 
MEK has a critical role in B cell development and activation24. Accord-
ingly, the MEK inhibitor (MEKi) trametinib blunted both GC and TFH 
responses to conventional SRBC immunization (Extended Data Fig. 5a). 
By contrast, G12Ci did not affect GC or TFH responses to SRBC immu-
nization (Extended Data Fig. 5a), indicating that its effect following 
KPARG12C challenge was tumour cell intrinsic. In KPARG12C-challenged 
mice, G12Ci treatment enhanced GC and TFH responses, as well as 
anti-tumour IgG and IgA antibody levels, compared with MEKi or vehicle 
control (Extended Data Fig. 5b,c). Moreover, treatment with MEKi, but 
not G12Ci, adversely affected the avidity of anti-tumour antibodies 
(Extended Data Fig. 5d). These data suggested that tumour cell-specific 
inhibition of KRAS(G12C) promoted, but ubiquitous MEK inhibition 
hindered, anti-tumour B cell responses in the KPAR model. To explore 
whether B cells actively contributed to durable responses to G12Ci, 
we treated mice with a CD20-depleting antibody before G12Ci. B cell 
depletion increased relapse rates and subsequently decreased survival 
of G12Ci-treated KPARG12C-challenged mice, similarly to CD8+ T cell 
depletion; however, this effect did not reach statistical significance 
(Fig. 3e), indicating that G12Ci may contribute to immunological 
memory against tumour relapse.

CXCL13 therapy synergizes with ICB
To quantify the contribution of, as well as the requirement for, TLS 
and anti-tumour B cell responses in resistance to KPAR tumours, we 
inhibited the lymphoid structure-organizing chemokine CXCL13. 
Cxcl13 expression increased in the lungs of mice after KPAR, but not 
KPB6, challenge (Fig. 3f), implying a role for CXCL13 in the ensuing local 
GC response. To test this, we used a CXCL13-blocking regimen, previ-
ously found to abolish GC responses in the lung but not the draining 
lymph nodes during influenza A virus (IAV) infection25. Accordingly, 
CXCL13 blockade diminished GC B cell responses in the lung, but not 
the draining lymph nodes, of anti-PD-L1-treated KPAR-challenged 
mice (Extended Data Fig. 5e) and negated the therapeutic effect of ICB 
(Fig. 3g). These effects were accompanied by a reduction in anti-tumour 
IgG and IgA antibody titres (Fig. 3h). As a control, anti-PD-L1-treated 
KPAR-challenged mice treated with a CD20-depleting antibody lost GC 
B cell responses systemically (Extended Data Fig. 5e) and anti-tumour 
antibodies completely (Fig. 3h), but were rendered insensitive to ICB, 
similarly to mice treated with a CXCL13-blocking antibody (Fig. 3g). 
By contrast, anti-CD20 or anti-CXCL13 antibodies alone had a mini-
mal effect on the survival of KPAR-challenged mice that did not 
additionally receive ICB (Extended Data Fig. 5f). These findings sup-
ported a direct requirement for CXCL13-orchestrated lung GC B cell 
and anti-tumour antibody responses underpinning a favourable ICB 
outcome. They also suggested that CXCL13 treatment may further 
improve the anti-tumour effect of ICB in the KPAR model, as indicated 
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by experiments in colorectal and ovarian mouse cancer models26,27. To 
examine the therapeutic utility of CXCL13, we treated KPAR-challenged 
mice by intranasal administration of a mammalian expression vector 
encoding Cxcl13 complexed with the cationic lipid GL67. This treatment 

increased Cxcl13 expression in KPAR tumour-bearing lungs, compared 
with an empty vector (Fig. 3i). It also increased GC B cell responses 
to KPAR challenge and significantly prolonged survival of recipients 
(Fig. 3j,k). Moreover, combination of CXCL13 and anti-PD-L1 treatment 
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further prolonged survival compared with either monotherapy (Fig. 3l), 
highlighting the potential of inhalation-based immunomodulation to 
synergize with ICB.

B cell responses in patients with LUAD
To investigate a role for humoral immunity, as suggested by the mouse 
model, in determining the outcome of human lung cancer subtypes, we 
compared transcriptomic B cell and TLS signatures in the TRACERx 421 
cohort of treatment-naive patients with LUAD and lung squamous cell 
carcinoma (LUSC). Compared with normal lung samples from adjacent 
tissue, TLS transcriptional signatures appeared reduced in both LUAD 
and LUSC tumour regions, and this reduction was stronger in LUSC 
when paired samples were compared (Extended Data Fig. 6a,b). By 
contrast, B cell signatures were significantly elevated in both subtypes, 
but to a greater degree in LUAD than in LUSC (Extended Data Fig. 6a,b), 
in agreement with a recent report6. Both TLS and B cell signatures were 
inversely proportional to tumour purity (Extended Data Fig. 6c), imply-
ing dilution of signatures present in normal lung by tumour tissue. 
Indeed, additional metrics, including BCR repertoire diversity, IgG 
frequency and CXCL13 expression, as well as histological TLS detec-
tion, indicated induction of B cell responses in both LUAD and LUSC 
(Extended Data Fig. 6a,d).

Higher expression of the B cell markers CD79A, CD19 and MS4A1 
(encoding CD20) correlated significantly with better outcome in TRAC-
ERx patients with LUAD, but not LUSC, and independently in TCGA (The 
Cancer Genome Atlas) with better outcome in patients with LUAD, but 
not LUSC (Extended Data Fig. 7a,b). Furthermore, high CXCL13 expres-
sion correlated with improved disease-free survival in TRACERx patients 
with LUAD, but not LUSC (Extended Data Fig. 7a), and with improved 
overall survival in TCGA patients with LUAD, but not LUSC (Extended 
Data Fig. 8a). Across TCGA cohorts, high CXCL13 expression was prog-
nostic in tumour types in which an association between TLS density 
and response to ICB has been reported1,2, and its prognostic value was 
independent of overall expression levels (Extended Data Fig. 8a,b).

ERV-reactive antibodies in patients with LUAD
Our results suggested a possible protective role for TLS and B cell 
responses, specifically in LUAD. However, B cell and TLS signatures and 
CXCL13 expression, which, as expected, correlated strongly with each 
other, also correlated significantly with cytotoxic CD8+ T cell and NK cell 
signatures (Extended Data Fig. 8c), in line with findings in other cancer 
types1,2. To explore a possible direct contribution of anti-tumour B cell 
responses to the observed association of TLS and B cell signatures with 
the survival of patients with LUAD, rather than this being a reflection 
of CD8+ T cell responses, we investigated B cell reactivity to TAAs. Total 
tumour mutational burden (TMB) correlated significantly with BCR 
repertoire diversity and IgG frequency in individual tumour regions 
from patients with LUAD, but not with TLS or B cell signatures (Extended 
Data Fig. 9a), in line with prior reports6. Similarly, no significant effects 
of smoking status or TP53, EGFR or KRAS mutations were observed, with 
the possible exception of reduced TLS and B cell signatures in tumour 
regions with subclonal TP53 mutations in this cohort (Extended Data 
Fig. 9b), although marked elevation of plasma cells in patients with 
LUAD with a smoking history was recently reported6.

We next examined non-mutated TAAs, focusing on ERV envelope 
glycoproteins. We first examined the transcription of known human 
ERV (HERV) loci potentially encoding envelope glycoproteins. Of 37 
such HERV loci (Supplementary Table 1), 34 showed detectable expres-
sion in TCGA and TRACERx LUAD and LUSC (Extended Data Fig. 10a). 
Of these, a HERV-K(HML-2) provirus on chromosome 1q22, referred to 
here as ERVK-7 (also known as HERV-K102), and a HERV-R provirus on 
chromosome 7q11.21, referred to here as ERV3-1, were the most highly 
expressed loci in both LUAD cohorts (Extended Data Fig. 10a). Both 

loci were also expressed in LUSC, which additionally expressed high 
levels of a MER34 provirus on chromosome 4q12, referred to here as 
ERVMER34-1 (encoding the endogenous retroviral envelope glycopro-
tein HEMO28) (Extended Data Fig. 10a).

To assess expression of these HERVs across tumour types, we com-
pared pan-tissue TCGA and Genotype-Tissue Expression (GTEx) data-
sets (31 cancer and 33 healthy tissue types). ERV3-1 and ERVMER34-1 
were expressed at high levels in several healthy tissues, including in the 
haematopoietic compartment and kidney (Extended Data Fig. 10b), 
as recently described28. While ERVK-7 was expressed in non-malignant 
lung, expression was significantly upregulated in patients with LUAD, 
but not in those with LUSC, in both the TCGA and TRACERx cohorts 
(Fig. 4a and Extended Data Fig. 10b). Moreover, comparison of multire-
gion tumour samples and paired normal tissue from TRACERx patients 
revealed considerable inter-patient, but limited intra-patient, hetero-
geneity in ERVK-7 expression (Fig. 4b).

Overall ERVK-7 expression correlated most strongly with the tran-
scriptional signatures of cytotoxic CD8+ T cells and NK cells, as well 
as IgG frequency, but not with TLS or B cell signatures (Extended Data 
Fig. 11a). This may be expected, given that only a fraction of overlap-
ping transcripts from the ERVK-7 locus correspond to the envelope 
glycoprotein mRNA, with the rest corresponding to genomic RNA 
or mRNA for other viral proteins. Moreover, ERVK-7 is one of several 
detectably expressed HERV-K(HML-2) loci potentially encoding highly 
similar envelope glycoproteins (95–98% amino acid identity). Staining 
for HERV-K(HML-2) envelope glycoprotein in LUAD tissue microar-
rays indicated that the protein is indeed expressed at variable levels 
among patients and at higher levels in tumour than adjacent normal 
cells (Extended Data Fig. 11b), raising the possibility that it could stimu-
late a B cell response.

We next screened pre-surgery TRACERx patient plasma samples for 
ERV envelope glycoprotein-reactive antibodies, using a previously 
described flow cytometry assay29. Antibodies, primarily IgG and IgM, 
reactive with the ancestral HERV-K(HML-2) envelope protein were 
detected in 45% of patients with LUAD and none of the patients with 
LUSC (Fig. 4c), despite transcript expression in both histological sub-
types. Anti-HERV-K(HML-2) antibodies were also detected in a valida-
tion cohort of patients with LUAD30 at a frequency of 28% (Fig. 4c). 
By contrast, antibodies targeting the ERV3-1 envelope protein were 
undetectable in all but one patient with LUAD. This indicates that 
HERV-K(HML-2) envelope glycoproteins can stimulate a humoral 
response, preferentially in LUAD.

In the TRACERx LUAD cohort, ERVK-7 transcription levels were sig-
nificantly correlated with titres of HERV-K(HML-2) envelope-reactive 
IgG antibodies (Fig. 4d,e), supporting a model in which transcriptional 
activation of ERVK-7 breaks immunological tolerance to HERV-K(HML-2) 
envelope glycoproteins. We therefore investigated potential mecha-
nisms underlying elevated ERVK-7 transcription. This provirus has 
recently been shown to respond to epigenetic changes and to the 
transcription factor SOX2 in other contexts31. However, no correla-
tion between ERVK-7 transcription and global methylation or SOX2 
expression was noted in TCGA LUAD samples (Extended Data Fig. 11c), 
although this analysis does not preclude an effect of local epigenetic 
changes. As an alternative, we considered the possibility that ampli-
fication of chromosome 1q22, which occurs frequently during LUAD 
evolution32, was responsible for elevated ERVK-7 expression through the 
creation of additional ERVK-7 genomic copies. In line with this hypoth-
esis, we found that ERVK-7 expression correlated with ploidy-adjusted 
ERVK-7 copy number in the TRACERx LUAD cohort and with the average 
copy number of the ERVK-7 genomic locus in the TCGA LUAD cohort 
(Extended Data Fig. 11d). Moreover, titres of anti-HERV-K(HML-2) enve-
lope antibodies in TRACERx patients with LUAD correlated significantly 
with ploidy-adjusted ERVK-7 copy number (Fig. 4f,g). Collectively, these 
data demonstrated the presence of HERV-K(HML-2) envelope-reactive 
antibodies in a substantial proportion of patients with LUAD, probably 
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induced by increased ERVK-7 transcription, which in turn is aided by 
chromosome 1q22 amplification.

ICB boosts human anti-ERV antibodies
To assess the relative contribution of regional lymph nodes to the TLS 
BCR repertoire, we looked for B cell clonal expansion specific to tumour 
regions of TRACERx patients with LUAD. In TRACERx patient CRUK0035 
with LUAD, one IgG1 class-switched heavy chain and one light chain 
(with the combination referred to here as 103-K7) made up 32.4% and 
25.3%, respectively, of all productive BCRs in tumour region 1, whereas 
BCRs from paired normal lung tissue lacked dominant clones (Fig. 5a), 
indicating tumour-specific clonal expansion. The 103-K7 heavy and 
light chain rearrangements carried seven and one amino acid sub-
stitution, compared with germline gene segments, respectively, and 
the combination was also found in another two patients at consider-
ably lower frequencies. These were also found at lower frequencies in 
tumour region 2 of patient CRUK0035, but not in a third tumour region, 
lymph node metastasis or paired normal lung tissue (Fig. 5b). Instead, 

non-mutated 103-K7 precursors were found at high frequencies in 
the lymph node metastasis and all three tumour regions, but not in 
paired normal lung tissue (Fig. 5b). Although the precise specificity 
of this antibody clone remains to be established, these results sug-
gested that the 103-K7 precursors originated in the lymph node and 
seeded all sampled tumour regions, but then further class switched, 
hypermutated and clonally expanded in tumour region 1.

To probe the functional relevance of HERV-K(HML-2) envelope- 
reactive antibodies in LUAD, we first estimated the fraction of the 
overall anti-tumour response they made up. Patient plasma with 
HERV-K(HML-2) envelope-reactive antibodies also stained A549 cells, 
and this staining was reduced on average by 50% (−30% to 97%) by the 
addition of soluble recombinant ERVK-7 envelope glycoprotein, com-
pared with control IAV hemagglutinin (Fig. 5c). Plasma from patients 
with LUAD with HERV-K(HML-2) envelope-reactive antibodies medi-
ated ADCC against A549 targets significantly more efficiently than 
that without HERV-K(HML-2) envelope-reactive antibodies (Fig. 5d). 
Furthermore, addition of soluble recombinant ERVK-7 envelope glyco-
protein inhibited on average 55% (−15% to 100%) of the ADCC mediated 
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using linear regression in d,f.
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by plasma with HERV-K(HML-2) envelope-reactive antibodies, whereas 
the activity of plasma without HERV-K(HML-2) envelope-reactive 
antibodies, probably targeting alternative shared tumour antigens, 
was unaffected (Fig. 5e). These results indicated that HERV-K(HML-2) 
envelope-targeting antibodies constitute a substantial fraction of the 
anti-tumour humoral response and, in rarer cases, its entirety. Moreo-
ver, HERV-K(HML-2) envelope-targeting antibodies can mediate potent 
anti-tumour effects, in line with findings in other systems33.

To explore whether HERV-K(HML-2) envelope-reactive antibodies 
could contribute to anti-tumour immunity during immunotherapy, 
we monitored their titres in seven TRACERx patients with LUAD who 
received ICB. Initiation of ICB treatment was quickly followed by a sub-
stantial rise in HERV-K(HML-2) envelope-reactive antibody titres in all 
seven patients, independently of prior titres or prior non-ICB treatment 
(Fig. 5f). By contrast, titres of ERV3-1-reactive antibodies remained 
undetectable (Fig. 5f), suggesting that ICB has a specific effect in pro-
moting an antibody response to HERV-K(HML-2) envelope glycoprotein. 
While survival after ICB cessation was positively correlated with the 
rise in HERV-K(HML-2) envelope-reactive antibody titres (R = 0.770, 
P = 0.042), the small size of this ICB treatment cohort did not allow a 
full comparison of antibody levels according to outcome. We therefore 
examined a possible involvement of ERVK-7 in ICB treatment outcome 
in a previously described larger cohort of patients with LUAD34 from the 
Samsung Medical Centre (SMC), for which RNA sequencing (RNA-seq) 
data were available. Expression of HERV loci encoding retroviral enve-
lope glycoproteins in this cohort was similar to that in the TCGA and 
TRACERx cohorts, with ERVK-7 being the most highly expressed provirus 
(Extended Data Fig. 11e). Similarly to ICB-untreated TRACERx patients 
with LUAD, ERVK-7 expression in SMC patients with LUAD correlated 
significantly with CD8+ T cell signatures (Extended Data Fig. 11f). Nota-
bly, pre-treatment ERVK-7 expression levels were higher in SMC patients 
with LUAD who responded to ICB treatment than in those who did not 
(Fig. 5g). Moreover, while not prognostic in ICB-untreated patients, 

higher pre-treatment ERVK-7 expression was significantly correlated 
with better progression-free and overall survival following ICB treat-
ment and was therefore predictive of outcome, independently of age, 
gender, smoking status and prior non-ICB treatment (Fig. 5h,i). These 
results supported a possible involvement of ERVK-7 expression and 
consequent HERV-K(HML-2) envelope-targeting antibody response in 
anti-tumour immunity underpinning successful ICB treatment.

Discussion
Collectively, our findings indicate that local and systemic anti-tumour B 
cell responses may develop in mouse and human LUAD and contribute 
to anti-tumour immunity through the production of tumour-binding 
antibodies. These B cell and antibody responses can target ERV enve-
lope glycoproteins and are boosted by immunotherapy, providing 
one potential mechanism for the association between TLS and ICB 
response observed in humans. These findings align with similar findings 
in a mutagenized immunogenic breast cancer model, in which B cell 
and TFH responses were boosted following ICB35, and provide further 
support for the emerging association between TLS and immunother-
apy response in lung cancer1,2,18,35. Boosting of anti-tumour antibody 
responses by ICB also indicates a broader effect of PD-1/PD-L1-directed 
immunotherapies on humoral response to self, as well as foreign, anti-
gens, as illustrated by the use of model antigens and in humans where 
ICB has been reported to boost circulating CXCL13 levels and antibody 
responses to seasonal influenza vaccination36. In addition to ICB, TLS 
formation correlates with responses to neoadjuvant chemotherapy 
and targeted HER2 therapy37,38, mirroring our G12Ci data and indicating 
that TLS may have unexpected roles in tumour cell-targeted therapies. 
In stark contrast, therapies that target both tumour and normal cells, 
such as MEK inhibition, can adversely affect the induction of adap-
tive immune responses against tumours. These findings indicate that 
combining MEK inhibitors with KRAS(G12C) inhibitors in lung cancer, 
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or potentially also BRAFV600E inhibitors in melanoma, may compromise 
the anti-tumour immune response and thus limit therapeutic impact 
and possible benefit with ICB combinations.

A key function of B cells is the production of antibodies. Anti-tumour B 
cell and antibody responses are typically directed against non-mutated, 
overexpressed self-antigens and are also subject to a certain degree 
of immunological tolerance11,39. The role of ERVs as tumour antigens 
has long been described in mouse models, starting with a monoclonal 
antibody reactive with melanomas originating in C57BL/6 mice, which 
was found to be specific to the envelope glycoprotein of an eMLV shared 
by these melanomas40. MLVs with restored infectivity frequently arise in 
mouse cancer models, typically through recombination between defec-
tive eMLV precursors, and are responsible for elevated expression and 
increased immunogenicity of MLV antigens in mouse tumour cells15,20. 
While restoration of endogenous retrovirus infectivity is not known to 
occur in humans, the transcriptional upregulation of HERV expression 
may nevertheless permit the induction of HERV-specific antibodies in 
patients with cancer, primarily against members of the most recently 
endogenized HERV-K(HML-2) group33,41,42. Although mobilization of 
HERV-K(HML-2) proviruses, including ERVK-7, has recently been sug-
gested in SOX2-expressing cells31, here we provide evidence for a new 
mechanism by which ERVK-7 copies may be amplified, namely amplifica-
tion of its chromosomal locus. HERV-K(HML-2) envelope glycoprotein 
expression predominantly by ERVK-7 in LUAD is based in this study on 
transcriptional evidence. However, highly similar and thus probably 
antibody-cross-reactive HERV-K(HML-2) envelope glycoproteins are 
encoded by several proviruses, some of which are insertionally poly-
morphic in humans. It may therefore be important to determine the 
contribution of each provirus to the overall HERV-K(HML-2) envelope 
glycoprotein antigenic pool in healthy and transformed cells.

Antibodies to HERV-K(HML-2) envelope glycoproteins exhibit 
anti-tumour activity in human breast cancer xenograft models inde-
pendently of adaptive immune cells33. Moreover, pre-treatment HERV-K 
expression has been reported to predict the response to combina-
tion immunotherapy and radiotherapy in patients with pancreatic 
and colorectal cancers and was further upregulated in patients fol-
lowing treatment, although neither protein expression of HERV-K on 
tumour cells nor specific antibodies were assessed43. HERV-K(HML-2) 
envelope-reactive antibodies have also been detected following 
SARS-CoV-2 infection29 and in a proportion of healthy individuals 
and patients with systemic lupus erythematosus (SLE)44. Although 
titres were similar between healthy donors and patients with SLE, they 
correlated with interferon activity only in the latter44, indicating that 
HERV-K(HML-2) envelope-reactive antibodies may have functional 
activities that warrant further investigation.

Overall, our data support the notion that local and systemic B cell 
responses contribute to therapy response through the production of 
protective antibodies and establish ERV envelope glycoproteins as a 
relevant tumour antigen. Understanding tumour- and subtype-specific 
roles of B cells will be critical to inform the use of targeted B cell expan-
sion as a mechanism of predicting the response of, and perhaps even 
sensitizing, tumours to immunotherapy.
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Methods

Mouse strains
C57BL/6J wild-type mice, Aicdatm1.1(cre/ERT2)Crey (AicdaCreERT2) mice45, 
Ighg1tm1(cre)Cgn (Ighg1Cre) mice46, Gt(ROSA)26Sor tm1(EYFP)Cos (Rosa26LSL-EYFP) 
mice47, Gt(ROSA)26Sor tm1(CAG-Brainbow2.1)Cle (Rosa26LSL-Confetti) mice48 and 
Emv2-deficient mice20 have been previously described and were main-
tained at the Francis Crick Institute Biological Research Facility on a 
C57BL/6J genetic background. Mice were housed in ventilated cages 
kept at constant temperature (21–25 °C) and humidity (50–60%), with 
standard 12-h light/12-h dark cycles and under specific-pathogen-free 
conditions. Eight- to 12-week-old male or female mice were used for 
all experiments, randomly allocated to age- and sex-matched treat-
ment groups, and survival analyses were blinded. Animal numbers 
were estimated on the basis of pilot studies of tumour growth in our 
laboratories. All experiments were approved by the ethics committee 
of the Francis Crick Institute and conducted according to local guide-
lines and UK Home Office regulations under the Animals Scientific 
Procedures Act 1986 (ASPA).

Cell lines
KPAR cells were line KPAR1.3 derived from a Trp53  fl/flKrasLSL-G12D/+ 
background, as recently described3. KPARG12C cells are KRAS(G12C)- 
expressing derivatives of the KPAR1.3 line3.

HEK293T.ERV3-1env and HEK293T.HERV-K(HML-2)env cells were gen-
erated as previously described29. In brief, HEK293T.HERV-K(HML-2)env 
cells were generated by retroviral transduction of HEK293T cells with 
vector encoding a codon-optimized version of the putative ancestral 
protein sequence of the HERV-K113 envelope glycoprotein49, provided 
by N. Bannert, and GFP separated by an internal ribosome entry site 
(IRES). HEK293T.ERV3-1env cells were similarly generated by retroviral 
transduction with a vector encoding the ERV3-1 envelope glycoprotein 
(NCBI reference sequence: NM_001007253.4) and GFP separated by an 
IRES. KPAR, KPARG12C, KPB6, M. dunni, HEK293T, HEK293T.ERV3-1env, 
HEK293T.HERV-K(HML-2)env, EL4, CTLL2, B16, 4T1, 3LL, MC38, A549, 
NK92 and HBEC cells were obtained from and verified as mycoplasma 
free by, and human cell lines were additionally validated by DNA fin-
gerprinting by, the Francis Crick Institute Cell Services facility. Cells 
were cultured in DMEM (Thermo Fisher), RPMI (Thermo Fisher) or 
IMDM (Sigma-Aldrich) supplemented with FBS (10%; Thermo Fisher), 
l-glutamine (2 mM; Thermo Fisher), penicillin (100 U ml–1; Thermo 
Fisher) and streptomycin (100 µg ml–1; Thermo Fisher). M. dunni.KARV 
cells were generated by culturing M. dunni cells, which are permissive 
to all described endogenous eMLVs, in conditioned medium from KPAR 
cells and verified by staining with the 83A25 monoclonal antibody.

Tumour models and immunizations
For orthotopic lung tumour models, 1.5 × 105 KPAR, 1.5 × 105 KPARG12C 
or 1 × 105 KPB6 cells were injected intravenously into the tail vein. Mice 
were weighed three times weekly and killed when the humane end-
point of 15% weight loss was reached. For immunization experiments, 
mice were immunized intraperitoneally with 2 × 108 SRBCs (Fitzgerald 
Industries).

For antibody treatments, 200 µg anti-PD-L1 (10F.9G2, BioXCell),  
anti-PD-1 (RMP1-14, BioXCell), anti-CTLA-4 (9H10, BioXCell), 
anti-CXCL13 (143614, R&D Systems), anti-NK1.1 (PK136, BioXCell), 
anti-CD8 (53-6.7, BioXCell), anti-eMLV Env (83A25, in house), anti-KARV 
Env ( J1KK, in house) or their respective isotype controls was injected 
intraperitoneally twice weekly. For B cell depletion experiments, 
mice were treated with a single intravenous injection of 250 µg of 
anti-CD20 (SA271G2, BioLegend). For serum transfer experiments, 
serum was collected from KPAR tumour-bearing mice by terminal bleed, 
heat inactivated at 56 °C for 10 min and stored at −20 °C. Recipient 
tumour-bearing mice were injected with 100 µl serum pooled from 
ten mice twice weekly, starting from day 7. Mice in Figs. 1j and 2m were 

treated with anti-NK1.1, anti-CD8, or isotype control antibodies twice 
weekly starting from day 7.

For KRAS or MEK pathway inhibitor experiments, treatments were 
initiated once tumours were detectable by micro-computed tomog-
raphy (CT). Mice were anaesthetized by inhalation of isoflurane and 
scanned using the Quantum GX2 micro-CT imaging system (Perki-
nElmer) at an isotropic pixel size of 50 µm. Then, 50 mg kg–1 MRTX-849 
(MedChem Express), 3 mg kg–1 trametinib (LC Laboratories) or vehicle 
was administered by oral gavage. Mice received the inhibitors daily for 
the duration indicated in the figure legends. Mice in Fig. 3a–d were 
treated with inhibitors or vehicle control daily for 6 days following 
detection of tumours. Mice in Fig. 3e that had developed KPAR lung 
tumours were treated with anti-CD20, anti-CD8 or isotype control 
antibodies 1 day before the start of 2 weeks of daily G12Ci treatment 
and their survival was monitored until the endpoint. For mice treated 
with anti-CD8, treatment continued after termination of G12Ci with 
twice-weekly injections.

Lung gene transfer
The mouse Cxcl13 cDNA ORF (NM_018866.2) was synthesized and 
cloned into the pcDNA3.1 mammalian expression vector (Genscript). 
For preparation of GL67 lipoplexes, 1.6 mg ml–1 pcDNA3.1-Cxcl13 or 
pcDNA3.1 as an empty vector control was incubated with 1.21 mM 
GL67 liposomes (Genzyme) to give a final 1:4 molar ratio. Mice were 
anaesthetized by inhalation of isoflurane and administered 20 µl of 
the GL67–plasmid complex intranasally twice weekly.

Flow cytometry
Lungs were perfused with 20 ml cold PBS, cut into small pieces and 
incubated with 1 mg ml–1 collagenase (Thermo Fisher) and 50 U ml–1 
DNase I (Life Technologies) in PBS for 30 min at 37 °C. Samples were 
filtered through 70-µm nylon strainers, and red blood cells were lysed 
using 0.83% ammonium chloride before resuspension in FACS buffer 
(2% FCS and 0.05% sodium azide in PBS). Samples were stained for 
30 min at room temperature with fluorescently labelled antibodies to 
CD45 (BioLegend, 30-F11), B220 (BioLegend, RA3-6B2), GL7 (BioLeg-
end, GL7), CD95 (BioLegend, SA362F7), CXCR4 (BioLegend, L276F12), 
CD86 (BioLegend, GL-1), TCRβ (BioLegend, H57-597), CD4 (BioLegend, 
GK1.5), PD-1 (BioLegend, 29F.1A12) or CXCR5 (BioLegend, L138D7) or 
unlabelled anti-eMLV Env (83A25, in house), anti-mouse IgG (BioLegend, 
Poly4060), anti-mouse IgA (Southern Biotech, 11-44-2), anti-mouse 
IgM (BioLegend, RMM-1), anti-human IgG (BioLegend, M1310G05), 
anti-human IgA (Miltenyi Biotec, 130-114-002) or anti-human IgM 
(BioLegend, MHM-88), all at a 1:200 dilution in FACS buffer along with 
Near-IR Live/Dead stain (Thermo Fisher). Samples were run on an LSR 
Fortessa running BD FACSDiva v.8.0 or a Ze5 analyser running Bio-Rad 
Everest v.2.4 and analysed with FlowJo v.10. Gating strategies used for 
the identification of different cell types are shown in Extended Data 
Fig. 12a.

Histology and two-dimensional immunofluorescence
Tumour-bearing lungs were fixed in 10% neutral-buffered formalin 
(Sigma-Aldrich) for 24 h and transferred to 70% ethanol or frozen 
in OCT. TRACERx snap-frozen regional samples were processed to 
formalin-fixed, paraffin-embedded (FFPE) blocks after first taking suf-
ficient material for DNA and RNA sequencing. Tissue microarrays were 
then created by taking 1.5-mm cores from regional FFPE blocks. Fixed 
tissue was embedded in paraffin, and 4-µm sections were mounted 
on slides. Haematoxylin and eosin staining was performed using the 
automated Tissue-Tek Prisma slide stainer. For immunohistochemistry 
staining, paraffin-embedded sections were boiled in sodium citrate 
buffer (pH 6.0) for 15 min followed by incubation for 1 h with anti-B220 
(1:250; RA3-6B2, BD Biosciences), anti-CD8 (1:250; 4SM15, Thermo 
Fisher), anti-Ki67 (1:250; MIB-1, Agilent), anti-NCR1 (1:250; ab233558, 
Abcam), PNA (1:250; B1075, Vector Laboratories) or anti-ERVK-7 (1:250; 
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PA5-49515, Thermo Fisher). Primary antibodies were detected using 
horseradish peroxidase (HRP)-conjugated anti-rat IgG (1:1,000; poly-
clonal; Thermo Fisher, 31470), anti-mouse IgG (1:1,000; polyclonal; 
Thermo Fisher, 31430) or anti-rabbit IgG (1:1,000; polyclonal; Thermo 
Fisher, A16116). Slides were imaged using a Zeiss AxioScan slide scanner 
and analysed using the QuPath 0.3 source software50.

For immunofluorescence, paraffin-embedded slides were boiled in 
sodium citrate buffer (pH 6.0) for 15 min followed by incubation for 
30 min in blocking buffer (1% BSA and 5% FCS in PBS) and were incubated 
overnight at 4 °C with primary antibodies. Frozen slides were air-dried 
at room temperature, fixed for 10 min in 4% paraformaldehyde (PFA) 
and incubated for 30 min in SuperBlock solution (Thermo Fisher), fol-
lowed by incubation for 1 h with primary antibodies. Primary antibodies 
used were to CD3 (1:100; Abcam, ab5690) and B220 (1:100; BioLegend, 
RA3-6B2). Slides were washed three times in PBS, incubated for 1 h in 
the dark at room temperature with goat anti-rabbit 546 (1:200; Thermo 
Fisher, A-11035) and goat anti-rat 488 (1:200; Thermo Fisher, A-11006) 
and mounted with DAPI. Slides were imaged by confocal microscopy 
on a Zeiss Upright 710 or Zeiss AxioScan microscope.

Tissue clearing and three-dimensional immunofluorescence
Tissue clearing was performed as previously described51. In brief, 
tumour-bearing lungs were perfused with 20 ml cold PBS, fixed in 10% 
neutral-buffered formalin (Sigma-Aldrich) for 24 h and depigmented 
with 1:1:4 H2O2:DMSO:PBS overnight. Following overnight antigen 
retrieval in 40 mg ml–1 SDS with 12.36 mg ml–1 borate at 54 °C, sam-
ples were washed three times in PBS with 0.2% Triton X-100, blocked 
and incubated for 48 h at room temperature with antibodies to CD3 
(1:100; Abcam, ab5690), B220 (1:100; BioLegend, RA3-6B2) and TTF1 
(1:100; Abcam, ab72876). Samples were washed three times in PBS and 
incubated for 48 h in the dark with fluorescently labelled anti-rabbit 
Alexa Fluor 546 (1:100; Thermo Fisher, A10040), anti-rabbit Alexa 
Fluor 546 IgG (1:200; Thermo Fisher, A-11035), anti-rabbit Alexa Fluor 
594 (1:100; Thermo Fisher, R37119), anti-rat Alexa Fluor 488 (1:100; 
A-21208), anti-rat Alexa Fluor 488 IgG (1:200; polyclonal; Thermo Fisher, 
A-11006), anti-rat Alexa Fluor 647 (1:100; Thermo Fisher, A48272), 
anti-mouse Alexa Fluor 488 (1:100; Thermo Fisher, A-21202) or anti-goat 
Alexa Fluor 647 (1:100; Thermo Fisher, A-21447) antibodies. Samples 
were washed three times in PBS, dehydrated by an increasing gradient 
of methanol and cleared by an increasing gradient of methyl salicylate. 
Cleared samples were imaged by light-sheet microscopy on a LAvision 
Ultramicroscope II (Miltenyi) or by confocal microscopy on a Zeiss 
Invert 780 and rendered using Imaris software 9.8 (Bitplane).

TLS detection and quantification
Mature TLS were defined here as lymphoid aggregates with the pres-
ence of segregated T cell and B cell areas, as well as evidence of an ongo-
ing GC reaction. The latter was based on the distinction of dark and 
light zones in GCs, identified on diagnostic haematoxylin and eosin 
staining in TRACERx (Extended Data Fig. 6d) or revealed by Ki67 stain-
ing and by positivity for PNA binding in mouse samples. When multiple 
diagnostic slides were available for a TRACERx patient, TLS counts 
were summed. Clusters of lymphocytes that were visible at low-power 
magnification but that did not contain any suggestion of GC formation 
were considered lymphoid aggregates.

Antibody binding and affinity assays
For antibody binding, KPAR, KPB6, M. dunni, M. dunni.KARV, HEK293T.
ERV3-1env, HEK293T.HERV-K(HML-2)env or HEK293T cells were incu-
bated with heat-inactivated sera or plasma diluted 1:50 in PBS for 
30 min at room temperature, washed with FACS buffer, stained with 
fluorescently labelled antibodies to mouse or human IgG, IgA and IgM 
for 30 min at room temperature and analysed by flow cytometry on a 
Ze5 analyser. Antibody titres are represented as the MFI per antibody 
isotype. For blocking experiments, 10 µg ml–1 recombinant ERVK-7 

envelope protein (Cusabio, CSB-CF351062HU) or influenza A H1N1 HA 
(Sinobiological, 11085-V08H) was incubated with diluted sera or plasma 
for 30 min at room temperature before staining. For the detection of 
ERV3-1 and HERV-K(HML-2) envelope-reactive antibodies, HEK293T, 
HEK293T.ERV3-1env and HEK293T.HERV-K(HML-2)env cells were mixed 
in equal ratios and distinguished on the basis of the levels of GFP expres-
sion (Extended Data Fig. 12b). The specific MFI increase compared with 
parental HEK293T cells was calculated using the following formula: 
(MFI of GFP+ cells – MFI of GFP− cells)/MFI of GFP− cells, as previously 
described29. Heatmaps were produced using Microsoft Excel 2016. For 
A549 binding, the specific MFI increase was calculated using the fol-
lowing formula: (MFI of stained cells – MFI of no-serum control cells)/
MFI of no-serum control cells.

For serum affinity experiments, fixed KPAR cells were incubated 
with sera diluted 1:50 for 1 h on ice and washed three times with FACS 
buffer. Replicate wells were incubated at 37 °C for 1, 2, 5 or 10 min and 
stained with anti-IgG on ice for 30 min. IgG staining with incubation was 
expressed as a percentage of the maximum MFI and was considered 
proportional to the antibody off-rate.

For complement killing assays, KPAR cells were incubated with a 1:10 
dilution of serum with or without heat inactivation at 56 °C for 10 min 
or anti-KARV envelope ( J1KK; in house). Cells were incubated for 3 h 
at 37 °C, and cytotoxicity was measured by lactate dehydrogenase 
(LDH) release (Abcam) according to the manufacturer’s instructions. 
Optical densities were measured at 450 nm on a microplate reader 
(Tecan) and normalized to no-serum negative controls and lysis buffer 
positive controls.

For ADCC assays, A549 and NK92 cells were cultured at a 1:1 ratio with 
a 1:50 plasma dilution for 4 h at 37 °C, and cytotoxicity was measured 
by LDH release (Abcam) according to the manufacturer’s instructions. 
Values were normalized to a negative control of A549 cells alone and 
positive control of A549 cells treated with lysis buffer.

RT–qPCR
RNA was extracted from lungs following homogenization using 
QIAshredder columns (Qiagen) with the RNeasy kit (Qiagen). cDNA 
was synthesized using the Maxima First-Strand cDNA Synthesis kit 
(Thermo Fisher), and qPCR was performed using Applied Biosystems 
Fast SYBR Green (Thermo Fisher) with the following primers:

Cxcl13: F, 5′-CATAGATCGGATTCAAGT; R, TCTTGGTCCAGATCACAA-3′
Hprt, F, 5′-TGACACTGGCAAAACAATGCA; R, GGTCCTTTTCACCA 

GCAAGCT-3′
Values were normalized to Hprt expression using the ΔCT method.

ELISA
MaxiSorp plates (Thermo Fisher) were coated overnight at 4 °C with 
recombinant soluble PD-L1 ectodomain (in house) in borate-buffered 
saline and blocked for 1 h in blocking buffer (5% BSA in PBS). Sera were 
diluted 1:50 in blocking buffer and incubated with plates for 1 h at room 
temperature, followed by four washes with PBS-T and incubation with 
HRP-conjugated anti-mouse IgG (1:1,000; Abcam, ab6728) for 1 h. Plates 
were developed by adding 50 µl TMB substrate (Thermo Fisher), fol-
lowed by 50 µl of TMB stop solution (Thermo Fisher) after 5 min of shak-
ing at room temperature. Optical densities were measured at 450 nm 
on a microplate reader (Tecan).

Single-cell BCR sequencing and antibody production
Sorted live CD45+B220+ cell populations, pooled from three mice, were 
loaded onto a 10X Genomics Chromium Controller, and the VDJ library 
was prepared according to the manufacturer’s guidelines. Samples 
were sequenced using the Illumina HiSeq 2500 High Output platform. 
Transcript alignment and generation of feature–barcode matrices were 
performed using the 10X Genomics CellRanger workflow.

The J1KK monoclonal antibody was cloned from the dominant BCR 
sequence as either mouse IgA or IgG1 into a pRV-IgK-T2A-IgH-IRES-GFP 
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plasmid (Genscript) and transduced into HEK293T cells. IgA and IgG1 
antibodies were purified from serum-free supernatant using a Protein L 
spin column (Thermo Fisher) and Protein A Plus spin column (Thermo 
Fisher), respectively, according to the manufacturer’s instructions.

Immunoprecipitation and mass spectrometry
For immunoprecipitations, the J1KK antibody or mouse IgA isotype 
control (Abcam) was coupled to Dynabeads (Thermo Fisher) according 
to the manufacturer’s instructions. Antibody-conjugated Dynabeads 
were subsequently incubated with 4 mg of protein lysate collected 
from KPAR cells and incubated rotating overnight at 4 °C. Beads were 
washed three times using RIPA buffer supplemented with protease and 
phosphatase inhibitor cocktail (Roche). Samples were eluted by resus-
pension in NuPAGE LDS sample buffer (Thermo Fisher) and incubation 
at 95 °C for 5 min. Eluted proteins were run on a NuPAGE 4–12% Bis-Tris 
gel (Thermo Fisher) and visualized using InstantBlue Coomassie Protein 
Stain (Abcam). Gel bands at 70 kDa were excised from each lane and 
analysed by mass spectrometry.

For mass spectrometry, the excised protein gel pieces were placed 
in a 1.5-ml Eppendorf tube and destained with 50% (v/v) acetonitrile 
and 50 mM ammonium bicarbonate, reduced with 10 mM dithiothrei-
tol (DTT) and alkylated with 55 mM iodoacetamide. After alkylation, 
proteins were digested with 6.5 ng µl–1 trypsin (Promega) overnight at 
37 °C. The resulting peptides were extracted in 2% (v/v) formic acid, 
2% (v/v) acetonitrile and analysed by nano-scale capillary LC–MS/MS 
using an Ultimate U3000 HPLC (Thermo Scientific Dionex) to deliver 
a flow rate of approximately 250 nl min–1. A C18 Acclaim PepMap100 
5 µm, 100 µm × 20 mm nanoViper column (Thermo Scientific Dionex) 
trapped the peptides before separation on an EASY-Spray PepMap 
RSLC 2 µm, 100 Å, 75 µm × 500 mm nanoViper column (Thermo-
Scientific Dionex). Peptides were eluted with a 120-min gradient of 
acetonitrile (2% to 80%). The analytical column outlet was directly 
interfaced through a nano-flow electrospray ionization source, with 
a hybrid quadrupole Orbitrap mass spectrometer (Eclipse Orbitrap, 
ThermoScientific). Data collection was performed in data-dependent 
acquisition (DDA) mode with an r = 120,000 (at m/z 200) full-MS scan 
from m/z 400–2,000 with a target AGC value of 4 × 105 ions followed by 
20 MS/MS scans at r = 17,500 (m/z 200) at a target AGC value of 1 × 104 
ions. MS/MS scans were collected using a threshold energy of 30 for 
higher-energy collisional dissociation (HCD), and a dynamic exclu-
sion of 30 s was used to increase depth of coverage. MS/MS data were 
validated using Scaffold software 82 (Proteome Software) and inter-
rogated manually using a 1% false discovery rate (FDR) threshold for 
protein identification.

TRACERx cohort
The data from this study are part of the first 421 patients prospectively 
analysed from the TRACERx cohort (NCT01888601 approved by the 
National Research Ethics Service Committee London, with sponsor’s 
approval of the study by University College London with the following 
details: REC reference 13/LO/1546, protocol number UCL/12/0279, 
IRAS project ID 138871). Data obtention followed similar steps to those 
described in the study of the first 100 patients52,53 and is described in full 
in the accompanying studies54–56. Informed consent for entry into the 
TRACERx study was mandatory and was obtained from every patient.

TRACERx RNA-seq cohort
Transcriptomic data (50 million paired reads per sample with a length 
of 75 bp or 100 bp per read) analysed in this study were derived from 
the TRACERx cohort that is described in full in the accompanying 
studies54–56. Data obtention followed similar steps to those previously 
described57. Patients with more than one primary tumour, determined 
from pathology and sequencing analysis, were excluded to avoid poten-
tially confounding variables associated with multiple histologies and/
or independent tumour lineages. Only data derived from primary and 

adjacent normal lung tissue samples taken from initial surgical resec-
tion were included, as well as one lymph node metastasis described 
in Fig. 5b. The TRACERx RNA-seq cohort analysed in the study is sum-
marized in Supplementary Table 2.

HERV transcript identification, read mapping and quantification 
from RNA-seq data
HERV proviruses and other repeat regions were annotated as previously 
described58. In brief, hidden Markov models (HMMs) representing 
known human repeat families (Dfam 2.0 library v.150923) were used 
to annotate GRCh38 using RepeatMasker, configured with nhmmer. 
RepeatMasker annotates long terminal repeats (LTRs) and internal 
regions separately; thus, tabular outputs were parsed to merge adjacent 
annotations for the same element. A list of HERV proviruses with func-
tional env ORFs was compiled (Supplementary Table 1), and RNA-seq 
reads from TCGA, GTEx and TRACERx were mapped and counted using a 
custom transcriptome assembled on a subset of the RNA-seq data from 
TCGA, as previously described58. In brief, TPM values were calculated 
for all transcripts in the transcript assembly with a custom Bash pipe-
line using GNU parallel and Salmon (v.0.12.0)59. TPM values were then 
imported into Qlucore Omics Explorer v.3.3 (Qlucore) for downstream 
differential expression analysis and visualization. In the case of multiple 
transcripts transcribed from a given HERV provirus, data were collapsed 
by summing expression of any of the multiple transcripts overlapping 
the env ORF of that provirus. Patient-level mean values were calculated 
across multiple primary tumour regions, as applicable.

Immune cell and TLS estimates from RNA-seq data
The method of Danaher et al.60 was used to estimate immune cell popu-
lations from RNA-seq data from patients with lung cancer. Patient-level 
mean values were calculated across multiple primary tumour regions, 
as applicable. For mouse LUAD models, the MCPCounter method61 
was used to quantify immune and stromal cell population abundance 
from RNA-seq data. TLS gene set scores were calculated as previously 
described62. In brief, TPM values were quantile normalized and log 
transformed as log2(value + 1). The score was calculated as the mean 
expression of nine TLS signature genes (CD79B, EIF1AY, PTGDS, RBP5, 
CCR6, SKAP1, LAT, CETP and CD1D).

BCR reconstruction from RNA-seq data
BCR CDR3 sequences and class switches were assembled from RNA-seq 
BAM files using the TRUST4 v.1.0.8 open-source algorithm63 (https://
github.com/liulab-dfci/TRUST4), with default arguments. Multiple BCR 
CDR3 sequences encoding the same amino acid (CDR3aa) sequence 
were summed. Out-of-frame and partial CDR3 sequences were excluded 
to retain only productive sequences. Diversity was defined as the 
total number of unique productive CDR3aa sequences per sample. 
Patient-level diversity represented the total number of unique produc-
tive CDR3aa sequences across all primary tumour regions. Class-switch 
frequencies were calculated per sample as the proportion of unique 
productive CDR3aa sequences classified as IGHM, IGHG, IGHA, IGHE 
or other. Patient-level mean values were calculated across multiple 
primary tumour regions, as applicable.

TRACERx whole-exome sequencing cohort
Whole-exome sequencing data (median depth of 413×) analysed in this 
study were derived from the TRACERx cohort that is described in full in 
the accompanying studies54–56. Only driver single-nucleotide variants 
(SNVs) and indels in TP53, EGFR and KRAS were included for analysis. 
For copy number analysis, segments >5 bp in length with any overlap 
with the ERVK-7 locus coordinates (GRCh37 chr1:155596185–155606777) 
were extracted for analysis. Ploidy-adjusted copy number of the locus 
was calculated for each sample, and a patient-level maximum value was 
used for associations with transcriptomic data. TMB was calculated at 
a regional level by counting non-synonymous coding mutations, as 
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defined by RefSeq (downloaded in 2014), dividing by the total length 
of all coding sequences and multiplying by 106.

TRACERx plasma cohorts
Patient plasma was collected longitudinally in agreement with the 
study protocol. Fresh blood samples were collected in K2 EDTA tubes. 
Plasma was prepared within 2 h of blood collection by double centrifu-
gation for 10 min at 1,000g using a refrigerated centrifuge followed by 
10 min at 2,000g to remove cells and platelets. Plasma was stored in 
1-ml aliquots at −80 °C. Before surgery, plasma was collected the day 
before or the day of the initial surgery (n = 58 LUAD, n = 24 LUSC). Cor-
responding RNA-seq data were available for 48 patients with LUAD and 
20 patients with LUSC; corresponding somatic copy number alterations 
data were available for 53 patients with LUAD and this was not assessed 
for patients with LUSC. Seven patients received ICB (nivolumab or 
atezolizumab) and had on-therapy plasma available. Patient CRUK0284 
had histologically distinct lesions of both LUAD and carcinoid growth.

Additional bioinformatics analyses for TCGA samples
For TCGA LUAD samples, indices of global methylation values were 
previously calculated64. SOX2 expression, in fragments per kilobase 
of transcript per million mapped reads upper quartile (FPKM-UQ), 
and average copy number of the ERVK-7 genomic location (hg38 
chr1:155629344–155634870) were downloaded from the UCSC Xena 
browser65 (https://xena.ucsc.edu).

TRACERx, TCGA and SMC cohort outcome analysis
For TRACERx patients, disease-free survival analysis was conducted 
for patients with LUAD and LUSC independently. Disease-free survival 
(DFS) was defined as the period from the date of registration to the 
time of radiological confirmation of recurrence of the primary tumour 
registered for TRACERx or the time of death from any cause. During 
follow-up, three patients (CRUK0512, CRUK0373 and CRUK0511) devel-
oped new primary cancer and subsequent recurrence from either the 
first primary lung cancer or the new primary cancer diagnosed during 
follow-up. These cases were censored at the time of the diagnosis of 
new primary cancer for DFS analysis, owing to the uncertainty of the 
origin of the third tumour. Patient-level data were split into high and 
low groups based on the histology-specific cohort median, and the 
probability of DFS was compared by Kaplan–Meier estimates using the 
survival R package (v.3.2.13). For TCGA patients, samples were ranked 
by CXCL13, CD79A, CD19 or MS4A1 expression, and survival curves of 
the top and bottom expression quartiles were compared by log-rank 
analysis. For outcome analysis in the SMC LUAD cohort34, samples were 
stratified on the basis of ERVK-7 expression (the summed TPMs of any 
of the multiple transcripts overlapping the env ORF of this provirus), 
using a cut-off value of 20 TPM to define high and low ERVK-7 expression.

Statistics and reproducibility
Statistical comparisons were made using GraphPad Prism 7 (GraphPad 
Software), SigmaPlot 14.0 or R (versions 3.6.1–4.0.0). The packages 
dplyr (v.1.0.7), data.table (v.1.14.2), tidyverse (v.1.3.1) and rjson (v.0.2.20) 
were used for data handling in R. The package Hmisc (v.4.6.0) was used 
for Spearman’s correlation analysis. The package lme4 (v.1.1.27.1) was 
used for linear mixed-effects models. The package survival (v.3.2.13) 
was used for statistical associations with patient outcome metrics. 
Parametric comparisons of normally distributed values that satisfied 
the variance criteria were made by unpaired or paired Student’s t tests 
or one-way ANOVA with Bonferroni correction for multiple compar-
isons. Data that did not pass the variance test were compared with 
non-parametric two-tailed Mann–Whitney rank-sum tests (for unpaired 
comparisons), Wilcoxon signed-rank tests (for paired comparisons) or 
ANOVA on ranks tests with Tukey or Dunn correction for multiple com-
parisons. Multiregion data were compared using a linear mixed-effects 
model with each patient as a random effect.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The RNA-seq and whole-exome sequencing data (in each case from 
the TRACERx study) used during this study have been deposited at the 
European Genome–phenome Archive (EGA), which is hosted by the 
European Bioinformatics Institute (EBI) and the Centre for Genomic 
Regulation (CRG), under the accession codes EGAS00001006517 
(RNA-seq) and EGAS00001006494 (whole-exome sequencing); access 
is controlled by the TRACERx data access committee. Other data sup-
porting the findings of this study are available within the paper and its 
Supplementary Information. TCGA and GTEx data used for the analy-
ses described in this manuscript were obtained from dbGaP (https://
dbgap.ncbi.nlm.nih.gov) accession numbers phs000178.v10.p8 and 
phs000424.v7.p2 in 2017. Additional TCGA LUAD expression data and 
average copy number of the ERVK-7 genomic locus were downloaded 
from the UCSC Xena browser (https://xena.ucsc.edu). Nucleotide 
sequences were downloaded from NCBI nucleotide resources (https://
www.ncbi.nlm.nih.gov/nuccore). Source data are provided with this 
paper.
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Extended Data Fig. 1 | TLS formation in murine LUAD models.  
a, Immunohistochemistry for B220, Ki67, and CD8 in KPB6 and KPAR lungs, 
with inset KPAR TLS shown at higher magnification. Representative images of 
10 individual mice from the same experiment. b, Staining with peanut agglutinin 
(PNA) in KPB6 and KPAR lungs. Representative images of 10 and 4 individual 
mice from the same experiment for KPB6 and KPAR tumours, respectively.  
c, Correlation between GC B and TFH cells in naïve and KPAR lungs, from Fig. 1d 
(n = 12 per group from 3 experiments). R and p values were calculated using 

linear regression. d, Quantification by flow cytometry of B220+GL7+CD95+ GC  
B cells and TCRβ+CD4+PD1+CXCR5+ TFH cells in KPB6 and KPAR lungs (n = 6 per 
group from 2 experiments). Data are represented as mean ± s.e.m. and p values 
were calculated using two-sided Student’s t-tests. e, Labelling efficiency of GC 
B cells in AicdaCreERT2;Rosa26LSL-EYFP mice (n = 6). Tamoxifen was administered 1 
and 3 days prior to analysis. f, Time course quantification by flow cytometry of 
B220+fluorophore+ (IghgCre fate-mapped) or TCRβ+CD4+PD1+CXCR5+ TFH cells in 
KPAR lungs in IghgCre;Rosa26LSL-Confetti mice (n = 4 per time point).
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Extended Data Fig. 2 | Antibody responses in murine LUAD models.  
a, Quantification by flow cytometry of KPAR-binding IgM, IgG, and IgA  
from naïve (n = 6) or KPAR (n = 6) serum. The dotted line denotes the mean 
staining intensity of naïve sera per antibody isotype. Data are represented as 
mean ± s.e.m. of individual mice from the same experiment (symbols) and p 
values were calculated using two-sided Student’s t-tests. b, Quantification of 
KPAR-binding IgM, IgG, and IgA from KPB6 (n = 6) or KPAR (n = 6) serum.  
The dotted line denotes the mean staining intensity of naïve sera per antibody 
isotype. Data are represented as mean ± s.e.m. of individual mice from the 
same experiment (symbols) and p values were calculated using two-sided 
Student’s t-tests. c, Survival of KPB6 recipient mice treated with pooled serum 

from KPAR (n = 8) or PBS mock-injected naïve (n = 8) donor mice. d, Survival  
of KPAR recipient mice treated with pooled serum from KPB6 (n = 8) or PBS 
mock-injected naïve (n = 8) donor mice. e, Quantification of KPAR cell death 
following treatment with naïve or KPAR sera with or without heat inactivation 
(n = 3 per group from 1 experiment). Data are represented as mean ± s.e.m. and 
p values were calculated using two-sided Student’s t-tests. f, Representative 
scatter plots of KPAR, EL4, and 3LL cells stained with isotype (red), 83A25 
(blue), or KPAR sera (orange). g, Detection by flow cytometry of ERV envelope 
glycoprotein on M. dunni and M. dunni.KARV cell lines using the 83A25 
antibody.



Extended Data Fig. 3 | Effect of ICB on T cell-dependent B cell responses.  
a, Quantification by flow cytometry of B220+GL7+CD95+ GC B cells or TCRβ+CD4+ 
PD1+CXCR5+ TFH cells in the spleens of anti-PD-L1 (n = 6) and isotype (n = 6) 
treated SRBC-immunised mice. Data are represented as mean ± s.e.m. and  
p values were calculated using two-sided Student’s t-tests between isotype and 
anti-PD-L1 treatments. b, Quantification of germinal centre number and size by 
PNA immunohistochemistry in anti-PD-L1 and isotype SRBC spleens (n = 6 per 
group from 1 experiment). Data are represented as mean ± s.e.m. and p values 
were calculated using two-sided Student’s t-tests. c, Quantification by flow 
cytometry of B220+GL7+CD95+ GC B cells or TCRβ+CD4+PD1+CXCR5+ TFH cells in 
the spleens of anti-PD-L1 (n = 3), anti CTLA-4 (n = 3) and isotype (n = 3) treated 
SRBC-immunised mice. Data are represented as mean ± s.e.m. and p values 
were calculated using one-way ANOVA with Bonferroni correction for multiple 
comparisons.
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Extended Data Fig. 4 | Effect of ICB on KPAR antibody responses.  
a, Quantification by flow cytometry of B220+GL7+CD95+ GC B cells or 
TCRβ+CD4+PD1+CXCR5+ TFH cells in KPAR lungs treated with anti-PD-1 (n = 6), 
anti-CTLA-4 (n = 6), or isotype control (n = 6). Data are represented as mean ± 
s.e.m. and p values were calculated using one-way ANOVA with Bonferroni 
correction for multiple comparisons. b, Serum antibody off-rate of anti-PD-L1 
and isotype KPAR sera (n = 5 mice per group from 1 experiment) incubated at 
37 °C with KPAR cells for the denoted time. Data are represented as mean ± 
s.e.m. and p values were calculated using two-way ANOVA. c, Quantification of 
PD-L1-binding antibodies in anti-PD-L1 and isotype sera (n = 6 mice per group 
from 1 experiment) prior to serum transfer. Purified 10F.9G2 anti-PD-L1 

monoclonal antibody is used as a positive control. d, Quantification by flow 
cytometry of M. dunni.KARV-binding IgM, IgG, and IgA from anti-PD-L1 (n = 6) 
and isotype control (n = 6) sera. The dotted line denotes the mean staining 
intensity of naïve sera per antibody isotype. Data are represented as mean ± 
s.e.m. and p values were calculated using two-sided Student’s t-tests.  
e, Coomassie stain of KPAR lysate immunoprecipitated with J1KK monoclonal 
or IgA isotype control. Peptides mapping to MLV envelope surface unit (SU)  
are denoted in alignment with the SU of the Emv2 envelope glycoprotein.  
f, Quantification of KPAR cell death following treatment with J1KK monoclonal 
or IgA isotype control and naïve sera. Data are represented as mean ± s.e.m. of 
technical triplicate measurements in a single experiment.



Extended Data Fig. 5 | Effect of MEK or CXCL13 inhibition on B cell 
responses. a, Quantification by flow cytometry of B220+GL7+CD95+ GC B cells 
or TCRβ+CD4+PD1+CXCR5+ TFH cells in the spleens of SRBC-immunised mice 
treated with MEKi (n = 6), G12Ci (n = 6), or vehicle (n = 6) daily starting 4 days 
post SRBC immunisation for an additional 4 days. Data are represented as  
mean ± s.e.m. and p values were calculated using one-way ANOVA with Bonferroni 
correction for multiple comparisons. b, Quantification of GC B cells or TFH cells 
in MEKi (n = 4), G12Ci (n = 4), and vehicle (n = 4)-treated KPAR lungs. Data are 
represented as mean ± s.e.m. and p values were calculated using one-way 
ANOVA with Bonferroni correction for multiple comparisons. c, Quantification 
by flow cytometry of KPAR-binding IgM, IgG, and IgA from MEKi (n = 4), G12Ci 
(n = 4), and vehicle (n = 4)-treated KPAR serum. The dotted line denotes the 
mean staining intensity of naïve sera per antibody isotype. Data are 
represented as mean ± s.e.m. and p values were calculated using one-way 

ANOVA with Bonferroni correction for multiple comparisons for IgG and 
one-way ANOVA on Ranks with Tukey correction for multiple comparisons for 
IgA. d, Serum antibody off-rate of MEKi (n = 6), G12Ci (n = 6), and vehicle (n = 5) 
KPAR serum incubated at 37 °C with KPAR cells for the denoted time. Mice in  
b–d were treated with inhibitors or vehicle control daily for 5 days following 
detection of tumours. Data are represented as mean ± s.e.m. e, Quantification 
by flow cytometry of B220+GL7+CD95+ GC B cells in KPAR lungs and draining 
lymph nodes (dLN) following treatment with anti-PD-L1, anti-CD20, anti- 
CXCL13, or isotype controls (n = 9 per group from 2 experiments). Data are 
represented as mean ± s.e.m. and p values were calculated using one-way 
ANOVA on Ranks with Tukey correction for multiple comparisons. f, Survival  
of KPAR mice treated with anti-CD20, anti-CXCL13, or isotype control as 
monotherapy (n = 8 per group from 2 experiments).
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Extended Data Fig. 6 | B cell and TLS signatures, and TLS histology in 
patients with LUAD. a, Quantification of TLS and Danaher B cell geneset 
scores, unique productive BCR CDR3 amino acid sequences, frequency of IgG 
class-switched BCR sequences, and CXCL13 expression in transcripts per 
million (TPM) in TRACERx LUAD and LUSC patients. Symbols represent the 
average value of individual tumour regions or of adjacent normal lung tissue, 
and numbers below the plots indicate the number of patients. P values were 
calculated using one-way ANOVA on Ranks with Dunn’s correction for multiple 
comparisons. b, Comparison of TLS geneset and Danaher B cell scores in paired 
TRACERx LUAD (n = 49 pairs) and LUSC (n = 27 pairs) samples and adjacent 

normal tissue samples. Symbols represent individual patients and p values 
were calculated using two-sided paired Student’s t-tests, except for Danaher  
B cell score in LUAD for which a Wilcoxon Signed Rank test was used.  
c, Correlation of TLS geneset and Danaher B cell scores with tumour purity in 
tumour regions from TRACERx LUAD (n = 166 patients, 406 regions) and LUSC 
patients (n = 111 patients, 272 regions). Symbols represent individual regions 
and R and p values were calculated using linear regression. d, Representative 
image (top) of TLS (arrows, scale bar 250 µm) and quantification of TLS in 
TRACERx LUAD (n = 165) and LUSC (n = 108) patients (bottom).



Extended Data Fig. 7 | B cell signatures in LUAD patients. a, Kaplan-Meier 
plots depicting disease-free survival of TRACERx LUAD and LUSC patients 
stratified by median expression of CD79A, CD19, MS4A1 or CXCL13 (n = 85 vs 85 
for LUAD; n = 56 vs 56 for LUSC). P values were calculated using Log-rank tests. 

b, Overall survival of TCGA LUAD and LUSC patients stratified by median 
expression of CD79A, CD19, or MS4A1 (n = 123 vs 123 for LUAD; n = 122 vs 122  
for LUSC). P values were calculated using Log-rank tests.
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Extended Data Fig. 8 | Association of CXCL13 with survival in human cancer. 
a, Overall survival of TCGA patients stratified by expression of CXCL13 by 
median (n = 123 vs 123 for LUAD, 122 vs 122 for LUSC, 114 vs 114 for SKCM, 64 vs 
64 for SARC, 43 vs 43 for PAAD, 90 vs 90 for LIHC, 38 vs 38 for GBM, 135 vs 135 for 
UCEC, 124 vs 124 for HNSC, 130 vs 130 for KIRC, 71 vs 71 for KIRP). P values were 
calculated using Log-rank tests. b, CXCL13 mRNA expression in transcripts per 

million (TPM) in TCGA samples (n = 492 for LUAD, 488 for LUSC, 458 for SKCM, 
258 for SARC, 174 for PAAD, 360 for LIHC, 152 for GBM, 540 for UCEC, 496  
for HNSC, 522 for KIRC, 284 for KIRP). Black lines denote mean expression.  
c, Spearman’s correlation matrix of the indicated B cell-specific genes, CXCL13 
and TLS geneset scores and Danaher scores for B cells, CD8+ T cells and NK cells 
in TRACERx LUAD (n = 170). All correlations were significant (p < 0.05).



Extended Data Fig. 9 | Association of B cell signatures with mutation  
status in TRACERx. a, Correlation of TLS geneset and Danaher B cell scores, 
unique productive BCR CDR3 amino acid sequences, and frequency of IgG 
class-switched BCR sequences with total tumour mutational burden (mutations 
per megabase) in tumour regions (n = 170 patients, 420 regions) from TRACERx 
LUAD patients. Symbols represent individual regions and R and p values were 
calculated using linear regression. Calculated p values for unique CDR3s and 
IgG frequency correlations with total tumour mutational burden were 0.0188 
and 0.000887, respectively, using a linear mixed effects (LME) model that 
corrected for smoking status and patient random effects. b, TLS geneset and 
Danaher B cell scores in tumour regions (n = 170 patients, 420 regions) from 
TRACERx LUAD patients according to patient smoking status (never-smoked, 
n = 32 regions; ex-smoker, n = 215 regions; smoker, n = 173 regions), TP53 mutation 
status (wild-type, n = 217 regions; truncal, n = 168 regions; subclonal, n = 35 
regions), EGFR mutation status (wild-type, n = 378 regions; truncal, n = 41 
regions; subclonal, n = 1 region), or KRAS mutation status (wild-type, n = 227 
regions; truncal, n = 177 regions; subclonal, n = 16 regions). Symbols represent 
individual regions and p values were calculated using one-way ANOVA on Ranks 
with Tukey correction for multiple comparisons.
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Extended Data Fig. 10 | Envelope codogenic HERV expression in healthy 
and malignant tissues. a, Heatmap of expression of envelope codogenic 
HERVs in TCGA and TRACERx LUAD and LUSC samples. For TRACERx patients, 
columns represent average expression of all individual tumour regions.  

b, Expression in TPM of ERVK-7, ERV3-1, and ERVMER34-1 in TCGA (n = 24 per 
cancer type) and GTEx (n = 2–156 per tissue type). Box plots denote median 
value and quartiles, whiskers denote 1.5x the interquartile range, and individual 
points denote outliers.



Extended Data Fig. 11 | Correlates of ERVK-7 expression and HERV-K(HML-2) 
envelope glycoprotein expression in LUAD. a, Correlation of ERVK-7 
expression with Danaher geneset scores for immune cells denoted in TRACERx 
LUAD patients (n = 167). Correlation co-efficient and p values were calculated 
using linear regression. b, Representative staining intensities for HERV- 
K(HML-2) envelope glycoprotein in TRACERx LUAD tumour microarray 
sections (scale bars 500µm; inset scale bars 50 µm). c, Correlation of ERVK-7 
expression with global methylation (n = 311 patients) or SOX2 expression in 
FPKM-UQ (Fragments Per Kilobase of transcript per Million mapped reads 
upper quartile) (n = 407 patients) in TCGA LUAD samples. Symbols represent 
individual patients and R and p values were calculated using linear regression. 

d, Correlation of ERVK-7 expression with ploidy-adjusted ERVK-7 proviral copy 
numbers in tumour regions (n = 158 patients, 393 regions) from TRACERx 
LUAD patients (left) or with the average copy number of the ERVK-7 genomic 
location in TCGA LUAD patients (n = 407 patients) (right). Symbols represent 
individual regions for TRACERx LUAD and individual patients for TCGA LUAD 
samples, and R and p values were calculated using linear regression. e, Heatmap 
of expression of envelope codogenic HERVs in SMC LUAD samples. f, Correlation 
of ERVK-7 expression with CD8+ T cell scores in SMC LUAD samples. Symbols 
represent individual patients and R and p values were calculated using linear 
regression.
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Extended Data Fig. 12 | Flow cytometry gating strategies. a, Example of 
gating for the identification of mouse GC B cells (B220+GL7+CD95+) and TFH cells 
(CD4+TCRβ+PD-1+CXCR5+) in the immune cell (CD45+) fraction. This gating 
strategy was used for the enumeration of GC B cells and TFH cells in Fig. 1d,e, 
Fig. 2f,h, Fig. 3c,j, and Extended Data Figs. 1d, e, 3a,c, 4a, and 5a,b,e. b, Example 
of gating for the identification of HEK293T (GFP-negative), HEK293T.ERV3-
1env (GFP-low) and HEK293T.HERV-K(HML-2)env cells (GFP-high), mixed in 
equal ratios for the antibody binding assay. The bottom panel depicts examples 
of HERV-K(HML-2) envelope-reactive antibody negative (HERV-K(HML-2) IgG−) 
and positive (HERV-K(HML-2) IgG+) samples. This gating strategy was used for 
the quantitation of ERV3-1 and HERV-K(HML-2) reactive antibodies in Fig. 4c–g 
and Fig. 5f.
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