
 

 
 

 

 

 

 

Gerontology , DOI: 10.1159/000534015 

Received: November 29, 2022 

Accepted: September 5, 2023 

Published online: September 19, 2023 

 

 

Associations between differential aging and lifestyle, environment, 
current, and future health conditions: Findings from Canadian 
Longitudinal Study on Aging 

Song Y,  Liu YS,  Talarico F,  Zhang Y,  Hayward J,  Wang M,  Stroulia E,  
Dixon RA,  Greiner R,  Li X,  Greenshaw A,  Jie S,  Cao B 

 

 

ISSN: 0304-324X (Print), eISSN: 1423-0003 (Online) 

https://www.karger.com/GER 

Gerontology 

 

 

Disclaimer: 

Accepted, unedited article not yet assigned to an issue. The statements, opinions and data contained 
in this publication are solely those of the individual authors and contributors and not of the publisher 
and the editor(s). The publisher and the editor(s) disclaim responsibility for any injury to persons or 
property resulting from any ideas, methods, instructions or products referred to the content. 

 

Copyright: 

© 2023 S. Karger AG, Basel 

  

D
ow

nloaded from
 http://karger.com

/ger/article-pdf/doi/10.1159/000534015/4001436/000534015.pdf by U
niversity of Aberdeen- user on 04 O

ctober 2023



 

 
 

Associations between differential aging and lifestyle, environment, current, and future health 
conditions: Findings from Canadian Longitudinal Study on Aging 

Yipeng Songa, Yang S. Liua, Fernanda Talaricoa, Yanbo Zhanga, Jake Haywardb, Mengzhe Wangc, Eleni 
Strouliad, Roger A. Dixone, Russell Greinera,e, Xinmin Lia, Andrew Greenshawa, Sui Jief, Bo Caoa,* 

a University of Alberta, Department of Psychiatry, Edmonton, Canada 

b University of Alberta, Department of Emergency Medicine, Edmonton, Canada  

c Ministry of Health (Alberta), Edmonton, Canada 

dUniversity of Alberta, Department of Computer Science, Edmonton, Canada 

eUniversity of Alberta, Department of Psychology, Edmonton, Canada 

fUniversity of Aberdeen, The School of Psychology, Aberdeen, Scotland, UK 

 

Short Title: Differential aging and lifestyle, environment, current and future health conditions. 

 

Corresponding Author: Dr. Bo Cao, Department of Psychiatry, Faculty of Medicine & Dentistry, 
University of Alberta, 11361 87th Avenue, Edmonton, Alberta, T6G 2E1, Canada.  

 (780) 407-6504, cloudbocao@gmail.com. 

Number of Tables: 1. 

Number of Figures: 3. 

Word count: 3850. 

Keywords: Aging, Canadian Longitudinal Study of Aging, Biological age, Healthy longevity, Machine 
learning. 

D
ow

nloaded from
 http://karger.com

/ger/article-pdf/doi/10.1159/000534015/4001436/000534015.pdf by U
niversity of Aberdeen- user on 04 O

ctober 2023

mailto:cloudbocao@gmail.com


 

 
 

Abstract 

Introduction: An aging population is a pressing challenge for the healthcare system. Insights into 
promoting healthy longevity can be gained by quantifying the biological aging process and 
understanding the roles of modifiable lifestyle and environmental factors and chronic disease 
conditions.  

Methods: We developed a biological age (BioAge) index by applying multiple state-of-art machine 
learning models based on easily accessible blood test data from the Canadian Longitudinal Study of 
Aging (CLSA). The BioAge gap, which is the difference between BioAge index and chronological age, 
was used to quantify the differential aging, i.e., the difference between biological and chronological 
age, of the CLSA participants. We further investigated the associations between the BioAge gap and 
lifestyle, environmental factors, and current and future health conditions. Results: BioAge gap had 
strong associations with existing adverse health conditions (e.g., cancers, cardiovascular diseases, 
diabetes, kidney diseases) and future disease onset (e.g., Parkinson's disease, diabetes, and kidney 
diseases). We identified that frequent consumption of processed meat, pork, beef, and chicken, poor 
outcomes in nutritional risk screening, cigarette smoking, exposure to passive smoking, are 
associated with positive BioAge gap (“older” than expected in BioAge index). We also identified 
several modifiable factors, including eating fruits, legumes, vegetables, related to negative BioAge 
gap (“younger” than expected in BioAge index).  

Discussion/Conclusions: Our study shows that a BioAge index based on easily accessible blood tests 
has the potential to quantify the biological aging process that is associated with current and future 
adverse health events. The identified risk and protective factors for differential aging indicated by 
BioAge gap are informative for guiding policy making to promote healthy longevity. 
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Introduction 

The global population is aging rapidly. In 2015, people aged 65 and over accounted for 8.5% of the 
global population, and this percentage is projected to increase to 16.7% in 2050.[1] For developed 
countries, the proportions are higher; for example, in Canada, 16.2% were over 65 years in 2018, and 
this is projected to reach 23.4% in 2040.[2] An aging population places strain on healthcare systems 
as rates of chronic disease increase. For example, in Canada, older adult aged 65 and over, although 
representing only 16.2% of the general population, accounted for 45.7% of the total health 
expenditures in 2019.[2] Understanding aging, and its interactions with lifestyle, environmental 
factors and chronic disease, is a prerequisite for implementing effective interventions to promote 
healthy longevity. Chronological age is a common choice for representing and quantifying aging 
processes. However, the full complexity of biological aging cannot be encapsulated solely by 
chronological age, as people with the same chronological age can have significantly different 
functionality and health conditions. 

Currently, researchers are searching for biomarkers to help gauge the full complexity of the aging 
process.[3] Among them, various biological age (BioAge) predictors, also called BioAge indices, have 
been developed.[3–6] Aging leaves many footprints on the biological system, including telomere 
shortening, gradual changes in gene expression, and DNA methylation levels.[4] A commonly used 
approach to developing a BioAge index is to construct machine learning (ML) models that predict 
chronological age based on biological measurements collected from a large population. Then, given 
the unique biological measurements of an individual, the model can estimate their BioAge.[4] Such a 
method may capture differences in BioAge for people of the same chronological age. If trained on a 
representative population, the model estimates of BioAge should reflect the typical (i.e., expected) 
aging. The BioAge gap, which is defined as the gap between estimated BioAge index and 
chronological age, is a measure of the differential aging (the difference between BioAge and 
chronological age).[4] A positive BioAge gap indicates individuals are biologically “older” than would 
be expected given their chronological age, which may result from accelerated accumulation of 
multiple morbidities in aging. A negative BioAge gap suggests individuals are biologically “younger” 
than would be expected given their chronological age, which may result from fewer morbidities or 
delayed biological aging.  

Many types of biological measures have been used to quantify aging, including metabolomics, 
proteomics, epigenomic, and transcriptomics.[3,7] Several recent studies have also used easily 
accessible clinical laboratory biochemical and haematology tests to develop BioAge indices in 
humans. Putin et al.[8] created a BioAge index using an ensemble of 21 deep neural networks on 46 
clinical blood test measures. Mamoshina et al.[9] developed another aging index based on 20 
selected laboratory biomarkers using a deep neural network, and the model was used to quantify the 
accelerated aging effects among smokers. At present, no study has fully explored the utility of 
laboratory measures based BioAge indices in characterizing the interactions between differential 
aging and lifestyles, environmental factors, current disease, and prospective disease. Understanding 
these associations and identifying risk factors for differential aging could guide effective public-health 
interventions to promote healthy longevity. Further, a BioAge gap could theoretically be used to 
predict and prevent future diseases and promote healthier aging.  

The Canadian Longitudinal Study on Aging (CLSA) is one of the largest aging research projects in the 
world[10], collecting comprehensive information on lifestyle, home, and environmental factors, 
disease status, and standard clinical laboratory biochemistry and haematology measures for about 
30,000 participants aged 45 years to 87 years old. We aimed to develop a BioAge index using the 
clinical laboratory measures in CLSA data[10] to quantify biological aging at the individual level. We 
also aimed to investigate the relationships between differential aging indicated by the BioAge gap 
and lifestyle, home and environmental factors, and current and prospective chronic diseases based 
on the comprehensive measures in CLSA data. Addressing the role of associated risk factors occurring 
in differential aging may provide a more sensitive index of biological aging. 
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Materials and Methods 

Data 

CLSA is a Canada-wide longitudinal study on adult development and aging.[10] Over 50,000 
Canadians aged 45 and over participated in the study with a planned follow up of at least 20 years. 
Residents living on First Nations reserves or in long-term care institutions, full-time members of the 
Canadian Armed Forces, and those cognitively impaired or who cannot respond in English or French 
are excluded from the CLSA study.[10] For this study, we used the Comprehensive Cohort of CLSA 
study, comprised of 30,097 participants for whom data were collected through both in-home 
interviews and CLSA data collection sites visit. 4,673 subjects without laboratory measures at the 
baseline were excluded from the analysis. Currently, the baseline data collected from 2012 to 2015 
and the follow-up phase data collected from 2015 to 2018 are available. We retrieved the 
chronological age, clinical laboratory measures (detailed information can be found in Table S1), 
socioeconomic status, lifestyle, home and neighbourhood environmental factors, and disease 
conditions at the baseline, and 10 primary chronic disease conditions (including all the neurological 
and psychological disorders and some common chronic diseases, e.g., cancer, heart disease, and 
kidney disease) at the follow-up phase.  

Aging index development 

To construct the BioAge index, the 31 laboratory measures present in the CLSA data and sex were 
used as the predictive variables, while the chronological age at the time of blood sample collection 
was used as the target outcome. See Table S1 for the summary statistics of these measures and 
chronological age. The data was initially split into a training set (80% of the data) and a test set (20%). 
Various ML models were chosen and trained on the training set. The model that exhibited the 
highest performance in terms of R-Squared error on the test set was then selected to generate a 
biological aging index through the use of 10-fold cross-validation on the complete dataset. Details 
about the data pre-processing and modelling process can be found in the supplement. 

Post hoc analysis of important variables for building aging index 

After the models were selected and evaluated, the importance of each predictive variable was 
derived to assess their contribution in estimating the BioAge. Almost all the available variables in the 
model will have nonzero feature importance measures. However, we want to focus on interpreting 
the most important ones rather than all the variables. We implemented a permutation-based 
method to heuristically select the variables with higher than chance contributions in estimating 
BioAge for interpretation. See supplementary Figure S1 for details. 

Post hoc association analysis between variables and BioAge gap 

Having estimated the BioAge index for our CLSA cohort, we computed the BioAge gap as the 
difference between an individual’s estimated BioAge index based on CV and their chronological age. 
Details about the calculation of the BioAge gap (selecting the best performed ML models in 
estimating BioAge, predicting the BioAge in a CV framework to avoid overfitting) can be found in the 
supplement. After that, we used a linear model to explore the association between the estimated 
BioAge gap, i.e., the difference between predicted age and chronological age, and a phenotype of 
interest (e.g., diabetes) while controlling for common confounding factors, including the subject’s 
chronological age, sex, and socioeconomic status factors (education level and household income). As 
shown by Lange et al.[11], the dependence of the BioAge gap on the chronological age can be 
corrected by including chronological age as the covariate. See supplement for details of these 
socioeconomic status factors. In the above linear model, the coefficient of the phenotype represents 
its partial association with the outcome after adjusting the effect of the confounding factors. For a 
categorical phenotype variable, one level was taken as the reference level, while for a numerical 
phenotype variable, its raw value is scaled to have a mean 0 and standard deviation 1. In addition, 
the corresponding samples were removed for rare levels of categorical variables (frequency less than 
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1%) to avoid false discoveries in the related association analysis. The BioAge gap is an estimated 
value of uncertainty. Without accounting for the uncertainty, the association analysis will 
underestimate the variation, thus leading to false discovery. We applied bootstrapping to account for 
the uncertainty in the BioAge gap. See supplement for details. In addition, as chronological age is not 
measured with precision, e.g., both 70.9 years and 70.1 years are taken as 70 years old, we will only 
interpret the significant variables with an effect size larger than or close to one year. 

Results 

The best performing model explained 34.6% of the variation in the chronological age of the hold-out 
test set (Table S2, Fig. S2).  

Important variables for building the biological aging index 

The contribution of each variable to building the BioAge index is shown in Fig. S3. The post hoc 
analysis identified lymphocytes, red blood cells, mean corpuscular volume, red blood cell distribution 
width, Hemoglobin A1C, 25-hydroxyvitamin D, albumin, alanine aminotransferase, ferritin, and low-
density lipoprotein (LDL), as the most important features contributing to the BioAge index. How 
these variables affect the BioAge index in the ML model is shown in Fig. S4. 

Lifestyle factors associations with BioAge gap  

After FDR correction, 90 of the 409 lifestyle factors in CLSA data were identified to be significantly 
associated with the BioAge gap. These significant lifestyle factors, the associated effect sizes and p-
values, are shown in Table S3. The lifestyle factors are categorized into dietary and other lifestyle 
factors for results demonstration.  

Dietary lifestyle factors  

The detected associations between dietary lifestyle factors and BioAge gap can be summarized as 
follows. 1) Eating meat, i.e., beef, pork, chicken or turkey, regularly was associated with a positive 
BioAge gap. (Fig. 1A, 1B) 2) Daily consumption of processed meat, i.e., sausages, hot dogs, ham, 
smoked meat, bacon, was associated with a positive BioAge gap. (Fig. 1C) 3) The habit of eating 
fruits, legumes and vegetables was associated with a negative BioAge gap. (Fig. 1D, 1E, 1F).  

Other lifestyle factors  

The other lifestyle factors associated with the differential aging indicated by the BioAge gap can be 
summarized as: 1) Cigarette smoking status was related to a positive BioAge gap (Fig. 2A). Current 
smokers, on average, were 1.479 ± 0.133 (p-value < .001) years older measured by the BioAge index 
compared to non-smokers, and previous smoking status was also significantly associated with a 
positive BioAge gap. However, the effect size (0.236 ± 0.076 p-value =.003) of previous smoking 
status is not large enough for accurate interpretation. Many other smoking-related variables, e.g., 
number of cigarettes smoked per day, type of smokers, etc., were significant and had large effect 
sizes. In addition, to compare the smoking results with previous research[9,12], we also explored the 
association among different age groups. As shown in Fig. S5, compared to non-smokers, current 
smoking status is significantly associated with an over one-year positive BioAge gap in all the age 
groups except for those over 80 years old. Furthermore, the association between previous smoking 
status and BioAge gap is not significant among all the age groups. Furthermore, alcohol consumption 
was associated with a positive BioAge gap, but the effect size was less than one year. 2) People 
participating in strenuous activities, such as paddleball, and tennis, were predicted to be 1.40±0.451 
(p-value =.002) years younger compared to the people not participating in such activities (Fig. 2C). 
However, all other 24 strenuous sports included in the CLSA data, e.g., basketball, bicycling, hiking, 
etc., were not significant. In addition, participating in light activities, e.g., badminton, billiards, 
boating, fishing, etc., were not significant. 3) People who used a wheelchair or motorized carts for 
transportation were at risk of a one-year positive BioAge gap (Fig. 2D).  
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Association of the home and the neighbourhood environmental factors with the BioAge gap  

After FDR correction, 6 of the 28 home and the neighbourhood environmental factors were 
significantly associated with the BioAge gap. These significant environmental factors, the associated 
effect sizes and p-values, are shown in Table S4. The main finding is that passive smoking exposure at 
home was associated with a positive BioAge gap. The higher the frequency of passive smoking, the 
higher the positive age gap (Fig. 2B). 

Association between the BioAge gap and current disease conditions  

After FDR correction, 79 of the 379 disease-related variables were significantly associated with a 
BioAge gap. These significant disease-related variables, the associated effect sizes and p-values, are 
shown in Table S5. Some of the features with significant associations and large effect sizes can be 
summarized as: 1) Reported chronic conditions were associated with a positive BioAge gap (Fig.  3A). 
2) Various cancers, i.e., kidney cancer, other lymphoid, hematopoietic and related tissue cancer, lung 
cancer, and non-Hodgkin lymphoma, were associated with a positive BioAge gap (Fig.  3C). 3) 
Cardiovascular diseases, i.e., congestive heart failure, aneurysm, peripheral vascular disease, angina, 
stroke, heart attack, or myocardial infarction, were associated with a positive BioAge gap (Fig.  3B). 4) 
Other diseases and conditions, e.g., kidney disease or failure, multiple sclerosis, diabetes, 
emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD), or chronic changes in 
lungs due to smoking, under-active thyroid gland, pneumonia in the last year, shuffling gait and poor 
balance, were also associated with positive BioAge gap (Fig. 3D, 3E, 3F). 

Association between BioAge gap and prospective chronic disease conditions 

We selected several major chronic physical and mental disorders to see if the onset of these diseases 
in the follow-up phase was associated with the derived baseline BioAge gap. The association analysis 
results of all the selected disease conditions are summarized in Table S6. After FDR correction, 5 out 
10 future disease conditions were significant. The most significant ones are as follows: Parkinson's 
disease onset at the follow-up phase was associated with 2.21 ± 0.782 years (p-value = 0.0054) 
positive BioAge gap at the baseline. Being told by a doctor to have memory problem onset at follow-
up was associated with 0.789 ± 0.394 years (p-value = 0.0475) positive BioAge gap at baseline and 
the onset of kidney disease at the follow-up phase was associated with 1.77±0.370 years (p-value < 
0.001) positive BioAge gap at baseline. Also, the onset of diabetes at the follow-up phase was related 
to 1.10 ± 0.184 years (p-value < 0.001) positive BioAge gap at baseline. 

Modifiable risk factors 

As modifiable risk factors, those factors with the potential to be intervened or prevented, are crucial 
for interventions, we also listed out the identified modifiable risk factors with large effect size in 
Table 1. 

Discussion/Conclusion 

In this study, we showed how the biological aging can be quantified with a BioAge index estimated 
from commonly available laboratory measures and its interaction with lifestyle, home and the 
neighbourhood environmental factors, and current and future disease conditions. We successfully 
identified a series of modifiable risks, protective lifestyle and environmental factors for the 
differential aging gauged by the BioAge gap. Furthermore, we demonstrated the utility of the BioAge 
gap in informing adverse health status by its strong association with various current and future 
disease conditions. To our best knowledge, this is the first study to fully explore the associations 
between human aging, quantified by a laboratory measure-based BioAge index, and comprehensive 
lifestyle, environmental, and disease conditions. 

The variables contributing to the BioAge index are largely consistent with previous studies. For 
example, lymphocytes[13], red blood cell counts[14], Alanine Aminotransferase[15] and Ferritin[16] 
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have been identified to be associated with aging. Also, 25-hydroxyvitamin D[17] and Albumin[18] 
were shown to be related to the aging and also to poor health outcomes. Hemoglobin A1c, the 
biomarker for diagnosing prediabetic and diabetic, was observed to have a higher level among older 
nondiabetic individuals.[19] In addition, the increasing of LDL level with age was identified as a result 
of reduced LDL clearance ability within aging population.[20] 

We identified multiple medical conditions associated with the positive BioAge gap (“older” than 
expected in BioAge) in the aging population (Table 1). An array of existing chronic diseases, i.e., 
cancers, cardiovascular diseases, diabetes, kidney diseases, chronic respiratory diseases, and under-
active thyroid gland, were identified to be associated with a positive BioAge gap, which reflects the 
subject is potentially biologically “older” than expected based on her/his chronological age. Previous 
research has identified that positive BioAge gap gauged by methylation-based aging indices are risk 
factors for the incidence of cardiovascular conditions, i.e., fatal coronary heart disease, peripheral 
arterial disease, and heart failure.[21] Our results provide more evidence to support the association 
between positive BioAge gap and cardiovascular diseases. The associations observed between 
positive BioAge gap and various cancers also support previous findings that cancer and 
chemotherapy are potential aging accelerators.[22] In addition, the identified associations between 
positive BioAge gap, kidney diseases, and diabetes are also supported by previous research. Jeroen et 
al.[23] summarized the underlying mechanisms of chronic kidney disease and premature aging. And 
type 2 diabetes was identified to associated with aging acceleration, increased telomere shortening 
and mitochondrial DNA depletion.[24] Increased prevalence of thyroid disorder and decreased 
thyroid function has been observed in elderly population[25], our finding of the association between 
the under-active thyroid gland and positive BioAge gap suggests that aging acceleration may exist in 
those with hypothyroidism. The associations between positive BioAge gap, recent pneumonia, and 
chronic lung diseases suggest aging acceleration patterns may exist in those with lung disease. The 
results were partly supported by previous research that COPD, a chronic lung disease, has been 
considered a condition of accelerated lung aging[26].  

We also found that positive differential aging at baseline, i.e., a positive BioAge gap, was associated 
with the onset of kidney disease, diabetes and Parkinson’s disease about three years into the future, 
suggesting that the biological aging index might predict future disease. The association with 
Parkinson’s disease is particularly notable for Parkinson’s disease is not typically detectable in routine 
blood tests[27], which are the basis for our aging index. One potential explanation for the strong 
association with Parkinson’s disease is that dopamine neurons degenerate more quickly in 
Parkinson’s disease, leading to accelerated or exaggerated aging. [28] 

Except for the medical outcomes, we also identified multiple modifiable risk factors, those factors 
with the potential to be intervened or prevented, associated with the differential aging in the aging 
population (Table 1). We find that current and previous smoking behaviours are associated with 
positive differential aging. However, the effect size of current smoking is about 1.480 years, while the 
effect size of previous smoking is only moderate. The previous research on the association between 
smoking and aging acceleration is inconsistent. For example, Z Linli 41 identified that active regular 
smoking behaviour is associated with 1.190 years of brain age acceleration. Mamoshina et al.[9] 
found that active smokers have a higher aging rate based on laboratory measures. Associations 
between smoking status and methylation-based BioAge gaps were found by Horvath et al.[29]. Our 
results support these findings, showing that smoking may contribute to differential aging. In addition, 
unlike the results in Mamoshina et al. [9], which showed that only subjects younger than 40 years 
have signs of accelerated aging, we identified associations between current smoking and a positive 
BioAge gap across all the age groups except for those over 80 years (Figure S5). For smokers over 80 
years old, previous research has shown no increase in mortality risk compared to smokers from other 
age groups [30]. Notably, we find an association between second-hand smoking exposure and aging 
acceleration. Overall, our results imply that quitting smoking and reducing second-hand smoking 
exposure could promote healthy longevity and slow down biological aging.  
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Previous research has shown that accelerated aging, as indicated by telomere length and DNA 
methylation contents, is associated with dietary phosphate intake from red meat consumption. Our 
results support this finding. We further identified that eating chicken or processed meat are related 
to “older” than expected BioAge. Healthy eating, on the other hand, e.g., frequent consumption of 
legumes, vegetables, and fruits, is known to lower the risk of cardiovascular disease and cancer and 
are recommended in dietary guidelines [31]. We find support for these dietary recommendations 
showing their associations with “younger” than expected BioAge. Playing tennis was particularly 
protective against negative BioAge gap, supporting the idea that physical activities promote health 
status in older adults.[32] Overall, our results imply that healthy eating and vigorous sport benefit 
the elderly by slowing down their biological aging.    

Our study has several limitations. First, the positive BioAge gap only indicates that the subject’s 
BioAge may “older” than expected. To validate this aging acceleration effect, we need to show that 
the positive BioAge gap increases over time in a longitudinal study. However, while CLSA is a 
longitudinal study, the laboratory measures are currently only available at baseline. Therefore, it is 
not possible to derive the BioAge gap at follow-up. Second, the observed associations cannot be 
taken as casualties and our results should be interpreted with caution.  

In summary, a BioAge index, estimated with standard lab tests, shows potential as a biomarker for 
biological aging. The strong associations between the BioAge gap and many current and future 
disease may lead to potential clinical utilization of this BioAge as a measure of differential aging. We 
identify several actionable risk factors (current smoking, regular consumption of red meat, chicken, 
and processed meat, and poor outcomes in nutritional risk screening) and protective factors (quitting 
smoking, playing tennis, regular consumption of legumes, fruits, and vegetables) that might inform 
public health policy-making to promote healthy longevity. 
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Figure Legends 

Fig. 1. Dietary factors associated with differential aging indicated by biological age gap. The level with zero height 
was the reference level in the association analysis. Gray white indicates significant risk factors, while black indicates 
significant protective factors. Red meat: the frequency of beef, pork consumption; Chicken: the frequency of chicken 
or turkey consumption; Sausage: the frequency of sausages, hot dogs, ham, smoked meat, bacon, consumption; 
Legumes: the frequency of legumes consumption, including beans, peas, lentils; Fruit: fresh, frozen or canned fruit; 
Vegetable: other vegetables except for carrots, potatoes or salad; * indicates the p-value is less than .05, while ** 
indicates the p-value is less than .01. 

Fig. 2. Lifestyle factors associated with the differential aging indicated by biological age gap. Smoking: smoking 
status; Tennis: participated in tennis; Wheelchair: used a wheelchair or motorized cart in the last month; Passive 
Smoking: frequency of passive smoking exposure at home. 

Fig. 3. Current disease conditions associated with the differential aging indicated by biological age gap. Some 
diseases are combined to save space. Chronic Conditions: reported chronic conditions; Heart) heart: heart disease 
(including congestive heart failure); vascular: peripheral vascular disease or poor circulation in limbs; aneurysm: 
thoracic, abdominal, or cerebral aneurysm; angina: angina; stroke: stroke or cerebrovascular accident; heart attack: 
heart attack or myocardial infarction; coronary artery: coronary artery bypass surgery; Cancer) kidney: kidney cancer; 
lung: lung cancer; lymphoid: lymphoid, hematopoietic and related tissue; Non-Hodgkin: Non-Hodgkin lymphoma 
cancer; Lung) emphysema: emphysema, chronic bronchitis, COPD, or chronic changes in lungs due to smoking; 
pneumonia: pneumonia in the last year; Shuffling gait/ Poor balancing: shuffling gait or poor balance; Other) 
Diabetes: diabetes, borderline diabetes or high blood sugar; kidney: kidney disease or failure; Thyroid Gland: under-
active thyroid gland. 
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Table 1. Modifiable risk factors for differential aging. 

 

Variable 

Level Effect 

size 

(years) 

Std P-value 

Smoking 

status 

Don’t smoke 

(reference level) 

Currently smoker 

Former smoker 

0 

 

1.48 

0.24 

NA 

 

0.133 

0.076 

NA 

 

< 0.001 

0.003 

Passive 

smoking 

Never (reference 

level) 

Everyday 

< 1/Month 

0 

 

0.89 

0.54 

NA 

 

0.228 

0.309 

NA 

 

< 0.001 

0.082 

Red meat Rarely/never 

(reference level) 

0 NA NA 

 Per day 

Per week 

Per month 

1.34 

1.19 

0.85 

0.297 

0.158 

0.178 

< 0.001 

< 0.001 

< 0.001 

White 

meat 

Rarely/never 

(reference level) 

Per day 

Per week 

Per month 

0 

 

0.63 

1.27 

1.19 

NA 

 

0.403 

0.214 

0.247 

NA 

 

0.119 

< 0.001 

< 0.001 

Processed 

meat 

Rarely/never 

(reference level) 

0 

 

NA 

 

NA 
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Per day 

Per week 

Per month 

1.08 

0.54 

0.50 

0.324 

0.106 

0.103 

0.001 

< 0.001 

< 0.001 

Legumes Rarely/never 

(reference level) 

Per day 

Per week 

Per month 

0 

 

-0.96 

-0.77 

-0.43 

NA 

 

0.199 

0.129 

0.139 

NA 

 

< 0.001 

< 0.001 

0.003 

Vegetable Per month 

(reference level) 

Per day 

Per week 

0 

 

-0.86 

-0.58 

NA 

 

0.206 

0.208 

NA 

 

< 0.001 

0.006 

Fruit Per month 

(reference level) 

Per day 

Per week 

0 

 

-0.73 

-0.43 

NA 

 

0.220 

0.226 

NA 

 

0.001 

0.061 

High 

Nutritional 

Risk 

No (reference level) 

Yes 

0 

0.51 

NA 

0.079 

NA 

< 0.001 

Playing 

tennis 

No (reference level) 

Yes 

0 

-1.40 

NA 

0.451 

NA 

0.002 
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