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Abstract: The Lower Devonian plant-bearing Rhynie Chert, Aberdeenshire, UK, consists of sinters deposited by a hot spring
system. Like many modern hot springs, the Rhynie geothermal system was lithium-rich, and its silica deposits are richer in
lithium than other current or fossil sinters. Twenty samples of Rhynie sinter have a mean content of 255 ppm lithium. The high
values imply exceptional lithium contents in the spring waters. Together with pegmatites and granites in the same region, the
chert is related to a lithium-rich Late Caledonian magmatic suite, of which it is a surface expression. The measurements suggest
that ancient hot spring deposits could provide valuable data during the exploration for lithium.
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Large resources of lithium are needed for the foreseeable future, in
particular for batteries in electric vehicles (Diouf and Pode 2015; Xu
et al. 2020; Masias et al. 2021). Much exploration for the required
lithium resources is in pegmatites and related granite plutons
(Bradley et al. 2017), and geothermal waters with associated clay
deposits (Kesler et al. 2012; Bowell et al. 2020). These alternatives
are represented by different reservoirs of lithium in time and space.
The plutonic rocks formed deep sub-surface in the geological past,
some as old as the Precambrian. The geothermal deposits are in
many cases young (Miocene to modern) hot spring systems and
their clay deposits, at the Earth’s surface (Benson et al. 2017;
Bowell et al. 2020). Exploration strategies are accordingly very
different. Plutons are not commonly associated with deposits at the
contemporary surface. However, in the British Caledonides, a well-
preserved Lower Devonian hot spring deposit coeval with a metal-
rich batholith allows a possible coupling of the two exploration
plays. In the Grampian region of NE Scotland, the Rhynie Chert, a
hot spring deposit dated at 407.6 ± 2.2 Ma (Mark et al. 2013) occurs
within 30 km of lithium mica granite, also dated at about 408 Ma
(Smith et al. 2002). The established lithium enrichment in the
granite (Webb et al. 1992) suggests the possibility of a lithium
enrichment in the coeval geothermal deposit at Rhynie.

Lithium in the Caledonides

Pegmatites rich in critical elements (LCT, lithium–caesium–
tantalum; NYF, niobium–yttrium–fluorine) occur along the
Caledonides suture zone from eastern Canada to northern
Norway, encompassing the boundaries between Laurentia and
both Avalonia/Gondwana and Baltica (Fig. 1). The Brazil Lake
LCT pegmatite in Nova Scotia intruded within the interval 410–
395 Ma (Kontak 2006). In central Newfoundland, numerous LCT
pegmatite prospects have been identified (Magyarosi 2020), in a
zonewhere many granites and pegmatites date at 410–390 Ma (Kerr
et al. 2009). NYF-rich pegmatites on the Baltica margin are dated
410–400 Ma (Hetherington et al. 2021).

In Britain and Ireland, the Late Caledonian (Late Silurian to Early
Devonian) granite suite is similarly partly lithium-rich. Commercial

prospectivity is evident in lithium pegmatite resources in the Leinster
Granite (Barros et al. 2022;Wall Street Journal 2022), exploration for
lithium pegmatites in the Grampian region (British Geological Survey
2016) and exploration of lithium-rich brine related to the Weardale
Granite (Whitfield 2021; Jasi 2023). While exploration for lithium
has focused on plutonic rocks, Late Caledonian magmatism also
yielded large volumes of approximately coeval lavas. Similar ages for
Late Caledonian granitic plutons and andesitic/rhyolitic volcanic
rocks reflect a genetic relationship between them and imply that much
volcanic rock of this age was eroded away (Neilson et al. 2009). Loss
of the surface volcanics would, however, leave roots in the underlying
basement. Late Caledonian dykes of mixed breccia and igneous rock
(tuffisites and similar) are widespread in Britain and Ireland,
reflecting pathways for magmatic fluids and degassing that reached
the surface (e.g. Rock et al. 1986; Hunt andMohr 2007). This activity
would have involved interaction with the hydrosphere, and generated
hot springs and other phreatomagmatic phenomena. The Early
Devonian sedimentary record shows evidence of such interactions
(Kokelaar 1982; Hole et al. 2013), including the hot spring system
which formed the Rhynie Chert (Rice and Trewin 1988; Rice et al.
1995). Hot springs in particular play a role in the lithium cycle today.

Lithium in hot spring systems

The waters of active geothermal systems are a potential source of
commercially viable lithium. Hot springs are enriched in lithium at
many sites globally (Goldberg et al. 2020; Stringfellow and Dobson
2021; Wang et al. 2021; Sanjuan et al. 2022). Spring waters have
the advantages as a resource of being renewable, and of containing
lithium and other elements already in a form convenient for
processing. Chemical sediments deposited from the spring waters
(siliceous sinters, travertine carbonates) may also carry the lithium-
rich signature, and they can even include lithium mineral
precipitation (Bargar et al. 1973). The hot spring sediments may
be commercially exploited for caesium, which commonly accom-
panies lithium (Trueman et al. 2020). Data for hot spring deposits
are largely limited to relatively young (Miocene to recent)
sediments, and they are rare in ancient equivalents. Exploration
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for gold in the Lower Devonian Rhynie Chert, UK, shows that
siliceous sinters which constitute the chert contain the trace element
signature of an ancient hot spring system (Rice and Trewin 1988;
Rice et al. 1995). The metalliferous spring deposits are attributed to
a source in underlying andesitic magmas and/or granite (Rice et al.
1995; Parry et al. 2011). The Rhynie Chert is therefore suitable for
assessment of lithium concentration in ancient sinter deposits, and
also the surface expression of lithium concentration during late
Caledonian magmatism.

This study assesses:

(i) comparison of the lithium content of the Rhynie Chert with
other lithologies in the surrounding region, to determine if
the chert values are anomalously high;

(ii) determination if the lithium content in the whole region is
anomalous relative to the crustal mean composition;

(iii) comparison of the lithium content of the Rhynie Chert with
siliceous sinters in modern and ancient hot spring deposits.

Data are also reported for caesium, which accompanies lithium due
to their comparable chemistry.

Geological setting

The Rhynie Chert (Fig. 2) is a Lower Devonian (c. 410 Ma)
lagerstätte of early plants and their accompanying biota (Trewin and
Fayers 2015), preserved by early silicification from adjacent hot
springs at the faulted margin of a small continental basin. The
margin itself is marked by quartz vein rock and silicified breccias.
The deposit constitutes the world’s oldest preserved terrestrial
ecosystem. Multiple episodes of hot spring activity resulted in
siliceous sinters, which are interbedded with shales and sandstones
in a section about 35 m thick (Rice et al. 2002). The chert is
underlain by andesite, and sandstones with interbedded tuffs. These
rocks are part of a Lower Devonian section in a basin (the Rhynie
Basin) which developed on a surface composed of Neoproterozoic
metasediments (Dalradian Supergroup), Ordovician intrusions
(‘Newer Gabbros’) and Late Caledonian granite–norite. Together,
the Late Caledonian plutonic rocks and the andesites belong to a
magmatic suite which is probably related to slab break-off following
NW-directed subduction below the Iapetus Ocean (Neilson et al.
2009; Archibald et al. 2022). The Rhynie Chert is one expression of
widespread Lower Devonian geothermal activity in Scotland and
Ireland, along with gold and iron–manganese mineralization, all
associated with the magmatism (Nicholson 1989; Rice et al. 2002;
Tanner 2014; Hill et al. 2015). The geothermal activity is
exceptional in including surficial deposits at Rhynie.

Methodology

Samples of sinter were taken from a borehole (19C) drilled in 1988
and a logged trench section (03/T1) excavated in 2003 (Trewin and
Fayers 2015), supplemented by float material in the trench and
immediately adjacent ground. In addition to 20 samples of sinter,
samples from Rhynie also included basin margin fault rock from the
adjacent basin margin, and andesite/tuff from the underlying
succession. The fault rocks included three samples collected from
surface blocks at the trace of the margin, and a sample at the faulted
sediment/basement boundary in borehole 97/2, depth 210.44 m
(Rice et al. 2002). Andesite was sampled from the surface and from
borehole 97/8, depth 51.4 m (Rice et al. 2002).

The geochemistry of Rhynie Chert sinter samples (Table 1) was
compared with mean values for Late Caledonian granites from
Britain and Ireland (Supplementary Table 1). Trace element
contents were measured in samples using inductively coupled
plasma mass spectrometry (ICP-MS) and inductively coupled
emission spectroscopy at the ALS Minerals Loughrea Laboratory,
Ireland, using method ME-MS61L. Samples of c. 30 g rock were
milled and homogenized, and 0.25 g digested with perchloric,
nitric, hydrofluoric and hydrochloric acids to near dryness. The
residue was topped up with dilute hydrochloric acid, and analysed
using a Varian 725 instrument. Samples with high concentrations
were diluted with hydrochloric acid to make a solution of 12.5 ml,

Fig. 1. Location of Rhynie Chert, and
pegmatites rich in rare elements, along
Caledonides suture between Laurentia,
Gondwana and Baltica. Map modified from
Dokken et al. (2018).

Fig. 2. Geological map of Rhynie, showing locations of chert samples,
and immediately adjacent andesite, tuff and granite. Map modified from
Rice et al. (2002).
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Table 1. Composition and element ratios for cherts and volcanic beds, and feeder zone rocks at basin margin

Description Li Cs Rb Li/Rb Cs/Rb Nb Ta Nb/Ta Mg Mg/Li S Al
ppm ppm ppm ppm ppm % % %

Cherts
RCS1 Trench 03/T1/float 5 102.0 4.9 7.2 14.21 0.68 0.16 0.02 7.85 0.01 0.98 0.01 0.33
RCS2 Trench 03/T1/bed 1 141.0 20.2 14.4 9.79 1.40 2.47 1.80 1.37 0.04 2.84 0.12 0.76
RCS3 Float D50 146.5 20.0 57.8 2.53 0.35 3.56 1.41 2.52 0.08 5.46 0.15 1.69
RCS4 Float R47 153.0 7.2 30.8 4.97 0.23 3.09 2.20 1.40 0.05 3.27 0.03 1.15
RCS5 Float RJ101 155.0 8.1 41.4 3.74 0.20 2.98 0.40 7.45 0.07 4.52 0.04 1.40
RCS6 Borehole 19C/8.35 m 158.5 20.5 33.5 4.73 0.61 2.44 1.46 1.67 0.14 8.83 0.28 1.26
RCS7 Float WHS J1 164.0 16.8 38.7 4.24 0.43 2.64 2.18 1.21 0.06 3.66 0.02 1.21
RCS8 Trench 03/T1/bed 9i 170.5 10.9 17.2 9.91 0.63 0.28 0.05 5.56 0.03 1.76 0.15 0.76
RCS9 Float WHS17 173.5 8.2 37.4 4.64 0.22 1.93 0.33 5.85 0.05 2.88 0.02 1.18
RCS10 Trench 03/T1/bed 11 205.0 14.0 24.2 8.47 0.58 0.90 0.15 6.02 0.04 1.95 0.03 0.72
RCS11 Trench 03/T1/bed 13 205.0 7.1 8.9 23.16 0.80 0.93 1.20 0.78 0.01 0.49 0.07 0.33
RCS12 Trench 03/T1/bed 3 219.0 19.3 35.7 6.13 0.54 2.86 1.17 2.44 0.06 2.74 0.02 1.22
RCS13 Trench 03/T1/bed 5 261.0 21.0 70.6 3.70 0.30 5.41 1.90 2.85 0.10 3.83 0.10 2.21
RCS14 Trench 03/T1/bed 9ic 267.0 35.9 86.3 3.09 0.42 7.31 1.02 7.17 0.18 6.74 0.09 3.44
RCS15 Float RDA111 276.0 31.4 75.7 3.65 0.41 6.33 1.99 3.18 0.10 3.62 0.06 2.20
RCS16 NHM ID 0-1 301.0 6.0 4.4 68.25 1.36 0.13 0.01 13.40 0.01 0.33 0.02 0.44
RCS17 Trench 03/T1/float 6 381.0 19.7 29.9 12.74 0.66 3.85 1.14 3.38 0.08 2.10 0.06 1.88
RCS18 Trench 03/T1/bed 14 485.0 25.2 37.1 13.07 0.68 4.87 1.52 3.20 0.08 1.65 0.23 2.46
RCS19 Float RCSS1 506.0 17.8 36.8 13.75 0.48 5.36 1.48 3.62 0.09 1.78 0.03 2.38
RCS20 NHM ID 10-11 637.0 17.4 32.9 19.36 0.53 6.09 1.58 3.85 0.10 1.57 0.17 2.79
RCSM1 Borehole 19C/19.4 m 133.5 43.7 68.8 1.94 0.64 5.43 1.17 4.64 0.30 22.47 0.81 2.88
Volcanic beds

Andesite WHA1 115.5 1.7 94.6 1.22 0.02 17.25 1.05 16.43 1.82 157.58 0.01 7.98
Andesite 102F 170.5 7.1 250.0 0.68 0.03 18.10 1.40 12.93 0.54 31.67 0.01 6.57
Tuff 97/5 23.6 m 25.5 15.6 321.0 0.08 0.05 25.20 2.00 12.60 0.05 19.61 0.48 8.13

Feeder system
Quartz veinrock MRT 54 177.0 7.4 219.0 0.81 0.03 10.55 2.08 5.07 0.09 5.08 0.03 4.49
Quartz veinrock QV1 126.0 1.5 31.5 4.00 0.05 0.06 0.06 1.00 0.03 2.38 0.01 0.81
Quartz veinrock QV2 207.0 3.5 61.1 3.39 0.06 4.42 1.73 2.55 0.27 13.04 0.01 2.39
Cherty Breccia (97/2 210.44 m) 276.0 3.8 74.4 3.71 0.05 4.64 1.23 3.77 0.84 30.43 0.10 2.67
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homogenized, then analysed by ICP-MS. Results were corrected for
spectral inter-element interferences. The limits of detection/
resolution are 0.05 and 10 000 ppm. Geological Certified
Reference Materials (CRMs) utilized included MRGeo08 (mid-
range multi-element CRM), GBM908-10 (base metal CRM),
OGGeo08 (ore grade multi-element CRM) and GEOMS-03
(multi-element CRM). Results for CRM analysis were within the
anticipated target range (upper and lower bound) for each metal and
standard. Duplicate analysis of samples produced reported values
within the acceptable range for laboratory duplicates.

Scanning electron microscopy (SEM) was conducted in the
Aberdeen Centre for Electron Microscopy, Analysis and
Characterization facility at the University of Aberdeen using a
Carl Zeiss Gemini SEM 300 VP Field Emission instrument
equipped with an Oxford Instruments NanoAnalysis Xmax80
Energy Dispersive Spectroscopy detector, and AZtec software suite.
Measurement of metallic elements was made using factory
elemental standards. The content of tungsten in titanium oxide
grains was measured, and recorded on a ternary plot, as an indicator
used in gold exploration (Agangi et al. 2019; Sciuba and
Beaudoin 2021).

Results

The 20 samples of sinter (Table 1) yielded lithium contents from
102 to 637 ppm (mean 255 ppm, median 205 ppm). The sinters
included several different chert beds in the logged trench 03/T1
(Fig. 3). The four fault rock samples contained 126 to 276 ppm
lithium. Two andesite samples contained 116 and 171 ppm lithium.
The Rhynie samples were plotted in comparison to published data
sets for modern and fossil sinters (Table 2; Fig. 4). The Rhynie
samples were also compared with other samples in the Grampian
region (Fig. 5). The regional samples included the main rocks that
constitute the basement to the Rhynie Basin: Dalradian Supergroup,
Newer Gabbros and Caledonian granites. Most notably, four

samples of zinnwaldite-bearing granite at Gairnshiel, Aberdeenshire,
yielded 723 to 2030 ppm lithium (mean 1381 ppm). The number of
comparative data sets was limited by the exclusion of lithium from
many analytical surveys.

In addition to the lithium data, SEM observations showed that
many titanium oxide grains in the Rhynie sinters contain
measurable tungsten contents. Previous observations in the cherts
show that pyrite grains are arsenic-rich and contribute to whole rock
values up to 600 pm arsenic (Parnell et al. 2022), and synchysite
mineralization represents the availability of rare earth elements and
fluorine (Parnell et al. 2023).

Discussion

Rhynie sinter samples

Globally there is abundant evidence of lithium enrichment in hot
spring systems, and spring waters generally (Seidel et al. 2019;
Neves et al. 2020). High lithium contents imply high degrees of
water–rock interaction (Tomascak 2004; Dugamin et al. 2021).
Both modern and fossil sinters show lithium enrichment from the
spring waters. The fossil sinters in Table 2 and Figure 4 are not
completely representative, as they have been analysed in support of
mineral exploration (gold or caesium). However, there is no reason
to think that this makes them less likely to be lithium-rich. Indeed,
the Rhynie Chert sinters are both gold-bearing (Rice and Trewin
1988; Rice et al. 1995; Parnell et al. 2022), and lithium-rich. The
evidence for high arsenic and fluorine contents is consistent with
deposition from a geothermal system (Bundschuh and Maity 2015;
Morales-Arredondo et al. 2016).

The lithium values for the Rhynie sinter samples are higher than
all the mean values determined for modern sinters, including well
studied deposits in Yellowstone National Park (USA), Chile, New
Zealand and the Tibetan Plateau. The values for the fault rock are
also greater than most values from hot springs elsewhere. Data for
other fossil sinters are also lower than in the Rhynie Chert. The high
values imply that the lithium content of the hot spring waters at
Rhynie was exceptional. The relationship between lithium contents
in sinters and their parent fluid would depend upon the rate of sinter
deposition and other factors. However, it is probable that the content
in the Rhynie fluid exceeded the mean values for El Tatio (Chile),
Yellowstone and the Tibetan Plateau (36.3, 2.4, 32.8 mg Li/l,
respectively; Nicolau et al. 2014; Havig et al. 2021; Wang et al.
2021), where sinters were much less lithium-rich than at Rhynie (15,
41, 63 ppm). For reference, a cut-off value of 25 mg Li/l is adopted
for commercial production from brines in China (Wang et al. 2021),
implying that the Rhynie brine would have been of commercial
value today.

The Rhynie lithium values are higher than almost all published
values for British rocks. Measurements of the most lithium-rich
granites in Cornwall, where commercial lithium exploration is
undertaken, exceed 1000 ppm (Simons et al. 2017), as does the
zinnwaldite-bearing Caledonian granite at Glenshiel,
Aberdeenshire. Hitherto, the next most lithium-rich rocks reported
are the other Late Caledonian granites. The Shap and Skiddaw
granites in northern England have mean values of 117 and 118 ppm
Li, respectively, although the mineralized Skiddaw greisen is richer
(O’Brien et al. 1985; Cooper et al. 1988). Also, in northern England,
the Weardale Granite sampled from the Rookhope borehole has a
mean content of 141 ppm Li (Holland 1967). Some measurements
of the Late Caledonian granites in NE Scotland exceed 100 ppm
(Plant et al. 1980; Gould 2001), and associated lithium pegmatites
are very rich. Other Late Caledonian granites have lower lithium
contents. For example, mean values for the Cheviot Granite,
Helmsdale Granite and Etive Granite are 70, 12, and 24 ppm
respectively (Plant et al. 1980; Batchelor 1987; Hines et al. 2018).

Fig. 3. Section of Rhynie Chert exposed in trench 03/T1, recording
lithium contents in individual numbered chert beds and detached blocks in
the underlying float. Section after Trewin and Fayers (2015).
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The high lithium values in the sinters may be engendered by a
high content of clays. Lithium is commonly resident in detrital clay
minerals (Starkey 1982; Benson et al. 2017). The cherts contain
sediment rich in micas and clays between masses of silicified plant
fossils (Fig. 6). Electron microscopy shows that the clays contain
oxide precipitates which have adsorbed other trace elements
(Fig. 6), and they may also be the residence of the lithium. A

broad correlation of lithium and aluminium (Fig. 7) further implies
that the lithium is resident in phyllosilicates (clays, micas).

Regional lithium data

Each of the other main rocks in the NE, the Dalradian Supergroup,
the Ordovician gabbros and the Late Caledonian granites, have all

Table 2. Published data for lithium and caesium contents in hot spring deposits

Data
set Location Lithology

Range Li
(ppm) (n)

Range Cs
(ppm) (n)

Mean Li
(ppm)

Mean Cs
(ppm) Reference

MS1 Solomon Islands Sinter, travertine 0.5–31.6 (22) 5.4 Smith et al. (2011)
MS2 Los Geysers, Mexico Sinter 3.3–9.1 (17) 8.7–53.7 (17) 5.9 28.5 González-Guzmán

et al. (2022)
MS3 Yellowstone Lake, Wyoming,

USA
Sinter 3–60 (10) 12.5 Shanks et al. (2007)

MS4 El Tatio, Chile Sinter 6.4–24.8 (62) 52.6–532.3
(62)

14.5 165.4 Wilmeth et al. (2020)

MS5 Utah, USA Sinter, soil 2–66 (21) 17.2 Bamford et al. (1980)
MS6 Dagejia, Tibet Sinter 11.4–29.8 (4) 2034–10 662

(4)
19.4 4299 Wang et al. (2019)

MS7 Nevada, USA Sinter 13–34 (3) 20.0 Rimstidt and Cole
(1983)

MS8 Kyushu, Japan Sinter (induced) 0.9–74.3 (15) 25.4 Yokoyama et al. (1993)
MS9 Yellowstone, Wyoming, USA Sinter 1–208 (29) 41.0 Havig et al. (2021)
MS9a Yellowstone, Wyoming, USA Sinter 0.3–5.2 (15) 2.8 Churchill et al. (2021)
MS10 Tibetan Plateau Sinter 1–331 (7) 0–4331 (10) 62.7 540.7 Feng et al. (2014)
MS11 Gulu, Tibet Sinter 52.4–83.3 (3) 536.4–1256

(3)
66.9 809.7 Elenga et al. (2021)

MS12 Virginia, USA Sinter Not known (30) 75.6 Nolde and Giannini
(1997)

MS13 Puchuldiza, Chile Sinter 1–954 (61) 131.3 Sanchez-Yanez et al.
(2017)

MS14 Waiotapu, New Zealand Sinter (selected sample) Not known 149 Jones et al. (2001)
FS1 Taron, Argentina Fossil (Miocene) sinter 10–182 (1239) 52–15 763

(1239)
37 1406 Trueman et al. (2020)

FS2 Massif Central, France Fossil (Permian) sinter 0–112 (65) 44.4 Marcoux et al. (2004)
FS3 Coromandel Volcanic Zone,

New Zealand
Fossil (Miocene) sinter 1.2–151.5 (18) 0.1–17.1 (18) 51.6 4.9 Hamilton et al. (2019)

FS4 Drummond Basin, Australia Fossil (Devonian) sinter 10–149 (12) 1–52 (12) 58.4 15.6 Uysal et al. (2011)

Fig. 4. Lithium contents of Rhynie Chert samples, compared to mean values for modern and fossil sinters. Data sources in text. Rhynie Chert has
consistently higher content. Contents capped at 400 ppm Li for clarity, but extend to over 600 ppm Li.
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yielded lower lithium contents than in the Rhynie sinters. The finer-
grained part of the Dalradian Supergroup succession, the Appin and
Argyll subgroups, had a mean Li value of 16.8 ppm (n = 14) for
samples within 20 km of Rhynie. The Ordovician rocks yielded a
mean content of 20.4 ppmLi (n = 11), in syenites and gabbros of the
Insch Complex to the east of Rhynie (Read and Haq 1963).

Pyroxenites yielded 4.1 ppm Li (n = 11) (authors’ unpublished
data). The Caledonian granites, including the Cairngorm, Ballater,
Mount Battock and Bennachie plutons, are tin–uranium granites
which are enriched in lithium relative to other Caledonian granites
elsewhere in Scotland (Plant et al. 1990). The mean value
determined for the Cairngorm Granite is 75 ppm (Plant et al.
1980). Values determined for theMount Battock Granite range from
33 to 131 ppm (Gould 2001). The composition of the Late
Caledonian granites in NE Scotland is related to melting of
protoliths with a high proportion of magmatic material, rather than
assimilation of metasediments (Steinhoefel et al. 2008), i.e. the
relative enrichment in lithium is a magmatic signature. A range of
other Devonian sedimentary samples, including sandstones, con-
glomerates and calcretes, all have low lithium contents (mean
13.7 ppm, n = 13), indicating that the anomaly is not a characteristic
of the surface environment in general. Stream sediment data for NE
Scotland confirm that there is anomalous lithium in the catchment
area of the granites (British Geological Survey 1991; Lipp et al.
2020). The spatial resolution of the stream sediment data does not
highlight the Rhynie Chert, which has a footprint of much less
than a square kilometre (Rice and Ashcroft 2004; Trewin and
Fayers 2015).

Data for the lithium content in the Late Caledonian plutons of
Britain and Ireland distinguish a group with high lithium and
rubidium but low barium and strontium, and a group with low
lithium and rubidium but high barium and strontium (Plant et al.
1980; Fowler et al. 2001, 2008). The former group are more
extensively mineralized, including tin enrichment in the granites of
NE Scotland (Plant et al. 1980, 1990). Notably, there is a link
between tin-bearing granites and availability of lithium elsewhere,
due to the occurrence of both elements in relatively volatile fluids
(Swanson 2012; Hofstra et al. 2013). Consequently, mining
companies co-explore for both commodities in pegmatites and
granites in the same licenced ground (e.g. Creamer 2023; TinOne
Resources Inc. 2023).

Exploration for lithium and rare earth elements in felsic rocks
makes use of an assessment of ‘fertility’, represented by the Mg/Li
ratio. Typically, a Mg/Li ratio from <30 to <10 is regarded as
indicating a high degree of fractionation of rare elements from other
elements (Černý 1989; Breaks et al. 2003; Selway et al. 2005).
Commercial surveys use a cut-off as high as Mg/Li = 50. The Mg/Li

Fig. 5. Mean lithium content (ppm) of
Rhynie Chert samples, compared to mean
values for other rocks in NE Scotland, and
upper crustal average. Data from Nicholson
(1987), Nicholson and Anderton (1989),
Plant et al. (1980), Read and Haq (1963),
Rice and Mark (2020) and this study. Data
ranges show standard deviations for each
rock type. Data for Mount Battock granite
show full range, as reported by Gould
(2001). Global upper crustal mean
(20 ppm Li) from McLennan (2001).

Fig. 6. Clay in chert samples. (a) Polished surface of Rhynie Chert
showing patches of silicified plant remains, and intervening sediment rich
in clays and micas. (b) Scanning electron micrograph of clay showing
oxide precipitates which have adsorbed trace elements (bright), and may
also be the residence of the lithium.
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values for the Rhynie Chert are consistently very low, ranging from
0.3 to 8.8 (mean 3.1), which indicate a system fertile for lithium.

Fertile granites also have a distinctive range of ratios for Nb/Ta <8
(Selway et al. 2005). The samples of Rhynie Chert have values
consistently <8. The two element ratios are used in combination
during exploration (Breaks et al. 2003; Selway et al. 2005; Lima
et al. 2019). A cross-plot of the ratios shows that Rhynie Chert
samples lie in the fertility field (Fig. 8). The Cairngorm granite has
notably low ratios of Mg/Li and Nb/Ta (Plant et al. 1990), and
similarly plots in the field, together with two granodiorites from the
lithium-prospective Leinster pluton. The cross-plot is intended to
fingerprint granite samples, but the preferential distribution of chert
samples in the fertility field emphasizes that they are unusually
lithium-rich.

Data for niobium and tantalum can also be plotted to distinguish
degrees of fractionation (Fig. 9). The curve of evolving composition
on a plot of Nb/Ta ratio against tantalum content (a typical 1/x
against x curve) represents progressive fractionation in granites and
transition from magmatic to hydrothermal activity (Ballouard et al.
2016, 2020; Yin et al. 2022). A Nb/Ta ratio of about 5 is suggested
to mark the transition to hydrothermal (Ballouard et al. 2016). The
data for Late Caledonian granites in Britain and Ireland show a
limited number have reached the hydrothermal stage (Fig. 9). A
majority of the Rhynie Chert samples plot in the hydrothermal field,
which is consistent with their purported deposition by hydrothermal
processes. A previous plot for a Late Caledonian plutonic suite in
Newfoundland shows fractionation culminating in lithium-rich

pegmatites (Magyarosi 2020). Both chert and pegmatites represent
late stages in the fractionation process.

Contents for caesium were measured in addition to lithium. The
group 1 alkali metals lithium, rubidium and caesium are all enriched
in hot springs, and in the Late Caledonian granites of NE Scotland.
A plot of Li/Rb against Cs/Rb (Fig. 10) shows that lithium and
caesium are relatively enriched in the hot spring system to different
degrees. The fault vein rock feeding the hot springs shows an
enrichment in lithium compared to the granite, but the chert shows
an additional enrichment in caesium (Fig. 10). Modern hot springs
can similarly show substantial enrichment in caesium (Table 2).
Caesium concentration from hot springs on the Tibetan Plateau has
been attributed to microbial activity (Wang et al. 2012), and it
reflects a wider role for biology in caesium fractionation in surface
environments (e.g. Kuwahara et al. 2011).

Lithium in hot spring systems is commonly accompanied by
tungsten, also of magmatic origin. Lithium-bearing hot springs in
New Zealand, Yellowstone and Tibet all have high tungsten
contents, up to 1600, 4000 and 1100 times the mean global river
content respectively (data in Gaillardet et al. 2003; Ullrich et al.
2013; Guo et al. 2019; Planer-Friedrich et al. 2020), and brines in
the Great Basin, USA, are exploited for both lithium and tungsten
(Ririe 1989). Similarly, the lithium-rich cherts at Rhynie are also
tungsten-rich (Parnell et al. 2022). Tungsten in sinters and other
rocks becomes incorporated in titanium oxides including rutile. The
content of tungsten in rutile is a widely measured indicator used in
gold exploration (Agangi et al. 2019; Sciuba and Beaudoin 2021).

Fig. 7. Cross-plot of Li and Al for 20
Rhynie Chert samples, showing a broad
positive correlation, which implies
residence of Li in clays/micas.

Fig. 8. Cross-plot of Mg/Li and Nb/Ta
ratios for Rhynie Chert samples and
selected Late Caledonian granites. Rhynie
Chert samples plot in field of Mg/Li <10
and Nb/Ta <8 commonly used to indicate
granite ‘fertility’ for rare elements,
including lithium.
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Measurement of over 100 titanium oxide grains in the Rhynie
sinters shows that many contain tungsten contents typical of gold-
bearing systems (Fig. 11). This is consistent with the occurrence of
anomalously high lithium contents in gold-mineralized geothermal
systems (e.g. Uysal et al. 2011; Hamilton et al. 2019). Tungsten
mineralization is also recognized in the Late Caledonian lithium-
bearing granites of the region around Rhynie (Colman et al. 1989;
Webb et al. 1992). Together, the data from the Rhynie Chert and the
granites give a picture of tungsten–lithium–gold-rich fluid that
compares well with modern geothermal systems.

Late Caledonian lithium anomaly

Although the lithium contents of the granites in NE Scotland are
lower than the chert values, the granites are still relatively lithium-
rich, and include an outcrop characterized by the lithium mica
zinnwaldite (Plant et al. 1980; Gould 2001). Together with the
formation of pegmatites containing the lithium mica lepidolite,

related to the granite complexes (Jackson 1982; Starkey and
McMullen 2017) and lithium enrichment in iron–manganese ores
including the lithium-bearing oxide lithiophorite (Nicholson 1986),
the data represent a regional flux in lithium at about 410 Ma
(Fig. 12). These components were directly related. The mineralized
lineaments, including the iron–manganese ore veins, are rooted in
hydrothermally altered zones of the plutons (Hall and Gillespie
2017). The iron–manganese veins exhibit open fabrics which
suggest (near-) surface formation along with the Rhynie hot springs
(Nicholson 1987).

The Late Caledonian granites in the Grampian region were coeval
with other granites in the Trans-Suture region of Britain and Ireland
where the Iapetus Ocean had closed to stitch Laurentia with
Avalonia (Miles et al. 2016; Barros et al. 2017; Woodcock et al.
2019). All the granites in this region are considered to belong to a
single phase of plutonism (Miles et al. 2016), although it may have
lasted 20 myr and involved evolving magma chemistry. This
commonality brings a new perspective to the Grampian lithium

Fig. 9. Cross-plot of Nb/Ta ratio and Ta content for Rhynie Chert samples
and selected Late Caledonian granites. Compositions define a fractionation
curve as magmatic processes transition to hydrothermal processes. Rhynie
Chert samples mostly have Nb/Ta <5, typical of the hydrothermal stage.
Granite samples typically have higher Ta contents.

Fig. 10. Cross-plot of Li/Rb and Cs/Rb ratios for Rhynie Chert samples,
fault rock samples and selected Caledonian granites. Fault rock samples
are relatively enriched in lithium, and Rhynie Chert samples are relatively
enriched in both lithium and caesium, relative to the granites. Three chert
samples with Li/Rb >15 or Cs/Rb >1 omitted for clarity.

Fig. 11. Ternary plot showing trace element (W, Fe, V ppm) composition
of titanium oxide grains in Rhynie Chert. Many compositions fall in field
of rutile from orogenic gold deposits from Clark and Williams-Jones (2004)
and Agangi et al. (2019). EMPA, electron microprobe analysis.

Fig. 12. Schematic summary of Late Caledonian magmatic-related rock
types in NE Scotland, including Rhynie Chert, showing occurrences of
lithium minerals and enrichments in each type. Rock associations after
Kesler (1994).
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anomaly. The Trans-Suture region includes the Leinster Granite,
Ireland and the Lake District batholith, England. The Leinster
Granite hosts lithium mineralization which is commercially
prospective (Barros et al. 2022; Wall Street Journal 2022) and in
the Lake District the Shap and Skiddaw granites also have high
(>100 ppm) lithium values (Supplementary Table 1). Immediately
to the east of the Lake District batholith, the North Pennine batholith
(Weardale Granite), dated at about 400 Ma (Kimbell et al. 2010), is
a target for lithium extraction (Whitfield 2021).

Lithium enrichment is documented in numerous collisional zones
(Zagorsky et al. 2014; Bradley et al. 2016, 2017; Li et al. 2019),
which could reflect magmatism due to ordinary arc processes, slab
breakoff during or after collision, slab delamination related to
collision, or late collisional decompression melting (Bradley et al.
2017). The enrichment in magmas is reflected in high values in both
granites and lavas, especially rhyolites (Benson et al. 2017; Chen
et al. 2020). The Late Caledonian magmatic suite includes lithium-
rich granites/pegmatites, lithium-rich andesites and the associated
Rhynie Chert (Fig. 12). There is evidence, therefore, for the
introduction of lithium through a broad region of crust, the surface
expression of which is preserved at Rhynie.

Although anomalously lithium-rich, the Rhynie Chert would not
represent a commercial prospect, even if it was not a fossiliferous
deposit of international importance. Sources of lithium in brines and
pegmatites are richer and much easier to process. However, the
Rhynie Chert is valuable in emphasizing the importance of Late
Caledonian magmatism in lithium concentration, and thus the
potential of exploring in the Caledonides. The contribution of
degassing magma to lithium mobility (Lowenstern et al. 2012;
Berlo et al. 2013; Ellis et al. 2018) and the concentration of lithium
in sediments related to magmatic environments (Hofstra et al. 2013;
Benson et al. 2017) indicate that exploration strategies could be
innovative in their choice of target rocks.

Lithium at the surface

The identification of anomalous lithium contents in the Rhynie
Chert shows that the Late Caledonian lithium anomaly in Britain
and Ireland extends from several kilometres depth where plutons
were emplaced, up to the surface. The anomaly is not limited to
granites and associated pegmatites. This implies that the search for
lithium deposits could include exploration in ancient sedimentary
basins, as has been shown commercially (Borojevic ́ Šoštaric ́ and
Brenko 2023). Models for lithium concentration in modern
sediments, and consequent exploration plays, can be extended
into comparable settings in the geological record. Lithium is
introduced to the surface in solution, but requires a mineral
residence to become concentrated at the surface. Understanding this
is central to exploration strategies. The mapping of lithium
distribution in rocks by laser-induced breakdown spectroscopy
and laser ablation ICP-MS are suitable methods for identifying the
mineral residence of lithium in the range of 10s to 1000 s ppm
(Sweetapple and Tassios 2015; Breiter et al. 2017; Jiu et al. 2023),
and will find a role in future exploration.

The enrichment of lithium in Lower Devonian magmatic rocks
has a legacy in the near-surface 400 million years later. The
interaction of basin brines with the most Li-rich Caledonian pluton
in Britain, the Weardale Granite, yields modern groundwaters with
lithium levels high enough to warrant commercial exploration and
exploitation (Whitfield 2021). The Weardale Granite also has
potential as a source of geothermal energy (Manning and Strutt
1990), which would enhance the water–rock interaction of trace
elements in the granite. This scenario is comparable to the uptake of
lithium from relatively hot Hercynian granite in Cornwall into
commercially viable deep brines (Edmunds et al. 1985; Simons
et al. 2017).

Conclusions

Data for lithium in the Rhynie Chert show that the fossil sinters that
constitute the chert are richer in lithium than other measured current
and ancient sinters. This implies that the Rhynie hot spring waters
were exceptionally lithium-rich. The cherts have higher lithium
contents than most other British rocks, including Late Caledonian
granites. Contemporary lithium-rich granites and pegmatites within
30 km of Rhynie show that the hot spring was a surface expression
of regional-scale Late Caledonian lithium-rich magmatism. This
emphasizes the value of exploring for lithium in sedimentary basins,
for resources and/or vectors to underlying Li-rich basement. In
addition to the high flux of lithium in hot springs during Rhynie
Chert deposition, water flow through the Lower Devonian
magmatic rocks remains lithium-rich over 400 million years later.
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