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a b s t r a c t 

The transformation to a resource-circular bio-economy offers a mechanism to mitigate climate change and envi- 
ronmental degradation. As advanced bioeconomy components, biorenewables derived from terrestrial, aquatic 
biomass and waste resources are expected to play significant roles over the next decades. This study provides an 
overview of potential biomass resources ranging from higher plant species to phototrophic microbial cluster, and 
their fundamental photosynthesis processes as well as biogeochemical carbon cycles involved in ecosystems. The 
review reflects empirical advances in conversion technologies and processes to manufacture value-added biore- 
newables from biomass and waste resources. The nexus perspective of resource-biorenewable-waste has been 
analysed to understand their interdependency and wider interaction with environmental resources and ecosys- 
tems. We further discussed the systems perspectives of biorenewables to develop fundamental understanding 
of resource flows and carbon cycles across biorenewable subsystems and highlight their spatial and temporal 
variability. Our in-depth review suggested the system challenges of biorenewable, which are subject to nonlin- 
earity, variability and complexity. To unlock such system complexity and address the challenges, a whole systems 
approach is necessary to develop fundamental understanding, design novel biorenewable solutions. Our review 

reflects recent advances and prospects of computational methods for biorenewable systems modelling. This covers 
the development and applications of first principle models, process design, quantitative evaluation of sustainabil- 
ity and ecosystem services and mathematical optimisation to improve design, operation and planning of processes 
and develop emerging biorenewable systems. Coupling these advanced computational methods, a whole systems 
approach enables a multi-scale modelling framework to inherently link the processes and subsystems involved 
in biomass ecosystems and biorenewable manufacturing. Reviewing modelling advances, our study provides in- 
sights into the emerging opportunities in biorenewable research and highlights the frontier research directions, 
which have the potential to impact biorenewable sector sustainability. 
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. Introduction 

Driven by a range of environmental challenges e.g. climate change
nd resource depletion, a transition from the current fossil-based to a fu-
ure sustainable bio-based economy is expected to evolve progressively
n the coming decades ( Marquardt et al., 2010 ). Fossil fuels dominate
he world’s primary energy supply, meeting 80 % of current global de-
ands, which is projected to rise by 40 % in 2035 ( IEA, 2013 ). Although
nconventional oil and gas production shows that absolute fossil fuel
epletion is unlikely to restrain demand, the substantially increased re-
ource intensity of production from such new fossil fuel reserves come
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ith a significant resource scarcity caveat ( Green Alliance, 2013 ) e.g.
EA-projected 85 % increase in water demand for energy production by
035 ( IEA, 2013 ). The accelerating resource depletion is accompanied
y concerns about increasing greenhouse gas (GHG) levels, where fos-
il fuel is a key contributor to anthropogenic GHGs ( IPCC, 2014 ). At
he Paris climate conference (COP21) in December 2015, 195 countries
dopted the legally binding global climate agreement, which sets out the
ction plans to limit the global warming to well below 2°C. An innova-
ive bio-based economy underpinned by biorenewable technologies of-
ers significant opportunities to decarbonise economic growth, develop
ptimal resource use and support global adaptation efforts. 
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The term biorenewable refers to the bio-products derived from re-
ewable biological resources or waste including food, bioenergy, bio-
uel, biochemical, biomaterial etc. A wide range of biorenewable prod-
cts can be manufactured through various technology routes ( Fig. 2 )
nd contribute to the bio-economy. The current bioeconomy across Eu-
ope is estimated to worth around €2 trillion ( Science and Technology
ommittee, 2014 ); whereas in the UK, the whole bioeconomy including
ll activities for sustainable conversion of biomass into bio-products, in
otal injected £220 billion added gross values and supported 5.2 mil-
ion jobs in 2014 ( Bauen et al., 2016 ). Its growth is expected to increase
o £440 billion by 2030 in the UK ( E. a. I. S. Department for Business,
018 ). However, as pointed out by the Stockholm Resilience Centre, hu-
an use of and impacts on the biosphere are now exceeding the multiple

nvironmental limits 3 and planetary boundaries. The planetary bound-
ries is a concept proposed by Rockström et al. (2009) to define the safe
perating space for humanity with respect to the Earth system and are
ssociated with the planet’s biophysical subsystems or processes. Such
nvironmental limits have been avoided in the past by adopting tech-
ology innovation and problem shifting, e.g. industrial revolution and
reen revolution ( Steffen et al., 2015 ). But current operation beyond
ultiple planetary boundaries does not allow for any further easy shifts

 Green Alliance, 2013 ) Thus, the burgeoning bioeconomy transforma-
ion and biorenewable sector sustainability cannot be achieved by par-
ial system solutions but calls for whole systems approaches considering
he biorenewable system complexity. 

As advanced bioeconomy components, biorenewables systems can
e broadly divided into five sub-system fragments - i.e. environment
nd natural capitals (e.g. land, water), resource production and ecosys-
em, biorenewable refining/manufacturing, distribution and network,
aste treatment. These are often regarded and investigated as isolated

ub-system fragments. In fact, they are interdependent and interlinked.
ake one of the economically favourable biorenewable sectors ( Fig. 2 ) -
gro-food - as an example to elaborate the resource-biorenewable-waste
nterdependency. Agro-foods highly depend on natural capital resources
.e. land and water. Currently, agriculture sectors account for 37 %
f global lands and 70 % of the water consumption ( FAO, 2011 ). By
050, the agricultural water withdrawn of 3000 km 

3 /yr and potential
.8 billion ha rain-fed land use and expansion of 0.33 billion ha irrigated
and are expected to take place in water-scarce regions and developing
ountries ( FAO, 2011 ). This brings severe land/water-competition issues
ith other biorenewable sectors and municipal and industrial needs in

esponse to rapid urbanisation trends and economic growth. Moreover,
ising waste generation from current agro-food sectors brings additional
tress, which is equivalent to waste of 8.5 % of annual water withdrawn
nd 28 % of agricultural lands globally ( FAO, 2016 ). Thus, the agro-
ood production is not only dependent on and constrained by resource
land/water) availability but also interlinks with built environment (e.g.
nfrastructure for waste treatment). Multiple biorenewable sectors also
nteract at system levels e.g. their competition on the same produc-
ive lands and water resources. Such complexity requires in-depth un-
erstanding of resource flows and processes across biorenewable sub-
ystems and novel system solutions to achieve resource-circularity and
ddress their interlinkage with natural and build environments. Funda-
entally, resource, biorenewable and waste form a nexus. Sitting at Nat-
ral Sciences and Engineering interface, this nexus represents a highly
ross-disciplinary research frontier. Integrating empirical and compu-
ational advances, design of advanced biorenewable solutions from a
hole systems perspective, offers a promising path to catalyse resource-
iorenewable-waste nexus sustainability. However, no publically avail-
ble study has been found to reflect the biorenewable system complexity
nd recent advances and prospects of computational methods for biore-
ewable systems research. 

Here we present a critical review of biorenewable systems, bridging
undamental and applied research perspectives at Science-Engineering
nterface with a particular focus on biorenewable systems complex-
ty and modelling research. This review article reflects state-of-the-art
2 
f biorenewable empirical research ranging from biological renewable
esources underpinned by photosynthesis and biogeochemical cycles
o biorenewable manufacturing through diverse technologies; building
pon the fundamental understanding of the empirical advances, this re-
iew highlights the biorenewable system complexity and addresses the
nterlinkage and interdependency of sub-systems. Further, our study re-
iews the modelling advances to tackle such system complexity across
ighly interdisciplinary topics and identifies the open research chal-
enges and gaps in the fields. This review study is concluded with future
esearch directions on biorenewable systems modelling. The structure
f the review is illustrated graphically in Fig. 1 . 

. Biorenewable systems 

Biomass includes all complex biogenic organic and inorganic prod-
cts generated by natural or technosphere and consists of (1) natural
onstituents originated from terrestrial or aquatic vegetation via photo-
ynthesis or generated via animal and human food digestion; (2) techno-
phere products/by-products derived from processing the natural con-
tituents above ( Balat and Ayar, 2005 ; Vassilev et al., 2010 ). In this
eview, biomass mainly refers to biological renewable resources (e.g.
igher plant species and microbial cluster) and waste 

Unlike other renewable sources, e.g. tidal energy or intermittent
ources of solar and wind energy, biomass provides flexible options to
vercome the supply instability and un-predictability by deriving ther-
al and electrical energy on demands, and offering potential for trans-
ort fuel or bio-chemical generation. Biomass is nature’s successful solar
onversion and energy storage system via photosynthesis to derive at-
ospheric CO 2 -sourced carbohydrates and lignin ( Industry and Parlia-
ent Trust, 2015 ). This coupled with carbon-containing and nutrient-

ich organic waste in solid (e.g. biodegradable fraction municipal solid
aste (BFMSW), liquid (e.g. sewage sludge) or gas (e.g. CO 2 ) phases

epresent great potential resources. 
Such a wide range of biomass organic molecules can be converted

nto a plethora of bio-products in the biorefineries. Biorefineries are
egarded as the cornerstone of the bioeconomy ( Fig. 2 ), where vari-
us thermochemical, biochemical, and chemical routes including non-
atalytic or catalytic technologies can be deployed and integrated
 Vanholme et al., 2013 ). Catalysis in particular, which has contributed
o 90 % of manufacturing in the petrochemical industry, will under-
in future biorefinery technologies in a post-petroleum era, synthesis-
ng chemical intermediates and advanced materials from non-petroleum
eedstock ( Industry and Parliament Trust, 2015 ). 

This section provides an overview of a range of potential biomass
nd waste resources, their underpinned photosynthesis, carbon cycles
nd various conversion pathways for biorenewables production, where
he interdisciplinary research nature of biorenewable systems will be
ighlighted from a system perspective. 

.1. Photosynthesis and biomass carbon cycles 

Carbon as the building block of life circulates between living organ-
sms and environments via various biochemical cycles, which refer to
he carbon cycles ( Venkata Mohan et al., 2016 ). Amongst a range of
atural and anthropogenic CO 2 sinks, bio-sequestration methods par-
icularly photosynthesis and the synthesis of bio-based products offer
ustainable routes for atmospheric CO 2 assimilation. Research over past
ecades has advanced the understanding of photosynthesis from the ini-
ial photophysics of light absorption and excitation energy transfer to
as exchange in particular in higher plant species. 

.1.1. C3 C4 and CAM photosynthesis pathways 

Photosynthesis is a redox reaction driven by light energy, in which
O 2 and H 2 O are converted into metabolites and O 2 , where dark and

ight two stage reactions are involved. Three photosynthetic pathways
an be differentiated, where Calvin-Benson-Bassham (CBB) Cycle is the
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Fig. 1. Diagram outlining the structure of the review. 

Fig. 2. Biorenewable system complexity. 
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Fig. 3. The light independent reactions of photosynthesis; carbon fixation to starch synthesis. 
The first stage of the Calvin-Benson-Bassham cycle (referred here as the Calvin cycle) involves the fixation of CO 2 by RuBisCO and assimilation into the triose 
phosphate, 3PG, within the chloroplast. The second stage of the Calvin cycle is reduction of 3PG into G3P. G3P can stay within the Calvin cycle, or leave the 

chloroplast and join the gluconeogenesis pathway for metabolism into starch synthesis. The dashed line represents multiple metabolic steps. The third stage of the 
Calvin cycle involves the regeneration of RuBP which then closes the cycle 2324 .Rectangles represent metabolites and the only enzyme highlighted for simplicity, is 

RuBisCO, located within the Calvin cycle. Abbreviations: 1,3BPG: 1, 3-biPhospho-D-glyceroyl phosphate, 3PG 3, Phosphogluterate: F6P: fructose 6-phosphate, 
F1,6bp: Fructose1,6 bisphosphatase, G1P: Glucose 1-phosphate, G2P: 2-phosphoglycerate, G3P: Glyceraldehyde 3-phosphate, G6P: Glucose 6 phosphate, GA3P: 

Glyceraldehyde 3-phopshate, OAA; Oxaloacetate, PEP; Phosphopenolpyruvic acid, RuBisCO: RuBisCO, RuBP: Ribulose 1, 5-bisphosphate. 
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redominant pathway used by the vast majority of autotrophic organ-
sms ( Bar-Even et al., 2010 ). It is also referred to as C3 cycle due to
hree-carbon compound phosphoglycerate formed. Other two photosyn-
hesis pathways rising from the evolutionary adaptation are Hatch-Slack
ycle (also referred to as C4 cycle due to the four carbon compound ox-
loacetic acid formed) ( Slack and Hatch, 1967 ) and crassulacean acid
etabolism (CAM) photosynthesis. C3 species represent approximately
5 % of higher plant species, C4 and CAM species account for 5 % and
0 % respectively ( Yamori et al., 2014 ). Their photosynthetic reactions
nd biochemical regulation differ. 

CBB cycle ( Fig. 3 ) (C3 cycle) is the largest flux of organic car-
on in the biosphere and assimilates about 100 billion tons of car-
on a year, which is equivalent to 15 % of global atmospheric car-
on ( Raines, 2011 ). CBB cycle takes place inside the chloroplast in
esophyll cell and its carbon fixation mechanism has been detailed

n ( Raines, 2011 ). C3 plants such as rice, wheat, potato use CBB cycle
nitiated by the enzyme RuBisCO (ribulose-1,5-bisphosphate carboxy-
ase/oxygenase), which catalyses the carboxylation of the CO 2 -acceptor
ibulose-1,5-bisPhosphate (RUBP) for fixing CO 

20 . RuBP, a 6-carbon
2 

4 
s metabolised into two molecules of 3-phosphoglycerate (3PG) which
re then metabolised into glyceraldehyde 3-phosphate (G3P), requiring
TP and NADPH synthesised from the light reactions of photosynthe-
is ( Raines, 2003 ; Raines, 2022 ). G3P is a triose phosphate that serves
any metabolic purposes such as synthesis of lipids, starch and amino

cids ( Johnson and Alric, 2013 ; Ma et al., 2022 ). The final phase of the
3 cycle involves the regeneration of RuBP from a series of reactions
equiring at least nine other enzymes. It is the regeneration of RuBP,
equiring ATP that closes the cycle. Fig. 3 presenting starch and su-
rose synthesis is given as an example with detailed synthesis pathways
nterpreted in Supplementary Information SI-1. However, the CBB cy-
le is limited by the low catalysis rate of RuBisCO in carboxylation and
he RuBisCO-induced competing oxygenation reaction ( Portis and Parry,
007 ), which is sensitive to environmental variables (e.g. high tempera-
ure and drought) and leads to losses of 25–30 % C fixed ( Raines, 2011 ).
n comparison with C4 and CAM species, C3 species particularly fast
rowing C3 plants demonstrated strong response to atmospheric CO 2 
oncentration with the enhanced yields under the elevated CO 2 concen-
ration ( Poorter and Navas, 2003 ). 
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C4 photosynthesis represents complex nature evolutionary traits to
uppress oxygenation ( Sage, 2004 ) and is a series of biochemical ac-
ivities partitioned between mesophyll and bundle sheath cells that are
natomically and biochemically distinct ( Wang et al., 2012 ). The ini-
ial carbon fixation is the carboxylation reaction catalysed by phospho-
nolpyruvate carboxylase (PEPC) for oxaloacetic acids (OAA) formation
rom CO 2 . OAA is further metabolised into malate, which diffuses into
undle sheath cell and decarboxylated to release CO 2 

27 . The CO 2 level
ithin the bundle sheath layer can build up to over 10 times higher

han the intercellular space thereby supressing the oxygenase activity
f RuBisCO and the subsequent energy-wasteful oxygenation and result-
ng in increased photosynthetic yields ( Wang et al., 2012 ). Benefiting
rom such metabolic mechanism (elaborated in ( Sage et al., 2012 )), C4
lants such as maize, sorghum, and sugarcane, miscanthus and a range
f C4 grass ( Osborne et al., 2014 ) demonstrate superior photosynthe-
is efficiency (approximately 50 % higher) and nitrogen and water use
fficiency (WUE) ( Majeran et al., 2010 ). Despite only occurring in less
han 5 % of the global 250,000 plant species, C4 pathway contributes
o 23 % of terrestrial gross primary productivity ( Sage et al., 2012 ).
nterestingly, a large percentage of grass species use C4 photosynthesis
athways. As shown in a comprehensive grass database covering 99.6 %
f the 11 087 grass species, 42 % of those species use the C4 photosyn-
hetic pathway with remaining 57 % using C3 pathway ( Osborne et al.,
014 ). 

CAM as a photosynthetic adaptation mode, features temporal separa-
ion of C3 and C4 components and nocturnal CO 2 uptake with optimised

UE, which is six-fold and three-fold higher than C3 and C4 species re-
pectively ( Borland et al., 2009 ; Escamilla-Treviño, 2012 ). Thus CAM
lants e.g. Agave, Opuntia , and pineapple (Ananas comosus (L.) Merr.)
ave potential to grow in arid, degraded and marginal lands for food
nd bioenergy purpose ( Yang et al., 2015a ; Mason et al., 2015 ). The
esearch on CAM metabolism can be traced back to 1960s-1970s; the
iochemistry regulation as detailed in ( Borland et al., 2009 ) may be
efined as four phases ( Osmond, 1978 ). In phase 1, CAM employs the
EPC enzyme for nocturnal CO 2 uptake, where the HCO 3 

– resulted from
arbonic anhydrase action on CO 2 is catalysed by PEPC to generate ox-
loacetate. This is followed by the malate formation from oxaloacetate
catalysed by malate dehydrogenase) and its transportation into the vac-
ole for accumulation as malic acid. RuBisCO activation is considered
o commence at the start of photoperiod, which lead to a short time
indow when CO 2 can be fixed by both PEPC and RuBisCO (phase 2).
alate decarboxylation for CO 2 regeneration in the intercellular spaces

as been regarded as Phase 3, which is catalysed by different enzymes,
epending on CAM species ( Holtum et al., 2005 ). In phase 3, the re-
enerated and concentrated CO 2 is re-fixed by RuBisCO behind closed
tomata. A transition to Phase 4 is accompanied by the re-opening stom-
ta for CO 2 uptake by RuBisCO at Dusk. The duration of each phase in
AM cycle vary with species and their response to environment ( Winter
t al., 2008 ). 

.1.2. Photosystems and photosynthesis light reactions 

As described in Section 2.1.1 photosynthetic functions involve har-
esting light to produce ATP and NADPH which are essential cofac-
ors in downstream metabolism. Photosynthesis occurs within the thy-
akoid membranes inside the chloroplast. As proposed by Hill and Ben-
all (1960) , the light-dependent reactions of photosynthesis involves a
hotolysis reaction, powered by light energy that splits a water molecule
nto molecular oxygen, an electron, and an hydrogen ion. The electrons
re passed through a series of carrier proteins located within thylakoid
embrane and through a series of oxidation/reduction reactions, results

n the production of NADPH. The passing of electrons along the elec-
ron transport chain is coupled to the translocation of hydrogen ions
cross the thylakoid membrane which generates a proton gradient. The
roton gradient produces a proton motive force that drives the produc-
ion of ATP as a result of proton movement across the thylakoid mem-
rane through the ATP synthase enzyme ( Wilson et al., 2021 ). ATP and
5 
ADPH are then used to fuel the dark reactions of photosynthesis, which
erve the purpose of fixing CO 2 into metabolism. 

The coordinated activity of two distinct photosystems, Photosystem I
PSI) and photosystem II (PSII) are involved in the light capture by oxy-
enic organisms. PSII or water-plastoquinone oxidoreductase, can be re-
arded as the first protein complex in the light reactions of photosynthe-
is. Its core complex is composed of chlorophyll a (Chl a) and 𝛽-carotene
ound to several polypeptides and surrounded by an antenna complex.
lectrons producing from photolysis are funnelled into PSII and passed
o the next electron acceptor, cytochrome b 6 f complex ( Cyt b 6 f ). The Cyt

 6 f functions to mediate the transfer of electrons towards the core reac-
ion centre of the second photosystem, PSI via either Plastocyanin (PC)
r a cytochrome c6 in Chlamydomonas ( Juergens et al., 2015 ). The reac-
ion centre core of PSI consists of a pair of Chl a molecules ( Hankamer
t al., 2001 ). 

Two main mechanisms of electron flows between two photosystems
an be differentiated i.e. linear and cyclic electron flows (LEF and CEF)
 Fig. 4 ). During LEF, electrons are transferred from water to NADP via
hree major transmembrane complexes: PSII, Cyt b 6 f and PSI; whereas
EF mode only involves PSI and Cyt b 6 f ( Joliot and Johnson, 2011 ) and

unctions in generating ATP and providing a pH gradient to induce non-
hotochemical quenching ( Johnson, 2011a ). In addition to LEF and CEF,
here are several additional electron flows identified i.e. Mehler reaction
 Mehler, 1951 ), Plastid Terminal Oxidase (PTOX) ( Johnson, 2011a ). 

The detailed description on PSI and PSII functions in the light reac-
ion of photosynthesis and roles of different electron transport pathways
re provided in Supplementary Information SI-1. 

.1.3. The interaction between carbon metabolism and light reactions of 

hotosynthesis 

Since the first investigation of the relationship between metabolism
nd photosynthesis carried out in the 1950’s ( Bassham et al., 1950 ), a
ariety of mechanisms have since been described in the literature at-
empting to provide a further understanding of how carbon metabolism
an regulate photosynthesis. These involve alternative electron flows
 Johnson, 2011b ), inter-organelle metabolite transport ( Johnson and
lric, 2013 ), and acclimation responses to changes in the environment
 Johnson and Alric, 2012 ). The interaction mechanisms are elaborated
rom three aspects in the Supplementary Information SI-1 – increasing
TP production regulated by CEF, the modulated chloroplastic NADPH
y malate shunt, cytosolic and chloroplast ATP regulated by triose-
hosphate. 

.1.4. Photosynthetic microbial cluster and implications on photosynthetic 

achineries 

In addition to the C3, C4 and CAM higher plant species, the pho-
otrophic microbial cluster also play significant roles in biological CO 2 
equestration. Microbial phototrophs include microalgae, oxygenic and
noxygenic phototrophic prokaryotes, with the later encompassing tax-
nomically diverse groups of Bacteria and Archaea ( Venkata Mohan
t al., 2016 ; Kim and Gadd, 2008 ; Overmann and Garcia-Pichel, 2013 ).
he diversity and some characteristics of the photosynthetic micro-
ial cluster are shown in Table 1 . Microalgae and cyanobacteria are
he only microorganisms able to perform a plant-like oxygenic pho-
osynthesis, assimilating CO 2 , producing organic carbon, and using
wo photosystems (PSI and PSII) which function in series connected
ia an electron transfer chain. Anoxygenic phototrophs perform pho-
osynthesis without production of molecular oxygen and they do not
se water as electron donor. Instead, they use a wide variety of inor-
anic and reduced organic carbon compounds as photosynthetic elec-
ron donors. In addition, anoxygenic phototrophs show variable pro-
ein and pigment compositions in their photosynthetic apparatuses. Al-
hough anoxygenic phototrophs thrive in all environments, their con-
ribution to global primary production is small compared to the signif-
cance of oxygenic photolithotrophy. It has been concluded that aer-
bic anoxygenic photoheterotrophs do not contribute significantly to
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Fig. 4. A schematic model of the light reactions of photosynthesis (A) during linear electron flow (B) sustaining a cyclic electron flow. 
In linear electron flow, electrons from the photolysis of H 2 O are passed along an electron transport chain resulting in the production of ATP and NADPH from the 
oxidation of water. In a cyclic electron flow electrons are injected back into the electron transport chain and mediated by ferredoxin via the PGR5 pathway (blue 
dashed line) or NDH pathway (red dashed line). As such, NADP-reductase is no longer the recipient of electrons, resulting in the regulation of NADPH synthesis 

Abbreviations: Cyt b 6 f: Cytochrome b 6 f complex, Fd: Feredoxin, PC: Plastocyanin PSI: Photosystem I, PSII, Photosystem II, PQ: Plastoquinone. 
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Table 1 

Characteristics of major groups of phototrophic prokaryotes. 

Type/Taxon Electron donors Photopigments Carbon source Photosynthetic 
reaction center (RC) 1 

Physiological type Refs. 

PROKARYOTES 

Anoxygenic 

Purple sulfur bacteria ( 𝛾-proteobacteria) 
Chromatiaceae 

Ectothiorhodospiraceae 

S 2 − , S 0 , S 2 O 3 
− , H 2 , 

Fe 2 + , NO 2 
− 

BChl a or b CO 2 , organic Type II RC Phototrophic, some 
chemoorganotrophs and 
chemolithotrophs 

( Overmann and 
Garcia-Pichel, 2013 ; 
Madigan and Jung, 2009 ) 

Purple nonsulfur bacteria 
𝛼- and 𝛽-proteobacteria H 2 , organic 

compounds, low 

levels of S 2 − , a few 

species S 2 O 3 
− , Fe 2 + 

BChl a or b CO 2 , organic Type II RC Phototrophic, some 
chemoorganotrophs and 
chemolithotrophs 

( Overmann and 
Garcia-Pichel, 2013 ; 
Madigan and Jung, 2009 ) 

Green sulfur bacteria 
Chlorobiaceae S 2 − , S 2 O 3 

− , H 2 , 
a few species Fe 2 + 

BChl c, d , or e CO 2 , organic Type I RC Photolithotrophs ( Overmann and 
Garcia-Pichel, 2013 ; 
Imhoff, 2014 ; Madigan et al., 
2017 ) 

Phylum Chloroflexi, class Chloroflexi 

Chloroflexaceae S 2 − , H 2 , organic BChl a, c CO 2 , organic Type II RC Photoheterotroph, some 
strains photoautotrophs, 
chemoheterotroph 

( Madigan et al., 2017 ; 
Hanada, 2014 ) 

Oscillochloridaceae S 2 − , H 2 BChl a, c , or d CO 2 , organic Type II RC Photolithoautotroph, 
photolithoheterotroph 

( Hanada, 2014 ; Berg et al., 
2005 ) 

Roseiflexaceae Organic, Low levels 
of S 2 − 

BChl a Organic Type II RC Photoheterotroph, some 
species chemoheterotrophs 

( Hanada, 2014 ; 
Hanada et al., 2002 ; van der 
Meer et al., 2010 ; 
Frigaard and Dahl, 2008 ) 

Heliobacteriaceae Organic BChl g Organic Type I RC Photoheterotroph; 
neutrophilic species are 
capable of chemotrophic 
growth 

( Overmann and 
Garcia-Pichel, 2013 ; 
Madigan et al., 2017 ; 
Frigaard and Dahl, 2008 ) 

Archaea 
Halobacteriaceae 

Halobacterium salinarum 

and probably a few other 
species 

None – generates 
proton gradient 

Bacteriorhodopsin 
(retinal ∼570 nm) 

Organic Bacteriorhodopsin Photoheterotroph 2 ( Oren, 2013 ; 
Hohmann-Marriott and 
Blankenship, 2012 ) 

Oxygenic 

Cyanobacteria 3 H 2 O, S 2 − Chl a , phycobilins CO 2 Type I + II RC Photolithoautotroph ( Overmann and 
Garcia-Pichel, 2013 ; 
Cohen and Gurevitz, 2006 ) 

Prochlorococcus, 

Prochlorothrix and 
Prochloron 

H 2 O Chl a, b 4 CO 2 Type I + II RC Photolithoautotroph ( Overmann and 
Garcia-Pichel, 2013 , 
Lindell, 2014 , Biller et al., 
2015 ) 

Acaryochloris marina H 2 O Chl a, d 5 , 
𝛼-carotene, 
phycobilins 

CO 2 Type I + II RC Photolithoautotroph ( Miyashita, 2015 ; 
Loughlin et al., 2013 ) 

EUKARYOTES 

Microalgae 

Bacillariophyceae H 2 O Chl a and c, 
fucoxanthin 

CO 2 , organic carbon 
(mixotrophs) 

Type I + II RC Photoautotrophs; various 
diatoms have been reported 
to grow mixotrophically 

( Kuczynska et al., 2015 ; 
Kitano et al., 1997 ; 
Ceron Garcia et al., 2006 ; 
Liu et al., 2009 ; Moro et al., 
2016 ) 

Chlorophyceae H 2 O Chl a and b , 
𝛽- and 𝛾-carotene, 
xanthophylls 

CO 2 , organic carbon 
(mixotrophs) 

Type I + II RC Photoautotrophs; several 
taxa are mixotrophs 

( Moro et al., 2016 ; 
Gallardo, 2014 ; Olrik, 1998 ; 
Heifetz et al., 2000 ; 
Larkum, 2016 ) 

Chrysophyceae H 2 O Chl a , Chl c 1 and c 2 , 
𝛽-carotene, 
xanthophylls 

CO 2 , organic matter 
(mixotrophs) 

Type I + II RC Photoautotrophs, 
mixotrophophs (osmotrophy, 
phagotrophy) 

( Gallardo, 2014 ; 
Cambridge University 
Press, 2011 ) 

1 Photochemical reaction centre: a multisubunit photopigment-protein complex in which electromagnetic energy from sun is transduced into redox chemistry. 
2 Halobacteriaceae generally lead an aerobic chemoheterotrophic life, but under conditions of low oxygen Hbt. salinarum can produce energy using 

bacteriorhodopsin-driven photosynthesis. 
3 Some Cyanobacteria conduct anoxygenic photosynthesis with sulfide as an electron donor. 
4 Prochlorococcus possesses divinyl-Chl a and divinyl-Chl b 
5 BChl, bacteriochlorophyll; Chl, chlorophyll. The chemical structure and absorption spectra of photosynthetic pigments are available in 58 . Chl d is its major 

pigment. 

7 
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hotosynthetically driven energy fluxes in eutrophic and mesotrophic
emperate and subtropical aquatic environments ( Goericke, 2002 ), even
hough their contribution to the marine carbon cycle may be signifi-
antly higher in the oligotrophic open sea ( Kolber et al., 2001 ). How-
ver, this type of phototrophy seems to be more significant on the
hyllosphere of terrestrial plants ( Loyola et al., 2001 ). In aquatic en-
ironments, almost all net primary productivity is contributed by oxy-
enic photolitotrophs, with only 0.5 – 1 % attributable to anoxygenic
hotolithotrophs and chemolithotrophs ( Raven, 2009 ). Furthermore,
he contribution of cyanobacteria to oceanic primary productivity may
e greater than it was thought previously. Taxa such as Acaryochloris

arina , a Chl d -producing prokaryote which is widely distributed in
oastal areas, and Chl f -producing cyanobacteria (e.g. Halomicronema

ongdechloris ) can use far-red light for growth ( Gan and Bryant, 2015 ),
nd the contribution of far-red light photosynthesis to the primary pro-
uctivity in marine environments has not been estimated ( Miyashita,
015 ). In photosynthetic organisms there are three major chemical
roups of light-harvesting pigments, chlorophylls, carotenoids and phy-
obilins, which perform light absorption at different spectral regions. In
ddition, carotenoids protect chlorophyll against photo-oxidative dam-
ge in both plant and bacterial photosynthesis ( Dall’Osto et al., 2014 ).
irkovic et al. (2017) gave a comprehensive overview on the perfor-
ances of the different light-harvesting machineries present in photo-

ynthetic organisms thriving in diverse environments. 
Although the research in microbial photosynthesis and the com-

arison with higher plant-like photosynthesis can be traced back to
930s ( Stanier, 1961 ), there have been very few literature discussing
he significance of the photosynthetic microbial cluster in the biolog-
cal sequestration of CO 2 . However, the potential of microbial clus-
er in photosynthesis, CO 2 sequestration and bioeconomy has started
aining research attention in the past few years. A comprehensive re-
iew has been conducted by Venkata Mohan et al. (2016) on mi-
robial CO 2 capture, which has led to a proposed biorefinery model
atalysed by microorganisms. To date, six CO 2 fixation pathways have
een identified, which function under aerobic conditions (the CBB cy-
le, the 3-hydroxyproprionate pathway and the 3-hydroxypropionate-
-hydroxybutyrate cycle) and under anaerobic or microaerophilic con-
itions (the reductive tricarboxylic acid cycle, the reductive acetyl-CoA
athway, and the dicarboxylate-4-hydroxybutyrate cycle) ( Saini et al.,
011 ). In plant, algae and oxygenic photosynthetic bacteria the Calvin–
enson–Bassham (CBB) cycle is the predominant CO 2 fixation pathway,
ut this pathway is also used by a variety of anoxygenic phototrophs
nd non-photosynthetic microorganisms ( Venkata Mohan et al., 2016 ).
ithin the Domain Bacteria, the CBB pathway has been demonstrated

o operate in representatives of green-sulfur bacteria, cyanobacteria,
lpha-, beta- and gamma-proteobacteria and Actinobacteria ( Saini et al.,
011 ). In Actinobacteria capable of autotrophic growth ( e.g . some
trains of Pseudonocardia ) the CBB cycle is the only CO 2 fixation path-
ay that has been reported ( Grostern and Alvarez-Cohen, 2013 ). 

Cyanobacteria and eukaryotic phytoplankton are the most impor-
ant inorganic carbon fixers in the oligotrophic ocean and together con-
ribute up to 50 % of the net primary productivity in the ocean, play-
ng a key role in biogeochemical cycling ( Flombaum et al., 2013 ). Here
he biogeochemical cycling defined as the pathways, by which chemical
ubstances and elements move through the biotic and abiotic compart-
ents of Earth. These microphototrophs have evolved sophisticated and
ighly efficient systems called CO 2 -concentrating mechanisms (CCMs)
o actively capture inorganic carbon (C i ) from the nearby environment
nd increase the CO 2 concentration near RuBisCO by up to 1000-fold
 Wang et al., 2015 ), thus counteracting the low solubility and diffusiv-
ty of dissolved C i and the intrinsic limitations of RuBisCO (slow enzyme
inetics, poor discrimination between CO 2 and O 2 as substrates, and loss
f photosynthetic efficiency due to photorespiration) ( Ghosh and Kiran,
017 ; Long et al., 2016 ). Microalgal and cyanobacterial CCMs include C i 
ransporters and subcellular microcompartments that contain RuBisCO
nd carbonic anhydrases (carboxysomes in Cyanobacteria, pyrenoids in
8 
lgae). In Cyanobacteria, the CCM is composed by three active bicar-
onate transporters: the medium-affinity Na + -dependent HCO 3 

− trans-
orter (BicA), a high affinity HCO 3 

− transporter (BCT1 complex) and a
igh affinity, Na + -dependent HCO 3 

− transporter (SbtA). Furthermore,
here are two thylakoid-bound, active transporters of CO 2 (NDH-I 3 and
DH-I 4 ) and at least three ion exchangers ( Long et al., 2016 ; Beardall
nd Raven, 2016 ). The C i pumps concentrate HCO 3 

− in the cytoplasm
nd the carbonic anhydrase dehydrates the cytosolic bicarbonate pool
o CO 2 . The CO 2 generated within the carboxysome is fixed into organic
arbon by RuBisCO in the CBB cycle. 

Recent advances in biotechnology and synthetic biology have as-
embled a toolbox for genetic engineering of cyanobacteria, eukary-
tic algae and offer tailored chloroplast transformation tools for the re-
esign of some photosynthesis aspects in crop species. Via manipulating
arbon-fixation pathways and redesigning the C3/C4 photosynthesis,
ains in terrestrial crop productivity can be achieved ( Ort et al., 2015 ).
he integration of a complete and functional cyanobacterial and mi-
roalgal biophysical CCMs and the engineering of particular CCM com-
onents into C3 plants to improve the efficiency of photosynthetic CO 2 
ptake have been discussed ( Price et al., 2013 ), although much research
s still needed on the characterization of CCM genes, components and
egulatory processes, as well as testing transgenic lines under realistic
rowth conditions ( Long et al., 2016 ; Meyer et al., 2016 ). As oxygenic
hototrophs, cyanobacteria offer an attractive experimental platform for
mproving CO 2 fixation in higher plants, because of their fast growth
ates, their facile genetics, their evolutionary relationship to plant plas-
ids and availability of genome sequences ( Hagemann and Hess, 2018 ).
esides, the CCMs of cyanobacterial model organisms have been exten-
ively studied ( Price, 2011 ; Kupriyanova et al., 2013 ). Recent progress
n engineering CO 2 -fixation pathway in C3 plants includes, for example,
he introduction of cyanobacterial bicarbonate transporters into plant
hloroplasts, reconstruction of cyanobacterial carboxysomes and asso-
iated transporters in Escherichia coli and the generation of transgenic
obacco plants containing cyanobacterial RuBisCO ( Bonacci et al., 2012 ;
ae et al., 2017 ; Lin et al., 2014 ). However, the introduction of eukary-
tic microalgal biophysical CCMs to vascular plants may have a bet-
er potential because they share many photosynthetic and molecular
haracteristics, and their closer evolutionary relationship ( Wang et al.,
015 ). 

.2. Biorenewable feedstock: terrestrial vs. aquatic biomass, wastes 

Biomass can be categorised based on their origins as terrestrial and
quatic biomass, as well as waste resources. Although the bio-product
eneficial effects have been recognised ( Creutzig et al., 2015 ), there is
o consensus on the estimated future biomass supply-demand balance.
s discussed in Section 2.1 , the terrestrial or aquatic phototrophs invest
 fraction of photosynthetic CO 2 uptake by the ecosystem (termed as
ross primary productivity (GPP)) on the biomass production. But their
arbon use efficiency (CUE) and fixation as biomass resource vary with
nvironmental, spatial and temporal factors (e.g. nutrient availability,
limate zone) ( Verlinden et al., 2013 ), with CUE ranging between 0.3
nd 0.61 ( Table 2 ). If using net primary production (NPP, quantified as
he net amount of carbon assimilated in a given period by vegetation)
 Krausmann et al., 2013 ) as an indicator of the ecosystem carbon fixa-
ion and biomass supply, the current terrestrial NPP adds approximately
.2 ×10 11 ton dry vegetative biomass annually (50 % C assumed), stor-
ng 2200 EJ energy in plant material ( Guo et al., 2015a ; Rafique et al.,
016 ), where non-agricultural terrestrial NPP contributes to nearly 75 %
4.5 ×10 10 ton carbon fixation) ( Cleveland et al., 2013 ). 

Based on their key chemical composition, biomass can be largely
rouped as sugar and starch, lignocellulose, other carbohydrate, oil,
ipid and protein ( Pacific Northwest National Laboratory (PNNL) and
ational Renewable Energy Laboratory (NREL), 2004 ). Driven by a

ange of factors, including biomass species and parts, photosynthetic
athways, climate and soil variables and agricultural management (e.g.
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Table 2 

Biomass resource comparison. 

Terrestrial Aquatic Waste Refs. 

RESOURCES -C3, C4 and CAM higher plant 
species 
(food crop, non-food crops, 
forestry, grassland) 

-Microalgae 
-Macroalgae and seagrass 
- Cyanobacteria 

-Waste gases (e.g. C-containing 
gas) 
-Solid phase (e.g. BFMSW 

- forestry/agriculture waste) 
-Liquid phase (e.g. wastewater) 

( BIS, 2015 ) 

COMPOSITION -Monosaccharide (e.g. glucose, 
sucrose) 
-Polysaccharide (e.g. starch, 
cellulose and hemicellulose) 
-Lignin, 
-Protein, lipid, fatty acids and 
minerals 

-Lipids 
-Proteins 
-Carbohydrates 

- Monosaccharide 
-Polysaccharide 
-Lignin, protein, lipid, fatty acids 
-Minerals, and inert, 
contamination (e.g. heavy 
metals) 

POTENTIAL AND 

REGIONS 

-Potential of 60–1500 EJ/yr by 
2050 
-Regions: Central and Southern 
Africa; South America, India, 
Europe, USA and Canada, Russia, 
Australia particularly marginal 
lands 

- Potential estimated as 
515 EJ/yr by 2050 
- Regions: Open sea 
(Caribbean Sea, South 
Atlantic Ocean, Indian 
Ocean, Mid Pacific and 
South Pacific Ocean) and 
costlines (EU, SEA, Latin 
Merica, North America, 
Africa west coastline) 

- Agriculture and forestry residue 
potential of140–170 EJ/yr by 
2100 
- OFMSW estimated as 
17.8EJ/yr 2 

- Wastewater 3322.7km3 by 2050 
-Regions: low-middle income 
countries; urban areas. 

( Florentinus et al., 2014 ; 
Popp et al., 2014 ; Campbell et al., 
2008 ; United Nations World 
Water Assessment Programme 
2017 ; Hoornweg and 
Bhada-Tata, 2012 ; Food and 
Agriculture Organization of the 
United Nations, 2017 ) 

PHOTOSYNTHESIS 

AND CUE 1 
-Photosynthesis: CBB/C4/CAM 

cycles; 
-CUE = 0.43–0.61 

-Photosynthesis: CBB 
cycle 
-CUE = 0.26–0.3 (aquatic 
microbial cluster) 

Not applicable ( Verlinden et al., 2013 ; 
Sinsabaugh et al., 2013 ; 
Yang et al., 2017a ; Bloom et al., 
2016 ; Zhang et al., 2014 ; 
Vicca et al., 2012 ) 

CULTIVATION -Growth on soil; 
-Farm machinery for field 
operation 

-Growth on aqueous 
nutrient media; 
-Growth in engineered 
systems (open ponds or 
photo-bioreactors) 

Not applicable ( Department of Energy et al., 
2016 ) 

LAND UTILISATION -Potential land competition with 
other sectors e.g. food 

-No land competition 
with food 

-No land competition with food ( Department of Energy et al., 
2016 ; Suganya et al., 2016 ; 
Dismukes et al., 2008 ) 

WATER UTILISATION -Irrigation water 
-Rainwater 

-Freshwater 
-Salt water or harsh 
condition 
- Non-portable water 

Not applicable ( Department of Energy et al., 
2016 ) 

RESOURCE INPUTS - Atmospheric CO 2 

-Artificial or organic fertilisers 
-Wide range of CO 2 (e.g. 
flue gas from power 
plant, ethanol plants, H 2 

plants, biorefineries, 
cement plants, 
fertiliser/ammonia 
plants); 

Not applicable ( Department of Energy et al., 
2016 ; Suganya et al., 2016 ) 

CIRCULAR-SYSTEM 

POTENTIAL 

No, nutrient loss through C/N 
cycles, leads to atmospheric and 
waterborne emissions 

Yes, strains grown on 
wastewater (WW); 
potential 90% nutrient 
recovery 

Yes, carbon and nutrient recovery 
from waste 

( Graham et al., 2017 ; 
Gadd, 2009 ; Evans et al., 2017 ) 

REMEDIATION Phytoremediation potential (e.g. 
heavy metals, N and P pollution). 

Bioremediation potential 
(e.g. heavy metals, 
organic pollution). 

Not applicable ( Gadd, 2009 ; Evans et al., 2017 ; 
Kumar et al., 2015 ; Dixit et al., 
2015 ; Dipesh et al., 2015 ; 
Scherer et al., 2017 ) 

HARVESTING CYCLES Annual or perennial plants with 
less frequent harvesting cycles 

Frequent harvesting (e.g. 
weekly, monthly) 

Not applicable ( Department of Energy et al., 
2016 ) 

STORAGE Long-term (years) Short-term (days) Short term (days) ( Department of Energy et al., 
2016 ) 

TRANSPORTATION Relatively dry Low solid concentration Vary with waste 
CONVERSION ROUTES Biochemical routes; thermochemical routes; chemical and mechanical routes 
MODELLING 

RESEARCH 

CHALLENGE 

Overarching models from 

metabolism to biophysical and 
biogeochemical processes 

Multi-scale overarching 
models and spatial 
variability 

Waste sector complexity and data 
availability 

1 CUE is defined as ratio of growth to carbon assimilation for microbial cluster ( Sinsabaugh et al., 2013 ) and ratio of NPP to GPP for higher plant ( Yang et al., 
2017b ). Considering the themodynamic constraint, CUE upper limit for microbial system is 0.6. 

2 Calorific value of organic fraction MSW is derived from International Solid Waste Association (2013) . 
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grochemical inputs and field operations), the chemical composition
ary significantly between different biomass groups ( Vassilev et al.,
010 ). As demonstrated in Fig. 5 , on the dry-weight ash-free basis (DAF),
he carbon contents in higher plant species (C3 and C4 plants) fall into
he range of 44.7–50.5 % whereas the microbial cluster showed higher
 contents (above 50 %). The waste sectors represent another C-rich re-
9 
ource where the C contents vary from 43.6 % to 52.5 % (DAF basis).In
eneral, microbial cluster is the most N nutrient rich source (around
0 %), followed by organic-N or ammonium-N containing waste re-
ources (food waste, sludge, and manure with 4–7 % N contents). Higher
lant species show very low N contents, ranging from 0.4 % to1.5 %
DAF basis). Therefore, the resource C:N ratios ranked from low to high
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Fig. 5. Elemental analyses (A,B) and chemical composition (C) on dry-weight and ash-free basis Data are derived from Phyllis2 database ( Energy research Centre of 
the Netherlands, 2017 ) and Ref. ( Isikgor and Becer, 2015 ), and the composition data of wood chips ( Basche et al., 2016 ), pine sawdust ( Nitsos et al., 2016 ), orange 
and lemon peels ( Ververis et al., 2007 ), paper sludge ( MIN, 2017 ), switch grass ( Gaurav et al., 2017 ) manure ( Chen. et al., 2003 ), food waste ( WRAP, 2010 ). 
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re microbial cluster < waste < higher plant species (C3/C4 plants).
uch elemental analyses along with other physiochemical properties
nd chemical composition can provide biomass performance indicators
nd design basis for biorenewable systems as they influence the conver-
ion technology performance at process levels and the associated sup-
ly chain and network design at system-levels. Particularly for biologi-
al routes (e.g. anaerobic digestion), carbon and nitrogen are important
ubstrates and nutrients for the microbial syntheses, which play impor-
ant roles in the bio-conversion processes. 

.2.1. Terrestrial biomass 

Terrestrial biomass refers to a range of food and non-food resources
rown on terrestrial lands including arable, grass, forestry lands or aban-
oned lands. Amongst biomass resources, this is the most widely inves-
igated biomass category. Despite of the focus on bioenergy, previous
tudies indicated the uncertainties in the global terrestrial biomass es-
imates, varying from around 30 EJ to over 1500 EJ per year ( Smeets
t al., 2007 ; Searle and Malins, 2015 ). Searle and Malins (2015) re-
iewed the key bioenergy modelling articles and based on the land con-
traints, theoretical resource potential, spatially-explicit biomass pro-
uction costs and governance, revised the annual biomass estimates for
nergy as 60–120 EJ by 2050 and suggested that bio-based ambition
10 
s difficult to achieve sustainably. Alternative to business as usual sce-
arios, previous research explored the effects of agricultural intensifi-
ation and optimised management on future terrestrial supply-demands
 Mueller et al., 2012 ; Ray et al., 2013 ). Mauser et al. (2015) projected
hat the agricultural intensification and optimised land allocation will
ead to nearly 40 % increase in the global biomass production poten-
ial, being sufficient to satisfy 2050 demands without cropland expan-
ion. Tilman et al. (2011) and Mueller et al. (2012) highlighted the im-
ortance of sustainable intensification and optimal nutrient and water
anagement in meeting the agricultural food demands with minimal en-

ironmental impacts. Galán et al. (2023) found terrestrial biomass cul-
ivation compared favourably with direct air capture as a cost-effective
ethod of extracting carbon dioxide from the atmosphere. Campbell

t al. (2008) noted the potential of abandoned land for cultivating bioen-
rgy crops. In addition to management strategies above, redesign of pho-
osynthesis along with breeding approaches has been also proposed as
errestrial biomass solutions to bridge supply-demand gaps ( Ort et al.,
015 ), considering the limited natural genetic variation in the enzymes
nd processes of plant photosynthesis. 

The bio-products derived from terrestrial food crops are regarded
s first-generation (so called 1 G) biorenewables whereas those from
errestrial non-food lignocellulosic biomass can be classified as second-
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eneration (2 G) biorenewables. Generally, a range of undesirable traits
f terrestrial plants particularly 1 G crops constrain the sustainability
f the terrestrial-dependent biorenewable sectors. Terrestrial crops suf-
er from inefficient CBB cycles of CO 2 -fixation, small fractions of edi-
le biomass, and a high vulnerability to biotic and abiotic stress (e.g.
ests and pathogens, flood and drought). Terrestrial biomass not only
re stressed by increasing demands but also face the land-water resource
carcity and environmental and social constraints due to their intensive
and and water inputs. Take 1 G bio-products as an example. Currently,
griculture sectors account for 37 % of global lands and 70 % of the
ater withdrawn for human use ( FAO, 2011 ). As estimated by Mekon-
en et al. ( Mekonnen and Hoekstra, 2014 ), the global average water
ootprint for food crops range between 224–4363m 

3 /ton where cereal
rops were shown as main water consumers. By 2050, the agricultural
ater withdrawn of 3000 km 

3 /yr and potential 2.8 billion ha rain-fed
and use and expansion of 0.33 billion ha irrigated land are expected
o take place in water-scarce regions and developing countries ( FAO,
011 ). This brings severe resource-competition issues with municipal
nd industrial needs in response to rapid urbanisation trends and eco-
omic growth. 

Terrestrial biomass are dominated by sugar crops (e.g. sugarcane,
ugar beet), lignocellulosic feedstock (e.g. wheat straw, willow, mis-
anthus) and oil crops (e.g. rapeseed, soybean, sunflower, Jatropha)
o derive monosaccharide (e.g. glucose, sucrose), polysaccharide (e.g.
tarch, cellulose and hemicellulose), lignin, protein, lipid, fatty acids
nd minerals. Amongst terrestrial biomass, lignocellulosic is the pre-
ominant biorenewable resource ( Isikgor and Becer, 2015 ; Zhou et al.,
011 ) including agricultural residuals, forestry, lignocellulosic energy
rops, grass etc., where cellulose is estimated as the most abundant or-
anic compound on earth ( Binder and Raines, 2010 ). The main struc-
ural compound groups comprising the lignocellulosic plant cell wall
re cellulose, hemicellulose and lignin. In addition, there are other non-
tructural components within the plant cell wall, such as extractives,
rotein, ash, and pectin, varying greatly with species, tissue, plant ma-
urity, harvest times, and storage. Fig. 5 C reveals diverse lignocellulosic
iomass composition, where the cellulose and hemicellulose contents
ange between 18–73 % (dry basis). C3 and C4 higher species sit at
he upper range of the cellulose and hemicellulose composition (37.1–
4.1 % and 22.8–31.2 % respectively), which demonstrate their great
otentials for polysaccharide bioconversion. However, the technology
esign to convert lignocellulosic biomass to value-added biochemical
emain a big challenge due to natural recalcitrance, chemical composi-
ion and structure complexity as well as the different re-activities of the
 G compound groups ( Zhou et al., 2011 ). As demonstrated in Table 3 ,
hree compound groups differ significantly. Cellulose is formed by the
-glucose subunits which are arranged in a crystalline structure of mi-
rofibrils, thus relatively resistant to thermal decomposition; whereas
emicellulose consist of different sugar monomers organised in ran-
om amorphous structure, thereby is the least thermally stable com-
onent. Due to the complex and interconnected linkages between p-
ydroxyphenyl, syringyl and guaiacyl units in the three-dimensional
olyphenolic polymer ( Mohan et al., 2006 ; de Gonzalo et al., 2016 ),
ignin shows high thermal stability with decomposition occurring across
 wide temperature range ( Jahirul et al., 2012 ). The bio-decomposition
rocess highly depends on the compound complexity. Different from cel-
ulose, which decompose catalysed by enzyme cellulase, hemicellulose
omplexity requires a set of enzymes to achieve decomposition ( Lopez-
ondejar et al., 2016 ). Lignin is rather inert to degradation due to its

romatic nature and highly cross-linked polymer network ( Abdel-Hamid
t al., 2013 ). In the nature carbon cycle, white-rot fungi and ligninolytic
acteria deploy different types of enzymes degrading lignin (see Table
 ). The state-of-the-art progress in ligniolytic bacteria and fungi enzyme
ystems, their delignification activities as well as potential applications
n biotechnology have been well studied and summarised by the com-
rehensive reviews conducted by Pollegioni et al. (2015) and de Gon-
alo et al. (2016) . The reactivity of three compound groups in the pres-
11 
nce of chemical reagents and non-thermal triggers have been widely
nvestigated. Advances in reactivity and mechanisms underlying lignin
epolymerisation and catalytic valorisation as well as the relationship
etween lignin structure and catalyst performance have been well pre-
ented in recent comprehensive reviews by Ma et al. (2015) and Rinaldi
t al. (2016) . For the polysaccharide components, in addition to the de-
omposition catalysed by different chemical reagents via biochemical
nd thermochemical routes ( Zhou et al., 2011 ), emerging research on
he depolymerisation activated by non-thermal sources (e.g. mechani-
al force, electric or magnetic field, waves, light, in situ heat) have been
lso highlighted ( Jerome et al., 2016 ). The differed reactivity of three
tructural components are important parameters for designing biorefin-
ry based on the processability of the 2 G biomass. 

Above lignocellulose biomass is given as an example to analyse
he biomass composition complexity. Overall, terrestrial biomass offer
romising resources underpinning bioeconomy development and can be
rocessed via diverse technologies and converted to value-added prod-
cts. However, as summarised in Table 2 , the sustainable exploition and
evelopment of terrestrial biomass still remain a challenge, where the
esource-efficiency and other environmental sustainability are impor-
ant design criteria for process and supply chain planning. This will be
iscussed in following sections. 

.2.2. Aquatic biomass 

Aquatic phototrophs, such as microalgae, macroalgae and seagrass,
ffer alternative resources to the terrestrial biomass. As summarised in
able 2 , aquatic biomass demonstrates a range of favourable traits thus

s in general considered as more environmentally sustainable but less
conomically feasible feedstock for biorenewable conversion compared
ith resources on lands ( Florentinus et al., 2014 ). Based on the eco-
omic viability comparison, future potential aquatic biomass resources
re estimated as 515 EJ/yr globally ( Fig. 6 ), where four types of al-
ae cultivation systems have been projected as the main contributors.
nder elevated CO 2 concentration in future, aquatic macroautotrops

.e. macroalgae and seagrass are predicted to respond strongly with in-
reased photosynthetic and carbon use efficiency, which are similar to
he estimated trends for C3 higher plant species ( Koch et al., 2013 ). 

The term algae was used to refer to eukaryotic organisms either
nicellular (microalgae) or multicellular (macroalgae). But this term
ften is expanded to include eukaryotic organisms and cyanobacteria
nd have been regarded as third or fourth-generation (3 G or 4 G) feed-
tock, gaining increasing research attentions recently. Algae are very di-
erse with over 40,000 species already identified ( Gaurav et al., 2017 ;
uganya et al., 2016 ). In general, algae contains lipids, proteins, and
arbohydrates that can be converted and upgraded to a variety of bio-
roducts (e.g. hydrogen, bio-methane, biodiesel, jet fuel, bioethanol),
arying with the types and strains. An overview of the key algal taxo-
omic groups and their properties have been presented by Suganya et al.
2016) ; the strain-specific algal composition comparison demonstrates
hat the macro algae contains higher carbohydrates (16–56 % dry basis)
ut much lower protein (5–21 %) than microalgae (47–63 % protein and
–32 % carbohydrates on dry basis). 

As highlighted in Billion-ton report ( Department of Energy et al.,
016 ), driven by the difference in growth medium, water and resource
emands, storage nutrient and water recycling, algae and terrestrial
eedstock present different supply and geographical trends. Generally,
lgae use non-portable water, showing much lower solid concentration
nd higher (around 90 %) nutrient and water recycling potential than
errestrial biomass; however, higher harvesting frequency and shorter
torage duration can be expected for algae biomass. Currently, more
han 90 % of microalgae production globally are being used for nutri-
ional products. The estimate of total microalgae biomass production
s 15,000 tons/year, of which about two-thirds is Spirulina, one-fourth
s Chlorella, and the rest is Duniella and Haematococcus ( Benemann,
013 ). Algae cultivation is dominated by open pond system ( > 95 % of
urrent microalgae biomass) whereas the scaling-up of photo bioreactor
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Table 3 

Lignocellulosic biomass reactivity. 

Hemicellulose Cellulose Lignin 

Chemical structure Xylose Arabinose Galactose Mannose Cellulose p-hydroxyphenyl syringyl guaiacyl 

Elemental analyses 
(wt.%) ( Couhert et al., 
2009 ) 

C 44.3 44.5 56.6 
H 5.3 5.6 4.2 
O 44.9 49.5 37.1 
N 0.3 0.3 0.5 
S 0 0.1 1.6 

Proximate analysis (wt 
%) ( Couhert et al., 2009 ) 

Volatile 75.3 94.1 49.9 
Fixed 
carbon 

19.9 5.9 40.1 

Ash 4.8 0 10 
Thermal decomposition 1 lignin > cellulose > hemicellulose 

220–315°C 315–400°C 160–900°C 
Bio-degradation /decomposition Hemicellulase e.g. endoxylanases, endomannanases, 

xylosidases, glucosidases, arabinosidases, galactosidases, 
mannosidases and glucuronidases 2 

Cellulase Heme peroxidases and laccases from ligniolytic 
fungi and bacteria as well as other bacteria 
enzymes 3 

Reactivity in solvents 4 -Inorganic acid or organic acids; dilute acids (e.g. 0.175% (wt/vol) H 2 SO 4 ) more 
effective on hemicellulose; at low temperature and short reaction time, concentrated 
acid is more preferable for cellulose. 
-Ionic liquid 
-Organic solvents e.g. reagents bearing –OH or –SH groups 
-Alkaline 
-Supercritical water (existence of water under elevated temperature and pressure, 
where the ordered hydrogen bonds tend to become weaker and break to form clusters 
of concentrated molecules) 

-Acid e.g. peroxy acids 
-Organic solvents e.g. 35–70% (wt/vol) ethanol 
- kraft solvent (Na 2 S/NaOH) 
- Hydrogen peroxide 
- Chlorine and Chlorine dioxide 
- Alkaline 
-Ionic liquid particularly with strong 
hydrogen-bonding basic anions 
-Hydrothermal liquefaction oil 

Reactivity in solid 5 -solid acids(e.g. amberlyst) - Solid acid 
Reactivity in gaseous phase 5 -Gaseous acid (e.g. HCl) 

-Ionised gas by non-thermal atmospheric plasma 
-Chemical vapour 

-Ozone 
-Oxygen 
-Chlorine 
-H 2 (catalytic hydrogenolytic depolymerisation) 

Reactivity in physical energy 6 - Mechano-chemical 
- Microwave enhanced 
- Ultrasound and sonication 
- CO 2 -laser radiation 

-Ultrasound 
-Macro-wave enhanced (e.g. ionic liquid) 

1 Refs. Jahirul et al. (2012) , Yang et al. (2006) , Stefanidis et al. (2014) , Pandey and Kim (2011) 
2 Ref. Lopez-Mondejar et al. (2016) ; 
3 Refs. Mohan et al. (2006) , de Gonzalo et al. (2016) , Pollegioni et al. (2015) - heme peroxidases from white rot fungi include manganese peroxidases, versatile 

peroxidases, and dye-decolorizing peroxidases; other ligniolytic bacteria enzyme also contribute to delignification e.g. dye-decolorizing-type peroxidases; glutathione- 
dependent 𝛽-etherases and lignin-modifying laccases; 

4 Refs. Zhou et al. (2011) , Ma et al. (2015) , Rinaldi et al. (2016) ; 
5 Refs. Zhou et al. (2011) , Ma et al. (2015) , Jerome et al. (2016) ; 
6 Refs. Jerome et al. (2016) , Kaldstrom et al. (2014) , Bussemaker and Zhang (2013) , Pan et al. (2014) . 
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a more productive and controllable cultivation systems) is constrained
y the high operational and capital costs ( Benemann, 2013 ). 

Microalgal strains have gathered special attention as promising
quatic resources for sustainable biorenewable production, particularly
hen compared to terrestrial plants ( Brennan and Owende, 2010 ; Singh
nd Olsen, 2011 ; Singh and Cu, 2010 ; Rehmanji et al., 2021 ). The main
dvantages include high resource-utilisation efficiency, ability to com-
ete against wild strains in open ponds, tolerance to a wide range of
nvironmental conditions and seasonal variations, rapid growth and
roduction cycles and high photosynthetic efficiency leading to high
O 2 sequestration capacity ( Singh et al., 2022 ). The overall solar en-
rgy conversion from resource to biofuel demonstrates that the solar
nergy return efficiency of microalgae is over 10 times higher than ter-
estrial crops ( Dismukes et al., 2008 ; Patel et al., 2016 ). Such features
ould lead algal biorenewable production to be environmentally bene-
cial e.g. GHG mitigation potential and bioremediation potential. Mi-
roalgal cultures can tolerate and capture substantially higher level of
ue gas CO 2 emitted from industrial sources with a wide range of con-
entration from ambient (0.036 %v/v) to extremely high (100 % v/v)
hus are considered as promising candidate carbon fixation technologies
o mitigate CO 2 ( Singh and Olsen, 2011 ; Bhola et al., 2014 ; Benemann,
997 ). Several studies have concluded that macroalgae as feedstock for
12 
O 2 fixation and biofuel production could deliver overall energy bene-
ts, depending on conversion technology choices ( Maghzian et al., 2022 ;
iranda et al., 2022 ; Aresta et al., 2005 ). Besides, the microalgal biore-
ediation of wastewater have been also examined. Previous research in-
icated that it could not only deliver environmental savings by avoiding
rtificial fertiliser inputs but also lead to reduced water demand ( Farooq
t al., 2015 ; Yang et al., 2011 ; Mu et al., 2014 ; Stiles et al., 2018 ). Higher
nergy yields per unit land (about 30 times more oil) than terrestrial
eedstock plus the avoidance of competition of productive land with
ood bring algae bioproduct systems with potential sustainability bene-
ts ( Singh and Olsen, 2011 ; Clarens et al., 2010 ). As demonstrated by
ampbell et al. (2011) and Clarens et al. (2010) , algae perform better
han terrestrial crops on GHGs, land use and eutrophication for biofuel
roduction. 

Owing to the differed characteristics from terrestrial biomass,
quatic phototrophs offer promising resources for a wide range of con-
ersion technologies particularly thermochemical and biochemical wet-
oute systems, which are energy-efficient for high moisture-content
iomass. Besides, aquatic biomass offers desirable traits such as short
torage duration and harvesting cycles, which are important design cri-
eria for bioconversion process and network scheduling, logistics, value
hain and system planning. 
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Fig. 6. Biomass potential ( Florentinus et al., 2014 ; Popp et al., 2014 ). 
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.2.3. Waste biomass 

Country-specific waste profiles vary but an increasing waste gener-
tion trend could be expected in response to expanding population and
apid urbanisation globally. Considerable amount of carbon-containing
nd nutrient-rich waste resources in solid (e.g. food waste), liquid (e.g.
ewage sludge) and gas phases (e.g. carbon-containing greenhouse gases
 BIS, 2015 , DEFRA, 2012 )) are generated annually and could be con-
erted via various routes to bioenergy or value-added bio-products. In
he EU, the 900 million tonnes of waste paper, food and forestry and
gricultural residues generated annually is predicated to result in suffi-
ient cellulosic waste biomass for 16 % of EU transport fuel by 2030
 Wasted: European’s Untapped Resource, 2014 ). In the UK, wastew-
ter is estimated as 16 billion litre per day, which together with an-
ual production of over 100 million tonnes of carbon-containing solid
iowaste (e.g. BFMSW), above 14 million tonnes of forestry and agri-
ultural residues and large amount of other waste provide significant
pportunities ( BIS, 2015 ). 

A scenario-based study has estimated the global theoretical poten-
ial of agricultural and forestry residuals (i.e. the maximum available
esidue from crop harvest and round wood logging operation) as 140–
70 EJ/year by 2100 ( Daioglou et al., 2016 ); if accounting for resource-
ompeting sectors (e.g. livestock, traditional fuel use in developing re-
ions), the 2100 available residue would come to 50EJ/year. Globally,
ne-third of food produced is lost or wasted every year, which is re-
ponsible for over 7 % of the GHG emissions and the waste of 250 km
 Green Alliance, 2013 ) water (8.5 % annual withdrawn), and 1.4 bil-
ion ha lands (28 % of agricultural lands) ( FAO, 2016 ). This contributed
o the global MSW generation. Out of 0.12–4.3 kg per day per capita
lobal MSW, 59 %-68 % is organic fraction (e.g. food waste, paper waste
nd green waste), varying with the regions ( Hoornweg and Bhada-Tata,
012 ). It is estimated to rise to 6.1 million ton/day by 2025 with over
5 % as organic fraction ( Hoornweg and Bhada-Tata, 2012 ). A shift in
he global MSW generation portfolio has been projected by World Bank,
here the low-middle income countries (LMIC) are expected to con-

ribute to 70 % by 2025. Similar in wastewater treatment (WWT) sec-
or, rapid increase in water consumption and discharge (1.7 times more
apidly than population growth) ( Food and Agriculture Organization
f the United Nations, 2017 ) and rising LMIC contribution have been
u  

13 
bserved. FAO AQUASTAT database showed that out of the currently
lobal freshwater withdrawal (3928 km3/yr), 56 % (2212 km 

3 ) is re-
eased either as industrial WW, municipal WW or agricultural drainage,
f which only 20 % is treated via WWT ( United Nations World Water As-
essment Programme, 2017 ; Food and Agriculture Organization of the
nited Nations, 2017 ). Due to the low development level of national
WT infrastructure (8–38 % WWT in LMIC in contrast to 70 % WWT

n high-income countries ( United Nations World Water Assessment Pro-
ramme, 2017 )), LMIC represents future WW resource potential. 

As highlighted in Table 2 , due to waste sector complexity, chem-
cal compositions vary with the waste type and show higher envi-
onmental, temporal and spatial variability in comparison with ter-
estrial and aquatic phototrophs. Cite compositional variation in live-
tock manure and food waste as examples. The former is highly in-
uenced by the livestock species, diet patterns (e.g. forage and fod-
er feeding ( Guo et al., 2016 )), age groups, soil and climate ( Santos
alólio et al., 2017 ); whereas the latter is dependent on the regional hu-
an behaviours, seasonal variation in the diets and waste degradation

 WRAP, 2010 ; Adeogba et al., 2019a,b ). Sewage and livestock manure
an be categorised as nutrient-rich waste while the high carbohydrate-
ontaining waste category include starch-rich (e.g. food waste), lig-
ocellulosic groups (e.g. agro and forest waste) and heterogeneous
arbon-containing groups (e.g. wastewater). Compared with higher
lant species ( Fig. 5 ), wastes in general represent wider variation in
:N ratio (7.9–398) and polysaccharide contents (cellulose and hemi-
ellulose total contents ranging within 18–68.6). Under the paradigm
hift from waste treatment to resource recovery via thermochemical or
iochemical routes, environmental sustainability and resource-recovery
fficiency are important key design criteria for system and process plan-
ing. 

.3. Biorenewable thermochemical conversion routes 

Main technologies of advanced thermal chemical conversion of
iomass include pyrolysis, gasification and hydrothermal liquefaction.
yrolysis of biomass normally takes place at around 500 °C in the ab-
ence of oxygen, to decompose biomass materials into char residue, liq-
id products and non-condensable gases ( Muzyka et al., 2023 ). Char and
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Table 4 

Overview of biomass pyrolysis, gasification and hydrothermal liquefaction. 

TECHNOLOGY PROCESS CONDITIONS PRODUCTS ADVANTAGES DISADVANTAGES SUITABLE FEEDSTOCK 

PYROLYSIS ( Muzyka 
et al., 2023 , Wu et al. 
(2013) , Bridgwater 
(2012) ) 

-Temperature: ∼500°C; 
-Pressure: normally 
atmospheric; 
-No added oxidants 

-Char ( ∼40 wt.%); 
-Liquid ( ∼50 wt.%); -Gas 
( ∼10 wt.%) 

-Can produce liquid fuels for 
transportation. 
-High value chemicals such as 
aromatics can be extracted from 

pyrolysis oil. 
-Biochar has a broad range of 
applications e.g. soil amendment 

-Pyrolysis oil as the 
major liquid product is 
very complex, corrosive, 
non-stable, and high 
viscous 

-Food waste, oil sludge. 
-Oil crops 
-Lignocellulosic 
feedstock (e.g. wheat 
straw, willow, 
miscanthus) 

GASIFICATION ( Wang 
et al. (2017) , Wu et al. 
(2011) , Susastriawan 
et al. (2017) ) 

-Temperature: ∼800 °C 
-Pressure: atmospheric 
(pressurised gasification 
also reported) 
-Air, steam or CO 2 used as 
gasification agent (air is 
normally used) 

-Char ( ∼5 wt.%, depends 
on the ash content); 
-Liquid ( ∼5 wt.%) 
- Gas ( ∼90 wt.%) 

-Can produce high value syngas 
used for the production of energy, 
power, and synthetic liquid fuels 

-Tar production from 

biomass gasification 
significantly reduces the 
development of biomass 
gasification. -Tar can 
condense and block 
pipes and downstream 

facilities 

-Lignocellulosic 
feedstock (e.g. wheat 
straw, willow, 
miscanthus) 
-Sewage sludge 

HTL ( Ni et al., 2022 , 
Kumar et al., 2017a ) 

-Temperature: 100–400 °C 
-Pressure: up to 50 MPa. 
-Alkali slats used as 
homogeneous catalysts 

- Liquid (up to 60 wt.%) 
-Char ( ∼30 wt.%) 
-Gas ( ∼10 wt.%) 

-Can handling biomass with 
relatively high moisture content. 
-Can produce oil with relative 
low oxygen content compared 
with fast pyrolysis 

- Energy intensive, high 
pressure operation 
increases equipment 
material costing and 
maintenance 

-Aquatic phototrophs e.g. 
microalgae, macroalgae 
and seagrass. 
-Sewage sludge 
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iquid oils are the main targeted products for the pyrolysis of biomass.
asification of biomass happens at higher temperature ( ∼900 °C) in the
resence of oxidant e.g. CO 2 , H 2 O or air, to produce synthetic gas (syn-
as) mainly including H 2 and CO ( Felix et al., 2022 ). Other gases such
s CO 2 , CH 4 and inert N 2 (if air is used for gasification) are present
n the syngas. Another main method of thermal chemical processing of
iomass is hydrothermal liquefaction (HTL) ( Ni et al., 2022 ), which nor-
ally occurs at up to 400 °C and 50 MPa, to convert biomass into mainly

iquid products. HTL can use wet biomass without excess drying, which
s very energy intensive. Therefore, microalgae are normally processed
sing hydrothermal liquefaction technology. The three main thermal
hemical conversion technologies for biomass processing are summa-
ized in Table 4 , covering advantages, disadvantages, process conditions
nd products. 

For the deployment of the advanced thermal chemical of biomass,
any factors need to be considered, such as the type of feedstock ( Du

t al., 2023 ), reactor design ( Zulkornain et al., 2021 ), process control,
atalyst addition, product quality and market requirement, in addition
o the impacts on environment and society. Unlike coal, physical and
hemical properties such as elemental compositions vary significantly
etween different biomass feedstock, which substantially affect the feed-
tock quality and processability. The change of moisture content, and
he presence of ash/inorganic matters in biomass also make the opera-
ion of biomass conversion very challenging ( Ge et al., 2022 ). 

The technical aspects of torrefaction pre-treatment, pyrolysis, gasi-
cation and HTL are addressed in Supplementary Information SI-2
here lignocellulosic biomass ( Isikgor and Becer, 2015 ; Kumar et al.,
017b ) is discussed in details. Typical properties of various lignocellu-
osic biomass feedstock are summarized in Table 3 . Notably, the biomass
omponent interaction (e.g. lignin acting as catalysts to promote sec-
ndary reactions for syngas production ( Giudicianni et al., 2014 )),
iomass screening based on chemical composition (e.g. cellulose) play
ignificant roles in the design of thermal chemical processing. In Sup-
lementary Information SI-2, the processes of individual component of
ignocellulose using pyrolysis, gasification and HTL are discussed, which
re followed by the interactions between the three biomass components;
I-2 covers the underlying mechanisms of biomass conversion, key pa-
ameters affecting technology performance and proximate and ultimate
nalyses. These offer fundamental knowledge underpinning process de-
ign and systems modelling to optimise the technology configuration. 

.4. Biorenewable chemical and biochemical conversion routes 

Main technologies for advanced chemical and biochemical routes in-
lude acid, alkali and bio-catalytic conversion. As the example given in
14 
ig. 7 , many potential chemical and biochemical pathways can be inte-
rated to transform different resources into value-added products. This
ection main discusses conversion of lignocellulosic biomass. Cellulose-
rst biorefining represents the most widespread technologies to con-
ert structural carbohyrates of lignocellulosic biomass into biofuels and
io-chemicals (e.g. fermentable sugars). Such cellulose biorefining strat-
gy separates lignin polymers from the plant tissues via lignocellulosic
elignification and uses lignin as a waste product or low-value energy
uel. Alternatively, lignin first biorefining has also been proposed ( Qiu
t al., 2019 ; Renders et al., 2017 ), where different types of lignin can be
rocessed to generate useful products. Notably, the lignin composition,
tructural complexity and reactivity not only vary with lignocellulosic
lant species and genotypes but mainly depend on upstream processing
echnologies and sectors (e.g. kraft lignin from paper industry, organo-
olv lignin from bioethanol refinery, soda lignin from industry process)
 Kohnke et al., 2019 ). 

This section mainly focuses on cellulose first biorefining, where the
ractionation pre-treatment can be grouped as chemical (e.g. alkali, acid,
onic liquid) pretreatment, thermal (e.g. steam), biological and phys-
ochemical methods (e.g. mechanochemical). Extensive research have
een published on pretreatment technologies; detailed technology com-
arison can be found in comprehensive reviews e.g. publications by
ditiya et al. (2016a) , Kumar et al. (2017b) , Zabed et al. (2016b) and
ivagurunathan et al. (2017b) . As summarised in Table 5 , overall, chem-
cal routes render effective fractionation, however bring design chal-
enges e.g. solvent recycling, reactor anti-corrosion. Physio-chemical
r chemical routes may lead to cost-effective solvent-free but energy-
ntensive solutions. Despite the advantages of low-energy demand and
ffective lignin depolymerisation, biological routes might be challenged
y low reaction rate and inhibitor generation issues. 

At conversion stage, enzymatic and acid hydrolysis are the mostly
dopted technologies to derive fermentable monosaccharides from long
hain of carbohydrate. This stage is critical since the quality of hy-
rolysate affects the subsequent treatment e.g. fermentation processes.
n contrast to acid catalyst, enzyme is effective at a moderate condition
ence leads to less capital investment; however, the production cost of
nzyme has been acknowledged as barrier to enzymatic hydrolysis com-
ercialisation ( Aditiya et al., 2016b ). Lignocellulosic hydrolysis catal-

sed by acids and enzymes have been covered in previous reviews ( Zhou
t al., 2011 ; Aditiya et al., 2016b ; Modenbach and Nokes, 2013 ). Cellu-
ase and xylanase are the mostly adopted enzymes to degrade cellulose
nd xylan (main compound forming hemicellulose) respectively; their
echanisms are discussed by Aditiya et al. (2016a) . Notably, enzymes
lay significant roles in industrial biotechnologies for biorenewable pro-
uction. In addition to the common sugars abundantly occurring in na-
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Table 5 

Technology overview for biochemical and chemical routes. 

Technology Critical factors Catalyst 
/Products 

Advantages Disadvantages Refs. 

PRETREATMENT 

ALKALI Reaction time, alkali loading Alkali such as NaOH, Ca(OH) 2 , NH 3 

Products- 
Fractionated biomass 

Low temperature, removal of 
lignin and part of hemicellulose 

Low digestibility in softwood; 
water-demanding; pH adjustment 
needed 

( Kumar et al., 2009 ; Zabed et al., 2016a ; 
Kim et al., 2016 ) 

ACID Acid concentration, temperature Acid catalyst e.g. H 2 S O4 , SO 2 , HCl, H 3 PO 4 

Products- 
Fractionated biomass 

Short retention time, effective 
lignin removal 

Corrosive formation of inhibitors 
at low pH; formation of 
inhibitory by-products 

( Taherzadeh and Karimi, 2007 ; 
Jönsson and Martín, 2016 ) 

MECHANOCHEMICAL/ 

MECHANOCATALYTIC 

TREATMENT 

Ball-milling time, 
chemical/biomass ratio, 
temperature, 

Metallic catalyst; organic solvent 
Products- 
Fractionated biomass 

Effective fractionation, Energy-intensive ( Rinaldi et al., 2016 ; Wu et al., 2017a ) 

IONIC LIQUID Anion and cation liquid 
composition, temperature, 
retention time, biomass loading 
and particle size 

Ionic liquid typically composed of large 
organic cations and small inorganic 
anions 

low temperature, good selectivity 
and low degradation of desirable 
products; no toxic gas; 
simultaneous dissolved lignin and 
carbohydrates; positive effects on 
enzyme activity 

Cost vary; lack of commercial 
technology for ionic liquid 
removal and recovery 

( Elgharbawy et al., 2016 ; Mora-Pale et al., 
2011 ; Peleteiro et al., 2016 ) 

STEAM, SUBCRITICAL WATER Temperature, pressure Steam Cost effective and chemical-free High-energy inputs, high water 
demand 

( Taherzadeh and Karimi, 2008 ; 
Zhao et al., 2014 ) 

BIOLOGICAL Microbial strain screening Enzyme from bacteria, fungi and 
actinomycetes. 

Lignin degradation, 
energy-efficient, chemical free 

Slow reaction time, inhibition 
effects 

( Zabed et al., 2016a ; Shirkavand et al., 
2016 ; Jonsson et al., 2013 ; Sindhu et al., 
2016 ; Karimi and Taherzadeh, 2016 ) 

CONVERSION 

ENZYMATIC HYDROLYSIS Enzyme activity, stability and 
loading, residence time, 
composition and structure of 
biomass, particle size and 
porosity 

Enzyme or acid as catalysts. 
Products -glucose, xylose, mannose, 
galactose, arabinose, lignin, cellulose 
nanofibrils 

Good selectivity, effective 
degradation of cellulose and 
hemicellulose 

Sensitive to inhibitors, high cost 
hindering commercialisation 

( Aditiya et al., 2016b ; Voloshin et al., 
2016 ; Nechyporchuk et al., 2016 ) 

ACID HYDROLYSIS Acid loading, Low cost; depolymerisation of 
cellulose and hemicellulose 

Corrosion, acid recycling, high 
temperature; sugar degradation 
to form inhibitor 

( Zabed et al., 2016a ) 

FERMENTATION TO GASEOUS 

FUELS 

Fermenter type, residence time 
and temperature 

Products -biomethane, hydrogen Cost-effective; waste recovery for 
H 2 economy 

Inhibitor formation and effects on 
microbial activity 

( Kumar et al., 2017b ; 
Sivagurunathan et al., 2017a ; 
Bundhoo and Mohee, 2016 ) 

FERMENTATION TO LIQUID 

FUELS 

Fermentation reactors e.g. 
submerged and solid state 
fermentation; microbial strain 

Products -bioethanol, biobutanol, 
hydrocarbon 

Cost-effective 
Easy blend with petroleum fuels. 
Liquid biofuels with low 

requirements on fuel 
infrastructure change 

Inhibitor effects on microbial 
activity; energy-intensive 
separation 

( Zabed et al., 2016 ; Voloshin et al., 2016 ; 
Xin et al., 2019 ; Xue et al., 2017 ; 
Trindade and Santos, 2017 ) 

FERMENTATION TO 

PLATFORM CHEMICALS 

microbial strain; technology 
integration 

Products –
US Department of Energy top 10 + 4 
chemicals ( Bozell and Petersen, 2010 , 
PNNL, 2004 ) 
UK LBnet top 10 chemicals 
( Network, 2018 ) 

Integration with wide chemical, 
thermochemical routes; platform 

chemical and energy 
co-generation 

Lack of mature technology for 
commercialisation 

( Wainaina et al., 2018 ; Kwak and 
Jin, 2017 ) 

FERMENTATION TO SINGLE 

CELL PROTEIN 

microbial strain screening Products –
meat protein substitute; feed protein 

Potential to bridge protein 
deficiency; environmentally 
sustainable protein option 

Current food single cell protein 
depends on sugar derived from 

food crops ( Finnigan et al., 2010 ). 

( Wiebe, 2002 ; Strong et al., 2015 ; 
Bogdahn, 2015 ; Reihani and 
Khosravi-Darani, 2019 ; Ritala et al., 
2017b ) 

TRANSESTERIFICATION Biocatalyst and organic solvent 
addition 

Biocatalysts e.g. lipase 
Products –
Biodiesel and glycerol 

Glycerol as value-added 
commodity 

Critical factor is biocatalyst costs ( Anitha et al., 2016 ; Zhao et al., 2015 ; 
Xu et al., 2013 ; Li et al., 2015 ) 

15
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Fig. 7. Pre-treatment and conversion pathways for biorenewable production. 
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ure (d-glucose, d-fructose, d-galactose, d-mannose, d-ribose, d-xylose,
nd l-arabinose), other rare monosaccharides and sugar alcohols (e.g.
ylitol, mannitol, erythritol as sugar substitutes) can also be produced
t enzyme-catalytic reaction (e.g. oxidization reduction, epimerization)
 Zhang et al., 2017 ). Such enzymatic production of value-added bioren-
ables have caused increasing research attentions ( Zhang et al., 2017 ;
evoigt, 2008 ). 

Fermentation underpinned by enzyme actions to convert biomass to
alue-added products is of particular interests for biorefinery manufac-
uring. The 14 top chemical list recommended by US Department of
nergy (DOE) ( Bozell and Petersen, 2010 ) has positioned the fermenta-
ion as the fundamental component of biorefinery. In addition to alcohol
ommodities (e.g. bioethanol, sorbitol, xylitol), DOE highlighted a range
f chemicals converted from carbohydrates through advanced fermen-
ation processes - heterocyclic compounds (e.g. furfural, HMF), organic
cids (e.g. lactic acid, succinic acid, HPA, levulinic acid), isoprene, glyc-
rol and fermentation derivatives (e.g. 1,3-propanediol). The emerging
ole of fermentation in carbohydrate biorefinery is reconfirmed by the
KBiochem10 report ( Network, 2018 ), where 6 organic acids and 4
ther building blocks are of commercial values. In addition, fermen-
ation underpins the future food industries notably the new protein
ources. Mycoprotein ( Wiebe, 2002 ; Garcia-Garcia et al., 2017 ), which
as been developed through 3000 strain screening and commercialised
ince 1985, represents a successful case of continuous fermentation
echnology for food manufacturing (meat protein substitute) ( Trinci,
992 ). In addition, other bacteria, yeast fungi and algae strains for single
ell protein (SCP) production have emerged since 1950s ( Strong et al.,
015 ). A review by Bogdahn (2015) provides a comprehensive view of
CP producing strains, which is followed by a review on SCP landscape
nd patents published by Ritala et al. (2017a) and a recent review on
cale-up SCP biotechnologies ( Banks et al., 2022 ). Interestingly, exten-
 

16 
ive research ( Anitha et al., 2016 ; Chen et al., 2015 ; Gallezot, 2012 ;
osseini and Wahid, 2016 ; Antoniou et al., 2019 ; Takaya et al., 2016 ;
ommaso et al., 2015 ) has been also performed on fermentation inte-
ration with thermochemical routes to form value-added bioproducts
.g. syngas fermentation ( Wainaina et al., 2018 ). 

.5. Biorenewable system complexity 

Analysing from whole system perspectives, a considerable number
f bioproduct value chains are involved in biorenewable systems. Value
hains are composed of a full set of functional value-adding activities,
ncorporating biological renewable or waste resources, refinery pro-
esses and technologies ( Sections 2.3 and 2.4 ) that produce and dis-
ribute biorenewable commodities. Underpinned by biorenewable value
hains, bioeconomy featuring biogenic carbon cycling, is circular by na-
ure in contrast to the linear fossil-based economy. At upstream stages in
iorenewable value chains, phototrophs and the related terrestrial and
quatic ecosystems represent potential carbon sinks for CO 2 capture and
torage (as reflected by CUE in Table 2 ). At downstream stages, the car-
on sequestered into the biomass is either fixed or cycled back to nat-
ral or built environments after conversion and use of bio-renewable
roducts. In the case of bio-waste derived biorenewables, an infinite
losed-loop carbon circular system could be theoretically formed. Thus
esource-circular biorenrewable manufacturing underpinned by a sus-
ainable nexus of resource-biorenewable-waste, if fully realised, will sig-
al the bio-sectors transformation. Despite the science and engineering
dvances, tackling the complexity in the biorenrewable systems pro-
ides significant challenges. Below the biorenewable derived from ter-
estrial biomass is given as an example to highlight the challenges- 

• Analysing biorenewable system complexity, the plant-environment
interaction is driven by photosynthesis and biogeochemical cycles
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(defined as the pathways, by which chemical substances and ele-
ments move through the biosphere and physical environment of the
Earth); whereas agriculture and refinery manufacturing are inter-
connected. As demonstrated in Fig. 2 , biorenewable are interdepen-
dent on natural capital (land, water, air) and built environmental
resources (e.g. energy generation) due to its origin from biological
renewable resources. Thus, different biorenewable sectors e.g. food
and biochemical compete on the same natural capital and built re-
sources, leading to demand stress. 

• Biorenewable systems are not only regulated by environmental vari-
ability but also constrained by planetary boundaries (e.g. climate
change, global freshwater use and land use boundaries ( Rockström
et al., 2009 )). As addressed in Section 2.1 , the interaction between
living organisms including plant species and agro-ecosystem func-
tions are underpinned by photosynthesis, which is driven by light
energy to convert CO 2 and H 2 O into metabolites and O 2 . C3 (e.g.
wheat, willow, poplar), C4 plants (e.g. maize, sugarcane, miscant-
hus) have been the research focus as food and lignocellulosic re-
sources. Their photosynthetic reactions and biochemical regulation
differ significantly. Not only regulated by plant internal physiologi-
cal traits and metabolism pathways, their photosynthetic efficiencies
and N update are also influenced by a range of external environ-
mental drivers (e.g. soil, atmospheric CO 2 levels ( Portis and Parry,
2007 ), water stress and temperature ( Yamori et al., 2014 )) at spa-
tial scales. At upstream stages, plant biomass production and chem-
ical composition vary significantly with plant species and also show
spatial-temporal variation and uncertainties, which affect down-
stream bioproduct manufacturing. Further, the biorenewable sys-
tems are constrained by land and water resource availability under
ongoing environmental change as well as other planetary boundaries
(e.g. stratospheric ozone depletion; ocean acidification ( Rockström
et al., 2009 )). Thereby, it is important to address interdependency
of natural resources, biorenewable and environment while analysing
biorenwable systems. 

• Biorenewable systems consist of subsystems across temporal/spatial
scales including natural capital resources (e.g. land, water and air),
agro-ecosystems, refinery manufacturing, waste and pollutant fate
and treatment, transport and network. Subsystems in particular
those across different biorenewable value chains often are regarded
as disconnected. Take lignocellulosic conversion as an example. A
considerable amount of empirical research has been published on
conversion technologies for lignocellulosic monosaccharides. Such
empirical advances represent fragmented subsystems, which are dis-
counted from the value chains of food and feed production (e.g.
microbial protein). However, these sub-systems are interlinked by
underlying carbon, nitrogen (C/N) cycles and resource circulation
including biogeochemical cycles, water cycles, resource conversion
and waste recovery. To unlock the subsystem fragments and enhance
resource efficiency across renewable value chains, advanced whole
system modelling offers an approach to push the research frontier
on biorenewable systems design. 

• Across the biorenewable value chains, different decision criteria and
spaces are concerned. Fig. 2 highlights considerable numbers of po-
tential pathways (value chains) interconnecting biomass, conversion
technologies and final biorenewable vectors. Across biorenewable
value chains, multi-groups of interactive stakeholders are involved in
the decision-making. Fig. 8 generalises a sector-independent stake-
holder map - feedstock and resource providers, existing bioproduct
manufacturers, new biorenewable developers and operators, distri-
bution centres, end-users, governmental agencies, policy makers and
regulators and finance systems, thereby leading to diverse decision
spaces. To achieve the new biorenewable technology deployment, it
is essential to consider the entire value chains but also the interaction
of different stakeholder groups with conflicting decision criteria. 

• Biorenewable system development under Fourth Industrial Revolu-
tion (so called Industry 4.0) vision ( National Academy of Science and
17 
Engineering, 2013 ) represents an opportunity for bio-sectors trans-
formation. Creation of intelligent biorenewable sectors and over-
coming data barriers would not have been possible prior to Industry
4.0 ( National Academy of Science and Engineering, 2013 ). Industry
4.0 envisages agriculture and manufacturing, where resources, bio-
products and machines are all connected via the internet to achieve
smart collection and analyses of real-time data and coordinated pro-
cesses. Under this vision, emerging digital technologies and data ad-
vances (e.g. smart machinery, remote sensing) provide tremendous
opportunities for biorenewable systems - enabling coordinated agri-
culture and manufacturing systems and bringing real-time data and
information to precision decisions. Such advances also demand re-
sponsive decision-making, which requires a significantly reduced de-
cision time with a trade-off with solution optimality. 

Overall, terrestrial, aquatic biomass and waste resources can be con-
erted into value-added biorenewables, which can be regarded as highly
omplex systems of flows and processes that are subject to nonlinearity,
ensitivity and uncertainty. Biorenewables involve a range of conflict-
ng and interacting issues such as sub-system interdependency, plant-
oil-climate interaction, resource-competition, trade-offs between sus-
ainability criteria, the interaction of bio-renewables with the evolving
nergy, water and waste sectors. It is essential to apply a whole systems
pproach and resilient and sustainable thinking ( Stockholm Resilience
entre, 2014 ) to biorenewable design in order to increase the overall
apacity for tackling environmental stresses or socio-economic changes
ver the coming decades. Not only are sustainable resource management
trategies for safeguarding agro-ecosystems necessary, but also biorefin-
ry design needs to consider sustainability and resilience criteria in a
patial-temporal transition context. To advance understanding of biore-
ewables and inform robust solutions, a unifying modelling approach
o account for varied nonlinearity and sensitivity of different computa-
ional methods is necessary. 

Despite the clear importance, development and applications of
dvanced modelling tools to transform isolated subsystems to a
erformance-maximised biorenewable cluster with interconnected
mart machinery and real-time data analyses remains unexplored. Digi-
al technologies and data advances have the potential to bring improved
esponsiveness and flexibility, enhanced collaboration across supply
hains for identifying and analysing resources and bio-products, and
mpact new biorenewable cluster creation. Beyond the state-of-the-art,
n emerging research frontier is to bring data advances into responsive
et precision decision-making for the multi-scale decision spaces across
iorenewable systems. Modelling research advances will be discussed in
he Section 3 . 

. Multi-scale biorenewable systems modelling 

The biosector transformation calls for leading-edge research on
ulti-scale system modelling, which tackles the biorenewable com-
lexity across scales and enables the optimal design of resource-
ircular manufacturing systems by capturing the interdependencies
cross resource-biorenewable-waste nexus. Through comprehensive re-
iew of state-of-the-art computational methods, this section highlights
he modelling gaps and future research frontiers to address biorenew-
ble complexity. Specifically, this section reviews metabolic and biogeo-
hemical models, quantitative sustainable evaluation, spatial data anal-
ses, process design and simulation and mathematical optimisation. 

.1. Metabolic and biogeochemical modelling 

A multi-scale design by integrating modelling approaches with scien-
ific innovation could not only lead to carbon closed-loop systems to fix
O 2 but also open up bioclusters to express our sustainable bioeconomy
spirations. This section provides an overview of multi-scale modelling
pproaches applied to the biomass systems. 
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Fig. 8. Stakeholder map for innovative biorenewable systems under circular bio-economy. 
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.1.1. Implementing System Biology to understand global metabolism 

Systems Biology is branch of science that looks at the global prop-
rties of a biological system being studied. Our knowledge of the foun-
ations of living organisms, in terms of the components of cells, tissues,
nd organs has been expanded due to advances in high-throughput ex-
erimentation. Entire genomes of several organisms have now been se-
uenced and the gene expression profiles have been comprehensively
enerated ( Fang et al., 2020 ). Mass spectrometry-based protein surveys
ave quantified the global proteome ( Vidova and Spacil, 2017 ) and the
etabolome on cellular and organismal levels ( Beale et al., 2018 ). Ad-

ances in molecular and cell biology have provided information on how
roteins are organised to orchestrate the functions of subcellular sys-
ems while physiology has shed further light on the complex functions of
ells, tissues, and organ systems. This enormous amount of information
t different scales of organisation can be used to obtain a new perspec-
ive that starts from genes and proteins, moves through subcellular in-
eractions and pathways, and ends in the physiology of cells, tissues, and
rgan systems that determines the phenotype ( Bruggeman and Wester-
off, 2007 ). Systems Biology, therefore, offers an opportunity to study
ow the phenotype of an organism is generated from the genotype that
s responding to its environment. 

This combination of omics data and advances in computational
nalytical methods allows for a greater understanding of the data
 Bruggeman and Westerhoff, 2007 ). For the application of biotechnol-
gy, metabolism is the process in which photosynthetic organisms as-
imilate external substrates, such as CO 2 or acetate, into biomass rich
n high value metabolites and understanding how metabolism can be
18 
irected to produce high quantities of high value compounds is key to
 successful bioeconomy. A knowledge of metabolism is therefore in-
aluable in engineering microalgal strains optimised for efficient car-
on uptake, assimilation and metabolism into high value bioproducts
 da Silva Lima and Segato, 2022 ). Computational models that describe
etabolism can predict metabolism, whose results can be used to make
ovel model-driven hypothesis on how metabolism can be engineered
o benefit the bioeconomy. 

.1.1.1. Metabolic modelling. Modelling metabolism can be undertaken
sing a variety of approaches, including kinetic, logic and stoichiometry-
ased methods ( Machado et al., 2011 ). Classical kinetic modelling ap-
roaches describe the rate of change in the concentration of a metabo-
ite based on the kinetic properties of individual enzymes, using the
orresponding experimentally derived parameters (e.g., rate constant,
aximum reaction velocity and dissociation constants) ( Resat et al.,
009 ). Small metabolic networks (typically fewer than 50 reactions)
an be modelled using kinetics ( Baghalian et al., 2014 ). The ability to
odel particular metabolic pathways such as the TCA cycle has given a

reater understanding of how metabolic steps are regulated by enzymes
hat have the tightest control of the metabolic system ( Smallbone et al.,
013 ). The TCA cycle has also been modelled using differential equa-
ions, giving further information about alternative TCA cycles that could
heoretically exist ( Sweetlove et al., 2010 ). 

An example of a kinetic model of photosynthesis is e-photosynthesis,
epresenting C3 photosynthesis as performed by wheat, rice and soy-
ean crops ( Zhu et al., 2013 ). This model consists of 50 differential rate
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quations that account for light absorption, hydrolysis, LEF accounted
or NAPDH and ATP synthesis, along with CEF. Carbon fixation and as-
imilation up to sucrose synthesis was also represented in the model. The
odel was successful in accurately predicting qualitative and quantita-

ive experimental data. Increases of photon flux led to the prediction of
ncreased oxygen evolution, luminal pH and increased chlorophyll fluo-
escence, in line with experimental evidence ( Sargent, 1940 ; Steinberg-
frach et al., 1998 ; Osborne et al., 1997 ) 

Kinetic modelling is, however, limited to the current biochemical
nd experimental knowledge regarding the reactions being modelled.
ll reaction parameters, such as enzyme concentrations and their ki-
etic properties have to be accurately estimated in experimental con-
itions that mimic that of the cell to give meaningful results. Impor-
antly, metabolic control analysis has taught us that control of a system
s an inherent property of the global system, since metabolic control can
e distributed among various metabolic steps ( Westerhoff et al., 2009 ).
herefore, the greater the number of metabolic interactions, the greater
he dispersal of metabolic regulation. By choosing to model selected
athways we are choosing to ignore any regulatory steps. 

.1.1.2. Simulating genome scale models using flux balance analysis.

etabolism is derived from the enzymes encoded by the genome; there-
ore, a complete knowledge of the genome would give a complete knowl-
dge of metabolism for a given organism A GEnome scale Model (GEM)
epresents all known metabolic reactions in an organism and is recon-
tructed primarily from genomic information and the literature. Com-
utational tools have been developed to analyse the system properties
f GEMs. Flux Balance Analysis (FBA) is one such example that employs
iner programming to optimise a defined biological objective (e.g., to
aximise growth, or ATP production). In doing so, all input substrate
uxes and internal metabolic fluxes are directed to the objective reac-
ion and in doing so, steady-state fluxes through all the reactions within
he model are quantified. These quantified fluxes are thus deterministic
pon available substrates and serve as metabolic predictions ( Orth et al.,
010 ). Knowledge of metabolite stoichiometry, metabolite and enzyme
ocalisation, and biomass constituents are sufficient to generate predic-
ions of metabolism, but integration of omic data that quantify the con-
ributions made of each reaction within the GEM will give enhanced and
eliable predictions of global metabolism ( Santos et al., 2011 ). By cal-
ulating steady-state metabolic fluxes through the GEM under specific
onditions, i.e, mixotrophic algal growth on acetate versus phototrophic
lgal growth, the metabolic contributions of independent pathways can
e observed and analysed with respect to the specified condition. 

The underlying assumptions behind FBA is that metabolic pathways
perate at steady state, and that biological systems have evolved to be
s efficient as possible. The advantage behind this approach is that other
inetic parameters associated with the reactions can be ignored ( Yizhak
t al., 2010 ). GEMs have proven useful for assessing the essentiality of
etabolic steps ( Henry et al., 2006 ), improving metabolic engineering

trategies by simulating gene knockouts ( Kennedy et al., 2009 ; Matsuda
t al., 2011 ), and for elucidating metabolism giving rise to observed
hysiological traits ( Dal’Molin et al., 2011 ). 

As represented in Fig. 9 , the first step of FBA is to mathematically
epresent a metabolic network in the form of a stoichiometric matrix
 S ), composed of rows of metabolites and columns of reactions. For each
eaction within the matrix, metabolites that are consumed in that par-
icular reaction are given a negative stoichiometric coefficient, whilst
etabolic products are represented by a positive coefficient. The next

tep involves defining an objective function (Z) that is biologically rel-
vant to the problem being studied. For predicting growth, for exam-
le, maximisation of biomass might be the best objective function, since
iomass reactions contain all nucleic acids, proteins, lipids, etc., that
re required for cell division. Another example of an objective function
ould be the optimal production of a target metabolite of interest or
he minimisation of an expensive nutrient. The reaction that is deemed
uitable as the objective reaction can either be maximised or minimised
19 
n the assumption that selective processes during evolution guide any
ystems towards an optimal state. 

A further critical step involved with FBA is the application of con-
traints upon the matrix. Constraints are represented as upper and lower
ounds for all reactions, which determine maximum and minimum al-
owable fluxes of reactions. For the constrained matrix ( S ), the overall
eaction flux vector (v) in matrix S at steady state equals zero ( S. v = 0)
nsuring a global mass balance through the matrix. It is for this reason
hy FBA is a constraint-based modelling approach. 

The final step involves optimising the objective function using linear
rogramming, which satisfies the steady state assumption. Metabolic
etworks are branched, and this branching allows for the possibility to
enerate several metabolic solutions that all satisfy the objective under
he same constraints, because metabolic fluxes can be rerouted and/or
istributed through each branching point. 

The flux solutions are limited by the constraints imposed on the sys-
em, resulting in the allowable flux entering a theoretical phenotypic
olution space. The greater the applied constraints, the tighter the avail-
ble solution space will become with less. ( Varma and Palsson, 1994 ).
nalysis of the pathways carrying the greatest flux gives an indication
f the metabolic pathways most likely to have been used in order to
chieve a given objective. 

.1.1.3. Flux variability analysis. In theory, the phenotypic solution
pace, (shaded blue in Fig. 9 ) is not limited to single solution and so
ontains all possible flux combinations that the cell can use to sustain
ts objective function under the imposed constraints. FBA identifies one
ptimal solution in the presence of co-existing alternative optimal so-
utions. By using the principles that drive FBA whilst constraining the
bjective function at a given value, it is possible to calculate the range
f possible minimal and maximal fluxes for each reaction in the network
hat give rise to the same optimal objective using a method called Flux
ariability Analysis (FVA) ( Gudmundsson and Thiele, 2010 ). As a result
ll alternative reactions that could carry a flux can be sought, giving rise
o alternative pathways that still conform to the phenotypic phase plane.

A number of computational tools have been produced to analyse the
uxes resulting from a GEM using FBA. Becker et al. (2007) developed a
onstraint-Based Reconstruction and Analysis (COBRA) toolbox, a soft-
are package running from within the MATrix LABoratory (MATLAB)

nvironment, and is also freely available for the Python and R environ-
ents ( Ebrahim et al., 2013 ; Conway, 2023 ). COBRA, and COBRApy

llows for the quantitative prediction of both steady-state and dynamic
ptimal growth behaviour cellular flux and remains the most widely
sed method to model metabolism to date ( Becker et al., 2007 ; Jenior
t al., 2023 ). 

.1.1.4. Metabolic model advance of microbial cluster. GEMs have been
onstructed for many organisms including eukaryotic bacteria ( Durot
t al., 2009 ), cyanobacteria ( Vu et al., 2012 ), yeast and photosynthetic
rganisms such as plants ( de Oliveira Dal’Molin et al., 2010 ; Saha et al.,
011 ) and microalgae ( Dal’Molin et al., 2011 ; Chang et al., 2011 ; Boyle
nd Morgan, 2009a ). Out of the various models of microalgae, it is the
odel organism Chlamydomonas Reinhardtii that has been most widely

tudied using metabolic modelling. 
The first metabolic model of C. reinhardtii consisted of 484 reactions

nd 454 metabolites compartmentalised between the chloroplast, mi-
ochondrion and cytosol ( Boyle and Morgan, 2009b ). The model was
imulated to mimic phototrophic and mixotrophic growth at varying
ight levels using FBA. Phototrophic growth simulations predicted car-
on fixation into the CBB cycle, and LEF of electrons through the pho-
osynthetic reactions were predicted to produce NADPH. Mixotrophic
imulations at periods of low light suggested an inhibition of carbon fix-
tion into the CBB cycle because RuBisCO was inactive. At higher light
evels, carbon fixation into the CBB was resumed by RuBisCO activity,
nd acetate was predicted to be assimilated into the glyoxylate cycle.
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Fig. 9. Methodology of flux balance analysis to model metabolism. 
(a) Metabolic genes from annotated genomes of interest and metabolic knowledge lead to global metabolic reactions. (b) Integration of all the metabolic reactions 

through shared metabolites results in the construction of a global metabolic network for the system of interest. (c) The metabolic network is converted into a 
stoichiometric matrix ( S matrix), where columns represent reactions and rows represent metabolites and each entry represents the reaction coefficient of a 

particular metabolite in a reaction. Metabolites consumed by a reaction are given a negative coefficient, whereas positive coefficients are given to metabolites that 
are produced. (d) With the S matrix and the objective function of the model set as a system of linear equations, one can solve for the flux distributions throughout 
S . The phenotypic solution space (shaded blue rectangle) is where all possible solutions of flux distribution reside, and each axis represents the metabolic flux of a 

reaction in S . (e) Applying additional constraints will reduce the allowable solution space. (f) One or multiple optimal solutions can be found in the allowable 
solution space that optimises the objective function of the model (as represented by the pink dot) ( Orth et al., 2010 ). 
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igher light levels also resulted in increased flux through LEF, produc-
ng more NAPDH than needed for biomass synthesis which then allowed
or the fixation of carbon into the CBB. Despite qualitative and quantita-
ive insights into carbon metabolism and light, the model did not contain
EF. In addition, the model contains an under representation of known
eactions and metabolites as compared to other FBA models. 

AlgaGEM, a genome-scale metabolic network model of C. reinhardtii

epresents a more complete GEM, accounting for 1725 reactions involv-
ng 1862 metabolites ( Dal’Molin et al., 2011 ). This model included the
lyoxylate cycle within a microbody, in addition to cytoplasm, mito-
hondrion, chloroplast and nucleus compartments. AlgaGEM was con-
tructed of the back of AraGEM, a GEM of Arabidopsis thaliana ( de
liveira Dal’Molin et al., 2010 ), and so 85 % of reactions were identical
etween the two models. AlgaGEM was designed to investigate max-
mum hydrogen production in C. reinhardtii and was modelled under
hototrophic, mixotrophic and heterotrophic simulations. Predictions
rom heterotrophic growth on acetate suggested acetate was assimilated
nto both the glyoxylate and TCA cycles. In this study, the CEF was asso-
iated with hydrogen production because mixotrophic growth predicted
he activation of CEF, and resulted in a decrease of hydrogen produc-
ion. The authors concluded that hydrogen itself is able to accept excess
lectrons when CEF is inhibited, providing a regulatory role of the reac-
ion. This study has shown how predictive modelling can be used to ad-
ress how physiological manipulations can give rise to emergent traits.
owever, the role of acetate and its effects on photosynthesis were not
ddressed. 

i RC1080 is a more recent and dedicated metabolic model of
.reinhardtii that was developed to investigate light-driven metabolism
 Chang et al., 2011 ). This model accounts for 2190 reactions encoded
20 
y 1080 genes, 1068 metabolites and 10 compartments which included
 glyoxysome. This model contained more than 32 % of estimated genes
ith known metabolic functions, which remains a significant increase
ver previous reconstructions. Another key feature of this model is cen-
rality of the chloroplast, accounting for over 30 % of reactions in
he model and displaying the importance of the chloroplast in carbon
etabolism. Furthermore, the model was able to qualitatively predict

orrect oxygen evolution and growth rate with varying light sources and
hoton flux, thus displaying a greater coverage of the photosynthetic
eactions. The i RC1080 model was then used to predict the flux of car-
on metabolism and photosynthesis for mixotrophic and phototrophic
onditions. The functioning of a CEF was predicted to be play an es-
ential physiological role to assimilate acetate and to support a high
iomass growth ( Chapman et al., 2017 ). The results also suggested that
cetate inhibits RuBisCO, which was recently confirmed ( Saint-Sorny
t al., 2022 ). Such modelling advances can help to inform the system
esign of various microalgal species as phototrophic microbial feedstock
or enhanced biometabolite production. 

Overall, omics-enabled metabolic modelling can advance the under-
tanding of the phototrophic microbial cluster in biological CO 2 seques-
ration and carbon cycling in both terrestrial and aquatic ecosystems.
hereby, metabolic models not only can inform the large-scale biogeo-
hemical cycles and ecosystem food webs but also can be integrated with
rst-principle modelling to explore the CO 2 conceptual refinery pro-
osed by Venkata Mohan et al. (2016) . By manipulating and designing
ersatile microbial consortia for carbon sequestration, CO 2 will be trans-
ormed from a GHG to a commodity, which can be metabolised to plat-
orm chemicals under circular bioeconomy. Driven by CO 2 -underpinned
esource-circular aspiration, the integrative modelling at the interface of
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ystems Biology and Process Systems Engineering to combine metabolic
odelling with chemical process design and optimisation represents a

uture research frontier. 

.1.2. Biomass production modelling 

.1.2.5. Models for terrestrial higher plant biomass production. Photosyn-
hesis is critical to the production of biomass, which underpins the com-
lex interactions between organisms and ultimately, ecosystem func-
ions. For higher plant species, photosynthesis is not only regulated by
lant internal physiological traits and metabolism pathways, but is also
ffected by a range of biotic and abiotic environmental drivers such as
limate, weather extremes, soil type and nutrient availability. The plant
raits and environmental impacts are captured in bioenergy biomass
rop production models such as MiscanFor for Miscanthus and C4 energy
rasses ( Hastings et al., 2009a ), Forestgrowth–SRC for various species of
oody trees used for short rotation coppicing (SRC) ( Tallis et al., 2013 )
r the ESC-CARBINE model for short rotation forestry ( Hastings et al.,
014a ; Hastings et al., 2014b ), which is a combination of the CARBINE
odel ( Edwards and Christie, 1981 ) and the ESC model ( Pyatt et al.,
001 ). Environmental changes such as elevated atmospheric CO 2 lev-
ls, changing climate, and the increased intensity and frequency of ex-
reme weather events could cause a widespread shift in photosynthetic
atterns and regulators e.g. electron transport and RuBisCO capacity
 Sage and Kubien, 2007 ), where the response of different plant species
ay vary. With the rise in atmospheric CO 2 levels and associated global
arming, RuBisCO capacity is expected to have a smaller role in limit-

ng C3 photosynthesis ( Portis and Parry, 2007 ) and species and geno-
ypes with heat stability traits will be favoured for electron transport
apacity ( Sage and Kubien, 2007 ). Previous studies on the temperature
esponse of photosynthesis suggested that C3 plants generally showed
 greater propensity for temperature acclimation, C4 plants tend to be
ore adaptive to warm environments, whereas CAM species acclimate
hotosynthetic activities to temperature differently over day and night
 Yamori et al., 2014 ). 

Photosynthetic efficiency dynamically adapts to a variety of internal
hysiological and external environmental factors, meaning that pho-
osynthesis is heterogeneously distributed over leaves or organs over
ime. Such spatio-temporal variation has been reflected in previous
odelling approaches, where regulatory properties, photosynthetic re-

ctions and carbon assimilation potentials were simulated. Farquhar
t al. (1980) proposed a C3 leaf photosynthesis mode, capturing the
nzyme kinetics and electron transport and photosynthetic responses to
ultiple and interactive environmental variables. This model was fur-

her adapted by Collatz et al. (1992) to formulate a leaf biochemical-
ntercellular transport model for C4 plants, where photosynthesis was
xpressed as a function of temperature, intercellular CO 2 partial pres-
ure and incident solar radiation. In previous research on C3 and C4
athways, gross photosynthesis and carbon assimilation have been esti-
ated not only via correlations with crop physiological factors e.g. leaf

rea, assimilate allocation ( Spitters, 1986 ), plant respiration ( Penning
e Vries et al., 1989 ), nitrogen uptake ( Zhang et al., 2002 ), but also via

inks with environmental drivers e.g. atmospheric CO 2 concentration
 Goudriaan, 1986 ), light interception ( Penning de Vries et al., 1989 )
ater and nutrient availability and stress, soil and ambient tempera-

ure ( Zhang et al., 2002 ; Robertson et al., 2015 ; Hastings et al., 2009b ).
ompared with C3 and C4 plants, CAM plants have received less sys-
ematic study. The net CO 2 uptake was often estimated based on the
mpirical environmental productivity index ( Nobel, 2003 ; Garcia-Moya
t al., 2011 ). A first order differential model proposed by Nungesser
t al. (1984) formulated time-dependent concentration of metabolites
s a function of atmospheric CO 2 concentration and light, which was
urther modified to include other factors, i.e. light intensity and temper-
ture effects ( Nungesser et al., 1984 ; Blasius et al., 1997 ). This model
as further adapted by Owen and Griffiths (2013) which led to a system
ynamic model integrating biological constants (e.g. enzyme kinetics)
nd capturing four distinct CAM cycle phases. Modelling efforts have
21 
een also made to correlate water availability to C assimilation ( Comins
nd Farquhar, 1982 ) and coupling CAM photosynthesis with wider envi-
onmental parameters. Recent work by Bartlett et al. (2014) proposed a
ynamic model incorporating a CAM leaf photosynthesis model adapted
rom a C3 model ( Nungesser et al., 1984 ), circadian C-flux dynamical
odel, stomatal conductance equation and soil-plant-atmosphere. Such
hotosynthesis models e.g. C3 model by Farquhar et al. (1980) have
een widely used to model leaf biochemistry to canopy and ecosys-
em exchange in response to environmental change ( von Caemmerer
nd Farquhar, 1981 ; Long, 1991 ) and constant/periodical environmen-
al conditions ( Hartzell et al., 2015 ). 

Particularly, C3 and C4 photosynthesis models have been incorpo-
ated into site-scale crop-growth or large-scale vegetation models ( Yin
nd Struik, 2009 ) e.g. GECROS ( Yin and Laar, 2005 ), Agro-IBIS ( Foley
t al., 1996 ), WIMOVAC ( Humphries and Long, 1995 ). In the crop mod-
ls, subtracting the plant respiration ( Penning de Vries et al., 1989 )
rom gross photosynthesis, the derived net C assimilation can be par-
itioned between leaf, stem, grain, shoot and root ( Zhang et al., 2002 )
o project biomass growth. In fact, crop growth are closely related to
ider environmental processes e.g. soil biogeochemical processes and
ydraulic dynamics, and such complexity can be captured by terres-
rial biogeochemical models linking crop physiological processes and
oil biogeochemistry ( Zhang et al., 2002 ). Publically available and crop
pecific crop and biogeochemical models are summarized in Table 6 ,
hich have been applied to simulate the biomass and C/N cycle dynam-

cs or combined with remote sensing for aspiration of precision farming
 Spiliotopoulos et al., 2015 ; El Nahry et al., 2011 ). 

There are over 30 models ( Brilli et al., 2017 , Peltoniemi et al., 2007 )
hat evaluate the carbon and nitrogen cycles and water flows that con-
rol the flows of nutrients in soil. These range from models that consider
he decomposition of organic carbon in soils like the RothC ( Coleman
t al., 1997 ; Jenkinson and Coleman, 2008 )and the cohort models devel-
ped by Bosatta and Ågren (1996) , Bosatta and Berendse (1984) , Bosatta
nd Ågren (1995) , Bosatta and Ågren (1994) , Bosatta and Ågren (1985) ,
osatta and Ågren (1999) , Bosatta and Agren (1991) and models that

ust consider the nitrogen cycle of nitrification/denitrification and plant
ptake like Sundial ( Bradbury et al., 1993 ) and hydrology models like
WAT ( Devia et al., 2015 ) to models that include all processes like Day-
ent ( Parton et al., 1998 ), ECOSSE ( Smith et al., 2010a , Smith et al.,
010b ) and DNDC ( Li et al., 1992 ; Li, 2000 ; Li et al., 2006 ; Li et al.,
994 ). 

To take one model in more detail to understand how it evolved,
NDC is one of the most widely-used process-oriented biogeochem-

stry models and has been validated worldwide ( Wang et al., 1997 ;
utterbach-Bahl et al., 2001 ; Smith et al., 2002 ; Brown et al., 2002 ;
ai et al., 2003 ; Butterbach-Bahl et al., 2004 ; Grant et al., 2004 ; Babu
t al., 2006 ; Beheydt et al., 2007 ; Abdalla et al., 2009 ). The DNDC
DeNitrification-DeComposition) model was first proposed by Li et al.
1992) ; over two-decade development, numerous changes have been im-
lemented to DNDC model to bridge functional gaps and be adapted to
egion- or user-group specific versions UK-DNDC ( Brown et al., 2002 ),
NDC-Europe ( Guo et al., 2015b ) forest-DNDC, manure-DNDC ( Li et al.,
012 ). A schematic family tree has been reviewed and presented by
ilhespy et al. (2014) . DNDC embed biogeochemical processes (e.g.,
lant growth, organic matter decomposition, fermentation, ammonia
olatilization, nitrification, denitrification) to compute transport and
ransformations in plant-soil ecosystems. Specifically, DNDC has two
omponents – (1) soil climate, crop growth, and decomposition sub-
odels, converts primary drivers (e.g., climate, soil properties, vege-

ation, and anthropogenic activity) to soil environmental factors (e.g.,
emperature, moisture, pH, redox potential, and substrate concentra-
ion gradients); (2) nitrification, denitrification, and fermentation sub-
odels, simulates C and N transformations mediated by the soil mi-

robes ( Guo et al., 2015b ). DNDC has been linked with economic model
o simulate C N fluxes under the regional context of environmental
nd economic indicators ( Leip et al., 2008 ). Despite its original devel-
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Table 6 

Biogeochemical model overview. 

Model Photosynthesis Temporal-spatial 
scale 

Sub-models Environmental variables Biomass Refs. 

Weather 1 Soil 2 Plant species Parameter 3 

DAYCENT Degree day model Site/regional/global, 
Monthly or daily 

Biomass 
decomposition 
nitrification 
denitrification 
methanogenesis soil 
climate 

AT, SR, Pre, WS Multilayer PH, 
B-Den, Or-C, S-Tex, 
Slop, In-N, WP, 
H-Con, Por 

C3 and C4; 
terrestrial general 

LAI, C-Par, C/N, WaD, N-Fix, 
ThD, Root, Op-T, FO-P, FO-T, 
FO-F, FO-I 

( Parton et al., 1998 , 2001 ) 

ECOSSE Miami NPP model Site/regional/global, 
Monthly or daily 

Biomass 
decomposition 
nitrification 
denitrification 
methanogenesis soil 
climate 

AT, SR, Pre, WS Multilayer PH, 
B-Den, Or-C, S-Tex, 
Slop, In-N, WP, 
H-Con, Por 

C3 and C4; 
terrestrial general 

C Par C/N ( Smith et al., 2010a ) 

DNDC Degree day model site/regional/global; 
julian days 

soil climate, 
crop growth, 
decomposition, 
nitrification, 
denitrification, 
fermentation 

AT, SR, Pre, WS PH, B-Den, Or-C, 
S-Tex, Slop, In-N, 
WP, H-Con, Por 

C3 and C4; 
terrestrial, crop 
specific 

LAI, C-Par, C/N, WaD, N-Fix, 
ThD, Root, Op-T, FO-P, FO-T, 
FO-F, FO-I 

( Li et al., 1992 ; Li, 2000 ; 
Li et al., 2006 ; Li et al., 1994 ) 

MISCANFOR Monteith – LAI –
extinction coef –
RUE modified for 
áteratura drought 
and nutrient stress 

Site/regional,/global 
Monthly or daily 

Biomass 
Decomposition soil 
wáter wáter use, LCA 

AT, SR, Pre, ET, WS PH, B-Den, Or-C, 
S-Tex, Slop, In-N, 
WP, FC, Por 

C4 grasses and Wood 
SRC genotype 
specific 

LAI, C-Par, C/N, WaD, N-Fix, 
ThD, Root, Op-T, FO-P, FO-F, 
FO-I RUE, WUE 

( Hastings et al., 2009b ) 

FORESTGROWTH-SRC Site/regional, (UK) 
Monthly or daily 

Biomass soil áter soil 
wa 

AT, SR, Pre, ET, WS Multilayer PH, 
B-Den, Or-C, S-Tex, 
Slop, In-N, WP, 
H-Con, Por 

Wood SRC genotype 
specific 

LAI, C-Par, C/N, WaD, N-Fix, 
ThD, Root, Op-T, FO-P, FO-F, 
FO-I RUE, WUE 

( Tallis et al., 2013 ) 

CARBINE-ESC Annual timestep 
growth curves 

Site/Regional 
Anual (UK) 

Surface biomass AT, SR, Pre, WS Trees genotype 
specific 

Par ( Casella and Sinoquet, 2003 ) 

SWAT Degree days Site/regional/global, 
Monthly or daily 

Biomass nitrification 
Leaching 
soil climate 
Wáter 
erosion 

AT, SR, Pre, ET, WS Multilayer PH, 
B-Den, In-N, WP, 
H-Con, Por 

Trees/grass/arable 
functional types 

LAI Par, ThD C/N FO-I ( Douglas-Mankin et al., 
2010 ) 

PASIM Leaf área and 
photsynthesis 

Site/regional/global, 
Monthly or daily 

Biomass 
decomposition 
nitrification 
denitrification 
methanogenesis 
Grazing 
soil climate 

AT, SR, Pre, ET, WS Multilayer PH, 
B-Den, Or-C, S-Tex, 
Slop, In-N, WP, 
H-Con, Por 

Grass LAI, C-Par, C/N, WaD, N-Fix, 
ThD, Op-T, FO-P, FO-F, FO-I 
RUE, WUE 

( Krinner et al., 2005 ; 
Vuichard et al., 2007a ; 
Chang et al., 2015 ; 
Vuichard et al., 2007b ; 
Riedo et al., 1999 ) 

ORCHIDEE Leaf área and 
photsynthesis 

Site/regional/global, 
Monthly or daily 

Biomass 
decomposition 
nitrification 
denitrification 
methanogenesis? soil 
Climate feedback 

AT, SR, Pre, ET, WS Multilayer PH, 
B-Den, Or-C, S-Tex, 
Slop, In-N, WP, 
H-Con, Por 

Trees/grass/arable 
functional types 

LAI, C-Par, NPP N-Fix, WUE, 
Abido 

( Krinner et al., 2005 ) 

1 AT = ambient temperature; SR = solar radiation; Pre = precipitation; WS = wind speed; 
2 B-Den = bulk density, Or-C = organic C; S-Tex = soil texture (silt/clay/sand); In-N = initial Nitrogen (NO 3 

− /NH 4 
+ ); WP = wilting point; FC = field capacity; H-Con = hydro-conductivity; Por = porosity 

3 LAI = leaf area index; C-Par = carbon partitioning; C/N = biomass C/N ratio; WaD = water demand; N-Fix = N fixation index; ThD = Thermal degree days for maturity; Root = Maximum root depth; Op-T = optimum 

temperature; FO-P = field operation planting; FO-T = Tillage; FO-F = fertilization; FO-I = irrigation. WUE = water use efficiency 

22
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Fig. 10. Biogeochemical cycles. 
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pment for agricultural land and crop modelling (annual or perennial
ood crops), the plant growth sub-model was modified to enable DNDC
o simulate the perennial plants (e.g. poplar) with woody stem or roots
 Guo et al., 2015b ). By linking with chemical engineering process design
nd life cycle assessment, DNDC has been applied to simulate biomass
rowth and carbon/nitrogen cycling in agro-ecosystems and their im-
lications on bioproduct system sustainability ( Guo et al., 2015b ; Guo
t al., 2012 ). By adopting an integrated modelling approach, the per-
ormance of different species and genotypes in response to the future
nvironmental changes can be projected and desirable traits can be high-
ighted that will pre-adapt species to future changes e.g. warmer, CO 2 -
nriched environments. Such modelling research can provide scientific
vidences to inform empirical efforts (e.g. breeding and genetic engi-
eering) to improve the performance-limiting traits and set the perfor-
ance targets. 

The biogeochemical processes and involved C/N cycles are visualised
n Fig. 10 . The biogeochemical process based models have been used to
nderstand the nitrogen and carbon cycles that are observed in field ex-
eriments using eddy covariance flux and chamber measurements to un-
erstand the interaction of these processes with climate and the soil en-
ironment for different land uses from arable ( Wattenbach et al., 2019 ),
rassland ( Soussana et al., 2014 ; Klumpp et al., 2011 ), forest and peat-
ands ( Abdalla et al., 2014 ). In addition using carbon and nitrogen iso-
ope measurements to identify the pathways for N16 labelled nitrogen
mendment to soil and their partition into plants and N and N O emis-
2 e  

23 
ions. Similarly the fate of organic carbon additions to the soil have been
odelled by tracking the radioisotopes of carbon C13 and also naturally

ccurring C12 and C14 isotopes, which occur in different proportions in
3 and C4 plants. 

Coupling the biosphere modelling with atmospheric circulation mod-
ls have attracted great research attention. Soil processes and plant
rowth cannot be considered in isolation so that there are several trials
f coupling plant and soil processes models (called bottom up models)
ith atmospheric circulation models (top down models) to look at the

eedback and interaction of the emissions of the biosphere and albedo it
reates with the atmospheric processes such as JULES ( Best et al., 2011 ;
lark et al., 2011 ) . This represents the subject of ongoing research and

uture directions. 

.1.2.6. Models for aquatic biomass production. Research on terrestrial
griculture is more advanced than aquatic biomass farming in general.
ompared with terrestrial modelling advances, aquatic model develop-
ent and validation face the challenges in measurements (e.g. primary
roduction), remote-sensing and scaling-up as well as the limitations led
y decoupled modelling approaches. 

Systems approaches have played an important role in aquatic pho-
otroph metabolism and ecosystems research e.g. the mathematical
odels developed based on first-principles for predicting the growth

f open-pond microalgae in response to weather variability ( Malek
t al., 2016 ), computational fluid dynamic-based optimisation for al-
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ae growth simulation under photo bioreactors ( Smith et al., 2013a ).
owever, previous modelling efforts have mainly focused on mono-
ulture metabolism at lab scale (e.g. photo bioreactor) rather than re-
ection of complexity in reality. The current dominant algal cultiva-
ion methods i.e. open pond system are highly susceptible to contam-
nation where the dynamics of bacteria communities and their inter-
ction with algal cultures are involved. To solve such complexity in-
luding the resource-competition, metabolism and related biogeochem-
stry trajectories of aquatic microbial ecosystems, a generalised optimi-
ation model has been proposed based on the thermodynamic, kinetic
nd stoichiometric theories ( Payn et al., 2014 ). The models via param-
terisations of aquatic ecosystem function primary production, nutri-
nt recycling as a function of biotic/abiotic environmental parameters
ave been developed to determine the energy and nutrient and carbon
ass flux ( Ridgwell et al., 2007 ). Such a biogeochemical circulation ap-
roach was further incorporated into ecosystem models and combined
ith traits-based modelling which account for the bottom-up controls of
hytoplankton community structure and composition as a consequence
f ecological taxa selection ( Follows and Dutkiewicz, 2011 ). Environ-
ental Modelling Suite (EMS) presented by Australia’s Commonwealth

cience Industry and Research Organisation (CSIRO) is a good exam-
le, which formulates the traits and biogeography of aquatic macroau-
otrophs (macroalgae and seagrass) in response to bottom-up controls
light, nutrient, temperature) and project their biomass potentials and
arbon cycles ( Baird et al., 2017 ). The EMS-CSIRO model considers two
bsorbance-distinct photopigments Chl a and photosynthetic xantho-
hyll but with simplified physiological process ( Baird et al., 2017 ). As
ointed out by Schartau et al. (2017) , and Doney (1999) , most of these
ublished models are unrealistically simplified, meanwhile challenged
y spatial/temporal-dependence parameterisation and cross-validation
ssues, due to the limited observation data for scaling-up from laboratory
o mesocosm experiments. Particularly, the underlying photosynthesis
ynamics are often simplified by using ‘black box’ representations of or-
anism eco-physiology e.g. parameterisation of a small number of traits
or nutrient and light acquisition ( Mock et al., 2016 ), photosynthetic
fficiency normalised to pigment Chl a concentrations and aggregated
pecies into model functional groups ( Schartau et al., 2017 ). Moreover,
odels based on the empirical description of organism traits are consid-

red to present great uncertainties in the projection power and process-
ased understanding of the future responses to new environmental con-
itions (e.g. climate change) beyond historical envelope ( Mock et al.,
016 ). 

Overall, the decoupling of phototroph metabolism traits from hydro-
ynamics, biochemical and sediment models in aquatic environments
emains a research gap. The next generation models proposed by Mock
t al. (2016) and Welti et al. (2017) could represent a research direction
.e. to adopt the process-based approaches across biochemistry, evolu-
ionary ecology and integrate the interconnected omics data and en-
ironmental variables in food web ecosystem metabolism and aquatic
iogeochemical modelling. 

.2. Ecosystem services and sustainability evaluation 

.2.1. Ecosystem services 

Landscapes generate a wide range of ecosystem services
ES) that provide benefits to human society ( Mace et al., 2012 ;
illenniumEcosystemAssessment, 2005 ). These services fall into four

ategories including - provisioning services such as biodiversity,
ood, materials and energy; regulating and supporting services such
s climate and water regulation and waste recycling; and cultural
ervices such as recreational value and symbolic meaning ( Guo et al.,
016 ). While the need of incorporating ES into decision-making at
nternational, national and local levels is increasingly recognised ( Daily
nd Matson, 2008 ; Gómez-Baggethun and Ruiz-Pérez, 2011 ), and
cosystem accounting is increasing employed in research, policy and
ecision-making ( Lange et al., 2022 ), the value of ES is often overlooked
24 
n natural capital resource planning ( Bateman et al., 2013 ), which un-
erpins the development of the biorenewable sector. In the coming
ecades, changes in natural capital resources e.g. land use transitions
ould be expected to rise from the bio-renewable industry, which may
ccur against a backdrop of ongoing global degradation of ecosystem
ervices as highlighted by the Millennium Ecosystem Assessment
 MillenniumEcosystemAssessment, 2005 ). Given the importance of ES
or human-wellbeing, their socio-economic values and whole-system
elevance, ES provides a useful framework to examine biorenewable
ystems (e.g. bioenergy ( Gasparatos et al., 2011 )) and the associated
nvironmental, social and economic implications of deployment strate-
ies. A range of ES evaluation frameworks have been proposed with
o widely accepted approach ( Immerzeel et al., 2014 ) but they could
e broadly classified as quantitative and semi-quantitative/qualitative
pproaches e.g. the matrix semi-quantitative approach proposed by
olland et al. (2015) , quantitative approaches with indices of bird
opulation trends for bioenergy and biofuel evaluation ( Rivas Casado
t al., 2014 ; Munoz et al., 2014 ). The ES research on biorenewable sys-
ems have focused on the biodiversity and climate regulation induced
y bioenergy and biofuels with other ES categories and bio-sectors less
ddressed. In general, the ES footprints change are not only driven by
he biorenewable technology penetration but also vary with the spatial
istribution and development status of natural capital resources (e.g.
nitial land cover), regional climate and time horizon ( Immerzeel et al.,
014 ). As concluded by Fargione et al. (2008) , land use conversion from
atural vegetation (e.g. rainforests) to 1 G food-crop could generate
io-sector carbon debt in contrast to sustained GHG mitigation benefits
ffered by the waste-based bioeconomic systems developed on aban-
oned or degraded lands. In general, more positive effects of perennial
 G biomass on species and habitat diversity, and climate regulation
ave been observed ( Bellamy et al., 2009 ; Dauber et al., 2010 ; Baum
t al., 2012 ; Felten et al., 2013 ) though the biodiversity implications
ould vary with the micro-management strategies in the fields ( Guillem
t al., 2015 ). A comprehensive review carried out by Immerzeel
t al. (2014) highlighted the drivers and trends of biodiversity as a
onsequence of bioenergy crop production, where land use change
as identified as the most important driving forces, producing direct
nd indirect effects on native habitat change. As demonstrated in Fig.
4 , different taxonomic groups (plants, invertebrates and vertebrates)
ave been proposed as biodiversity impact measures to indicate the
pecies composition, richness, evenness and abundance in response to
he ecosystem change (e.g. land use change) ( de Baan et al., 2013a ;
onthier et al., 2014 ), where birds and beetles are the most studied

axonomic group ( Immerzeel et al., 2014 ; Gasparatos et al., 2017 ;
auerbrei et al., 2017 ; Werling et al., 2014 ; Emmerson et al., 2016 ;
ourke et al., 2014 ) with plant species biodiversity under-addressed.
owever, a recent global analysis shows that the ongoing extinction
f plant species has been a missing biodiversity hotspot and deserves
ore efforts to achieve effective conservation planning ( Humphreys

t al., 2019 ). 
In addition to biodiversity and climate regulation, other water, soil–

ased regulating ES as well as supporting, cultural ES have been investi-
ated such as water regulatory ( Shifflett et al., 2016 ; Orwin et al., 2015 ;
tyles et al., 2016 ), carbon and nutrient cycling ( Orwin et al., 2015 ;
reamer et al., 2016 ; Schrama et al., 2016 ), pollination ( Werling et al.,
014 ) and recreation ( Stens et al., 2016 ; Hansen and Malmaeus, 2016 ).
ome regional or national level ES evaluation tools have been devel-
ped e.g. the EU BioScore ES model (Biodiversity impact assessment
sing species sensitivity Scores) developed for policy impact assessment
 PBL, 2023 ), the UK national ecosystem assessment ( UNEP World Con-
ervation Monitoring Centre, 2014 ) and Intergovernmental Platform on
iodiversity and Ecosystem Services (IPBES – http://www.ipbes.net ).
uch ES evaluation frameworks offer powerful tools, which are ready
o be linked with other modelling platforms to map out the ecosystem
ervices change in response to biorenewable sector development. 

http://www.ipbes.net
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In previous research, ES trade-off has been included in landscape
ecision ( Goldstein et al., 2012 ). Several mitigation strategies for re-
lising a green economy while delivering multiple ecosystem services
ere concluded from previous research, which demonstrated the mit-

gation potential of both supply and demand sides. Supply-side strate-
ies include multi-functional landscape planning ( Shifflett et al., 2016 ),
creening of resource-efficient and low-carbon biomass and technology,
ogistics and network design on degraded lands, closed-loop systems
e.g. pyrolysis biochar for enhancement of soil carbon sequestration);
hereas the demand-side mitigation could be achieved via closed-loop
conomy (e.g. waste reduction) and shift in human behaviour and so-
ietal perception ( Gasparatos et al., 2017 ; Blanco-Canqui, 2016 ; Smith
t al., 2013b ). These supply-demand mitigation strategies offer promis-
ng strategic planning options, which could be explored in depth via
oftlinking ES evaluation tools with system optimisation approaches. 

.2.2. Life cycle sustainability assessment (LCSA) 

LCSA refers to the evaluation of all environmental, social and eco-
omic impacts in decision-making processes towards more sustainable
roducts throughout their life cycles ( UNEP/SETAC Life Cycle Initiative,
011 ). Initiated from LCA, the life cycle thinking approach has been
xtended since 2002 to form a LCSA methodology framework, which
onsists of three pillars ( Fig. 14 ) - environmental life cycle assessment
LCA), life cycle costing (LCC) and social-LCA (SLCA) ( UNEP/SETAC Life
ycle Initiative, 2011 ). As a systematic and rigorous evaluation frame-
ork, LCSA provides integrative and holistic perspectives for multi-

riteria decision on a given product system. As generalised in Eq. (1) ,
CSA accounts for all input-output flows occurring at each life cycle
tage throughout the ‘cradle-to-grave’. Formalised by the International
rganization for Standardization ( ISO, 2006a ), E-LCA quantifies the en-
ironmental footprints associated with all stages of a product, service or
rocess. LCC and SLCA examine the holistic economic aspects and social
onsequences respectively, evaluating the improvement opportunities of
arious product systems and processes including biorenewables. 

 𝐼 𝑘𝑝𝑖 = 

∑

𝑟 

∑

𝑠 

𝐸 𝐼𝑓 𝑖𝑛 
𝑟,𝑘𝑝𝑖 

𝑋 

𝑖𝑛 
𝑟,𝑠 

+ 

∑

𝑐 

∑

𝑠 

𝐸 𝐼𝑓 𝑜𝑢𝑡 
𝑐,𝑘𝑝𝑖 

𝑋 

𝑜𝑢𝑡 
𝑐,𝑠 

(1)

Where the variable 𝐸𝐼 𝑘𝑝𝑖 denotes the total sustainability impacts of
 given process (per functional unit) expressed as key performance in-
icator kpi (e.g. global warming potential and cost). 𝐸𝐼 𝑘𝑝𝑖 determined
y the characterisation impact factors for input resource r ( 𝐸𝐼𝑓 𝑖𝑛 

𝑟,𝑘𝑝𝑖 
) or

mitted compound c ( 𝐸𝐼𝑓 out 
𝑐,𝑘𝑝𝑖 

) d the input or output flows ( 𝑋 

in 
𝑟,𝑠 

or 𝑋 

out 
𝑐,𝑠 

)
ife cycle stage s . 

.2.2.7. LCSA methodology and overview. Under the guiding principles
life cycle perspective, transparency and completeness) ( ISO, 2006a ),
CSA consists of four interactive phases (goal and scope definition, in-
entory analyses, impact assessment and interpretation) ( UNEP/SETAC
ife Cycle Initiative, 2011 ), capturing every life stage from raw material
cquisition to final disposal. The first LCSA phase scopes the fundamen-
al modelling elements including the system boundaries and the func-
ional unit, and defines the principles and methodologies to be applied.
t the inventory stage, data are collected on a unit process basis within

he system boundary and assessed against data-quality requirements.
nventories are associated with the impact categories at the assessment
tage, which comprises the mandatory element of characterization and
ossibly other optional ones (normalization, weighting). Inventory out-
uts are converted to category indictors using defined characterization
actors, which can be further linked to category endpoints defined as
attribute or aspect of natural environment, human health or resources
dentifying an environmental issue’ in the case of E-LCA ( ISO, 2000 );
he aggregated indicator results provide characterized profiles of the
tudied products, which can be normalized to give information on rel-
tive magnitude of each indicator result. Life cycle impact assessment
LCIA) outcomes are presented in the interpretation phase in accordance
ith the study goal and scope to reach conclusions and recommenda-

ions. Generally, two types of LCA have been distinguished: attributional
25 
CA (ALCA) and consequential LCA (CLCA) approaches. The former is
 descriptive hybrid approach, based on process and input-output, fo-
using on the environmentally relevant flows to and from a life cycle
nd its subsystems; the latter is change-oriented, aiming to understand
ow environmentally relevant flows change in response to possible de-
isions ( Finnveden et al., 2009 ). Such emerging concepts could be fur-
her extended to LCSA, to represent the retrospective (attributional) and
rospective (consequential) sustainability aspects. Although SLCA and
LCA have gained increasing attention in last decade, research on the
CSA methodology and applications still remain as a challenge due to
he trans-disciplinary nature of LCSA and lack of robustly applicable
ethods for certain impact categories ( Guinee et al., 2011 ; Keller et al.,
015 ). A thorough literature review suggests that very few published
esearch articles focuses on the holistic LCSA of biorenewable systems
 Keller et al., 2015 ; Stamford and Azapagic, 2014 ; Arodudu et al., 2017a ;
alog and Manik, 2011 ; Jin et al., 2017a ; Nzila et al., 2012 ; Hingsamer
nd Jungmeier, 2014 ; Parajuli et al., 2015 ) but environmental aspects
ave been widely investigated. Amongst the large number of published
CAs on biorenewables, gasification (syngas for biomethanol or electri-
cation), pyrolysis (biocrude oil), anaerobic digestion (biogas for elec-
ricity) and fermentation (bioethanol as transport fuels) have been the
ain research focus (see summary in Fig. 13 ). High-value bioproducts

ia biochemical routes (e.g. biohydrogen, biobutanol, succinic acid, sin-
le cell protein, see Figs. 12 and 13 ) and the biorenewables derived from
icrobial clusters (e.g. microalgae) remain a critical research gap due

o the lack of comprehensive data ( Lam and Lee, 2012 ). 

.2.2.8. Biorenewable systems scope. LCSA is a relative approach with
ll the inputs-outputs and the environmental profiles generated being
elated to the functional unit; thus the functional unit forms the basis
or LCSA evaluation particularly the comparison between counterparts.
n biorenewable system, the functional unit could be defined as one-
imension (e.g. per energy or mass unit) or specified to reflect multi-
imensions (e.g. spatial and temporal, or other boundary dimensions).
he former is a generally adopted approach in previous LCAs or LC-
As ( Parajuli et al., 2015 ; Saraiva, 2017 ). Such one-dimensional physi-
al measure-based unit generally reflects well the linear fossil economy
ature. However it is not applicable to the multiple bio-product sys-
ems particularly those under circular bioeconomy, which concerns the
atural capital resource flows, evolving multidimensional functions and
losed-loop complexity. 

The attributional static approach has been widely adopted in pre-
ious LCSAs on biorenewables. Few published studies expanded sys-
em boundaries accounting for implications of marginal variations (e.g.
mall-scale change of economic sector in response to demand change)
 Schmidt and Weidema, 2007 ; Reinhard and Zah, 2009 ; Hamelin et al.,
012 ; Styles et al., 2015a , 2015b ) and effects of large-scale non-marginal
ariations (i.e. multi-market considering global equilibrium of all eco-
omic sectors) ( Dandres et al., 2011 ; Rajagopal, 2017 ; Dandres et al.,
012 ; Vazquez-Rowe et al., 2014 ). The latter expands consequential
oundary further to account for the interactions and competition of
ulti-markets, multi-regions and capture wider socio-economic mech-

nisms; thus it represents an integrative tool placing regional decision-
akers under a wider context and addressing the critical biorenewable-

ood competition issues effectively. This can be achieved by combining
conomic equilibrium model with CLCA ( Vazquez-Rowe et al., 2014 ;
arles and Halog, 2011 ). Further exploratory research focused on con-
equential LCSA robustness and representativeness of operational equi-
ibrium model (technology choices); Kätelhön et al. (2016) introduced
 stochastic optimisation model in a CLCA approach, which captures
ulti-market dynamics meanwhile calibrating the result robustness. 

Analysing attributional LCSA, the system boundary defined in stud-
es can be broadly categorised as cradle-to-grave, cradle-to-gate (e.g.
ell-to-tank) and cradle-to-use (e.g. well-to-wheel). Most of the LCAs
n bioenergy and biofuels scoped the system boundaries as cradle-to-use
hereas the studies on biomaterial and biochemicals reflect their cradle-
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o-grave life cycles. These modelling choices matter, as the modelling
pproach often plays an important role in determining the environmen-
al impact of a product ( Brandão et al., 2021 ). However, as pointed out
y Muench and Guenther (2013) , bioenergy systems involve three paths
biomass, conversion, distribution), thus a one-dimensional boundary
efinition overlooking certain path (e.g. electricity transition) is consid-
red as insufficient for bioenergy evaluation. Similarly, a range of other
iorenewables also involve multiple dimensions and even closed-loop
ssues e.g. waste-based biorenewable systems. As analysed in the pre-
ious section, carbon cycles underpin the biorenewable development.
herefore, a multi-dimensional boundary considering temporal and spa-
ial scales and reflect the biorenewable system complexity and carbon
ircular nature from both attributional and consequential perspectives
hould be further explored. 

.2.2.9. Biorenewable carbon cycles and allocation approach. A range of
arbon sinks and emitters are involved in biorenewable carbon cycles
presented in Fig. 15 ), which can be summarised as below- 

• The biorenewable resource production stage acts as a carbon sink
sequestering biogenic carbon from the atmosphere into biomass and
subsequent biorenewable products and accumulating soil carbon due
to plant leaf litter and/or fine root biodegradation in soil. 

• Carbon capture and storage (CCS) or utilisation processes involved
in a biorefinery could potentially lead to biogenic carbon input flows
e.g. the CCS capturing CO 2 emitted from fermentation of lignocellu-
losic feedstock. 

• Biological or mechanical waste treatment options including anaero-
bic digestion or recycling for biopolymer disposal can also generate
carbon sink effects by recovering biogenic carbon as biogas or petro-
chemical material substitution. 

• The carbon sink effects of landfill depend on the temporal boundary
(mid-term vs. infinite). Carbon emissions evolved at the resource
production stage are mainly attributable to the agricultural field op-
erations (fuel combustion and agricultural machinery inputs), agro-
chemical inputs and carbon released agricultural lands due to mi-
crobial soil respiration. 

• Other carbon emitters including biorefining processes and dis-
posal treatment also cause carbon release due to either chem-
ical/biochemical/thermochemical reactions or operational inputs
(including energy, chemical, and infrastructure inputs). 

Handling such complex circular carbon systems remains as one of the
ontroversial issues in LCAs ( Guinée et al., 2009 ) and can be a sensitive
actor for LCSA allocation. For multiple-product systems, three alloca-
ion approaches are applicable to partition the material/energy flows
nd their associated sustainability impacts between the co-products i.e.
llocation by physical relation (e.g. mass, volume etc.), allocation by
conomic values or system boundary expansion ( Luo et al., 2009 ; ISO,
006b ). In consequential studies, allocation by mass or economic val-
es can be avoided by applying system boundary expansion ( Finnveden
t al., 2009 ; Weidema, 2000 ). Although there is no universal consensus
n the allocation methods in attributional LCSA/LCAs, the avoidance
f allocation through system expansion (followed by physical-based al-
ocation) has been indicated as the preferred approach for LCA in ISO
CA guidelines ( ISO, 2006 ; ISO, 1998 ) and PAS 2050 ( BSI 2011 ). Liter-
ture reviews show that carbon neutral assumptions have been gener-
lly adopted for biomass and biorenewable system studies ( Muench and
uenther, 2013 ; Shemfe et al., 2016 ; Helin et al., 2013 ; Cherubini et al.,
011a ; Johnson, 2009 ). However, assuming climate neutrality does not
eflect the details of the biorenewable carbon cycles. Research efforts
ave been made to develop methods to assess biomass CO 2 climate
mpacts ( Cherubini et al., 2011b ). A stoichiometric carbon counting
pproach has been suggested to determine the effects of carbon sinks
nd emitters along the biorenewable upstream and downstream systems
 Guo et al., 2012 ; Guo et al., 2013 ). Fig. 16 shows the carbon removal
otential associated with different sources of biomass. 
26 
For reference, global anthropogenic CO 2 emissions, excluding land-
se changes, were 36.1 GT in 2022 ( Liu et al., 2023 ). Figures refer to
otal available mass of carbon; many carbon removal technologies, such
s biochar, have significant carbon losses ( Woolf et al., 2010 ). Note
ome lignocellulosic waste is already used in ways that lead to some
f the carbon being stored, such as biochar for soil improvement. Data
rom ( Piercy et al., 2023 ) (Supplementary Information), ( Arzeno-Soltero
t al., 2023 ) . Calculations detailed in Supplementary Information SI-8. 

.2.2.10. LCSA criteria and impact assessment. In LCSA, the impact as-
essment methodologies can be categorised as midpoint (‘problem-
riented’) and endpoint-oriented (‘damage approach’) approaches
 PRéConsultants, 2004 ). The former is chosen along with environmen-
al/economic/social mechanisms between the inventory results and
amage-oriented endpoints ( ISO, 2000 ) and the latter is defined at the
evel of protection areas ( Finnveden et al., 2009 ). These two approaches
re differentiated by the way in which the sustainable relevance of cat-
gory indicators is taken into account ( Bare et al., 2000 ). Unlike the
idpoint approach with multiple environmental indicator results, at the

nd-point level the sustainable relevance of category indicators provides
ormalised single scores for decision-makers. But end-point results may
e misinterpreted by overlooking the fact that single scores are sub-
ective to the normalisation reference systems. Such a methodological
hoice can be a sensitivity parameter, which could be examined via data
uality analysis ( Guo et al., 2014 ). 

In the previous LCSAs of biorenewables, global warming potential,
nergy efficiency, eutrophication and acidification, water and land use
re widely investigated environmental indicators with other impact cat-
gories often overlooked ( Singh and Olsen, 2011 ; Patel et al., 2016 ;
uench and Guenther, 2013 ; Arodudu et al., 2017b ; Shonnard et al.,

015 ; Medeiros et al., 2015 ; Cherubini and Strømman, 2011 ; Gelfand
t al., 2013 ; Venteris et al., 2013 ; Pfister et al., 2016 ). The key socio-
conomic indicators concerned in the published studies include the
osts for CO 2 mitigation, capital inputs and operations, and the over-
ll profit analyses ( Muench and Guenther, 2013 ), food and energy se-
urity, social-wellbeing (e.g. energy/facility accessibility, employment,
overty, work environment), social equality (e.g. human rights, corrup-
ion, education accessibility, community engagement) ( Efroymson et al.,
017 ; Mukherjee and Sovacool, 2014 ; Lim and Biswas, 2015 ; Valente
t al., 2011 ; Robledo-Abad et al., 2017 ; Cambero and Sowlati, 2014 ;
u ček et al., 2012a ). In comparison to LCA and LCC where quantita-
ive characterisation models (e.g. CML, TRACI, Eco-Indicator, Recipe)
re available and widely applicable, SLCA studies mostly were based
n interviews and observations ( van Eijck et al., 2014 ) without consen-
us on the impact assessment methodology. As pointed out by Robledo-
bad et al. (2017) , the advancement of LCSA knowledge vary with re-
ions with better understanding on economic and environmental cate-
ories in developed regions in contrast to the emerging economy, where
ore LCSA attention has been paid to socio-economic aspects. To deter-
ine whether biorenewables deliver progress in achieving sustainability

oals, holistic and reproducible LCSA are needed to avoid inadvertent
problem shifting’ thus further research efforts are required on SLCA

ethodology development. 
Climate, temporal and spatial variability in LCSA have been recog-

ised as a research gap and as being critical for economic and en-
ironmental planning, regional evaluation of technology viability for
iorenewables especially from spatially distributed resources (e.g. agri-
ulture residue) ( Shonnard et al., 2015 ; Reap et al., 2008 ; Eranki and
ale, 2011 ). Particularly, spatial LCA models with region-representative
ata and characterisation indicators have been highlighted in UNEP-
ETAC guidelines as a conceptual framework for LCA and ES. This is
specially the case for the assessments for land use decision-support at
lobal or regional scales with spatial diversity ( Koellner et al., 2013 ).
owever, in comparison with the large number of LCSA studies adopt-

ng country/region/industrial average data inventory (e.g. NREL US LCI
atabases ( NREL, 2004 ), Plastics Europe ( Boustead, 2005 )), limited spa-
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ial or dynamic LCSA studies have been published on biorenewable sys-
ems so far with focus on the biodiversity, energy and GHG footprints
n response to land use change or distributed resource use ( Arodudu
t al., 2017b ; Gelfand et al., 2013 ; Venteris et al., 2013 ; Roostaei and
hang, 2017a ). Humpenoder et al. ( Humpenöder et al., 2013 ) published
 GIS based LandSHIFT model soft-linked with LCA to estimate spatially-
xplicit GHGs of LUC due to 1 G biofuels in the EU considering the
oil and climate variation. Gasol et al. (2011) studied the cradle-to-gate
HGs of electrical and thermal power derived from hardwood (poplar)
t spatial scales accounting for climate variability. Roostaei and Zhang
2017b) proposed a HRSE-LCA framework integrating Geographic Infor-
ation System (GIS)-based resource assessment and algal growth model
ith LCA to analyse the production potential, energy and GHG profiles
f pyrolysis and HTL bio-fuels processed from wastewater-cultivated al-
ae at USA national scale. In addition to the region-representative data,
he regionalisation of characterization models and indicators are desir-
ble for science-evidenced decision-making. Spatially-explicit LCA char-
cterisation factors and indicators in water and land use, acidification
nd eutrophication have been studied ( Roy et al., 2014 ; de Baan et al.,
013b ; Verones et al., 2013 ; Azevedo et al., 2013 ) but are not yet in-
luded in the assessment literature ( Steinmann et al., 2016 ). Uncertain-
ies at the methodological level remain a research challenge ( Hiloidhari
t al., 2017 ). Overall, GIS-based LCSA approaches can be an effective
ool for spatial-temporal sustainability assessment but need great re-
earch efforts at both the methodology and data levels. 

Regardless of spatial variability, economic and technological impacts
ere more generally regarded as positive in previous research whereas

he negative scores on most social and environmental aspects (except for
HG accounting for fossil substitution effects) were often reported for
ioenergy and other value-added biorenewable systems ( Robledo-Abad
t al., 2017 ). For terrestrial resource-based biorenewables, the agricul-
ure cultivation and biorefinery processing stages have been identified
s hotspots, contributing significantly to the overall impacts ( Parajuli
t al., 2015 ). For aquatic biomass or waste based biorenewables, con-
ersion technologies dominate the overall impacts with the cultivation
tage potentially bringing environmental savings (e.g. nutrient recovery
nd CO 2 sequestration) ( Patel et al., 2016 ). Due to such environmental
avings, 3 G biofuels have been indicated as superior systems over 1 G
nd 2 G on GHG balance and land use but 1 G and 2 G biofuels were
videnced as more efficient in terms of energy utilisation (energy ra-
io and energy return on investment as indicators) based on the previ-
us research observations ( Carneiro et al., 2017 ). Moreover, the uncer-
ainties in 3 G biofuel scaling-up and its economic viability hinder the
ommercial progress ( Carneiro et al., 2017 ). Such trends could also rep-
esent the general comparison between 3 G biorenewables and 1 G/2 G
ounterparts, with the exception of the high-value compounds poten-
ially extracted from 3 G resources (e.g. pigments, polyunsaturated fatty
cids, anti-oxidants), which are still not well understood in terms of their
ustainability performances ( Carneiro et al., 2017 ). The comparison be-
ween centralised and decentralised systems vary with the regional feed-
tock characteristics and synergies amongst technologies ( Eranki et al.,
011 ; Iglesias et al., 2012 ). Studies carried out on lignocellulosic biofuel
roduction systems concluded that decoupling the pretreatment from
ermentation to densify the biomass locally via decentralised process-
ng depots reduces the collection radius for bulky biomass and creates
 local closed-loop system ( Eranki et al., 2011 ). Thus depots could de-
iver better GHG and energy profiles than the centralised processing sys-
ems ( Eranki and Dale, 2011 ; Eranki et al., 2011 ; Egbendewe-Mondzozo
t al., 2013 ) but represent more economically viable solutions for peren-
ial crops than for annual crops ( Eranki and Dale, 2011 ; Kim and Dale,
015 ). Different conclusions were reached from waste recovery stud-
es. Driven by conversion efficiency, centralised CHP systems outper-
ormed the decentralised combustion technology in terms of sustainabil-
ty for processing sugarcane residues or biogas ( Ali Mandegari et al.,
017 ; Patterson et al., 2011 ); whereas decentralised anaerobic diges-
ion (AD) system were reported as a more environmentally favourable
27 
hoice than centralised system for OFMSW and sludge treatment ( Righi
t al., 2013 ). The LCSA hotspot (also called contributional) analyses and
omparison not only can inform decision-makers to set performance tar-
ets and identify improvement opportunities but also provide ‘plug-and-
lay’ input-output modules for system-level decision-making tool under-
inned by life-cycle thinking. 

.2.2.11. LCA and planetary boundary. The planetary boundaries (PB)
ramework defines a safe operating space for humanity based on the
iophysical processes that regulate the stability of the earth system
 Ferretto et al., 2022 ). Specifically, planetary boundaries were proposed
or nine earth system processes - climate change, change in biosphere
ntegrity (biodiversity), stratospheric ozone depletion, ocean acidifica-
ion, biogeochemical P and N flows, land systems change, freshwater
se, aerosol loading and introduction of novel entities (chemical pollu-
ion) ( Rockström et al., 2009 ; Steffen et al., 2015 ). While many studies
ocus on carbon footprint as a measure of environmental impact, Tulus
t al. (2021) found that for many chemical goods, carbon footprint cor-
elates poorly with sustainability as assessed by the planetary boundary
ramework. Recent efforts have been placed on the methodology de-
elopment to integrate LCA into the PB framework. These include the
xploratory research to link LCIA characterisation models and impact
ategories with PB control variables ( Ryberg et al., 2018 ), and the in-
roduction of the concept of absolute sustainability, an approach to LCA
hat aims to incorporate the planet’s carrying capacity into LCA-based
Bs indicators ( Ioannou et al., 2023 ; Sala et al., 2020 ). The PB frame-
ork has been applied in previous research to address future sustain-
ble food supply within four boundaries i.e. climate change, land-system
hange, freshwater use and biogeochemical N/P flows ( Parodi et al.,
018 ; Springmann et al., 2018 ). Notably, despite two-level hierarchy of
oundaries has been proposed ( Rockström et al., 2009 ; Steffen et al.,
015 ), where climate change and biosphere integrity are recognised as
ore PB, the proposed boundaries are interdependent. In addition, the
B framework recognises an integrative approach coupling boundaries
nd highlights the importance of dynamics at Earth subsystem level on
he functioning of whole Earth system. Although PB framework is not de-
igned to be downscaled ( Steffen et al., 2015 ), LCA research community
xplored the methods to disaggregate PB to sectoral and national levels
y introducing allocation approach based on global demographic trends;
urther life cycle inventories was linked with planetary boundaries to
nvestigate sustainable design of national energy systems ( Algunaibet
t al., 2019 ). Research was also published to integrate process design
nd LCA to quantify the contribution of biopolymer production ( Durkin
t al., 2019 ) to mitigate climate change within PB boundary. 

Since the LCA approach formalised in 1990s, numerous efforts have
een placed to develop quantitative methods to characterise the en-
ironmental impacts and to build database representing the indus-
rial/sectoral technologies and processes. Undoubtedly, LCA database
nd methodological advances offer powerful tools to support decision-
aking on sustainable development and design of biorenewables

 França et al., 2021 ). However, LCA framework only enables data anal-
se and evaluation functions but does not inform design problems within
n Earth-system safe operating space, which consists of interactive en-
ironmental boundaries across regional and global scales. Methodology
nderpinned by LCA and PB framework offers a quantitative approach
o develop fundamental understanding of the sustainability implications
f biorenewable systems on the functioning of the Earth system. This
epresents a future research direction. 

.2.2.12. Deterministic vs. stochastic LCSA and dynamic LCSA. The ma-
ority of the LCSA studies reviewed above can be defined as determinis-
ic LCSA, which does not take into account the data quality, stochastic
nd dynamic aspects of the systems under investigation. In contrast, the
CSA developed in a statistical framework can be classified as stochastic
CA ( Wei et al., 2016 ). 
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LCA data quality analyses include sensitivity and uncertainty analy-
es. Sensitivity analysis has been carried out in previous research to test
ystem boundaries ( Guo et al., 2014 ; Lijo et al., 2014 ), temporal effects
 Pinsonnault et al., 2014 ; Guo and Murphy, 2012a ; Finnveden, 1999 ),
llocation approach ( Piastrellini et al., 2017 ; Chen et al., 2016 ), param-
ter values ( Valente et al., 2011 ; Barlow et al., 2016 ; Santos et al., 2022 )
nd characterisation methods ( Guo et al., 2014 ; Guo, 2012 ). Different
ensitivity analyses techniques were proposed, amongst which scenario
nalysis is a widely applied method ( Björklund, 2002 ). The method in-
olves calculating different scenarios, to analyse the influence of input
arameters on either impact assessment indicator results or ranking; two
ypes of possible analyses can be distinguished 1) contribution to vari-
nce to determine the implications of uncertain parameters to the output
ariance; 2) screening to identify the significant parameters ( Baustert
nd Benetto, 2017 ). 

Another data quality analysis component - uncertainty analysis - is
ot commonly performed in the LCSA of biorenewables, ( Rajagopalan
t al., 2017 ) although research efforts have been made on the classifica-
ion, definition, and sources of uncertainties as well as methodological
spects for expressing uncertainty ( Wei et al., 2016 ; Guo and Murphy,
012a ). At the inventory level, the uncertainties are introduced into
CSA systems due to the cumulative effects of input uncertainty and in-
entory uncertainty sourced from data gaps, which can be evaluated via
ata quality indicators (temporal, geographical, or technological cover-
ge, data reliability or completeness). A methodology framework com-
ining statistical methods and pedigree matrix has been proposed to
uantify the uncertainty in inventory and LCIA indicator results ( Guo
nd Murphy, 2012a ). Under the framework, maximum likelihood esti-
ation and goodness of fit were proposed for analysing the operational
ata with multiple measurements or simulated computational inventory
ontaining variability parameters. Pedigree matrix originally developed
eidema and Wesnæs ( Weidema and Wesnæs, 1996 ) and widely ap-

lied to the LCA database e.g. Eco-invent has been adopted to trans-
orm the data quality indicators to probability distributions (‘default’
ognormal distribution); whereas probabilistic Monte Carlo simulation
as suggested to estimate the uncertainties of LCSA outcomes resulted

rom the statistical variability or temporal, geographical or technologi-
al gaps in the inventory ( Guo, 2012 ). Monte Carlo simulation combined
ith fuzzy datasets and pedigree matrix have been well demonstrated

o quantify the uncertainties of biorenewable systems e.g. 2 G and 3 G
iofuel ( Rajagopalan et al., 2017 ; Tan et al., 2002 ; Sills et al., 2013 ;
fister and Scherer, 2015 ). To overcome the limitation of Monte Carlo
pproach, that is the high computational time required due to searching
he uncertainty space for all stochastic variables, other methods such as
eliability approaches ( Wei et al., 2016 ; Wang and Chen, 2016 ), Latin
ypercube Sampling, and quasi Monte Carlo ( Groen et al., 2014 ) have
een proposed in stochastic LCA studies to approximate the LCSA de-
ision confidence. A similar approach uses Sobol indices to identify the
ost sensitive parameters, which can then be used to simplify the uncer-

ainty estimation ( Jolivet et al., 2021 ). However, such approaches have
ot been yet applied to biorenewable studies. As highlighted in previ-
us research ( Guo and Murphy, 2012b ), sensitivity analyses combined
ith uncertainty analyses can lead to an increase in confidence in the
ndings which suggest that LCSAs lacking explicit interpretation of the
egree of uncertainty and/or sensitivities should not be used as robust
vidence for decision or comparative assertions. Thereby, it is recom-
ended to incorporate data quality evaluation into the future LCSAs of

iorenewables and bridge the knowledge gaps. 
Either deterministic or stochastic LCSAs reviewed above mainly fo-

us on developed or steady-state products or systems; for emerging and
volving systems with complex and dynamic nature and great uncertain-
ies due to incomplete inventory, several different modelling approaches
ncluding scenario-based, trend analysis and agent-based models (ABM)
ave been proposed for dynamic LCSA. Miller et al. (2013) presented a
ynamic framework coupling ABM and ALCA, where the probabilistic
ehaviour of decision-makers e.g. technology developers were captured
28 
sing a Bayesian statistical approach and a range of what if scenarios
ere investigated. Further exploration focused on the convergence of
CA with a complex economic model and agent-based simulation to
apture the dynamic system driven by human behaviours ( Halog and
anik, 2011 ). Baustert and Benetto (2017) reviewed the ABM and CLCA

oupled models and addressed the uncertainty sources and system vari-
bility issues as well as methodologies in stochastic modelling. In addi-
ion, a Wright’s law learning curve reflecting the relationship between
echnology costs and cumulative production has been incorporated into
he dynamic LCSA framework to capture the ‘learning-by-doing’ effects
n technology operation, economic and environmental performances
nd entire supply chains ( Bergesen and Suh, 2016 ; Gavankar et al.,
015 ; Caduff et al., 2014 ; Hayward et al., 2015 ). However, only very
ew biorenewables studies have adopted such dynamic LCSA approaches
 Caduff et al., 2014 ; Bichraoui-Draper et al., 2015a ), which remain a
ritical research challenge. 

.3. Data model in geographic information systems 

The use of geographic information system is recognized as an effi-
ient approach to analyse complex spatial phenomena and has been used
o model various applications at multi-levels spanning from biomass
esources (e.g. waste resources potential) to conversion technologies
e.g. waste treatment). Despite of the capability of spatial data acqui-
ition, storage, processing and analysis, GIS alone does not allow for
ncorporating the decision maker’s preferences and heuristics into the
roblem-solving process. Thus a range of GIS-aided methodologies e.g.
ulti-criteria decision analysis, fuzzy multi-criteria decision making and
ixed integer programming models have been developed and applied

o spatial decision support in the waste sectors ( Khan and Samadder,
014 ; Kallel et al., 2016 ; Soltani et al., 2015 ) (particularly in MSW col-
ection and monitoring ( Melare et al., 2017 )), as well as the spatially-
xplicit evaluation, monitoring and planning of terrestrial and aquatic
iomass ( Roostaei and Zhang, 2017b ; Hiloidhari et al., 2017 ; Sharma
t al., 2015 ; Pham and Brabyn, 2017 ). Since the 1990s, when a spatial
CA tool was proposed by Bengtsson et al. (1998) , GIS coupled with
CA has been used to represent the specially-explicit LCA sub-system
ayers (technical, environmental and social) and applied to sustain-
ble planning and analyses of biosectors, particularly those associated
ith uneven resource distribution (e.g. agro-residue derived bioenergy
 Hiloidhari et al., 2017 )) or bounded by the geographically differenti-
ted factors (e.g. infrastructure ( Nguyen et al., 2014 ), climate ( O’Keeffe
t al., 2017 )). The development of a leading platform Open-LCA reflects
he GIS-aided LCA research advances in recent years. Open-LCA is an
pen-source Java application running on Eclipse Rich Client Platform.
t enables LCA collaborative server and embeds GIS-aided LCA models.
penLCA is the first and only LCA platform to enable database/model
evelopment in a distributed and paralleled collaboration manner across
sers, servers/repositories. In comparison with other widely adapted
CA software (e.g. Simapro and GaBi), very few studies have ex-
lored GIS-aided LCA using Open-LCA platform ( Tabatabaie et al.,
018 ). 

Besides, GIS-aided LCA models have been presented for linear or
on-linear ecosystem services assessment, especially provisioning, reg-
lating ES impacts (e.g. biodiversity, erosion regulation) in response to
he change in the natural capital resource patterns (e.g. water, land)
 de Baan et al., 2013a ; Geyer et al., 2010 ; Bayart et al., 2010 ; Saad
t al., 2013 ). Considering the biorenewable system features (e.g. un-
ven distribution, linked with geographically varied ecological drivers),
IS coupled with remote sensing undoubtedly offers an effective way to
cquire, process and analyse spatial data. One of the promising research
irections lies in the GIS-aided model integration, covering the multi-
eographical level decision-making (farm level combined with regional
etwork) and linking the spatially-explicit ecosystems with biorenew-
ble technosphere. 
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.4. Process simulation and techno-economic evaluation 

As highlighted in Figs. 11 and 12 , process design and simulation stud-
es are dominated by thermochemical routes (torrefaction, pyrolysis,
asification and hydrothermal liquefaction), fermentation (bioethanol,
uccinic acid, lactic acid) and anaerobic digestion. A significant mod-
lling gap has been identified in high-value biorenewable conversion
rocesses (especially new food/feed sourced from microbial fermenta-
ion). Via a review of state-of-the-art modelling approaches, the sections
iscuss the research opportunities in process simulation. 

.4.1. Kinetics vs. thermodynamic equilibrium models 

Models for simulating biorenewable conversion technologies can be
argely divided into two groups: kinetic and thermodynamic equilib-
ium models. The former is used to predict the progress and the prod-
ct compositions along the reactions; whereas the latter also denoted
s zero dimensional, can be used to project the theoretical efficiency
nd achievable yields of desired end-reaction products based on the as-
umption that reacting systems reach steady state with minimised Gibbs
ree Energy (maximised entropy) ( Ahmad et al., 2016 ; Ahmed et al.,
015 ; Arora et al., 2017 ). Despite the simplified formulation and wide
pplicability, the latter is not capable of describing the instantaneous
roduct distribution along with the geometric dimension, thus cannot
e used for reactor analysis or design ( Ahmad et al., 2016 ; Ahmed et al.,
015 ). Equilibrium modelling consists of two approaches– 1) stoichio-
etric models which require well-defined reaction mechanisms, chemi-

al reactions and species involved; 2) non-stoichiometric models, which
re effective to identify the chemical compositions when the reaction
aths are not yet known ( Acharya et al., 2010 ). Both kinetic and equi-
ibrium models have been embedded in commercial process simulators
uch as AspenTech modules (Aspen Plus or Hysys), where the physical
elationships, thermodynamic equilibrium and rate equations have been
uilt in to enable the process flowsheeting, plant-wide process behaviour
rojection. 

.4.2. Process simulation 

Process simulation is a model-based representation of chemical,
hysical, biological, and other technical processes and unit operations
n software. It is used for the design, development, analysis, and op-
imisation of biorenewable processes such as biomass plants, biomass
hermochemical conversion processes, power station and biomass bio-
ogical conversion processes. 

The advantages of process simulation are to (a) reduce plant design
ime by allowing designers to quickly test various plant configurations
b) improve current processes by answering ‘what if’ questions, deter-
ining optimal process conditions within given constraints and assisting

n locating the constraining parts of a process. The ultimate objectives
f using process simulation are to realise faster troubleshooting, online
erformance monitoring and real-time optimisation. 

A variety of modelling platforms e.g. Aspen Plus, Aspen Hysys, Su-
erPro Designer, Modelica, GPS-X (for Anaerobic digestion) provide a
esource where researchers and engineers can model, simulate, design,
ptimise their processes; conversely, the outcomes (e.g. technical re-
orts and publications) can enrich the platforms about biorenewable
ystems by sharing information of specific case studies, identifying the
odel limitations, and extending the model applicability. 

The first challenge for researchers using modelling platforms is to
dentify the available physical and chemical properties in the database
hich include pure component and phase equilibrium data for conven-

ional chemicals, solids and polymers. Subsequently, the additional data
bout thermodynamics and dynamics need to be added by researchers
s biomass feedstocks and their intermediate and end products have a
omplex composition with sophisticated reaction path. For example, tar
ormation in biomass pyrolysis and gasification is complex. Mellin et al.
2015) presented a comprehensive chemistry scheme (134 species and
169 reactions) to describe tar formation using CHEMKIN. El Wajeh
29 
t al. (2023) developed a mechanistic model with rigorous thermody-
amics for biodiesel production. 

The second challenge for researchers using modelling platforms is to
ntegrate solids, batch and custom processing unit modelling. For exam-
le, fluidised beds of biomass gasification are used as a technical process,
hich has the ability to promote high levels of contact between gases
nd solids (e.g. biomass, sand and catalyst). However, there is a lack of
 library model to simulate fluidised bed unit operation in widely used
ommercial platform (e.g. Aspen Plus). It is possible for users to input
heir own models, using FORTRAN codes nested within the Aspen Plus
nput file, to simulate operation of a fluidised bed ( Nikoo and Mahinpey,
008 ). 

.4.3. Computational Fluid Dynamics (CFD) for unit operation 

CFD is a powerful tool which uses numerical analysis and data struc-
ures to model and analyse biomass conversion processes that involve
omplex multiphase fluid flows with mass, momentum and heat trans-
ers. To simulate unit operation, CFD is the most-powerful numerical
ool available, empowering researchers to achieve economic and envi-
onmental targets as they optimise reactor and product’s performances.
idely used commercial software of CFD includes well-validated phys-

cal modelling capabilities to deliver fast, accurate results across the
idest range of CFD and multiphysics applications. CFD modelling has
een successfully implemented on various biorenewable systems e.g. py-
olysis ( Zhong et al., 2023 ; Luo et al., 2023 ), gasification ( Zhang et al.,
023 ; von Berg et al., 2023 ), combustion ( Lian and Zhong, 2023 ; Zhang
t al., 2022 ), liquefaction ( Ustolin et al., 2022 ), anaerobic digestion
 Bastiani et al., 2023 ; Dabiri et al., 2023 ), fermentation ( Teke et al.,
023 ). CFD can be used to model reactors across a wide array of physi-
al scales, from milli-scale to full industrial scale ( Bastiani et al., 2023 ;
egall et al., 2023 ). 

The advantages of CFD modelling are to (a) reduce time and costs for
ew design of reactor; (b) analyse biorenewable problems when experi-
ents are relatively difficult and dangerous (e.g. high temperature and
ressure); (c) offer the capacity of studying biorenewable systems under
xtreme conditions over practical limitations. The disadvantages of CFD
odelling are: (a) it is usually necessary to simplify mathematically the
henomenon (e.g. chemistry or turbulence) to facilitate calculus; thus
he result accuracy depends on mathematical simplification; (b) there
re several incomplete models to describe the turbulence, and multi-
hase phenomena. 

CFD model for liquid and gas phase in biorenewable problems are
elatively robust. The promising future directions of CFD modelling
n biorenewable problems are - to improve modelling accuracy of
ultiphase phenomenon, particularly for particulate flows. There are

wo main methodologies, Eulerian and Lagrangian, to model particu-
ate flows in biorenewable problems. The Eulerian model of particu-
ate flow is a way of looking at particle motion that focuses on spe-
ific locations in the space, through which the particle flows as time
asses. The Lagrangian model of particulate flow is to investigate par-
icle motion, where the observer follows an individual particle parcel
s it moves through space and time. Xiong et al. (2017) pointed out
he improvement of particulate flow modelling. The Eulerian method
equires in-depth development on the effects of sub-grid structures
uch as particle clustering, size distribution, and temporal changes
f particle size and shape. The Lagrangian method necessitates accu-
ate but computationally efficient sub-models to consider the influ-
nce of intraparticle transport phenomena. Additionally, the high com-
utational cost of CFD modelling is another conundrum when simu-
ating large industrial scale systems, especially when the Lagrangian
ethod is applied. Recently, advancements in supercomputing and par-

llel computing, and their wide connections to the field of research
nd development, mean that digital twins of large-scale unit opera-
ions using a CFD framework are becoming a prospect with enormous
romise. 
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Fig. 11. Overview of empirical research advances on biomass conversion via chemical/physical (A) biological/biochemical (B) and thermochemical (C) routes 
(Supplementary Information SI-3). 
Grey links indicate the availability of technology routes. Chem-1 = Esterification; Chem-2 = Ionic liquid pre-treatment; Chem-3 = Acid treatment; Chem-4 = Alkaline 
pre-treatment; Chem-5 = Organic solvent; Physi-1 = Mechanochemical; Physi-2 = Ultrasound; Physi-3 = Microwave enhanced treatment; Thermal-1 = Torrefaction; 
Thermal-2 = Pyrolysis; Thermal-3 = Gasification; Thermal-4 = Hydrothermal liquefaction; Thermal-5 = Hydrothermal carbonisation; Bio-1 = Anaerobic digestion; Bio- 
2 = Fermentation for bioethanol production; Bio-3 = Biobutanol fermentation; Bio-4 = Fermentation for lactic acid production; Bio-5 = Succinic acid bacteria fermen- 
tation; Bio-6 = Fungal fermentation for single cell protein production; Bio-7 = Acetone-butanol-ethanol fermentation; Bio-8 = Bioremediation by microbial cluster; 
Bio-9 = Phytoremediation by lignocellulosic plants; Bio-10 = Fermentation for hydrogen production. 

30 
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Fig. 12. Biogeochemical modelling (A) and process simulation and supply chain optimisation research (B) (Supplementary Information SI-4) Bubble size indicates 
the number of studies. 
R1 = Sorghum; R2 = Sugarcane; R3 = Corn; R4 = Miscanthus; R5 = Switchgrass; R6 = Wheat; R7 = Oil palm; R8 = Beech; R9 = Rice; R10 = Poplar; R11 = Willow; 
R12 = Barley; R13 = Soybean; R14 = Sugar beet; R15 = Rye; R16 = Sunflower; R17 = Bamboo; R18 = Eucalyptus. Chem-1 = Esterification; Physi-1 = Mechanochemical; 
Physi-2 = Ultrasound; Physi-3 = Microwave enhanced treatment; Thermal-1 = Torrefaction; Thermal-2 = Pyrolysis; Thermal-3 = Gasification; Thermal- 
4 = Hydrothermal liquefaction; Thermal-5 = Hydrothermal carbonisation; Bio-1 = Anaerobic digestion; Bio-2 = Fermentation for bioethanol production; Bio- 
3 = Biobutanol fermentation; Bio-4 = Fermentation for lactic acid production; Bio-5 = Succinic acid bacteria fermentation; Bio-6 = Fungal fermentation for single cell 
protein production; Bio-7 = Acetone-butanol-ethanol fermentation; Bio-8 = Bioremediation by microbial cluster; Bio-9 = Phytoremediation by lignocellulosic plants; 
Bio-10 = Fermentation for hydrogen production. 
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.4.4. Multi-scale process simulation 

Often, it is challenging to determine the correct scale to capture
 phenomenon of interest as multiple phenomena interact at different
cales. Multiscale modelling attempts to address this problem. Its impor-
ance as a tool in sustainable development was noted by Pistikopoulos
t al. (2021) . Multiscale process simulation and design of biorenewable
ystems are becoming more attractive, and the main challenge is to de-
ermine the models to run and how they iterate/interact. The fast and
31 
obust coupling approaches (manual or automated) are essential to ad-
ance the development of multiscale process simulation. 

Abdelouahed et al. (2012) proposed an approach to couple Aspen
lus and Fortan modules to include detailed chemical mechanisms in
rocess simulators without thermodynamic equilibrium assumptions.
sing CFD in conjunction with Aspen Plus has been suggested as an
lternative approach i.e. CFD-generated residence time distribution
urves were formulated as compartment model under Aspen Plus en-
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Fig. 13. Empirical research vs. process design (Supplementary Information SI-3). 
Chem-1 = Esterification; Physi-1 = Mechanochemical; Physi-2 = Ultrasound; Bio-1 = Anaerobic digestion; Bio-2 = Fermentation for bioethanol production; 

Bio-3 = Biobutanol fermentation; Bio-4 = Fermentation for lactic acid production; Bio-5 = Succinic acid bacteria fermentation; Bio-6 = Fungal fermentation for single 
cell protein production; Bio-7 = Acetone-butanol-ethanol fermentation; Bio-8 = Bioremediation by microbial cluster; Bio-9 = Phytoremediation by lignocellulosic 
plants; Bio-10 = Fermentation for hydrogen production. Thermal-1 = Torrefaction; Thermal-2 = Pyrolysis; Thermal-3 = Gasification; Thermal-4 = Hydrothermal 

liquefaction; Thermal-5 = Hydrothermal carbonisation. 
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ironment to derive process flowsheet configuration and mass/energy
alances ( Arora et al., 2017 ; Arora et al., 2016 ). 

.5. Process synthesis and planning 

Process-synthesis and planning is a broad area in process system en-
ineering (PSE), covering a wide range of design problems related to
32 
anufacturing from an enterprise-centric perspective. The key decision
ariables concerned in the biorenewable conversion systems can be sum-
arised as follows: 

• The decision on manufacturing process units and interconnection,
unit operation configuration (e.g. temperature), input/output flows
and composition; 
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• Strategic decisions e.g. investment in new facilities, plug-and-play
solutions to existing facilities, closure of facilities, process repurpos-
ing or substituting; 

• The location and logistics decisions, e.g. location of new facility, sup-
ply sourcing; 

• Tactical planning on production, inventory and material flows; 
• Operational decisions e.g. scheduling, batch vs. continuous process-

ing. 

This section will focus on two levels – single-site and multi-site op-
imisation. 

.5.1. Conversion process synthesis 

At single-site biomass conversion level, PSE has been playing signif-
cant roles in advancing the computer-aided process and reaction net-
ork design. Process synthesis determines the flowsheet and equipment

or given feed and product streams. It is a highly complex problem,
ith a search space that can be very large ( Martin et al., 2022 ). Com-
only applied techniques for synthesizing process flowsheet include

nowledge-based systems/artificial intelligence, thermodynamic meth-
ds (e.g. pinch analysis, energy analysis), meta-heuristics, hierarchical
esign and superstructure-based optimisation ( Grossmann and Guillén-
osálbez, 2010 ; Ouelhadj and Petrovic, 2009 ; Kokossis and Yang, 2010 ).
nowledge-based systems have been applied to conventional waste

reatment decision-support ( Aulinas et al., 2011 ) but more exploration
n artificial intelligence supported dynamic design has emerged as a
ew research direction. Other techniques including pinch analyses, en-
rgy analyses and hierarchical decomposition have been evidenced to
e effective in process industrial applications ( Grossmann and Guillén-
osálbez, 2010 ) with the potential to contribute to sustainable bio-
roduct synthesis ( Othman et al., 2017 ; Cai et al., 2016 ; Yong et al.,
016 ). These concepts were further combined with mathematical pro-
ramming approaches to support process design. Under the mathemat-
cal programming framework, the representative superstructure-based
ynthesis problem is defined with given sets of feedstock and product
treams and alternative processing units; a mathematical optimisation
s further formulated to define the objective functions and a range of
ontinuous and discrete variables. Such superstructure-based optimisa-
ion model often lead to mixed integer programming (MIP) problems,
hich can be generalised as follows - 

in 
(
𝑓 1 ( 𝑥, 𝑦 ) ……𝑓 𝑘 ( 𝑥, 𝑦 ) 

)

s . t . ℎ ( 𝑥, 𝑦 ) = 0 

( 𝑥, 𝑦 ) ≤ 0 

 ∈ ℝ 

𝑛 

 ∈ {0 , 1} 𝑚 

Where 𝑓 1 ( 𝑥, 𝑦 ) … 𝑓 𝑘 ( 𝑥, 𝑦 ) notes the objective functions consisting of
onflicting multiple objectives. The continuous variables x are normally
on-negative, presenting the input-output flows and compositions as
ell as certain design and operational decisions; discrete variables y
efine the selection of process units/locations etc. and their intercon-
ections. Both continuous and discrete variables follow the equality
onstraints ℎ ( 𝑥, 𝑦 ) g. material balance and inequality constraints 𝑔( 𝑥, 𝑦 ) d
atisfy the design specifications (e.g. production discharge allowance,
hysical operational limits and demands) and logical constraints. 

In contrast to the conventional fossil-based processing industry,
iorenewable conversion synthesis problems are characteristic of car-
on flows from carbon sequestration via photosynthesis to carbon trans-
ormation to bioproducts. This has been captured in the published
33 
uperstructure-based optimisation studies integrated with life cycle ap-
roach. Chen et al. (2011) presented a process synthesis optimisation
roblem for the poly-generation system using biomass and coal as feed-
tock for power, biofuel and chemical production. They explored the car-
on taxation effects of the carbon capture and storage via biomass use.
ang et al. (2013) formulated a multi-objective mixed integer nonlinear

rogramming (MINLP) model to investigate the trade-off between cost
ptimal and GHG minimised solutions for thermochemical conversion
rocesses of lignocellulosic resources to hydrocarbons. In their study,
he LCA end-point characterisation (Eco-indicator 99) method was in-
roduced to set the upper boundary for threshold constraints on gate-to-
ate overall environmental impacts, with the carbon accounted for by
sing a carbon counting approach. Later, this attributional life cycle op-
imisation framework was expanded to include consequential perspec-
ives, where a deterministic MINLP model was formulated to optimise
he production network for microalgae biofuel and both GWP mid-point
nd Recipe end-point characterisation models were applied ( Gong and
ou, 2017 ). They adopted a system expansion allocation principle to
ccount for the changes in environmental impacts caused by the system
ecision with boundary expanded to include the upstream and down-
tream markets change as a consequence of algae biofuel production.
his represents an emerging research direction where a systematic com-
arison between attributional and consequential life cycle optimisation
eserves further research attention. 

Martín and Grossmann (2011) formulated a MINLP superstruc-
ure optimisation model to derive energy-optimised solutions for
witchgrass-based bioethanol via gasification route where the optimi-
ation problem was decomposed to eight sub-problems and pinch anal-
ses was applied for heat integration. A decomposition principle was
ntroduced to another methodology study to decompose the biorefin-
ry synthesis optimisation model into sub-problems to solve the pos-
ible pathways while considering global optimal solutions ( Pham and
l-Halwagi, 2012 ). The research group from Texas A & M University em-
loyed a branch-and-bound algorithm to solve a large-scale non-convex
INLP optimisation model and optimised a range of process synthe-

is problems on biofuel and bio-chemicals derived from MSW ( Niziolek
t al., 2017 ) wastewater and lignocellulosic biomass ( Matthews et al.,
016 ; Baliban et al., 2013 ; Niziolek et al., 2016 ) via integrated ther-
ochemical and biochemical routes. The studies reviewed above were

ased on deterministic optimisation frameworks with the processes for-
ulated by adopting publically available results from either simulation

e.g. NREL studies) or laboratory work ( Voll and Marquardt, 2012a ), and
he life cycle inventory retrieved from available databases e.g. Ecoinvent
 Wang et al., 2013 ). Puchongkawarin et al. (2015) , Puchongkawarin
t al. (2016) presented an integrated superstructure-based modelling
ramework for wastewater recovery process synthesis by incorporating
rocess simulation, life cycle approach and optimisation. These authors
roposed an iterative approach to 1) feed the surrogate models con-
tructed from state-of-the-art WWT simulators (GPS-X) and performance
egression approximated from the techno-economic and LCA evaluation
o the multi-objective MINLP optimisation model to generate the Pareto
rontiers for the trade-offs between maximised net present value (NPV)
nd minimised GHG and eutrophication; 2) to refine and verify the pro-
ess design by feeding back the optimal design solutions until model
onvergence. 

In addition, mixed integer linear programming (MILP) models have
een developed and applied for process synthesis particularly for
etabolic pathways ( Lee et al., 2000 ). A reaction-network-flux analysis

RNFA) has been developed by a research group from RWTH Univer-
ity ( Voll and Marquardt, 2012b ). The MILP optimisation-based RNFA
as been applied as a screening method for ranking and identifying op-
imal routes amongst a large number of alternative reaction pathways
or a wide range of novel biofuels (e.g. furan, 2-methyfuran, butylle-
ulinate) generated from lignocellulosic biosynthesis ( Voll and Mar-
uardt, 2012a ). The authors further extended RNFA to include sensi-
ivity analyses to account for the parametric uncertainties in the re-
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ction efficiency and achieved robust ranking ( Ulonska et al., 2016 );
heir results highlighted promising alternatives to bioethanol (ethylle-
ulinate and 2-methyltetrahydrofuran) and concluded that lignin-based
iofuel is considered as not competitive in terms of costs and envi-
onmental impacts (evaluated using end-point approach Eco-indicator
9). Kim et al. (2013) presented a superstructure-based MILP frame-
ork for biofuel conversion system configuration considering 1 G and
 G biomass. In their study, the reaction network was explored from
oth bottom-up and top-down perspectives (i.e. optimal strategy for
 desired product, optimal utilisation of a given feedstock). Bao et al.
2011) presented a MILP model to screen alternative reaction pathways
nd determine the biorefinery network configurations to meet a cer-
ain objective, where a case study is given considering thermal (gasi-
cation) and biochemical routes (AD and fermentation). In addition
o reaction and process networks, MILP has also been introduced in
he process configuration e.g. separation. ( Kong and Shah 2016 ) pre-
ented a MILP optimisation approach for the conceptual design of an
conomic optimal reaction distillation system; this framework can be
urther expanded for the wider applications in biorefinery process de-
ign with multiple design criteria. The biorefinery process synthesis de-
ign problem is also one of three used by Martin et al. (2022) to highlight
he need for further development of computational design tools in pro-
ess systems engineering in order to deliver on sustainable development
bjectives. 

.5.2. Enterprise-wide optimisation 

At the multi-site level, wider temporal and spatial scales are in-
olved; enterprise-wide optimisation (EWO) has emerged as an effec-
ive approach to solve the design problem. EWO involves optimising
he operations of supply, manufacturing (batch or continuous) and dis-
ribution in an enterprise ( Grossmann, 2005 ) with some overlap with the
erm ‘supply chain management’. In contrast to supply chain modelling,
WO focuses more on the manufacturing stages of a process industry
ith emphasis on their planning, scheduling and control. This often in-
olves nonlinear programming (e.g. MINLP) due to the realistic manu-
acturing presentation (e.g. capacity) ( Grossmann and Guillén-Gosálbez,
010 ; Grossmann, 2005 ), although Toorajipour et al. (2021) noted an
ncrease in academic research using AI-based methods . Compared with
idely adopted supply chain optimisation, EWO applications in biore-
ewable system design are rather limited. 

Sitting at the interface of PSE and operations research (OR), EWO
as received increasing recent interest with many models developed
or fossil-based process industry in both OR and PSE fields. Grossmann
2005) reviewed the development and the challenges on multi-scale
WO, uncertainty and algorithms. The long-term strategy (e.g. invest-
ent) need to be coordinated with the medium-term tactical decisions

e.g. production, planning and material flows) and the short-term oper-
tional decisions (e.g. scheduling and control); uncertainties vary with
ifferent scales thus how to account for stochastic variations remains
n unsolved issue. The author ( Grossmann, 2005 ) pointed out the de-
elopment of advanced computational algorithms and grid computing
oolkit are needed for solving such large-scale EWO problems with un-
ertainties (e.g. demands, capital inputs). Later, Grossmann (2012) pre-
ented a follow-up review of the mathematical programming techniques
e.g. MIP, stochastic programming and decomposition approach) ap-
lied to the EWO research and highlighted EWO features i.e. the in-
egration of internet of things (IoT) data with decision-making across
nterprise-centric multi-scale functions. The incorporation of economic
nd environmental sustainability criteria into multi-objective EWO was
iscussed by Grossmann and Guillén-Gosálbez (2010) with an overview
f the mathematical modelling techniques. 

EWO applications so far range from petroleum industry ( Shah et al.,
011 ) to pharmaceutical sectors ( Shah, 2004a ). Especially under the In-
ustry 4.0 strategic initiative proposed in 2013 ( National Academy of
cience and Engineering, 2013 ), multi-scale EWO is expected to play
 more significant role. Industry 4.0 envisages factories and supply
34 
hains where products and machines are all connected to achieve inter-
onnective communication, and smart collection and analyses of data,
s well as the co-ordinated processes in a distributed fashion ( National
cademy of Science and Engineering, 2013 ). This industrial revolution

s expected to bring new business models, enhanced collaboration across
he supply chain and information-track capability for identifying indi-
idual resource and products ( Branke et al., 2016 ). Data-driven EWO
an deal well with multi-scale optimisation problems, with van de Berg
t al. (2023) showing that distributed data-driven EWO can in some
ases recover the performance of the centralized problem formulation.
hus EWO and data-driven integrated approaches can be used to bridge
he long-term design problems (e.g. process and network design) with
edium and short-term objectives (such as responsiveness and flexibil-

ty at operational level). 
Several optimisation methods have been proposed for solving multi-

cale problems in manufacturing systems. For process scheduling at
ulti-site, the existing scheduling formulation can be broadly classified

nto discrete-time and continuous-time approaches. The most generally-
dopted unified frameworks for process representations (State-Task and
esource-Task Network (RTN)) have been developed based on discrete-

ime scheduling formulations ( Kondili et al., 1993 ; Grossmann, 2003 ;
antelides, 1994 ); this has been further explored to reduce computa-
ional time by deploying different optimisation techniques (e.g. linear
rogramming relaxation of MILP) ( Shah et al., 1993 ). Later, the uni-
ed framework was extended to RTN-based rolling horizon algorithms,
hich enable to solve large-scale optimisation problems and reduce

omputational time ( Dimitriadis et al., 1997 ). 
Due to the inherent limitations of the discrete-time approaches, sig-

ificant research efforts were also devoted to develop continuous-time
epresentations, ( Floudas and Lin, 2004 ). To bridge multi-scale optimi-
ation problem, Maravelias and Grossman ( Maravelias and Grossmann,
001 ) formulated a large-scale MILP model to optimise the short-term
cheduling, process network design and capacity planning for batch
anufacturing facilities, where the discrete uncertainties in raw ma-

erial prices and final product demands were captured. The derived
arge-scale MILP model was solved using a Lagrangean decomposition
euristic algorithm ( Maravelias and Grossmann, 2001 ). Later the simul-
aneous short-term batch scheduling and middle-term planning for a
ingle-unit continuous multi-product system was optimised using a MILP
odel ( Dogan and Grossmann, 2006 ). To improve the computational

ractability, the authors proposed a bi-level decomposition algorithm to
olve this MILP for large-scale design problem in a continuous plants
ith multiple units operated in parallel ( Erdirik-Dogan and Grossmann,
008 ). More recently, two algorithms (bi-level and Lagrangean decom-
osition) were compared ( You et al., 2011 ; Calfa et al., 2013 ); the results
emonstrated bi-level decomposition as a superior approach in terms of
omputation time for solving the multi-period MILP model to achieve
he simultaneous multi-site solutions for capacity transformation via
eactor modification(or batch scheduling) and production-distribution
etwork planning. 

The optimisation frameworks reviewed above could potentially be
pplied to design the highly customised batch operation system un-
er Industry 4.0, where the users can adjust smart factory configura-
ion through remote/control terminals and data advances ( Wang et al.,
016 ). In addition to the supply side, EWO is also proposed to ex-
lore industrial demand side management across multi temporal and
patial scales such as 1-year electricity demand scheduling integrated
ith long-term procurement problem ( Zhang and Grossmann, 2016 ).
ompared with the petroleum industry, little research has been carried
ut on the applications of EWO in biorenewable multi-scale optimisa-
ion. A MILP model was presented to solve the bioethanol-gasoline in-
egrated system, which bridged several level design problems including
hort-term scheduling (e.g. sales at retail centre and batch production),
edium-term planning at biomass cultivation and fuel production sites

e.g. capacity, resource flows) and long-term strategy (e.g. location and
apacity planning) ( Andersen et al., 2013 ). 
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modelling. 
.5.3. Research challenge 

Overall, biorenewable production systems differ substantially from
onventional petroleum chemical industry due to the carbon circular na-
ure, underlying uncertainties and the digital transformation potential
nder Industry 4.0. There exist ‘smart and circular manufacturing sys-
em’ opportunities in biorenewable sectors where process synthesis and
WO are effective approaches for exploring enterprise-centric optimal
onfigurations. The identified example systems and research opportuni-
ies include - 

• Process synthesis for closed-loop systems with biorenewable produc-
tion from waste resources to capture and fix atmospheric carbon
dioxide and recover other pollutants; 

• Biogenic carbon circular bio-refinery network design for pho-
totrophic microbial carbon fixation and biorenewable synthesis; 

• Operational decisions and tactical planning under digitalisation and
industry 4.0 – batch processing with optimised responsiveness, flex-
ibility and resource-use efficiency; 

• Strategic decisions on process/infrastructure repurposing or substi-
tuting to achieve the transition from petroleum to biorenewable pro-
duction system; 

• Multi-scale biorenewable enterprise optimisation problems to bridge
the strategic and tactical planning with operational decisions and
incorporate the stochastic variations. 

.6. Supply chain optimisation 

As discussed in the previous reviews ( Mirkouei et al., 2017 ; Shah,
004b ), supply chain (SC) optimisation concerns multi-site opera-
ional decisions on manufacturing and distribution, including upstream
iomass cultivation, biomass and waste collection, pretreatment and
onversion, downstream distribution and storage. Compared with the
etroleum sector, biorenewable supply chains are complicated by
heir interconnection with ecosystems and built environments, and
ulti-echelon complexity with new agent groups and SC structure

volved from the bioeconomy transition. A number of excellent re-
iews have been published on supply chain optimisation ( Shah, 2004b ;
apageorgiou, 2009 ; Garcia and You, 2015 ; Yue et al., 2014 ; Sharma
t al., 2013a ). Instead of a broad coverage of SC studies, this section re-
iews state-of-the-art model advances in multi-echelon and multi-scale
iorenewable value chain design, analyses the biorenewable SC charac-
eristics and proposes future research opportunities. 

.6.1. Overview of terrestrial/aquatic/waste supply chain optimisation 

A number of biorenewable supply chain optimisation studies have
een published with majority focusing on pyrolysis, gasification,
ioethanol, anaerobic digestion, hydrogen production technologies ( Fig.
2 B) and lignocellulosic feedstock sourced from terrestrial plants and
gricultural/forests waste ( Ghaderi et al., 2016 ). Aquatic phototrophs
nd waste value chain planning have attracted more research attention
ately. 

A microalgae based supply chain was modelled using spatial-
emporal MILP under both deterministic 640, 641 and robust modes
 Mohseni et al., 2016 ) to explore the cost optimal design for biodiesel
nder supply-demand variance and constraints. Both studies ( Ahn et al.,
015 ; Mohseni et al., 2016 ) considered the supply chain integration i.e.
he wastewater nutrient recovery via algae cultivation and carbon cap-
ure and utilisation cycles through microalgae photosynthesis and lipid-
xtraction and conversion at the refinery. The modelled systems were
ounded by the logistics and capacity of the wastewater treatment fa-
ilities and pipelines. However, the important spatially-explicit abiotic
nvironmental drivers (solar radiation and temperature) underpinning
icroalgae photosynthesis were only modelled in the study by Mohseni

t al. (2016) . 
Due to the resource complexity and variability at spatial/temporal

orizons, waste streams, particularly BFMSW, remain as a relatively un-
apped opportunity in supply chain optimisation ( Floudas et al., 2016 ).
35 
 multi-objective MIP model was proposed accounting for the over-
ll sustainability of multiple bio-solid waste streams throughout their
radle-to-grave life cycles ( Ču ček et al., 2012b ). The model was con-
gured to consider the mechanical pre-treatment and energy conver-
ation via incineration and anaerobic digestion of MSW, forestry and
rop residuals and manure; through system boundary expansion, au-
hors modelled the consequential LCA implications of product substitu-
ion on value chain design ( Ču ček et al., 2012b ). Santibañez-Aguilar
t al. ( Santibañez-Aguilar et al., 2013 ) formulated a multi-objective
ILP model to investigate the stream-separated MSW value chain de-

ign across-cities to achieve the maximisation of profit and waste re-
overy. A follow-up study was performed to incorporate the sustain-
bility and safety design criteria in the MILP framework for the strate-
ic planning of MSW supply chains considering mechanical (e.g. recy-
ling) and thermochemical (pyrolysis, gasification, combustion) routes
 Santibañez-Aguilar et al., 2015 ). Waste gas and water streams from var-
ous processing industries were addressed in supply chain planning but
revious research often focused on single stream management rather
han integrated multiple streams with diverse composition. As the di-
ersified waste feedstocks increase the optimisation complexity signif-
cantly, bringing multi-scale design problems, which need to consider
oth superstructure-based process synthesis and value chain planning.
ao and You (2015) formulated a life cycle based MINLP model to de-

ign the network and management strategy of the wastewater stream
rom shale gas extraction; a MILP model was proposed to bridge the
ong-term supply chain planning and short-term batch scheduling prob-
ems for water management on shale gas sites considering environmen-
al constraints ( Yang et al., 2015b ; Bartholomew and Mauter, 2016 ).
revious optimisation studies addressed carbon capture and storage or
tilisation and its integration with algae biofuel value chains, where the
patial carbon sink and source effects over discrete time intervals were
apped ( Yue et al., 2015 ; Tan et al., 2013 ). A flare-gas to bio-butanol
LP model was presented to explore the trade-offs between NPV opti-
al and GHG minimisation, considering the spatially-explicit flare gas

treams from multi-sites ( Hoseinzade and Adams, 2016 ). 
Through an overview of biorenewable SC upstream and downstream

ptimisation studies, a range of promising supply chains have emerged,
hich deserve future research attention- 

• demand-driven SC integration particularly biorenewable products
(e.g. pyrolysis bio-crude/bioethanol) with the functional-equivalent
petroleum counterparts (e.g. petroleum oil/gasoline) 632 ; 

• supply-driven SC integration for multiple feedstock streams with
similar processability e.g. 2 G terrestrial biomass integration with
3 G algae via HTL; 

• centralised and decentralised SC integration for multiple bio-
products from diversified feedstock such as the wastewater recov-
ery network design for business parks with effluents from diverse
processing industries ( O’Dwyer et al., 2018 ); 

• waste value chain design under uncertainty considering the high
variance in waste stream composition and supply; 

• sustainable value chain optimisation for new bio-clusters especially
those with higher added-value but lower natural capital inputs such
as the microbial single cell protein as resource-efficient food/feed
sources; 

• Research gaps on value-added biorenewables. As mapped out in
Fig. 11 , considerable empirical research has been carried out on
novel reaction routes and production pathways, which represents
future interests e.g. lignocellulosic biochemicals derived from multi-
functioning non-food crops (phytoremediation on degraded land). 

• Optimisation studies typically have simplified bio-physical models
with fixed exogenous pollution coefficients; knowledge gap emerged
on optimisation with interlinked biophysical and supply-demand
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Fig. 14. Multi-scale modelling framework. 
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.6.2. Multi-echelon and multi-scale challenges in biorenewable supply 

hains 

Five interconnected echelons can be generally associated with the
iorenewable supply chains – resource supply and collection, manu-
acturing, storage, distribution and market ( Garcia and You, 2015a ;
iranda-Ackerman et al., 2017 ). As demonstrated in Fig. 14 , each eche-

on concerns different decision spaces across temporal and spatial scales.
ost long-term strategic optimisation studies reflect the decision region

cross supply-manufacturing-distribution echelons but in the short/mid-
erm SC operation, more optimisation effort has been placed on manu-
acturing decisions with a research gap identified on the operational
ecisions at supply echelons (e.g. biomass cultivation stage ( Mirkouei
t al., 2017 )). Supply chain optimisation under fixed echelon settings
eflects a rigid network structure, focusing on the logistics, process ca-
acity, transportation mode, inventory control, resource and product
ow management. On the contrary, the complexity of the echelons, con-
ectivity between adjacent echelons and functions of nodes are not de-
ned a priori in flexible echelon supply chain design ( Shah, 2004b ).
siakis et al. (2001) proposed an MILP framework for flexible multi-
roduct multi-echelon network design with manufacturing, warehous-
ng, distribution and market operated under uncertainty. Lima et al.
2023) presented an MILP formulation for optimizing the design of a
ugarcane-based bioethanol supply chain, comprising harvesting, pro-
uction, storage, and distribution, under demand uncertainty. The sug-
rcane to bioethanol supply chain was also addressed by Wheeler et al.
2021) .This has been followed by a large amount of literature published
n multi-period spatially-explicit models for country/region-level multi-
36 
roduct supply chain design, where the decomposition techniques (e.g.
agrangean, Benders decomposition, bi-level decomposition) have been
roposed to solve the large-scale models and enhance the computational
erformance ( Andersen et al., 2013 ; Jackson and Grossmann, 2003 ;
ahmaniani et al., 2017 ; Yue and You, 2016 ). The flexible echelon op-

imisation framework has been widely applied in the biorenewable SC
esign, enabling systems to consider spatially-explicit natural capital
esources (e.g. land use), which are essential ecological drivers inter-
onnected with biomass ( d’Amore and Bezzo, 2016 ; Natarajan et al.,
014 ; Santibañez-Aguilar et al., 2014 ). The fixed-echelon concept was
dopted for supply chain transition design to achieve repurposing or
etrofitting existing facilities (e.g. petroleum ( Tong et al., 2014a ) or pa-
er pulp ( Martinkus et al., 2017 ) retrofitted to biorefinery). 

Multiple spatial and temporal scales need to be coordinated in biore-
ewable value chain decision-making, ranging from decisions across
ime steps (hour, day, month, year) to decisions on site location and
etwork at each echelon. As the multi-scale effects relating to the man-
facturing echelon have been well addressed in previous reviews ( Garcia
nd You, 2015a ), our discussion focuses on the supply echelon. At the
iomass supply stage, not only strategic planning on land use pattern
e.g. food vs. energy), crop rotation and resource flows, but also the
hort-term on-farm operational decisions (field operations, irrigation,
gro-chemical or fertiliser applications) are important. There have been
ome attempts to bring a PSE-style optimisation approach to opera-
ional decision-making in controlled-environment agriculture (such as
 Hu and You, 2023 ) and ( Chen et al., 2022 )), and mathematical pro-
ramming also has been widely applied to large-scale long-term agricul-
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Fig. 15. Biogenic carbon sinks and carbon emitters in biorenewable life cycle. 

Fig. 16. Carbon removal potential associated with different sources of biomass. 
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ural land management; however, the decision variables relating to the
perational management of conventional farms are rarely considered
 Li et al., 2017 ). These variables (e.g. fertilization, irrigation, harvest-
ng) not only affect the biomass yield and quality but also are highly re-
ated to biogeochemical cycles (e.g. carbon and nitrogen cycling), which
mpact the environmental performances of biomass and biorenewable
ystems (e.g. field emissions CO 2 , CH 4 , N 2 O NH 3 , impacting eutroph-
cation and global warming) ( Guo, 2012 ). In addition, biomass supply
an be distributed over large spatial areas, where multiple layers are
37 
nvolved e.g. distribution and trading layer, biomass growth layer. The
iomass plantation location and sizing selection highly depend on the
oil and climate variables (e.g. temperature, solar radiation, soil texture
nd quality) across spatial scales, which are environmental drivers for
iomass yields and influence biogeochemical processes. The response
unctions of biomass growth and agro-ecosystem C/N cycling to both
perational and ecological factors could be captured by first-principle
odelling (e.g. biogeochemical simulation) and incorporated into opti-
isation using surrogate models or discrete scenarios. 
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Surrogate modelling can be traced back to the end of 1980s. New
esearch areas emerged to apply response surface model (RSM) to com-
uter experiments and approximate functions to model and optimise
omplex systems. To reduce computational complexity using simula-
ion, a ‘black-box’ approach can be applied to use the original simulator
s a source of computational experiments to generate data points. The
ampled input-output data can be fit into surrogate functions. Differ-
nt sampling techniques have been explored such as Sobol’ sequences
echniques ( Sobol ′ , 2001 ), which provide good input space coverage in
 minimum number of samples. Research also covered different RSM
ethods including noninterpolating (i.e. least squared error of some pre-
etermined functional form) and interpolating (pass through all points
.g. Kriging interpolation) approaches. As applied in previous research
 Caballero and Grossmann, 2008 ), Kriging interpolation method mod-
ls the underlying function as a stochastic process and has the bene-
t of quantifying the uncertainty in the surrogate model predictions.
owever, the requirement for the inversion of a covariance matrix in

he model formulation means high-dimensional problems can become
omputationally demanding. Alternatively, artificial neural networks
ANNs) or other metaheuristic algorithms can correlate multiple input-
utput relationships and derive a good degree of accuracy ( Gonzalez-
aray and Guillen-Gosalbez, 2018 ; Ibrahim et al., 2018 ). Recent ad-
ances in surrogate-based optimisation has been covered in a compre-
ensive review by Forrester and Keane ( Forrester and Keane, 2009 ) and
urrogate-based optimisation advances in PSE is reviewed by Bhosekar
nd Ierapetritou ( Bhosekar and Ierapetritou, 2018 ). 

Despite the wide applications of surrogate modelling in modular
owsheet optimisation of chemical processes ( Henao and Maravelias,
011 ), its application in soft-linking first-principle biogeochemical mod-
ls with mathematical optimisation remains unexplored. By applying
uch meta-model approach, the derived surrogate models are expected
o represent the accuracy of first-principle modelling and project the
/N cycling over continuous time. Integrating surrogate functions into
hole system optimisation, the date-driven modelling techniques could
nable computationally tractable decision based on accurate projection
f environmental process over temporal and spatial scales. Such data-
riven optimisation can reflect the implications of the temporal and
patial-scale decisions on the wider biorenewable supply chain design. 

Overall, the biorenewable complexity at multiple scales may result in
arge scale optimisation models thus the future research challenge in this
ighly cross-disciplinary field lies in the trade-offs between optimisation
olution quality and computational complexity. 

.6.3. Natural capital and built environment resources 

Biorenewable supply chains are interconnected with natural capital
e.g. land, water, air) and built environmental resources (e.g. electricity,
nfrastructure) and constrained by their capacities (e.g. land availability
nd electricity generation capacity) across spatial and temporal scales.
hese not only form the optimisation model exogenous constraints but
lso underpin the resource competition issues between multiple sectors
e.g. food vs. bioenergy, biorenewable vs. petroleum). The majority of
he optimisation models define biomass availability as given parame-
ers independent of natural capital resource e.g. land ( Lautenbach et al.,
013 ) and water ( Reed et al., 2013 ). Relatively different, few studies
onsidered biorenewable value chain competition and decision vari-
bles on land use ( Guo et al., 2016 ; Cobuloglu and Buyuktahtakin, 2015 ;
ucek et al., 2014 ; Cobuloglu and Büyüktahtak ı n, 2017 ). Cobuloglu and
üyüktahtak ı n (2015) formulated a deterministic MILP model to ex-
lore the arable land decisions on a switch grass-based biofuel and food
ompetition at different spatial scales; the authors further proposed a
tochastic MIP model to optimise food-biofuel competition considering
he variance in biomass yield and price ( Cobuloglu and Buyuktahtakin,
017 ). A Stackelberg–Nash game model was developed to study the ef-
ects of land use regulations on the food and biofuel balance ( Cobuloglu
nd Büyüktahtak ı n, 2017 ). Cucek et al. (2014) developed a multi-period
38 
ILP model to optimise the total land areas devoted for biofuel and food
emands. 

However, not all the land is suitable for biomass production due to
oil and typographic constraints. Two land taxonomy systems arise here
hich are related to biomass optimisation problems – soil type and land

over. The former refers to different sizes of mineral particles (clay, silt,
and) in the soil samples, varying with countries e.g. the UK soil tax-
nomy with 10 major groups ( Clayden and Hollis, 1984 ); whereas the
atter represents the observed biophysical cover on the earth’s surface
 FAO, 2017 ), which has been developed at national or regional level e.g.
K land cover map ( Centre for Ecology and Hyrology, 2015 ) and EU
ORINE (coordination of information on the environment) land cover
lassification ( EuropeanCommission, 2009 ). Soil type as an important
nvironmental driver has been taken into account in various biogeo-
hemical models; spatial land cover and slope layers have been incor-
orated in national SC optimisation models to identify the optimal site
ocation for PV water pumping systems in China ( Campana et al., 2015 )
nd to design UK spatial-temporal bioenergy supply chains accounting
or the trade-offs of cost optimal and environmental targets ( Samsatli
t al., 2014 ; Newton-Cross, 2015 ). The UK national bioenergy model
TI-BVCM ( Samsatli et al., 2014 ; Newton-Cross, 2015 ) was formulated
s a MILP optimisation, where the GHG and biomass yield derived from
mpirical models were embedded and initial land cover GIS layers were
ncluded; this model was further extended to incorporate spatially ex-
licit land competition between bioenergy and non-energy systems over
ime at different land types (arable, grassland, forestry land etc.) and
he ecosystem services impacts in response to the decisions on land use
hanges ( Guo et al., 2016 ). However, an overarching framework to inte-
rate first-principle biogeochemical models (e.g. DNDC, ECOSSE) with
ulti-scale multi-echelon optimisation has not been explored and rep-

esents a promising research direction; this approach brings soil bio-
eochemical cycles and soil-plant interaction into the land use decision
ramework, which underpins the terrestrial biomass-dependent biore-
ewables and enables supply chain optimisation to account for soil and
ther environmental variables. 

It is particularly interesting to model a range of land-use mitigation
trategies e.g. land sharing and sparing schemes ( Smith et al., 2013b ;
halan et al., 2011 ) in the optimisation to shift the land competition
o land-use integration or reconfigure the biorenewable systems via
ustainable agriculture intensification ( Phalan et al., 2011 ). In addi-
ion, land-sparing and land-sharing have emerged as alternative strate-
ies to achieve both production and biodiversity conservation ( Fischer
t al., 2014 ). Land-sparing involves specialization of land uses, set-
ing aside lands for conservation and implies agriculture intensification
omewhere else to compensate for a reduced area availability ( Green
t al., 2005 ). In contrast, land-sharing is defined as making production
ands more conducive to biodiversity conservation to integrate food pro-
uction with ecosystem services ( Green et al., 2005 ).Both strategies re-
uire a financial concession to conservation (i.e. opportunity cost), thus
t is essential to identify the cost-effective strategy for ecosystem ser-
ices conservation ( Edwards et al., 2014 ). Alternative land-sharing and
and-sparing strategies, including mixed strategies, have been evaluated
y integrating multi-objective integer programming with conservation
lanning in previous research ( Law et al., 2017 ). 

With the increasing concerns on the ongoing global degradation of
atural capital, the competition issues on other resources especially wa-
er, and interaction of natural landscape and environment with biore-
ewable products deserve future research efforts. Substantial amounts
f water are used and waterborne pollutants are discharged at multiple
upply chain echelons (biomass cultivation, biorenewable conversion).
he water-biorenewable nexus have been considered in several optimi-
ation works. By bringing the water footprint into the objective func-
ion, Garcia and You (2015b) proposed a multi-objective MILP model
or water-biofuel network design. Similarly, water resource use, regional
atershed management and wastewater discharge were considered in

he design criteria in the biorefinery supply chain model proposed by
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ópez-Díaz et al. (2017) , where the interaction of a watershed with the
ntire supply chain was characterised using material flows. 

Another important natural capital is carbon dioxide assimilation. In
ontrast to linear supply chain optimisation problems, the carbon cir-
ular and waste-based biorenewable systems lead to closed-loop supply
hain design. Closed-loop supply chain (CLSC) has been of great interest
or mathematical modellers; an up-to-date review on the CLSC research
an be found in Cui et al. (2017) , Hamdouch et al. (2017a) , Soleimani
t al. (2017) . The strategic (e.g. location), tactical and operational (e.g.
nventory) decisions at multiple echelons have been modelled in multi-
bjective CLSC research considering social-economic-environmental cri-
eria under uncertain environment with varying infrastructure, demand,
osts, recycling and social impacts ( Zhalechian et al., 2016 ; Pishvaee
nd Torabi, 2010 ; Pishvaee et al., 2011 ; Devika et al., 2014 ; Amin and
hang, 2013 ). In contrast to the centralised supply chain design strategy,
ash equilibrium framework was adopted to formulate decentralised

tochastic CLSC under demand and return uncertainties ( Hamdouch
t al., 2017b ; Rezapour et al., 2015 ; Yang et al., 2009 ). Applying CLSC
esign in biorenewables, the closed-loop biogenic carbon refinery sup-
ly chains (e.g. bio-based recyclable PET bottle) can be simulated to
xplore the potential contribution of such circular biorenewables to the
lobal climate change mitigation. 

Natural capital underpin ecosystem services, which are delivered to
uman wellbeing through the flows and interactions between natural
apital assets, built capital (built environment) and human capital as-
ets (people and society). Previous research has elaborated the intercon-
ection between natural capital and built capital assets by examining
cosystem services trade-offs ( Costanza et al., 2014 ). The evolvements
f existing infrastructure and resource flows as part of the built environ-
ent (e.g. transportation, energy, waste treatment and water supply)

an be defined as exogenous but uncertain parameters in optimisation
odels. Two types of supply chain risks arise from the uncertainty in

uilt environment resources and infrastructure i.e. operational or dis-
uption risks. The former refers to the fluctuation in the biorenewable
upply chains due to the uncertainties in the supply and demand of the
uilt environment resources; while the latter is associated with the exter-
al interruption in built environment (e.g. infrastructure failure) caused
y natural or artificial extreme events (e.g. policy intervention, flooding,
urricane) ( Tang, 2006 ). The capacity, demand and interdependency of
hese infrastructures under future uncertainty can be captured via sys-
em simulation e.g. the UK ITRC national infrastructure modelling plat-
orm based on a system of systems approaches ( UK Infrastructure Transi-
ion Research Consortium, 2017 ). By adopting simulation parameters as
xogenous boundary conditions, scenario-based stochastic optimisation
an be used to explore biorenewable SC decision-making under built
nvironment uncertainties and risks ( Huang and Pang, 2014 ). 

.6.4. Cooperative vs. non-cooperative supply chain strategies 

Across five supply chain echelons, multiple interactive nodes are
nvolved in the supply chain decision-making, where the nodes can
ompete in either cooperative or non-cooperative fashion. Unlike the
entralised optimisation approach, competitive supply chain prob-
ems represent a decentralised system with each decision-maker tak-
ng their own strategies, which often conflict with each other. Differ-
nt negotiation scenarios have been studied in optimisation - cooper-
tive games with competition between groups of players ( Wu et al.,
017b ), non-cooperative games and standalone cases ( Hjaila et al.,
016 ). A scenario-based dynamic negotiation model was formulated
y Hjaila et al. (2016) , which enables leaders and followers to partici-
ate in production-distribution decentralised networks and explore both
ooperative/non-cooperative games under uncertainties. The coopera-
ive mode was also modelled for decentralised water-use network ( Cao
t al., 2007 ). In comparison, the non-cooperative game with n nodes
nderpinned by the Nash equilibrium concept ( Nash, 1950 , 1951 ) is the
ost widely used methods of predicting the outcomes of a strategic in-

eraction. Nash-type mathematical programming proposed by Gjerdrum
39 
t al. (2002) , Gjerdrum et al. (2001) was a new method to model the
nter-organizational cooperation and information sharing mechanisms
s well as profit distribution amongst nodes under a competitive en-
ironment. The authors formulated a deterministic MINLP model to
etermine the optimal transfer prices for n-node supply chain; MINLP
unctions were linearised using logarithmic differentiation and approx-
mation. Yue and You (2014) further studied the profit allocation in
 non-cooperative supply chain by optimising transfer prices and rev-
nue sharing, where a branch-and-refine algorithm developed by You
nd Grossmann (2011) was applied to solve the model. Later on, the
ame authors proposed a bi-level optimisation model to explore com-
etitive biofuel supply chain decisions following the Stackelberg leader–
ollower game theory ( Yue and You, 2017 ). To model the uncertainties
n both leader and follower’s problems under a non-cooperative and
on-zero-sum Stackelberg game, Hjaila et al. (2017) proposed an inte-
rated framework to solve the Stackelberg game by a MINLP tactical de-
ision model and consider the competition between Stackelberg nodes
nd third parties in a Nash equilibrium model. By using Monte-Carlo
imulation, the authors derived the pareto-frontier win-win solution set
nder uncertain competition conditions from both leader and follower
erspectives. The Nash equilibrium state was also explored in the closed-
oop supply chain optimisation problems using deterministic optimisa-
ion ( Yang et al., 2009 ) and a stochastic model considering the demand
nd return variance ( Hamdouch et al., 2017b ). CLSC Stackelberg leader–
ollower game was formulated as a multi-objective optimisation model
nd solved using genetic algorithms ( Aydin et al., 2016 ). 

These game-theory models were mostly based on fixed supply chain
chelon models with exception of Yue and You (2017) and Bai et al.
2012) , where the flexible echelon based supply chain models were con-
tructed with binary variables determining the candidate site selection
nd biorefinery capacity levels. Although land use competition has been
ecognised as a critical issue, facing triple challenges amongst food, bio-
roduct, and environmental conservation, only the Stackelberg–Nash
ame model formulated by Bai et al. (2012) considered the strategic de-
isions on candidate biorefinery locations and land allocation for food
nd bioenergy crops while taking into account the non-cooperative gam-
ng behaviours. The model was further enhanced by the authors Bai et al.
2016) to simulate how the farmland use policy regulates food-biofuel
roduction. However, as discussed in the previous section, interaction of
and with biomass is dynamic, varying with land type. Thereby, one of
he major challenges lies in how to simultaneously model the competi-
ive n-node game and capture the type-specific natural capital allocation
ecisions for resource-competing biorenewable supply chains at fine
patial and temporal scales. An optimisation framework was proposed to
ncorporate crop simulators and multiple echelon supply chain compet-
tive games to achieve the equilibrium solutions for multi-players (feed-
tock suppliers, existing industries, centralised/decentralised biorenew-
ble operators, investors, and policy-makers) ( Guo et al., 2017 ). The
and use allocation at four land types (arable, forestry, grassland and
bandoned) for resource-competing systems and closed-loop waste re-
overy were modelled as decision variables; such modelling approach
ould be extended to simulate other innovative sectors under circular
conomy. 

.6.5. LCSA optimisation incorporating wider ecosystem services 

By bringing life cycle thinking into the decision-making framework,
he PSE research community proposed a life cycle optimisation (LCO)
ethodology and applied it to biorenewable multi-scale design prob-

ems ( Grossmann and Guillén-Gosálbez, 2010 ; Gong and You, 2017 ;
ue et al., 2014 ; Cambero and Sowlati, 2016 ; Miret et al., 2016 ; You
t al., 2012 ). Earlier LCO models focused on the trade-off between
conomic and environmental criteria in biofuel supply chain plan-
ing from attributional perspectives over entire life cycle ( Mele et al.,
009 ) or cradle-to-gate life stages ( Zamboni et al., 2009 ). Ču ček et al.
2012b) considered sustainability in three pillars and extended the at-
rtibutional LCO framework to social dimensions, which was followed
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y the multi-criteria models presented by You et al. (2012) and Miret
t al. (2016) . They proposed to model direct and indirect job creation
s social performance indicators, including the employment impacts re-
ected in biomass supply chain operation and infrastructure construc-
ion phases and the jobs resulting from local economy change through-
ut the biomass cradle-to-grave life cycle. The activities in local micro-
conomy concerning multiple sectors and nodes were quantified using
n input-output modelling approach ( You et al., 2012 ); in particular the
induced’ employment opportunities ( Miret et al., 2016 ) resulted from
he economic activities supported by the household expenditure spent
y biorenewable sector-related employees have multiplier effects. Such
ffects in fact reflect the consequential impacts although were not dis-
ussed by the authors. Until recently, the consequential LCO concept
as formulated as a global MINLP problem and introduced by Gong
nd You (2017) to capture the changes to the upstream and downstream
rocesses as a consequence of trade-off design for a algal biodiesel pro-
uction network. 

Landscapes generate a range of ecosystem services; the type, magni-
ude, and relative mix of services provided by ecosystems can vary with
anagement interventions, where the ES trade-offs could occur at var-

ous spatial and temporal scales ( Rodriguez et al., 2006 ). Although the
mportance to incorporate such ES into decisions at international, na-
ional, local and corporate scales is increasingly recognised ( Daily and
atson, 2008 ; Gómez-Baggethun and Ruiz-Pérez, 2011 ) especially for

he natural capital-dependent biorenewables, their value is often over-
ooked in resource or biorenewable supply chain planning ( Bateman
t al., 2013 ). By introducing the location-independent regulating ES im-
act factors into their MIP model, Hanes et al. (2017) formulated an op-
imisation model to optimise the ES use sustainability with supply and
emand balance accounted for. In this study, climate-regulation and air
uality regulation impacts induced by farmland use change were quanti-
ed as CO 2 eq and NO 2 eq where the farming activities and carbon nitro-
en balances were captured using a process-based model WinEPIC but
oil drivers were excluded by assuming homogeneous soil type. Kovacs
t al. (2017) explored the implication of ES conservation policies on
he trade-offs between ES and agricultural economic return optimal for
andscape management. In a proposed bioenergy value chain optimi-
ation framework ( Guo et al., 2016 ), spatially-explicit provisioning ES
elating to the food bioenergy, livestock production from dedicated and
ompeting land resources were considered quantitatively as is the regu-
ating ES; a semi-quantified matrix was introduced as a synthetic mea-
ure to account for biodiversity and other ES as a consequence of land
se transition across different land types. Under this framework, the
uthors proposed to implement quantitative approaches based on pro-
isioning, regulating and cultural ecosystem services at various spatial
nd temporal scales to optimise the ES trade-offs for the bioenergy sup-
ly chain design. An interesting yet unexplored direction is to bring the
S supply-demand mitigation strategies into the LCO framework e.g.
ulti-functional landscape planning ( Shifflett et al., 2016 ), phytoreme-
iation or bioremediation on degraded land. 

Overall, life cycle underpinned optimisation offers a promising
ramework to inform decision-making towards biorenewable sustain-
bility; several interesting yet challenging research directions lie in
he methodological exploration for consequential LCO of closed-loop
iorenewable supply chains (e.g. biogenic CO 2 based recyclable plas-
ic), spatially-explicit ES optimisation linked with eco-informatics and
S databank, LCO with wider quantitative social dimensions. These chal-
enges can only be addressed via collaborative research efforts to bring
ogether multidisciplinary expertise across Ecology, PSE and Social Sci-
nces. 

.7. Multi-criteria challenge and supply chain simulation 

.7.1. Multi-criteria decision-making 

Under each biorenewable supply chain echelon, multiple nodes are
nvolved in the decision-making process, thereby the biorenewable sys-
40 
em may lead to many-objective large scale optimisation problems. The
erm ‘many-objective’ refers to the optimising systems with four or more
esign objectives as introduced by Fleming et al. (2005) , which could
e expressed as –

in 𝑓 ( 𝑥 ) = 

{
𝑓 1 ( 𝑥 ) , 𝑓 2 ( 𝑥 ) , … , 𝑓 𝑘 ( 𝑥 ) 

}
𝑥 ∈ ℝ 

𝑛 

 𝑘 ∈[1 ,𝑚 ] ≔ ℝ 

𝑛 → ℝ 

Where the parameter vector 𝑥 ∈ ℝ 

𝑛 is subject to boundary con-
traints, forming the feasible space. The vector function f maps the
bjective space. The PSE literature reviewed above represents multi-
bjective optimisation problems with 2–3 design criteria, which are of-
en resolved using a priori or posteriori algorithms to find a whole set or
 subset of non-dominated solutions. The former involves decision mak-
rs prior to the optimisation, considering multiple attributes in the form
f a weighted sum in a single objective function, but it does not reveal
he Pareto front supporting an informative decision making process and
eights introduced for each criteria may change the dominance struc-

ure of the multi-objective problem and hinder the discovery of global
ptimum solutions ( Guillén-Gosálbez, 2011 ). The latter provides a set
f solutions based on the trade-off between conflicting objectives and
rticulates the decision-makers preference in searching optimal solu-
ions in the objective space. However, because the complexity of multi-
bjective problems increases sharply increases with the number of ob-
ectives, ( Weidner et al., 2022 ) more than three conflicting objectives in
osteriori approach are regarded as computationally intractable. Indeed,
eidner et al. (2022) note that optimizing over all nine PBs would be

ighly computationally demanding. Instead of aggregating or omitting
he objectives, an alternative approach is to reduce the objectives with-
ut losing information. Guillén-Gosálbez (2011) introduced a posteriori

lgorithms based on a branch and bound technique to reduce the Pareto
bjective space; via iteration, a set of solutions will be derived until the
ermination criteria are satisfied. Different from both approaches, inter-
ctive optimisation represents a human-in-the-loop approach ( Fig. 14 ),
iming to turn efficient optimisation methods into effective decision-
aking tools ( Meignan et al., 2015 ). The interactive methods articu-

ate the dynamical preferences of multi decision-makers based on their
radually-built understanding of the optimisation topology and enables
he solution search to be progressively refined and directed towards the
egions of interest; thus this approach can outperform a black box opti-
isation methodology ( Hettenhausen et al., 2013 ). Evolutionary algo-

ithms e.g. genetic algorithm ( Matrosov et al., 2015 ), particle swarm
ptimisation (PSO) ( Kennedy et al., 1995 ) and other artificial intelli-
ence (AI)-based methods e.g. fuzzy chance-constrained programming
 Jin et al., 2017b ) have attracted great research attention; they were
pplied to solve many-objective engineering design problems includ-
ng hybrid electricity and gas network ( Kou et al., 2017 ),renewable
nergy scheduling ( Lei et al., 2016 ), collaborative water supply plan-
ing ( Matrosov et al., 2015 ), and biochemical system design ( Taras and
oinaroschy, 2012 ). Research efforts has been also placed on interac-

ive methods for multi-objective MIP; published description of methods
n the interactive MIP can be found in the review conducted by Alves
nd Clímaco (2007) . 

Visualisation of high dimensional (four or more) objective or deci-
ion spaces is another challenge. Pryke et al. (2007) presented a heatmap
isualisation method and compared it with two other approaches (self-
rganising map and distance and distribution charts); a heatmap-based
ser interface was introduced to interactive PSO models ( Hettenhausen
t al., 2010 ). Inselberg ( Inselberg, 1985 ) proposed a parallel coordi-
ates approach to visualise non-dominated candidate solutions; this
ethod was combined with evolutionary algorithms ( Fleming et al.,
005 ) e.g. web-based PSO-based interactive many-objective optimisa-
ion and a scatter-plot to plot out any two parameter or objectives to
acilitate decision-makers progressively articulating design preference
 Hettenhausen et al., 2014 ). Despite the fact that interactive optimi-
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ation has been successfully applied to engineering design e.g. aero-
autics, the methodology and application research on many-objective
iorenewable optimisation is still challenging due to the multi-scale,
ulti-echelon complexity, resource-competing issues concerned and the

nteraction with wider natural and built environments. 

.7.2. Stakeholder interaction and policy intervention 

Amongst multiple decision-maker groups, governmental agencies,
olicy-makers and regulators play significant roles in the new biore-
ewable technology and supply chain deployment. The optimisation
tudies reported in the literature often focus on the market players but
onsidered policy instruments as exogenously parameters (e.g. carbon
rading price). It is important to account for the policy-makers in the
odelled system as decision-makers, bring the governmental economic

e.g. budget) targets into the objective space and their deployment pol-
cy variables into design space. This could be achieved by introducing
he policy stakeholders as key market regulators in the models, which
nables them to explore the strategic planning options defining the
acro economy boundary conditions, setting rules and implementing
olicies. Based on the IRN21, IPCC and IEA renewable energy deploy-
ent reports ( Agency, 2011 ; IPCC, 2015 ; REN21, 2016 ), different de-
loyment policies could be summarised and expressed as several key
chemes (please see related material in the Supplementary Information
I-5) ( Guo, 2018 ). By bridging the dialogue barriers and engaging the
takeholder groups throughout model development, the academic com-
unity could scope the model functions from different user perspectives

nd formulate optimisation problems with user-oriented architectures.
uch a modelling strategy could more effectively inform the decision-
aking process to ensure the solutions are applicable for read-world
roblem-solving. 

In addition to policy instruments, the governance and supply chain
tructure, node interaction and behaviours have proven to be impor-
ant factors influencing bioproduct technology deployment ( Roos et al.,
999 ). These can be addressed by using agent-based modelling (ABM).
BM adopts a bottom-up approach considering each node to react au-

onomously and cognitively to environmental change ( Guillem et al.,
015 ). It has been applied to investigate agriculture-level decision mak-
ng ( Guillem et al., 2015 ; Shastri et al., 2011 ) as well as biofuel sup-
ly chain design ( Bichraoui-Draper et al., 2015a ; Singh et al., 2014 ;
oncada et al., 2015 , 2017a , 2017b ) and carbon emission trading

chemes ( Tang et al., 2015 ). The decisions and interactions of each node
an be modelled simultaneously with solving the multi-scale design
roblems by using ABM and enabling dynamic simulation-optimisation
oops in a complex system analysis. Singh et al. (2014) combined
BM with a genetic algorithm to investigate how the node decisions
t biomass-supply echelon under a food-biorefinery competing market
ffect corn price and further influence the biofuel supply chain de-
ign. Delval et al. (2016) formulated an ABM simulation-optimisation
ramework to simulate the node interaction at multiple levels (verti-
al and horizontal) based on behavioural diversity and optimise the
ugarcane supply chain strategic design and each node’s tactical plan-
ing simultaneously under the demographic evolving context over five
ecades in South Africa. Via soft-linking ABM with LCSA and ecosys-
em services, research has been carried out to evaluate the implica-
ions of farmers’ decisions on the greenhouse gases and ecosystem ser-
ices performances of bioenergy supply chains ( Guillem et al., 2015 ;
ichraoui-Draper et al., 2015b ). Robust optimisation offers an alter-
ative approach to supply chain optimisation, treating exogenous de-
isions, such as demand, as uncertainties ( Golpîra and Javanmardan,
022 ). 

Employing systems approach, the simulation-optimisation-
valuation loops offer powerful modelling tools to explore the
ulti-scale, multi-echelon biorenewable system design space, intercon-
ected with natural capital and built environment and accounting for
ultiple criteria from different decision-maker perspectives. However,

ll models introduce some form of approximation, uncertainty or as-
41 
umptions. Citing George E.P.Box ( Box, 1976 ) and Sterman (2002) ‘all
odels are wrong.’ Biorenewables have inherent system complexity,
hich cannot be artificially divided into sub-systems or segments;

hereby, it is very important to take a whole system approach and break
own the disciplinary barriers. Forming a systematic cross-disciplinary
odelling framework ( Fig. 14 ) offers a promising way to merge
ulti-level research questions and capture the dynamic interactions of

iorenewable system components as well as their inter-linkage with the
ider ecosystems, natural and built environments. 

.8. Optimisation under uncertainty 

Following the taxonomy proposed by Peidro et al. (2009) , this sec-
ion addresses optimisation under uncertainty from three perspectives –
ncertainty sources, problem types and modelling approaches. 

Differing from petroleum based counterparts, biorenewable systems
articularly those based on the terrestrial and aquatic phototrophs are
ighly dependent on the environmental and ecological drivers (e.g. cli-
ate, soil, water, vegetation). Thus, there are significant uncertainties

.g. feedstock quantity quality and seasonality, across the systems at
ultiple levels due to the temporal, spatial, environmental and socio-

conomic uncertainty and variance, which can be categorised following
emporal-scale. As summaries in Table 7 , in addition to the uncertainty
ssociated with supply chain (demand, supply and process) ( Peidro
t al., 2009 ), uncertainty is also associated with exogenous factors due to
nvironmental or socio-economic interventions (e.g. policy). The prob-
bility distribution of the ecology or environment related exogenous
actors can be estimated either based on historical data (e.g. extreme
vents such as flooding earthquakes or meteorological data) or com-
uter simulation (e.g. crop yield projection ( Guo et al., 2012 )); whereas
he probability distribution of exogenous socio-economic drivers (e.g.
arket demand, technology evolution) could be obtained from system
ynamic or economic model forecasts. Often, an optimisation problems
ith discrete (finite) probability spaces are derived for biorenewable

ystems particularly those combining multi-scale uncertainties which
ould result in intractable nonlinear problems if assuming continuous
istributions ( Govindan et al., 2017 ). 

Previous studies proposed the classification of uncertainty modelling
pproaches into four groups ( Peidro et al., 2009 ; Awudu and Zhang,
012 ) – analytical methods (e.g. robust optimisation, stochastic pro-
ramming), simulation methods (e.g. discrete-event simulation, Monte
arlo simulation), artificial intelligence-based model (e.g. fuzzy pro-
ramming, evolutionary programing, genetic algorithm), hybrid model
integration of analytical and simulation methods e.g. stochastic dy-
amic programming ( Kogut and Kulatilaka, 1994 )). As recommended
y Peidro et al. (2009) , analytical approaches generally can be adapted
o manage the random uncertainties while the simulation and AI-based
odels can be applicable to capture complex system behaviours. Specif-

cally, stochastic programming presents a suitable method for biorenew-
ble problems with uncertain parameters represented as a set of discrete
cenarios with probability levels or a continuous projection ranges (e.g.
emperature, yield); while robust optimisation could be suitable for the
ases where the uncertain parameters are represented as uncertainty
ounds (e.g. land availability) ( Tong et al., 2014b ). 

Via literature review, the following points emerged which highlight
otential opportunities (see Supplementary Information SI-6) - 

• planning on upstream (cultivation ( Cobuloglu and Buyuktahtakin,
2014 ), production ( Castillo-Villar et al., 2017 )), downstream distri-
bution ( Zamar et al., 2017 ), and demand side ( Fu et al., 2017 ).have
been modelled under uncertain decision-making environment. The
supply and demand flows and their market prices were widely ad-
dressed as uncertainty sources but process (e.g. technology evolution
( Tong et al., 2014b )) and other factors (e.g. policy, biomass quality
( Castillo-Villar et al., 2017 ), climate ( Sharma et al., 2013b ), land
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Table 7 

Overview of the optimisation under uncertainty. 

STAKEHOLDERS SHORT-TERM OPERATIONAL 
UNCERTAINTY 

MID-TERM TACTICAL PLANNING 
UNCERTAINTY 

LONG-TERM STRATEGIC UNCERTAINTY 

BIOMASS CULTIVATION AND 

COLLECTION 

• biomass yields due to meteorological 
and soil condition change 
• agrochemical supply 
• biomass demand 

• new genotype 
• new crop introduction 
• field management 
• facility interruption due to extreme 
events 

• policy change, 
• land use change 
• cooperative or non- cooperative (e.g. 
contract) strategy of other enterprise 
across supply chains 

BIORENEWABLE TECHNOLOGY 

OPERATION 

• Batch and transport scheduling 
• Biomass price and quality uncertainty 
• Biorenewable demands uncertainty 
• Operational condition 

• capacity planning 
• inventory management 
• pollution control 
• seasonal biomass availability 
• market uncertainty 
• policy change 
• facility interruption due to extreme 
events 

• Investment strategy and location 
selection 
• customer preference change 
• policy change 
• market and global trading 
• technology evolution 
• built environment (e.g. energy-water 
infrastructure). 

CURRENT PETROLEUM 

INDUSTRIAL SECTORS 

• Reconfiguration and expansion of 
existing facilities, process repurposing due 
to uncertain biorenewable sectors. 

DISTRIBUTION CENTRES • inventory management due to the 
unpredictable supply and demand; 
• Transportation scheduling 

• contract decision affected by the 
uncertainties in market and other 
stakeholders involved in the supply chain. 

GOVERNMENT, 

POLICY-MAKERS AND 

REGULATORS 

• policy and subsidy strategies due to 
unpredictable weather, environmental 
change (e.g. climate change) and natural 
extreme events (e.g. flooding). 

FINANCE SYSTEMS • Investment led by the changes in market supply-demand and government policies and 
weather and environmental unpredictability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

e  

f  

b  

a  

S  

p  

t  

e  

r  

c  

2  

i  

i  

s  

r  

d
 

a  

n  

s  

c  

H  

a  

o  

a  

d  

e  

p  

c  

2  

M  

t  

a  

t  

i  

H  

b  
availability ( Y ı lmaz Balaman and Selim, 2014 ; Balaman and Selim,
2015 )) were not commonly included; 

• uncertainty-based optimisation studies focused on supply chain
planning with very little research concerning the process synthesis
( Geraili and Romagnoli, 2015 ; Vujanovic et al., 2015 ; Cheali et al.,
2016 ); planning across multi-period horizons is concerned in several
studies e.g. ( Mohseni et al., 2016 ; Cobuloglu and Buyuktahtakin,
2014 ; Babazadeh et al., 2017 ; Balaman and Selim, 2016 ) but the
incorporation of tactical, strategic, operational planning simultane-
ously in an uncertain decision-making environment is rarely inves-
tigated ( Geraili and Romagnoli, 2015 ); 

• multiple biorenewable supply chain integration, resource-competing
issues (food vs. biofuel), process repurposing and multi-echelon sup-
ply chain design under uncertainties still remains unexplored; 

• the analytical and simulation methods along with fuzzy program-
ming were commonly adopted approaches in previous research to
solve the design problems whereas other AI-based models e.g. meta-
heuristics approach are worth future research efforts; 

• Benders decomposition was widely applied to solve the scenario-
based stochastic optimisation programs but other applicable meth-
ods e.g. progressive hedging algorithm have not been explored in
multi-stage stochastic optimisation ( Peidro et al., 2009 ; Govindan
et al., 2017 ). 

• LCA-based optimisation under uncertainty was presented to solve
multi-criteria design problems for biomass and biorenewables e.g.
( Balaman and Selim, 2016 ; Tan et al., 2012 ; Tan et al., 2009 ), but
social performance was often overlooked (e.g. job creation) ( Osmani
and Zhang, 2017 ). 

• Our review confirmed the statement of Govindan et al. (2017) that
the systematic comparison between different modelling approaches
deserve further research attention. 

Linking uncertainty concepts with the biorenewable system design,
hree performance indicators emerged - robustness, responsiveness and
esilience ( Klibi et al., 2010 ). The solution robustness determines the
xtent to which the system can carry out its functions under a variety of
42 
uture scenarios; as proposed by Klibi et al. (2010) weighted scenarios
ased on random, and worst discrete events should be integrated and
ccounted for in stochastic programming to measure the robustness.
ystem responsiveness provides a matrix to evaluate how the system
erforms in response to short-term variations in system inherent opera-
ional risks (fluctuation in supply and demand) ( Tang, 2006 ); resilience
valuates the system capacity (e.g. structure and resources) to quickly
ecover, adapt and grow facing the unexpected external disruption risks
aused by natural and artificial disasters ( Green Alliance 2013 ; Tang,
006 ; Klibi et al., 2010 ). Deterministic optimisation approaches applied
n majority of biorenewable systems are not capable of capturing these
ndicators but uncertainty is particularly important for biorenewable
ystem design, which faces higher levels of operational and disruption
isks than petroleum counterparts (e.g. feedstock supply interruption
ue to natural disaster). 

Few studies addressed this topic. Pishvaee et al. (2010) presented
 robust linear optimisation model to address multi-echelon logistic
etwork operational design, considering conflicting cost and respon-
iveness objectives. Network responsiveness was also concerned in
losed-loop supply chain decisions under uncertainty ( Shi et al., 2017 ;
amidieh et al., 2017 ; Kadambala et al., 2017 ), where metaheuristic
pproach (fuzzy genetic programming, PSO) were proposed to solve the
ptimisation problems. At the manufacturing level, responsiveness is
lso important design criterion in particular for assemble-to-order pro-
uction models ( Atan et al., 2017 ). The resilient supply chain as an
merging field has not attracted attention until very recently, when
re-disaster planning and infrastructure retrofit decision elucidated the
oncerns on resilience ( Li et al., 2011 ; Huang et al., 2014 ; Fan et al.,
010 ). Huang and Pang (2014) proposed a multi-objective stochastic
IP model for biofuel infrastructure design; the model accounted for

he conflicting cost and four resilience measures i.e. robustness, rapidity
s the inherent resistance measures in the infrastructure change to ex-
reme events, and redundancy and resourcefulness as the system stabil-
ty indicators to recover functionality from the supply/demand changes.
owever, the multi-scale, multi-echelon responsiveness and resilience in
iorenewable system design has not yet been explored; by integrating
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he risk mitigation and resilience-building measures into the stochas-
ic spatial-temporal optimisation models, this complex area presents a
otential future research direction. 

.9. Technology learning curves 

Understanding how technology performance evolves over time is the
ey for multi-level decision-making on biorenewables and underlines
he projections on costs of achieving sustainability targets. Different
ypotheses on endogenous learning-diffusion have been proposed and
ested in previous research e.g. Moore’s law ( Moore, 2006 ), Wright’s law
 Wright, 1936 ), Goddard learning curve ( Goddard, 1982 ), SKC curve
 Sinclair et al., 2000 ), Nordhaus logarithmic function ( Nordhaus, 2013 )
equations presented in Supplementary Information SI-7). Previous sta-
istical analyses with tests of over 60 technologies demonstrate Wright’s
nd Moore’s laws outperforming other approaches ( Nagy et al., 2013 );
he authors concluded that information technologies tend to follow the

right’s law whereas Moore’s law represents better the patterns of
ther technologies like fermentation although with slower improvement
rends. Wright’s law generalised as an experience curve ( Yeh and Rubin,
012 ) 𝑌 𝑡 = 𝑎 X 

𝑏 
𝑡 
represents the ‘learning-by-doing’ phenomenon observed

n the manufacturing industries and forecasts the unit costs 𝑌 𝑡 at a cumu-
ative production level 𝑋 𝑡 over time t. Parameters a and b denote the unit
ost of the first production unit and the rate of cost reduction, respec-
ively ( Arrow, 1962 ). Extending to a class of technologies, e.g. energy
ower plants, the independent variable 𝑋 𝑡 reflects all experience fac-
ors affecting the cost trajectory ( Rubin et al., 2015 ). It is the most often
dopted learning function in energy systems including bioenergy, bio-
uels ( van den Wall Bake et al., 2009 ; Chen et al., 2017 ; Nogueira et al.,
016 ). One factor experience curves were further expanded to multi-
actor models, component-based learning curves (see Supplementary
nformation SI-7) to account for other endogenous technology factors
learning-by-researching, knowledge shock etc.) and exogenous changes
 Yeh and Rubin, 2012 ; Rubin et al., 2007 ; McNerney et al., 2011 ; Ferioli
t al., 2009 ). In particular the component-based learning hypothesis has
een further expanded to model design complexity (interconnectivity
f sub-components) ( McNerney et al., 2011 ) and entire supply chains
ith decomposed technology learning ( Bergesen and Suh, 2016 ), where

our types of learning effects were differentiated i.e. endogenous labour-
ssociated learning, endogenous input learning, exogenous supply chain
earning (labour and input). Such expansion and decomposition enable
ystem optimisation models to capture the learning implications for eco-
omic and environmental objectives ( Bergesen and Suh, 2016 ; Gavankar
t al., 2015 ). 

Although the exogenous learning curve-derived parameters were in-
roduced in previous studies e.g. bottom-up model MARKAL and TIMES
The Integrated MARKAL–EFOM System) ( Zhang et al., 2016 ; Chen,
005 ), the deterministic optimisation approach is not capable of cap-
uring the uncertainty associated with technology evolution. Stochastic
nd dynamic programing are promising methods to incorporate tech-
ology learning curves into optimisation frameworks ( Chen et al., 2017 ;
hen and Fan, 2014 ; Wand and Leuthold, 2011 ; Cristóbal et al., 2013 ).

n both methods, two types of variables can be distinguished–decision
ariables controlled by decision-makers and state variables used to de-
cribe the mathematical state of a dynamic system at stage n, which
s indirectly determined by decision variables at the previous stage n-1
nd influence the decision variables at a later stage n + 1 ( Chen et al.,
017 ). Chen and Fan (2014) used exogenous approach (i.e. externally
etermined boundary conditions) and adopted stochastic optimisation
ith discrete scenarios to model the cost reduction in response to evolv-

ng biofuel technologies. An exogenous approach has been also applied
n the stochastic MILP study on carbon capture technologies where the
uture cost parameters were determined by Wright’s curve ( Cristóbal
t al., 2013 ). A similar method was used in renewable energy production
etwork design by Cong (2013) . Chen et al. (2017) later explored en-
ogenous methods applying multi-stage dynamic optimisation to build
43 
 learning-by-doing function in the model and investigate from a regula-
or perspective how the cumulative production interacts with the inter-
emporal strategic planning. They set the cumulative production of 2 G
iofuel at each stage n as a state variable, which determines the unit
ost of the given biofuel following Wright’s law, and defined the produc-
ion of other competing fuels as decision variables; the model was lower
ounded by the total fuel demands. Stochastic and dynamic program-
ing can be further expanded to (1) incorporate the multi-factor envi-

onmental learning curves e.g. carbon intensity abatement and derive
he trade-off solutions between conflicting objectives; or (2) formulate
he value chain learning in the time-dependent system design from both
entralised and distributed perspectives (e.g. equilibrium system with
ompeting nodes). The accuracy and representativeness of the learning
oefficients underlying the optimisation model is the key for obtaining
obust decision-making support, which could be estimated using various
ethods e.g. PSO algorithm ( Yu et al., 2015 ); thus how to integrate the

earning curve simulation of biorenewable technologies with multi-scale
ecision-making within an dynamic optimisation framework worth re-
earch efforts. However, this highly dynamic topic remains unexplored.

.10. Modelling research frontier beyond state-of-the-art 

Overall, terrestrial, aquatic biomass and waste resources can be con-
erted into value-added biorenewables, which are regarded as highly
omplex systems of flows that are subject to nonlinearity, sensitivity
nd uncertainty. Take terrestrial C3/C4 higher plant species as an ex-
mple. Their carbon sequestration and composition are regulated by
hysiological traits, photosynthesis pathways and environmental vari-
bles. Thus the resulting chemical compositions vary with species and
how spatial-temporal variation, which further affect downstream biore-
ewable manufacturing. Decoupled modelling approaches (e.g. first-
rinciples modelling, empirical modelling) have been developed to ad-
ance fundamental understanding and design new solutions to biore-
ewable subsystems. However, this increases computational complex-
ty and brings challenges to model the whole biorenewable system in a
nifying framework. 

State-of-the-art computational methods have been reviewed in this
tudy. Coupling these modelling methods leads to a multi-scale mod-
lling framework ( Fig. 14 ), which offers a potential approach to tackle
he biorenewable system complexity. Such multi-scale modelling frame-
ork represents a highly cross-disciplinary approach, which can link in-
erently the biorenewable subsystems (natural capital resources, agro-
cosystems, refinery manufacturing, waste and pollutant fate and treat-
ent, transport and network). Specifically, metabolic modelling can ad-

ance the understanding of the phototrophic microbial cluster in biolog-
cal carbon sequestration and cycling and catalyse aspiration towards
hotosynthetic microbial refineries. Biogeochemical models combined
ith process simulation enable to simulate agro-ecosystem complexity

e.g. biogeochemical cycles and environmental interaction with higher
lant species) and biorefinery processes and compute resource flows and
arbon and nitrogen transport and transformation across biorenewable
hole systems. Coupling LCSA, ecosystem services and PB framework
ot only provides quantitative approaches to evaluate the holistic sus-
ainability of biorenewables, but also offers a systematic tool to investi-
ate the implications of biorenewable on wider ecosystems and plane-
ary boundaries. Further, the GIS-aided model integration brings multi-
patial scales into the framework and links spatially-explicit ecosystems
ith biorenewable manufacturing; whereas the advanced mathemati-

al optimisation research offers a way to design complex biorenewable
ystems with conflicting decision criteria. Overall, our literature review
uggested a range of emerging modelling gaps in multi-scale biorenew-
ble systems modelling, which represent frontier research directions be-
ond the state-of-the-art and can be summarised as follows–

• Coupling data advances (remote sensing) and modelling (e.g. ma-
chine learning, GIS-aided tools and biogeochemical simulation) to
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A  
understand availability of terrestrial, aquatic biomass and waste re-
sources and project their chemical composition in response to envi-
ronmental variables, socio-economic and demographical changes. 

• Simulation and design of integrative CO 2 biorefinery based on em-
pirical research advances on designed versatile microbial consor-
tia and technologies to convert higher plant species to value-added
biorenewables. 

• Methods to optimise biorenewable recovery from waste resources
to transform CO 2 from a pollutant to a resource and converge
zero-carbon technologies and resource-circular biorefining towards
a zero-waste, zero-pollution biorenewable system. 

• Approaches to tackle the varied non-linearity and sensitivities of nu-
merical models and combine different computational methods and
models into an integrative framework. 

• Mathematical modelling approaches to bridge ecosystem and biore-
newable manufacturing design spaces and capture dynamic feed-
backs and interdependencies (e.g. interdependence of biorenewable
and natural capital) to enable computationally trackable optimisa-
tion from whole systems perspective. 

• Mathematical optimisation development to optimise flows and deci-
sion spaces across spatial and temporal scales e.g. bridge agricultural
operation scheduling and value chain planning. 

• Optimisation framework development to design biorenewable flows
and interaction with natural capital and built capital assets to
achieve ecosystem services trade-offs. 

• User-interactive optimisation model with module-oriented architec-
tures and preference-learning interface to enable decision-makers to
articulate the preferences of multiple decision criteria, define the
feasible spaces and feedback objectives and decision spaces. 

• Mathematical theories and techniques for improving the model per-
formances (e.g. precision and responsive decision) in response to big
data advances e.g. trade-offs between solution quality and model
complexity reduction. 

• Advanced cross-platform life cycle optimisation software under-
pinned by collaborative data value chains and server platform to
support real-time database update and responsive decision-making. 

• Stochastic optimisation with risk mitigation and resilience-building
measures to optimise multi-scale, multi-echelon biorenewable sup-
ply chain under uncertainty. 

. Final remark 

Increasing environmental stress coupled with expanding population
ring challenges to sustainable development of ecosystems and well-
eing. The transformation to a resource-circular bio-economy offers a
echanism to tackle environmental changes and degradation. As ad-

anced bioeconomy components, biorenewables are expected to play
ignificant roles over the next decades. This comprehensive review re-
ects the empirical advances in upstream and downstream processes
nd highlights the system perspectives of biorenewable, which are sub-
ect to nonlinearity, complexity and variability. From a whole systems
erspective, biorenewables feature biogenic carbon flows and resource
ircularity. Upstream phototrophs and the related terrestrial and aquatic
cosystems represent carbon sinks for atmospheric CO 2 capture and fix-
tion; whereas at downstream stages, emerging technologies to enable
arbon utilisation and waste-sourced biorenewables have potentials to
atalyse a low-carbon and resource circular bioeconomy. The biorenew-
ble system complexity spans from resource-environment interaction
nderpinned by photosynthesis and biogeochemical cycles to the inter-
inked subsystems across upstream ecosystems and downstream manu-
acturing. Upstream resources e.g. terrestrial and aquatic plant species
re regulated by environmental drivers whereas their availabilities are
onstrained by capacities and boundaries of natural and built capital
ssets; thereby, the downstream technology solutions may vary at dif-
erent spatial and temporal scales due to the variability in resource qual-
ty and quantity. Unlocking complex resource-biorenewable-waste sys-
44 
ems is mandatory to catalyse a sustainable circular bio-economy tran-
ition. By reviewing the state-of-the-art computational methods, this
tudy presents a whole systems approach where spatial data analy-
es, advanced statistical methods, first principle models, quantitative
valuation of sustainability and mathematical optimisation are coupled
nd integrated into a multi-scale modelling framework. This frame-
ork inherently links the processes and subsystems across ecosystems
nd biorenewable manufacturing. Reflecting the fundamental compu-
ational methods and modelling advances, our study provides insights
nto the emerging opportunities and highlights the identified frontier
esearch directions to unlock the complexity of biorenewable systems. 
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