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ABSTRACT

STUDY QUESTION: Can two prediction models developed using data from 1999 to 2009 accurately predict the cumulative probability
of live birth per woman over multiple complete cycles of IVF in an updated UK cohort?

SUMMARY ANSWER: After being updated, the models were able to estimate individualized chances of cumulative live birth over
multiple complete cycles of IVF with greater accuracy.

WHAT IS KNOWN ALREADY: The McLernon models were the first to predict cumulative live birth over multiple complete cycles of
IVF. They were converted into an online calculator called OPIS (Outcome Prediction In Subfertility) which has 3000 users per month
on average. A previous study externally validated the McLernon models using a Dutch prospective cohort containing data from 2011
to 2014. With changes in IVF practice over time, it is important that the McLernon models are externally validated on a more recent
cohort of patients to ensure that predictions remain accurate.

STUDY DESIGN, SIZE, DURATION: A population-based cohort of 91 035 women undergoing IVF in the UK between January 2010 and
December 2016 was used for external validation. Data on frozen embryo transfers associated with these complete IVF cycles con-
ducted from 1 January 2017 to 31 December 2017 were also collected.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Data on IVF treatments were obtained from the Human Fertilisation and
Embryology Authority (HFEA). The predictive performances of the McLernon models were evaluated in terms of discrimination and
calibration. Discrimination was assessed using the c-statistic and calibration was assessed using calibration-in-the-large, calibration
slope, and calibration plots. Where any model demonstrated poor calibration in the validation cohort, the models were updated us-
ing intercept recalibration, logistic recalibration, or model revision to improve model performance.

MAIN RESULTS AND THE ROLE OF CHANCE: Following exclusions, 91 035 women who underwent 144 734 complete cycles were in-
cluded. The validation cohort had a similar distribution age profile to women in the development cohort. Live birth rates over all
complete cycles of IVF per woman were higher in the validation cohort. After calibration assessment, both models required updating.
The coefficients of the pre-treatment model were revised, and the updated model showed reasonable discrimination (c-statistic:
0.67, 95% CI: 0.66 to 0.68). After logistic recalibration, the post-treatment model showed good discrimination (c-statistic: 0.75, 95% CI:
0.74 to 0.76). As an example, in the updated pre-treatment model, a 32-year-old woman with 2 years of primary infertility has a 42%
chance of having a live birth in the first complete ICSI cycle and a 77% chance over three complete cycles. In a couple with 2 years of
primary male factor infertility where a 30-year-old woman has 15 oocytes collected in the first cycle, a single fresh blastocyst embryo
transferred in the first cycle and spare embryos cryopreserved, the estimated chance of live birth provided by the post-treatment
model is 46% in the first complete ICSI cycle and 81% over three complete cycles.

LIMITATIONS, REASONS FOR CAUTION: Two predictors from the original models, duration of infertility and previous pregnancy,
which were not available in the recent HFEA dataset, were imputed using data from the older cohort used to develop the models. The
HFEA dataset does not contain some other potentially important predictors, e.g. BMI, ethnicity, race, smoking and alcohol intake in
women, as well as measures of ovarian reserve such as antral follicle count.

WIDER IMPLICATIONS OF THE FINDINGS: Both updated models show improved predictive ability and provide estimates which are
more reflective of current practice and patient case mix. The updated OPIS tool can be used by clinicians to help shape couples’
expectations by informing them of their individualized chances of live birth over a sequence of multiple complete cycles of IVF.
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Introduction
A recent systematic review identified over 30 clinical prediction
models which estimate individualized chances of pregnancy out-
comes following IVF treatment (Ratna et al., 2020). These models
can help clinicians communicate chances of treatment success
to couples undergoing IVF, but their use in clinical practice has
been limited. The quality of these models is impacted by issues
such as small sample sizes, lack of external validation and failure
to demonstrate clinical impact (Leushuis et al., 2009; Van
Loendersloot et al., 2014; Ratna et al., 2020).

Five IVF prediction model studies have been conducted using
large national databases (Templeton et al., 1996; Nelson and
Lawlor, 2011; Luke et al., 2014; McLernon et al., 2016; McLernon
et al., 2021). Of these, three utilized data from the Human
Fertilisation and Embryology Authority (HFEA) registry in the UK
to estimate the chances of a live birth after IVF (Templeton et al.,
1996; Nelson and Lawlor, 2011; McLernon et al., 2016). Two of
these articles published models that predict cumulative live birth
over complete cycles of IVF, where a complete cycle is defined as
all fresh and frozen-thawed embryo transfers associated with
one episode of ovarian stimulation (McLernon et al., 2016;
McLernon et al., 2021). With the increasing use of frozen-thawed
embryos in IVF (Wong et al., 2014), cumulative live birth rate
(LBR) over multiple complete cycles is a more clinically relevant
outcome than the chance of live birth following a single embryo
transfer (Maheshwari et al., 2015) and clinical prediction models
need to make sure that they address this need (McLernon and
Bhattacharya, 2023).

Two UK models by McLernon et al. were developed to predict
the chances of cumulative live birth over multiple complete
cycles of IVF: a pre-treatment model which predicts cumulative
live birth in women before the first complete cycle commences;
and a post-treatment model which updates predictions of cumu-
lative live birth after the first fresh embryo transfer episode
(McLernon et al., 2016). The models were converted into an online
prediction tool called OPIS (Outcome Prediction In Subfertility)
(https://w3.abdn.ac.uk/clsm/opis/) and used by 3000 patients and
clinicians on average each month. The models which were devel-
oped using data from IVF treatments conducted from 1999 to
2008 showed good predictive performance in the development
dataset but have not been validated in the UK since. External val-
idation in an independent cohort is essential as it supports the
generalizability of the model (Harrell et al., 1996; Steyerberg,
2019). Using prospectively collected Dutch data between 2011
and 2014, a study externally validated the performance of the
McLernon et al. up to three complete cycles (Leijdekkers et al.,
2018). The findings revealed that the pre-treatment model sys-
tematically overestimated the probability of cumulative live birth
in the external cohort but provided more accurate predictions af-
ter recalibration, whilst the post-treatment model calibrated well
in the external cohort.

IVF practice in the UK has since undergone major changes,
with greater emphasis on elective single embryo transfer and

increasing use of frozen-thawed embryo transfers (Human
Fertilisation and Embryology Authority, 2018; Ishihara et al.,
2014). Therefore, it is important that the McLernon models are
externally validated on a more up-to-date cohort of patients to
ensure that the predictions are still accurate. Therefore, the aim
of the study is to conduct a temporal external validation of the
McLernon models in order to demonstrate the continued general-
izability of these models to the current UK IVF population.

Materials and methods
Data sources
To perform external validation of the McLernon models, this
study used the HFEA database which links all fresh and frozen
IVF treatment cycles to individual women. Database access was
granted following approval by the North of Scotland Research
Ethics Committee, the Confidentiality Advisory Group, and the
HFEA register research panel. The data were anonymized and
transferred to the University of Aberdeen where they were stored
on the Data Safe Haven (DaSH) server for analysis.

Study population
Information was collected from 91 035 women who started their
first ovarian stimulation in the UK between January 2010 and
December 2016. The records of all complete IVF cycles which be-
gan during this period were extracted. Data on frozen embryo
transfers associated with these between 1 January 2017 and 31
December 2017 were also collected. No data recorded after the 31
December 2017 were extracted. This data selection method en-
sured a minimum of 1-year exposure to all embryo transfer
attempts within a complete cycle. Women whose treatment in-
volved donor insemination, egg donation and/or surrogacy were
excluded.

Baseline characteristics
For this validation study, the same baseline characteristics that
were used in the original McLernon pre- and post-treatment
models were selected from the new dataset (with the exception
of duration of infertility and pregnancy history which are dis-
cussed in the missing data section). The McLernon pre-treatment
model predicts the probability of a live birth over six complete
cycles at the start of a first complete cycle. Predictions are based
on couple characteristics and the type of treatment (IVF or ICSI)
to be used. The included predictors are female age (years), dura-
tion of infertility (years), causes of infertility (tubal, male factor,
anovulation, or unexplained), pregnancy history (yes or no), type
of treatment (IVF or ICSI), and treatment year.

After the first fresh embryo transfer, the McLernon post-
treatment model revises the predictions using additional
treatment-specific data from this cycle. The added predictors are
number of eggs collected, availability of cryopreserved embryos,
number of embryos transferred (one, two, or three), and stage of
transferred embryos, i.e. blastocyst (Day 5 or 6) or cleavage stage
(Day 2 or 3). For the validation of the post-treatment model,
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women who had no eggs collected were excluded as it is impossi-
ble for them to achieve a live birth in the first complete cycle.

The number of complete cycles was included in both models
as a discrete time variable to predict the probability of a live birth
in the ith cycle, assuming no live birth occurred in the previous
cycle(s). The formulae for calculating the cumulative predicted
probability of a live birth over six complete cycles can be seen in
Supplementary data files S1 and S2 (McLernon et al., 2016).

Statistical analysis
Missing data: multiple imputation
Data on the duration of infertility were missing for 97% of
women, and pregnancy history was entirely missing. This is be-
cause the HFEA stopped collecting this information since 2008
(HFEA communication) (Supplementary data file S3). Since these
variables were fully recorded from 1999 to 2007, data from this
period were used to impute the missing values of these variables
in the validation dataset (2010 to 2016).

In the study, three predictor variables had missing values: du-
ration of infertility, pregnancy history, and stage and number of
embryos transferred. Multiple imputation of these predictors was
performed to increase the statistical power of the model and to
adjust for any biases caused by excluding women with missing
information (Greenland and Finkle, 1995). Ten imputed datasets
were created using the chained equation (MICE) method (to at-
tain a monotone missing data pattern) (Sterne et al., 2009). Then
each missing variable was considered as a dependent variable in
its own imputation model where it was regressed onto all the
other variables. The following variables were included to inform
the imputation process: female age, year of treatment, cause of
infertility, IVF versus ICSI, and whether embryos were cryopre-
served. For the continuous variable ‘duration of infertility’, a pre-
dicted mean matching regression model was used; to impute the
binary variable ‘pregnancy history’, a logistic regression model
was used; and to impute the nominal categorical variable ‘stage
and number of embryos transferred’, a discriminant function
method was used. This imputation was performed under the as-
sumption that the data were missing at random (MAR) which
means that the missing data depend on the values of the ob-
served variables and treatment outcome.

Model implementation
The predictor values for women in the validation cohort were
multiplied by the corresponding parameter estimates of the pre-
dictors from the original pre-treatment model and then added to-
gether. The same was done for the post-treatment model
(McLernon et al., 2016). The predicted probabilities were calcu-
lated using the formulas in Supplementary data files S1 and S2.

Predictive performance
The predictive performance of the McLernon models was evalu-
ated in terms of discrimination and calibration. Discrimination
refers to the ability of the models to distinguish between women
who will achieve a live birth and those who will not (Moons et al.,
2012) and was assessed using the c-statistic.

Calibration refers to the degree of agreement between the ob-
served live birth in the external cohort and predicted live birth
(Moons et al., 2012). This was formally assessed using calibration-
in-the-large (CIL) and the calibration slope, and graphically
assessed using a calibration plot (Cox, 1958; Miller et al., 1993).
For perfect calibration, the calibration slope and calibration inter-
cept should be 1 and 0 respectively. We calculated c-statistics,
CIL, and calibration slope on each imputed dataset and separate

results were pooled using the metamisc package in R version

4.1.1 (Debray et al., 2017). Calibration plots and predicted curves

for hypothetical couples were generated using the first imputed

dataset. Supplementary data file S4 gives a detailed description

of all calibration techniques used in the study.

Updating the model
Where any model demonstrated poor calibration in the valida-

tion cohort, the models were updated using the following three

methods to try to improve performance (Steyerberg et al., 2004;

Janssen et al., 2008; Moons et al., 2012):

• Update intercept (Method 1): adjustment of the intercept us-

ing the calibration intercept;
• Logistic recalibration (Method 2): adjustment of the intercept

and the regression coefficients using the calibration intercept

and calibration slope; and
• Model revision (Method 3): further model adjustment for indi-

vidual predictors which had a different effect in the validation

cohort compared to the development cohort.

The method which demonstrated the best agreement between

the predictions and observed outcomes was used to update each

model.
Supplementary data file S5 includes a detailed description of

these methods.
All statistical analyses were conducted using STATA version

16 (StataCorp, 2019) and R version 4.1.1 (R Core Team, 2021; Posit

team, 2023).

Patient involvement
No patients were involved in framing the research question,

choosing the outcome measures, or developing plans for the de-

sign or implementation of the study. Patient input was not

sought on interpreting or writing up the results of the study. We

have plans to disseminate the results of this research study to

patients via national fertility charities and the HFEA.

Results
Following exclusions, the dataset included 91 035 women who

underwent 144 734 complete cycles of IVF/ICSI between January

2010 and December 2016 (Supplementary Fig. S1). The baseline

characteristics of couples and the treatments they underwent be-

fore initiating IVF are presented in Table 1 for each cohort. The

development cohort comprised women who started IVF between

1999 and 2008, whereas the validation cohort consisted of women

who started IVF between 2010 and 2016. Women included in the

validation cohort had a similar distribution of age to the women

in the development cohort. There was also a similar distribution

in causes of infertility between the two cohorts.
A higher proportion of women underwent ICSI in the valida-

tion cohort compared to women in the development cohort (51%

versus 41%). After the first IVF/ICSI cycle, embryo cryopreserva-

tion was more frequently performed in women belonging to

the validation cohort compared to the development cohort (35%

versus 25%). Only 32% of women in the validation cohort had a

double cleavage embryo transfer compared to 66% in the devel-

opment cohort. About half of the women in the validation sample

had a single embryo transfer (17.8% had single cleavage-stage

transfer and 30.1% had a single blastocyst transfer), whereas

only 9% of women in the development dataset had a single em-

bryo transfer.
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The number of women in each cohort who started a treatment

cycle, had a live birth, or discontinued treatment without having
a live birth is presented in Fig. 1. The LBRs per woman were

higher in the validation cohort (HFEA 2010–2016) compared to

the development cohort (HFEA 1999–2008) for all complete cycles
of IVF. Over six complete cycles of IVF/ICSI, the overall LBR of

both recent and old HFEA cohorts was 45% and 43%, respectively.

Predictive performance of the original models
In the validation cohort, the pooled c-statistic for the pre-treatment
model was 0.68 (95% CI: 0.68 to 0.68) and for the post-treatment

model 0.75 (95% CI: 0.75 to 0.75). Figure 2a shows the calibration plot
for the first imputed dataset (representative of all 10 imputations)

depicting the observed cumulative LBR in the validation cohort ver-

sus the predicted probability of cumulative live birth from the pre-
treatment model (Fig. 3a shows the post-treatment model calibra-

tion plot) (McLernon et al., 2016). The pre-treatment calibration plot

had a calibration slope of 0.74 (95% CI: 0.72 to 0.76), and the post-
treatment calibration plot had a calibration slope of 0.68 (95% CI:
0.67 to 0.70) (Supplementary Tables S1 and S2). The CIL analyses
showed little systematic underestimation for the pre-treatment
model (CIL¼ 0.01 or O/E¼ 1.01). Systematic overestimation was evi-
denced for the post-treatment model (CIL ¼ �0.12 or O/E¼ 0.94) (see
the Supplementary Tables S1 and S2). Both the calibration slopes
indicated that the original regression coefficient estimates were too
large, resulting in extreme predictions in new patients. For example,
the calibration slope of 0.74 of the pre-treatment model indicates
that the original regression coefficient estimates of the model are
over-optimistic by around 26% in new patients, i.e. low chances of
live birth calculated by the model are too low and high probabilities
are too high compared with the observed LBRs.

Given the poor calibration, both the pre- and post-treatment
models were updated in an effort to improve performance in the
validation cohort.

Table 1. Baseline characteristics of couples and their treatment before undergoing the first complete cycle of IVF in the cohorts used for
model development and validation.

*Characteristics HFEA 1999–2008 Development cohort HFEA 2010–2016 Validation cohort

Number of patients 113 873 91 035
Number of complete cycles 184 269 137 879
Patient characteristics
Woman’s age (years), Mean (SD) 34.1 (5) 35 (4)
Duration of infertility (year), Median (IQR)
Complete cases 4 (3–6) 9 (7–12)
Missing, % 18 225 (16) 88 753 (97)a

After imputation in validation cohort – 4 (2–6)
Pregnancy history
No 75 541 (66) 0 (0)
Yes 28 070 (25) 0 (0)
Missing, % 10 262 (9) 91035 (100)
After imputation in validation cohort
No 57 039 (63)
Yes – 33 996 (37)b

Causes of infertility
Tubal 26 545 (23) 13 493 (15)
Anovulatory 15 942 (14) 11 474 (13)
Male factor 49 753 (44) 35 275 (39)
Unexplained 32 693 (29) 28 433 (31)
Endometriosis 7590 (7) 6709 (7)
More than one 13 414 (12) 10 882 (12)
Treatment characteristics at completed cycle 1
Type of treatment
IVF 67 511 (59) 44 252 (49)
ICSI 46 362 (41) 46 782 (51)
No of oocytes collected,
Median (IQR) 8 (5–13) 9 (6–13)
No of embryos created,
Median (IQR) 5 (2–8) 5 (3–8)
No of embryos frozen,
Median (IQR) 0 (0–1) 0 (0–1)
Cryopreservation of embryos 28 950 (25) 31 874 (35)
Stage and number of embryos transferred
Single cleavage 9248 (8) 16 180 (18)
Single blastocyst 662 (1) 27 364 (30)
Double cleavage 75 701 (66) 29 021 (32)
Double Blastocyst 2960 (3) 10 659 (12)
Triple cleavage 8649 (8) 1144 (1)
Triple blastocyst 130 (0.1) 241 (0.3)
No transfer 15 501 (14) 5407 (6)
Missing 1022 (1) 1019 (1)

* The variables listed were included as predictors in the development sample (HFEA 1999–2008 cohort) and the validation sample (HFEA 2010–2017 cohort).
a 93% of women had missing data on duration of infertility in 2010 which increased to almost 100% in 2017.
a,b From 2008, the Human Fertilisation and Embryology Authority (HFEA) changed the layout of their forms for recording data and removed questions regarding

pregnancy history and duration of infertility (HFEA communication). Therefore, since these variables were fully recorded from 1998 to 2007, previous pregnancy
status (which was 100% missing) and duration of infertility (97% missing) were imputed in the validation dataset using this data to inform the imputation process.
IQR: interquartile range.
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Updating the models
The updated pre-treatment model
The estimated parameters of the original pre-treatment model
and the three different updated versions of the pre-treatment
model (i.e. updated intercept (Method 1), logistic recalibration
(Method 2), and model revision (Method 3)) are summarized in
Table 2.

The estimates of the main parameters of the pre-treatment
model using the different updating methods and the details of es-
timating these parameters are presented in Supplementary Table
S3 and Supplementary data file S6, respectively.

The Method 1 updating approach did not lead to any improve-
ment in calibration for the pre-treatment model when reapplied
to the validation cohort. However, Methods 2 and 3 did result in
improved calibration (Fig. 2b–d). We compared these approaches
using Fig. 2 in order to identify the one which had the most bene-
ficial impact on calibration. After recalibrating the original model
by adjusting the intercept and slope (Method 2), calibration was
good for all tenths except the seventh tenth (as 95% CI of the sev-
enth decile does not overlap with the diagonal reference line)

(Fig. 2c). Figure 2d shows a better update of the model (as 95% CIs

of all deciles overlap the diagonal reference line) after model

revision (Method 3) in the validation cohort and therefore was

chosen as the best method to update the pre-treatment model

(Supplementary data file S6).
The c-statistic of the model updated by the model revision

(Method 3) method decreased very slightly to 0.67 (95% CI: 0.66 to

0.68) (using imputed dataset 1).

The updated post-treatment model
The estimated parameters of the original post-treatment model

and the three versions of the updated post-treatment model (i.e.

updated intercept (Method 1), logistic recalibration (Method 2),

and model revision (Method 3)) are summarized in Table 3.
Supplementary Table S4 and Supplementary data file S7 pre-

sent the different updated estimates of the main post-treatment

model parameters and the details of estimating these parameters

respectively.
All three updating approaches can be compared to the original

model in Fig. 3. In Fig. 3b, some deciles were still outside the

IVF discontinued                
(HFEA 1999-2008: 35335(31.0) 
HFEA 2010-2016: 29955(32.9)) 

Cycle 2                        
(HFEA 1999-2008: 45384(39.9) 
HFEA 2010-2016: 32774(36.0)) 

Live birth                      
(HFEA 1999-2008: 33154(29.1)  
HFEA 2010-2016: 28306(31.1)) 

IVF discontinued                
(HFEA 1999-2008: 18026(39.7) 
HFEA 2010-2016: 13378(40.8)) 

Cycle 3                        
(HFEA 1999-2008: 16473(36.3) 
HFEA 2010-2016: 10341(31.6)) 

Live birth                      
(HFEA 1999-2008: 10885(24.0)  
HFEA 2010-2016: 9055(27.6)) 

IVF discontinued                
(HFEA 1999-2008: 7481(45.4) 
HFEA 2010-2016: 5119(49.5)) 

Cycle 4                        
(HFEA 1999-2008: 5551(33.7) 
HFEA 2010-2016: 2682(25.9)) 

Live birth                      
(HFEA 1999-2008: 3441(20.9)  
HFEA 2010-2016: 2540(24.6)) 

IVF discontinued                
(HFEA 1999-2008: 2625(47.3) 
HFEA 2010-2016: 1323(49.3)) 

Cycle 5                        
(HFEA 1999-2008: 1891(34.1) 
HFEA 2010-2016: 798(29.8)) 

Live birth                      
(HFEA 1999-2008: 1035(18.6)  
HFEA 2010-2016: 561(20.9)) 

IVF discontinued                
(HFEA 1999-2008: 898(47.5) 
HFEA 2010-2016: 398(49.9)) 

Cycle 6                        
(HFEA 1999-2008: 684(36.2) 
HFEA 2010-2016: 249(31.2)) 

Live birth                      
(HFEA 1999-2008: 309(16.3)  
HFEA 2010-2016: 151(18.9)) 

IVF discontinued                
(HFEA 1999-2008: 325(47.5) 
HFEA 2010-2016: 122(49.0)) 

Cycle 7                        
(HFEA 1999-2008: 258(37.7) 
HFEA 2010-2016: 88(35.3)) 

Live birth                      
(HFEA 1999-2008: 101(14.8)  
HFEA 2010-2016: 39(15.7)) 

Cycle 1                        
(HFEA 1999-2008: 113873 
HFEA 2010-2016: 91035) 

Figure 1. Flowchart of number of treatments and live birth outcomes over six complete cycles. Frequency and percentage of women having a live
birth, continuing treatment without having a live birth, and discontinuing treatment without having a live birth over six complete cycles of IVF/ICSI in
the HFEA 1999–2008 development cohort and 2010–2016 validation cohort. Percentages are in parentheses. HFEA: Human Fertilisation and Embryology
Authority.
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diagonal line, indicating that the model updated with Method 1

still needs further improvement. Method 2 (Fig. 3c) showed the

best improvement in calibration and was chosen as the best

method to update the post-treatment model.
The c-statistic of the model updated by the logistic recalibra-

tion (Method 2) method was 0.75 (95% CI: 0.74 to 0.76) (using im-

puted dataset 1) (Supplementary data file S7).

Examples of model predictions
Figure 4 shows examples of both the pre- and post-treatment

model predictions in different case scenarios using the final

updated models.
Figure 4a shows the cumulative predictions of live birth from

the updated pre-treatment model over three complete ICSI

cycles. These are presented for women aged 30 and 40 years with

either a 2- or 5-year duration of male factor infertility. As shown

in the figure, younger women have a much higher chance of

success. A 30-year-old woman with 2 years of infertility has a

42% predicted chance of having a live birth in the first complete

ICSI cycle. This increases to 77% over three complete cycles. For a

40-year-old woman with 2 years of primary infertility, these prob-

abilities are 20% and 45% for one complete cycle and three com-

plete cycles, respectively. In contrast, for a similar woman with

5 years of infertility the probabilities are 19% and 43% for one

complete cycle and three complete cycles, respectively.

Figure 4b presents the predictions from the updated post-

treatment model. The predicted probability of a live birth was

updated for a couple with the following characteristics: 30-year-

old woman, 2 years of male factor primary infertility, 15 oocytes

collected at the start of the first cycle, embryos cryopreserved af-

ter fertilization, and a single fresh blastocyst embryo transferred

in the first cycle. The predicted probability of live birth after the

first complete ICSI cycle is 46%. Cumulatively, this increases to

81% over three complete cycles. A woman who is 40 years old,

has five oocytes collected, no embryos cryopreserved, and has a

single cleavage stage embryo transferred has a 11% chance of a

live birth after the first complete cycle. Cumulatively, this rises to

27% over three complete cycles.

Discussion
Main findings
The results of this study show that the pre- and post-treatment

models discriminate reasonably well between couples with and

without live birth when applied to a more recent cohort of IVF

patients. However, both models required updating owing to poor

calibration in the external dataset. The updated models should

provide more accurate predictions in future patients, and, like

the original models, will be incorporated within the OPIS online

calculator for regular clinical use.

Figure 2. Calibration plots for the pre-treatment model showing the association between the predicted and observed cumulative live birth rates over
six complete IVF/ICSI cycles in the validation dataset. (a) Calibration plot for the original McLernon pre-treatment model as explained by McLernon
et al. (2016) applied to the validation dataset; (b) calibration plot for the recalibrated pre-treatment model following adjustment of the intercept in the
validation dataset (update intercept method); (c) calibration plot for the recalibrated model following adjustment of both the intercept and slope in the
validation dataset (logistic recalibration method 2); and (d) calibration plot for the revised model after updating some coefficients using the validation
dataset (model revision method).

Validating IVF models predicting cumulative live birth | 2003

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/article/38/10/1998/7251526 by U
niversity of Aberdeen user on 16 O

ctober 2023

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dead165#supplementary-data


Strengths and limitations
For external validation, this study selected the McLernon models
which were developed using appropriate methodology, showed
good predictive performance ability at both internal and external
validation, and scored better on the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) checklist than other IVF prediction models
(Collins et al., 2015; Ratna et al., 2020).

In the study, calibration was assessed with multiple methods
including CIL, logistic calibration, and by visualizing the agree-
ment between the predicted and observed LBRs (Bouwmeester
et al., 2012). To improve predictions, the study updated the pre-
treatment model using a more extensive model revision method,
while the post-treatment model was updated through the sim-
pler approach of recalibration. The recalibration methods (inter-
cept updating and logistic recalibration) are simple and stable
because of the low number of parameters estimated. However,
the model revision method is expected to lead to a lower bias in
the updated model since more parameters are estimated
(Steyerberg et al., 2004).

This study has some limitations. First, the external validation
exercise involved a dataset with a very high proportion of missing
values for duration of infertility (97%) and no data on previous
pregnancy. Therefore, both predictors had to be imputed in our
analysis. These variables were assumed to be MAR as the

missingness is assumed to be conditional on observed variables
and treatment outcome. Since these variables were consistently
recorded between 1998 and 2007, the patient data from that time
period were used to inform the imputation. Multiple, rather than
single, imputation was performed as a large amount of missing
data may lead to an underestimation of the uncertainty associated
with the imputed values (Steyerberg, 2019). Female age explained
most of the variation from all of the predictors included in the pre-
treatment model, and female age, number of eggs and cryopreser-
vation status explained most in the post-treatment model.
However, we cannot rule out the possibility that imputed values
for duration of infertility and previous pregnancy could have
accounted for some of the difference in model performance in the
external cohort compared to the development cohort.

The McLernon models estimate the individualized cumulative
chances of live birth under the optimistic assumption that cou-
ples who discontinue IVF treatment without a live birth have the
same chances of a live birth as couples who continue further
treatment cycles. This assumption may lead to an overestima-
tion of the predicted cumulative probability of live birth, as some
of the women who discontinue treatment will have stopped be-
cause of poor prognosis (Olivius et al., 2004; Brandes et al., 2009)
meaning they will have an almost zero chance of conceiving.

The original models were not able to account for other poten-
tial predictors, such as BMI, ovarian reserve tests and ethnicity,

Figure 3. Calibration plots for the post-treatment model showing the association between the predicted and observed cumulative live birth rates
over six complete IVF/ICSI cycles in the validation dataset. (a) Calibration plot for the original McLernon post-treatment model as explained by
McLernon et al. (2016) applied to the validation dataset; (b) calibration plot for the recalibrated post-treatment model following adjustment of the
intercept in the validation dataset (update intercept method); (c) the recalibrated model following adjustment of both the intercept and slope in the
validation dataset (logistic recalibration method); and (d) calibration plot for the revised model after updating some coefficients using the validation
dataset (model revision method).
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because they were absent in the HFEA database. We emphasize
that the models can only be used in heterosexual couples using
their own eggs and sperm and not undergoing preimplantation
genetic testing. It should also be noted that the predictions from
our models will represent an average prediction over all clinics
within the UK. Clinic identifiers are not accessible from the HFEA
and so it was not possible to adjust at the individual clinic level.

In October 2009, the HFEA changed their consent policy so
that patients had to opt-in for their IVF data to be used for re-
search purposes. Our validation study used data from 2010 and
so only would have included couples who opted in. We do not ex-
pect there to be a difference in characteristics and outcome be-
tween those who opt-in and those who opt-out, but it is difficult
to know for sure without access to the data of those who opted
out.

We were able to reassess calibration and discrimination after
updating both models. This would be considered a type of inter-
nal validation as it involves assessing the performance of the
updated models in the dataset used to update them. Ideally, we
would like to be able to validate the updated models using a data-
set from a separate population or to conduct a further temporal
validation on a more up to date version of the HFEA dataset. The
latter would be preferable from a practical perspective, as the
models were developed for, and validated on, UK national data
and are intended for use by UK couples. We aim to continue vali-
dating the models periodically in the future using UK data to en-
sure that they remain fit for purpose (Van Calster et al., 2023).

Interpretation of the findings
Our results show that when applied to more recently treated
patients, our models underpredicted outcomes in women with
low observed LBRs and slightly overpredicted in women with high
observed LBRs. Therefore, it was very important to update these
models to reflect current practice and to provide more accurate
predictions for patients and clinicians. After updating, the

models showed improved agreement between live birth predic-
tions and observed LBRs, as expected. As such, they can be con-
sidered suitable for clinical use and can be used to inform future
couples of their likely chances of treatment success (Arvis et al.,
2012; Zarinara et al., 2016). When updating the McLernon models
for the later time period, the differences in the relative weights of
the variables was probably a result of a combination of differen-
ces in IVF protocols, improved IVF success rates, and differences
in case mix between the two cohorts (McLernon et al., 2016;
Leijdekkers et al., 2018). The proportion of women having embryo
cryopreservation, single embryo transfer, and blastocyst transfer
were higher in the validation cohort than the development co-
hort. This is a result of the increased use of single embryo trans-
fer following the introduction of the UK ‘one-at-a-time’ policy in
2007. It also reflects the increased use of embryo cryopreserva-
tion owing to improvements in embryo freezing techniques
(Human Fertilisation and Embryology Authority, 2018; Ishihara
et al., 2014). These changes in practice and techniques may have
resulted in a degree of calibration drift which could explain the
different performances of the McLernon models in the validation
cohort (Jenkins et al., 2018). Even our updated models will have
suffered some calibration drift since the end of our study period
in 2016. Since then, the national LBR per embryo transferred has
only increased by 1%, from 22% to 23% in 2018, which suggests
that not much changed in the following 2 years (Human
Fertilisation and Embryology Authority, 2018, 2020). The HFEA
has yet to publish data on UK LBRs for 2019–2022 so it is difficult
to estimate how much calibration drift has affected our updated
model.

Both live birth and treatment discontinuation rates in all com-
plete cycles of IVF were higher in the validation cohort than the
development cohort. Year of treatment was strongly positively
associated with live birth, reflecting improvements in ART over
time (McLernon et al., 2016). From October 2009, the HFEA patient
consent forms were changed so that patients had to explicitly

Table 2. Coefficients of the predictors from the original McLernon pre-treatment model and updated coefficients using three different
methods in the validation dataset.

Predictors Original model
Update intercept

(Method 1)
Logistic recalibration

(Method 2)
Model revision

(Method 3)

Intercept �0.995 �0.983 �1.193 �1.775
Complete cycle number
1 (reference) 0 0 0 0
2 �0.239 �0.239 �0.178 �0.226
3 �0.411 �0.411 �0.306 �0.388
4 �0.563 �0.563 �0.419 �0.531
5 �0.719 �0.719 �0.535 �0.679
6 �0.814 �0.814 �0.606 �0.768
Couple characteristics
Woman’s age
Age 0.028 0.028 0.021 0.025
Age1 �0.181 �0.181 �0.135 �0.222
Age2 0.455 0.455 0.339 0.732
Age3 �1.199 �1.199 �0.892 �1.804
Duration of infertility, (year) �0.029 �0.029 �0.022 �0.016
Type of treatment, ICSI versus IVF 0.216 0.216 0.161 �0.006
Pregnancy history, no versus yes �0.077 �0.077 �0.057 �0.143
Tubal infertility, yes versus no �0.096 �0.096 �0.071 �0.091
Male factor infertility, yes versus no �0.101 �0.101 �0.075 0.051
Anovulatory infertility, yes versus no 0.049 0.049 0.036 0.139
Unexplained infertility, yes versus no 0.060 0.060 0.045 0.057
Year of first oocyte collection
Year 0.033 0.033 0.025 �0.111
Year1 �0.037 �0.037 �0.028 0.255
Year2 0.217 0.217 0.161 �0.587
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agree that their data could be used for research purposes. This

change led to higher discontinuation rates owing to many women

opting not to disclose their treatment information. Therefore,

only couples who provided explicit consent for their information

to be used in research were included in this study. Data collected

in 2009 were also excluded from this study to ensure that the

dataset only encompassed the time period after which the new

forms were introduced across the whole of the UK.
Regarding discrimination, the updated pre-treatment model

had a slightly lower c-statistic (0.68, 95% CI: 0.67 to 0.69) in the

validation cohort than in the development cohort (0.69, 95% CI:

0.68 to 0.69) (McLernon et al., 2018). The recalibrated post-

treatment model had a good c-statistic of 0.75 (95% CI: 0.74 to

0.76) in the validation cohort which is slightly lower than the

c-statistic of 0.76 (95% CI: 0.75 to 0.77) in the development cohort

(McLernon et al., 2018). A previous validation study also reported

lower c-statistics of 0.62 (95% Cl: 0.59 to 0.64) and 0.71 (95% CI:

0.69 to 0.74) for the recalibrated pre-treatment McLernon model

and the calibrated post-treatment McLernon model, respectively

(Leijdekkers et al., 2018). These reductions in model discrimina-

tion ability are likely due to the differences in couple and treat-

ment characteristics and outcome prevalence between the two

cohorts (Moons et al., 2012).
Poor calibration was evidenced in the external validation for

McLernon models. Three increasingly complicated methods were

explored for updating the models (i.e. intercept updating, logistic

recalibration, and model revision). The method that led to the

most improvement (as evidenced by the calibration plot) was se-

lected to update the models (Janssen et al., 2008). Model updating

over time is expected given improvements in IVF practice and

technology, and changes in patient case mix.
Although our post-treatment model showed good discrimina-

tion after recalibration, the discriminatory ability of the

pre-treatment model remained reasonably low, as is the case for

almost all fertility-based prediction models (Leushuis et al., 2009).

The literature suggests that the low c-statistic reflects the

homogeneity of the study population e.g. infertile women of

reproductive age (Cook, 2008; Coppus et al., 2009). However, a low

c-statistic does not necessarily imply that such prediction models

have limited use in clinical practice. Couples with a fertility prob-

lem are more interested in knowing their chances of live birth

(calibration) rather than the ability of the model to discriminate

between couples who will have a live birth and couples who will

not. Therefore, assessment by calibration is more relevant.

Comparison with other studies
Two prediction models were developed using national US data

from the Society for Assisted Reproductive Technology (SART)

(McLernon et al., 2021). The first model is a pre-treatment model,

similar to that validated in our current study. The second model

is a post-treatment model but differs from the one validated here

because it predicts cumulative live birth chances in couples start-

ing a second complete cycle whose first complete cycle was un-

successful. The pre-treatment model was adjusted for BMI,

Table 3. Coefficients of the predictors from the original McLernon post-treatment model and updated coefficients using three different
methods in the validation dataset.

Predictors Original model
Update intercept

(Method 1)
Logistic recalibration

(Method 2)
Model revision

(Method 3)

Intercept �1.761 �1.882 �2.085 �2.272
Complete cycle number
1 (reference) 0 0 0 0
2 �0.193 �0.193 �0.132 �0.123
3 �0.354 �0.354 �0.242 �0.226
4 �0.512 �0.512 �0.351 �0.327
5 �0.679 �0.679 �0.465 �0.434
6 �0.767 �0.767 �0.525 �0.490
Couple characteristics
Woman’s age
Age 0.027 0.027 0.019 0.028
Age1 �0.156 �0.156 �0.107 �0.213
Age2 0.382 0.382 0.261 0.769
Age3 �1.019 �1.019 �0.697 �1.849
Duration of infertility, years �0.021 �0.021 �0.014 �0.004
Pregnancy history, no versus yes �0.050 �0.050 �0.035 �0.008
Tubal infertility, yes versus no �0.221 �0.221 �0.151 �0.141
Year of first oocyte collection
Year 0.002 0.002 0.001 0.022
Year1 0.062 0.062 0.042 �0.014
Treatment characteristics at complete cycle 1
Number of oocytes collected
Eggs 0.064 0.064 0.044 0.067
Eggs1 �0.050 �0.050 �0.034 �0.061
Cryopreservation of embryos, yes vs no 0.650 0.650 0.445 0.517
Stage and number of embryos transferred
Double cleavage stage 0 0 0 0
No embryos transferred �1.083 �1.083 �0.742 �1.218
Single cleavage stage �0.566 �0.566 �0.388 �0.404
Single blastocyst stage 0.069 0.069 0.048 0.223
Double Blastocyst stage 0.582 0.582 0.040 0.439
Triple cleavage stage 0.022 0.022 0.015 0.238
Triple blastocyst stage 0.456 0.456 0.312 0.573
Type of treatment, ICSI versus IVF �0.097 �0.097 �0.066 �0.062
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which was not available for the UK models. Furthermore, anti-
Müllerian hormone (AMH) was included in a second pre-
treatment model developed using a sub-population who had an
AMH measurement. The SART data did not have duration of in-
fertility which was available in the HFEA data and included as a
predictor in the UK model. The US models have yet to be exter-
nally validated but the c-statistic of the pre-treatment model in
the development dataset was slightly higher than that for the UK
pre-treatment model (0.71 versus 0.69) (McLernon et al., 2018).

The amount of electronic data produced and stored in the field
of reproductive medicine has increased considerably. Artificial
intelligence (AI) (or machine learning) is progressively used in
medical research to predict future outcomes and is often used in
place of regression-based models. Approaches such as Bayesian
neural networks and boosting algorithms are more suited to high
dimensional datasets, i.e. containing a large number of potential
predictors which may include imaging information. Because of
this, they require many patients to avoid risk of bias (Andaur
Navarro et al., 2021). Models using such approaches that are de-
veloped in a single clinic may not be transportable to other clinics
as they tend to detect patterns unique to that particular clinic
(Chen et al., 2022). However, if clinics are able to share and com-
bine their data to develop such models and then assess heteroge-
neity in predictive performance between clinics then they may be
transportable (Riegler MA et al., 2021). High dimensional elec-
tronic health records are not commonly available yet in

reproductive medicine (Shingshetty et al., 2022). Our regression-
based models will be useful until a reliable and tested AI model
has been developed, validated and shown to perform better than
our model. There are many publications showing that traditional
statistical regression models can match or even outperform AI
models (Liew et al., 2022; Lynam et al., 2020). Indeed, statistical
models are more generalizable to other populations and easier to
interpret.

Clinical implications
Both the updated models provide more accurate predictions for
the current IVF population and can be used as counselling tools
in fertility clinics within the UK. Before initiating treatment, the
revised pre-treatment model can be used to inform clinicians and
couples of their individualized estimates of treatment success
over multiple complete cycles of IVF. Then, after the first fresh
embryo transfer, the recalibrated post-treatment model can pro-
vide a revised estimate of treatment success using treatment-
related information. Clinicians can use these models in their
daily practice to shape couples’ expectations by informing them
of their individualized chances of live birth over a sequence of
multiple complete cycles of IVF.

Our models should not be used for excluding couples from
treatment. A model which is intended for use in clinical deci-
sions, such as whether or not to have treatment, should be devel-
oped using data from patients who were not treated as well as

Figure 4. Examples of the updated models predicting cumulative live birth over three complete cycles of ICSI for couples with different
characteristics. (a) couples with either 2 or 5 years of primary male factor infertility, where the female partner is aged either 30 or 40 years (pre-
treatment model); (b) couples with 2 years of primary male factor infertility, where the female partner is aged either 30 or 40 years, with either 5 or 15
oocytes collected in the first complete cycle. Those with five oocytes have a single cleavage embryo transfer with no embryos cryopreserved, and those
with 15 oocytes have a single blastocyst embryo transfer with embryos cryopreserved. S: single.
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patients who were treated, preferably using data from random-
ized controlled trials with treated and untreated patients. This
would allow us to assess treatment effectiveness (i.e. are couples
more likely to have a baby with or without IVF?) and treatment
benefit (if they are more likely to have a baby with IVF, is the in-
crease in the predicted chance worth the physical, emotional and
financial burden of the treatment?). Our prediction models are
not meant to aid decisions around whether to have IVF or ICSI.
Such a decision must be made before using the models to make
predictions in new patients. For models that aim to facilitate
decisions on treatment type, a different causal modelling ap-
proach is required when only observational data is available
(Sperrin et al., 2019).

The original McLernon models were converted into the OPIS
online calculator so that they could be used in clinical practice to
estimate the probability of live birth based on the characteristics
of the couple and treatment (https://w3.abdn.ac.uk/clsm/opis).
Since both the original models underestimate predicted cumula-
tive live birth for couples in the recent UK IVF cohort, conversion
of the updated models into a new online calculator is required.
The updated online calculator will be able to provide accurate
and more up-to-date predictions to both clinicians and couples
considering IVF/ICSI treatment.

While we did not involve patients and clinicians in this valida-
tion study, our online OPIS calculator has been updated with an
optional questionnaire for patients and healthcare professionals
to obtain feedback on the tool. We will use the findings to make
future refinements to the models and our calculator.

Conclusion
The updated McLernon prediction models provide accurate pre-
dictions of cumulative live birth over multiple complete cycles of
treatment which reflect current UK IVF practice. These models,
which will be available in our updated OPIS calculator (http://w3.
abdn.ac.uk/clsm/opis), can be used as counselling tools to inform
couples of their prognosis before commencing IVF/ICSI treatment
as well as after the first fresh embryo transfer. They will help
couples prepare emotionally and financially for their future
treatment.
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Supplementary data are available at Human Reproduction online.
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