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Abstract
Autonomous vehicles are required to operate in an uncertain environment. Recent ad-
vances in computational intelligence techniques make it possible to understand driving
scenes in various environments by using a semantic segmentation neural network, which
assigns a class label to each pixel. It requires massive pixel‐level labelled data to optimise
the network. However, it is challenging to collect sufficient data and labels in the real
world. An alternative solution is to obtain synthetic dense pixel‐level labelled data from a
driving simulator. Although the use of synthetic data is a promising way to alleviate the
labelling problem, models trained with virtual data cannot generalise well to realistic data
due to the domain shift. To fill this gap, the authors propose a novel uncertainty‐aware
generative ensemble method. In particular, ensembles are obtained from different opti-
misation objectives, training iterations, and network initialisation so that they are com-
plementary to each other to produce reliable predictions. Moreover, an uncertainty‐aware
ensemble scheme is developed to derive fused prediction by considering the uncertainty
from ensembles. Such a design can make better use of the strengths of ensembles to
enhance adapted segmentation performance. Experimental results demonstrate the
effectiveness of our method on three large‐scale datasets.

KEYWORD S
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1 | INTRODUCTION

Uncertainty is unavoidably involved in performing the percep-
tions of Autonomous vehicles (AVs) [1]. Semantic segmentation
(SS) is one of the key environmental perception technologies to
help AVs understand driving scenes, which can locate traffic
objects accurately [2]. By providing high semantic level un-
derstandings of images captured from visual sensors, SS can
facilitate the autonomous navigation of vehicles. In recent years,
deep learning (DL) based methods [3] have achieved remarkable
performance on SS in driving scenes. However, building such
models requires a large amount of annotated data. As it is
expensive and time‐consuming to relabel image data and retrain
the model, this issue has become a severe barrier for adapting a
model in an unseen scenario.

Domain adaptation [2, 4] provides an intuitive solution to
solve the annotation problem. Its goal is to learn a generalised
model by exploring the extraction of invariant feature repre-
sentations [5] or mapping the features [6] between two related
domains, where one domain has abundant labelled data
(named source domain) and the other domain has no labelled
data (named target domain). In the context of driving scene
understanding scenario, the source domain contains free an-
notated synthetic images generated from virtual driving simu-
lations while the target domain has realistic driving scene data
with no annotations. Many Deep Domain Adaptation methods
[2, 7] are proposed to narrow the data distribution gap between
the domains to achieve a generalised model that is trained by
using the data from simulators but deployed in the real world.
Among these methods, adversarial learning based unsupervised
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domain adaptation (UDA) algorithms [7] have demonstrated
their potentials as the adversarial learning can provide rich
hierarchical representations from feature‐level, pixel‐level, and
output‐level to achieve the domain shift.

Despite the success of the UDA algorithms, it is observed
that a single UDAmodel is difficult to align the data distribution
of two domains well due to the complex data distribution in the
target domain. In particular, various conditions in the driving
scenes, such as arbitrary object geometries, illumination varia-
tions from different weather conditions and object occlusions,
make the single pair of generative and discriminative networks
difficult to converge to a well defined holistic mapping function
for the segmentation. Naturally, ensemble mechanism is a
promising solution to tackle the model generalisation problem.
For example, xgboost, an ensemble tree based algorithm, has
become one of the most popular machine learning algorithms
used in many Kaggle competitions [8]. Recently, ensemble al-
gorithms are also introduced into DL classifiers [9] and gener-
ative adversarial networks (GANs) [10] to improve model
performance.

In this paper, we propose a novel uncertainty‐aware
ensemble‐based GANs framework, named uncertainty‐aware
enhanced ensembles of diversified generative adversarial net-
works (UE2D‐GAN) to train a generalised and reliable model
that can be adapted from virtual data to realistic data in the
context of driving scene image segmentation. Unlike the tradi-
tional ensemble methods, our focus is to increase the diversity of
mapping models in our ensemble framework by designing
suitable model combinations and uncertainty‐aware scheme. In
specific, the ensemble models are composed of diversified GAN
models trained on different optimisation objectives, training
iterations, and network initialisations so as to improve the
performance and reliability of domain adaptation. Such a design
enables the ensemble model to represent a more holistic map-
ping by diversifying and combining the set of individual models.
Moreover, we consider the uncertainty of predictions made by
diversified models. The final SS prediction is determined
through the Bayesian information fusion for taking the uncer-
tainty of diversified models into account.

The main contributions of our work can be summarised in
threefold. First, we attempt to introduce diversified ensembles
of GANs into virtual‐to‐realistic driving scene understanding.
These diversified ensembles are obtained from different opti-
misation objectives, training iterations, and network initialisa-
tions for extracting diverse features. Second, we propose a
novel uncertainty‐aware ensemble scheme to fuse all diversified
ensembles together based on the uncertainty of their SS pre-
dictions. Third, various ensemble schemes and fusion strategies
are investigated to find out the most promising combination so
as to obtain a better synergy effect of ensembles. Furthermore,
multi‐view perceptual loss is integrated into ensemble scheme
so as to minimise the perceptual discrepancy. In addition, a
comprehensive comparison is performed to demonstrate the
superiority of our proposed method on transferring knowledge
from synthetic images to realistic images. A list of adapted
segmentation methods are compared on three large‐scale
datasets, that is, GTA5, SYNTHIA, and Cityscapes.

The rest of this paper is organised as follows. Section 2
introduces the related work. Section 3 provides detailed ex-
planations of our proposed uncertainty‐aware ensemble‐based
GAN method. Section 4 presents experimental results on
evaluating open datasets. Section 5 concludes this paper along
with future work.

2 | RELATED WORK

SS is a key vehicular technology to help AVs understand
driving scenes, which targets on assigning pixel‐level labels to
an image. In the recent decade, the number of new collected SS
datasets increases dramatically due to the reduction of cost for
sensors, such as MS COCO Challenge and Pascal VOC2012
challenge which include approximate 200,000 and 10,000 an-
notated images. In addition, for urban driving scenes under-
standing, some urban scene segmentation datasets are already
publicly available, such as GTA5, SYNTHIA, and Cityscapes
[2].

Although the advent of deep convolutional neural net-
works has shown exceptional performances on SS due to their
rich hierarchical features and end‐to‐end framework [11], to
achieve state‐of‐the‐art performance, a segmentation network
needs to be trained with an enormous number of dense pixel‐
level labelled images for extracting efficient features. As
pointed in ref. [12], it takes about 90 min to manually annotate
all pixels for each image in Cityscapes dataset. Thus, it is not
easy to obtain such a large number of labelled data. A widely‐
accepted alternative solution is to collect annotated images by a
simulation, where pixel‐wise annotation of an image can be
carried out in an automatic manner.

However, due to domain shift of the images from simulator
and real world, the model trained on virtual data cannot
generalise well in realistic data. Therefore, traditional SS ap-
proaches is challenging to address virtual‐to‐realistic driving
scene understanding problem. To address the domain shift
issue, domain adaptation is introduced to minimise such a shift.
As inspired by the achievement of domain adaptation for image
classification, many domain adaptation methods are proposed
to tackle SS problem for reducing the human interference.
These methods attempt to utilise the virtual data from a simu-
lator, where the annotations can be generated automatically, and
then transfer the learnt in‐variant knowledge to real‐world data.
Motivated by the recent achievement of UDA, adversarial
learning is treated as a promising solution to align synthetic data
and realistic data. Adversarial learning realises domain invariant
via a minmax game, where a generative network G is trained to
generate target domain style images to fool a discriminative
network D and D gives its best effort to distinguish synthetic
images and realistic images [2]. Since the domain adaption is
introduced into SS problem by [4, 13], where synthetic images
are adapted to realistic images through global feature alignment,
numerous domain adaptation methods are proposed to learn an
adapted segmentation model for generalising better in across
domains. These work can be divided into two categories. First
one focuses on removing global‐level mismatch between source
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and target domain so as to achieve output space and spatial‐
aware adaptations [2]. Second one is to bridge the gap across
domains by synthesising target domain image in a pixel‐level [4].

Despite GANs have achieved compelling performance on
adapted segmentation, it is still challenging to model complex
data distribution by a single generative network. As a conse-
quence, a generative network could cause a model collapse
problem. Parts of the data distribution can be well‐modelled
while it leads to failure on describing the whole distribution
of the target domain [14]. More specifically, the generative
network cannot provide various synthetic data sufficiently, due
to the convergence of only one or a few modes of the data
distribution which leads that the generative network is not able
to provide synthetic data in certain regions of the space [15].
To deal with the problem, co‐training framework is adopted
due to its robustness and reliability through training alternately
on different views with confident labels from the unlabelled
data, such as [7]. Inspired by ref. [16–19], we attempt to
minimise domain shift by taking the uncertainty of neural
networks into account. Different from the previous work in
ref. [20], the proposed method fuses different GANs with
considering the uncertainty of predictions. Instead of training
many GANs from scratch, the proposed method can reduce
the number of GANs that need to be trained since models
trained from different training iterations can be considered as
diversified GANs. In addition, focal loss is also used for
optimising the weights of networks so as to increase the di-
versity of GANs. The proposed method achieves a holistic
representation of mapping across domains by introducing
uncertainty‐aware ensemble scheme meanwhile perceptual
discrepancy is minimised by integrating our mathematically
formulated multi‐view perceptual loss into full objective when
training ensembles. We attempt to propose a solution on top of
GAN and therefore our proposed method can be transferred
to various GANs.

3 | UNCERTAINTY‐AWARE
ENHANCED ENSEMBLES OF
DIVERSIFIED GANs (UE2GAN)

Virtual‐to‐realistic domain adaptation could be formulated as
follows. Let xs denote as an image from the source domain
image set XS. ys denote as its corresponding ground truth from
source domain annotation set YS. A target image is denoted as
xt from target domain image set XT. Since our objective is to
learn a segmentation model from source domain that is
adapted in target domain, a generative model G is trained to
obtain invariant features so that G could correctly predict
pixel‐level labels in the target domain. However, it is chal-
lenging for a single generative model G to generalise well on all
semantic classes across domains.

To address this issue, we design the UE2D‐GAN to bridge
the domain gap by learning a holistic representation across
domains. There are three distincitve features in our work
compared to many other ensemble based models. The first
feature is that we enrich the model diversity in our ensemble

framework via engaging multi‐view perceptual loss and
extracting diversified information from different training itera-
tions under various network initialisations. The second feature is
that a unified multi‐class segmentation loss function is intro-
duced into the ensemble scheme, which can alleviate the
problems of imbalanced data by easily tuning two parameters:
weighting factor and focusing factor, so that the performance of
recognising imbalanced classes and small objects is enhanced
during training process. The third feature is our uncertainty‐
aware fusion strategy for achieving an optimal complement
among diversified ensembles.

In this section, we provide detailed explanation of the
proposed UE2D‐GAN. In Subsection 3.1, we present the
overall architecture of the proposed UE2D‐GAN. In Subsec-
tion 3.2, we discuss the components of loss function for en-
sembles. These components include discrepancy loss,
segmentation loss, and adversarial loss. Following this, diversi-
fied GANs are discussed in Subsection 3.3. Finally, in Subsec-
tion 3.4, the uncertainty‐aware ensemble scheme is described
and compared to other ensemble schemes to demonstrate its
superiority.

3.1 | Architecture of UE 2D‐GAN

As illustrated in Figure 1, various ensembles are fused by the
uncertainty‐aware scheme to provide dense pixel‐level pre-
dictions of an image. Under the proposed framework, a pair of
generator G and a discriminator D is contained in each
ensemble. G is a fully‐convolutional segmentation network and
can be further divided into a feature extractor F and a classifier
module H. F extracts features from input images. With the use
of the extracted features from F, H predicts labels of each pixel
in an image. To make semantic predictions more reliable,
multi‐view perceptual loss is minimised when training en-
sembles and then we diversify ensembles by considering GAN
models from different optimisation objectives, training itera-
tions, and network initialisation as described in Subsection 3.3.
Finally, the final segmentation result is predicted by our pro-
posed uncertainty‐aware fusion module.

3.2 | Training objective function

The design of loss function is the core of a DL based seg-
mentation algoirthm. Given a source domain image xs, its
annotation ys, and a target domain image xt, feature maps are
produced by feature extractor F. Multi‐view learners Iw

1 and Iw
2

utilise the feature maps of images in source domain to generate
a semantic prediction map p. The adversarial loss could be
calculated by inputting p to the discriminator D and the seg-
mentation loss derived by comparing the pixel‐wise prediction
p with its corresponding annotation ys. In addition, xt is also
passed to G for generating p while p is used to obtain the loss
of perceptual discrepancy loss, where the difference of multi‐
view learners and image‐level transferring is calculated. Then,
it is combined with the adversarial loss for tuning the weight of
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each pixel on the segmentation map. Three kinds of losses are
integrated into the optimisation objective of our network,
which are segmentation loss, adversarial loss, and multi‐view
perceptual loss.

1) Segmentation loss: Given the height H, width W, and a
label map ys of a source domain image xs, the shape of original
image xs, and label map are (H, W ) and (H, W, C ), respec-
tively. C is the number of semantic classes. A unified form is
utilised to define multi‐class cross‐entropy loss and focal loss.
Thus, the segmentation loss is computed below.

Lseg ¼
XH

i¼1

XW

j¼1

XC

c¼1
− gijcα 1 − pijc

� �γ log pijc
� �

ð1Þ

where pijc is the predicted probability of class c on the pixel
with height index i and width index j. gijc is the ground truth of
pixel with height index i and width index j. If a pixel, with

height index i and width index j, belongs to class c, then gijc is
given 1. If not, then gijc is given 0. As mentioned in ref. [21],
the multi‐class cross entropy is overwhelmed when there is a
large imbalance existing. To handle the problem, focal loss is
proposed, where another two parameters are α and β. α is a
weighting factor (α ∈ [0, 1]), which balances the importance
between positives and negatives. γ is a focusing factor and the
larger value of γ means the negatives are paid more attention
on (γ ∈ [0, 5]).

2) Adversarial loss: Adversarial loss term is set to learn
domain‐invariant features so that the segmentation outputs
generated from the source and target domains are not dis-
tiguishable between each other so that the domain gap could
be narrowed. This adversarial loss is defined as follows:

LadvðG;DÞ ¼ −λadvE log D G XSð Þð Þð Þ½ �

−λadvE log 1 − D G XTð Þð Þð½ �
ð2Þ

F I GURE 1 The overview of UE2D‐GAN. It presents the whole architecture of our uncertainty‐aware ensemble scheme, including the multi‐classification
module (segmentation loss), discriminator module (adversarial loss), perceptual discrepancy module (multi‐view perceptual loss), and uncertainty‐aware fusion
module (where wOO

i , wTI
i , and wNI

i are the classification scores of ith ensemble of different optimisation object, training iterations, or network initialisation), and
the options of training objectives for obtaining the ensembling GANs in our method. GANs, generative adversarial network.
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where XS and XT are the images of source and target domains.
G and D are the generative network and discriminative
network. Moreover, λadv is the weight factor to control the
relative importance of adversarial losses.

3) Multi‐view perceptual loss: The multi‐view perceptual
loss aims to find out the perceptual discrepancy from multi‐
views, which can be divided into two parts perceptual loss
and discrepancy from multi‐view learning. The perceptual loss
helps align source domain to the target domain, which mea-
sures the difference between source data and image translated
source data or target data and image translated target data. The
loss is used to guide the training process for obtaining an ideal
segmentation adaptation model. Multi‐view learning is intro-
duced into segmentation network. The multi‐view perceptual
loss is given in Equation (3).

Lmvp ¼ λplEXSkI XSð Þ − I G XSð Þð Þk1

þ λinv
pl EXSkI F XSð Þð ÞÞ − I XSð Þk1 þ λmvLmv Iw

1 ; I
w
2

� �

ð3Þ

where I is segmentation network. G is image‐to‐image trans-
lation network from XS → XT. F is feature extraction network
from XT → XS. λpl and λinv

pl are the weighted factors for
constructing and reconstructing paths. Due to the symmetry,
the Lppl of XT and F(XT) is similar as shown above. To obtain
multi‐view, Iw

1 and Iw
2 are two predictors of segmentation

network and the discrepancy of multi‐views is measured by
cosine distance of their weights.

4) Full objective: The full objective is to train a pair of
generative network G and discriminative network D by a
minimax game until the loss function converges. Therefore, the
full objective is given in Equation (4).

G∗;D∗ ¼ arg min
G

max
D

Lseg þ LadvðG;DÞ þ Lmvp
� �

ð4Þ

where Lseg is a unified multi‐class segmentation loss as defined
in Equation (1). Lmvp is multi‐view perceptual loss. Ladv(G, D)
is the adversarial loss.

3.3 | Ensembles of diversified GANs

There are various ensembles ofGANs in the literature, such as e‐
GAN, collective e‐GAN, loss ce‐GAN, se‐GAN, and mixture
ce‐GAN [10]. e‐GAN uses ensembles of GAN models in a
simple way, where a set of GANs is trained with random initi-
alisations from scratch. Then, one of the GANs is randomly
selected to predict target domain labels. Collective e‐GAN
combines models with different network initialisations to
make the prediction. Loss ce‐GAN attempts to explore the in-
formation from different objective (loss) functions, where
GANs are trained with the same network initialisation while
under different objective functions. In contrast to e‐GAN and
collective e‐GAN which train a set of GANs from scratch, se‐
GAN obtains ensemble models from different training

iterations.MixtureGAN focuses on exploring information from
different objective functions and network initialisation, where
the GANs are trained from scratch with a random initialisation
of parameters with different objective functions, respectively.

With considering that the diversity of the models is crucial
for the success of an adapted ensemble scheme, our proposed
ED‐GAN inherits advantages from collective e‐GAN, se‐GAN,
ce‐GAN, loss ce‐GAN, and mixture ce‐GAN, which makes full
use of the diverse features from various objective functions,
training iterations, and network initialisations. To further
improve the performance of SS, an uncertainty‐aware version of
ED‐GAN is also proposed, where a pool of models are fused
together based on the uncertainty of their outputs so as to
generate reliable predictions. The Figure 1 describes overall
architecture of the proposed UE2D‐GAN.

3.4 | Uncertainty‐aware ensemble scheme

In our ensemble scheme, as each model G generates predictions
for all semantic classes, it requires a decision consensus algo-
rithm to fuse predictions frommultiple models to reach the final
prediction. Such fusion could be conducted in either decision
level, for example, majority voting, or output level, for example,
weighted average fusion. Majority voting is a decision level
fusion strategy, where ensembles predict the semantic class
respectively and then final decision is made according to ma-
jority selection. Weighted averaging is a common strategy to
achieve output level fusion. However, weighted averaging fusion
gives the same weight for all ensembles and semantic classes.
Such a design neglects the uncertainty of each ensemble for
predicting semantic classes.

An uncertainty‐aware fusion strategy is proposed and it
could fuse the classification scores of different ensembles ac-
cording to their uncertainty. In this work, we use the outputs of
a generative network to derive uncertainty of each semantic
class. If the output of a specific semantic class is much higher
than the other semantic classes, the classification score of the
semantic class makes more contributions to the final predic-
tion. According to the Bayesian theory, given the scores of
classifiers xi, i = 1, …, C and for the SS, the pixel should be
predicted as class zl by maximising the posterior probability as
below

P zljx1;…; xCð Þ ¼max
L

k¼1
P zkjx1;…; xCð Þ ð5Þ

The Bayesian decision rule Equation (5) states that it is
essential to compute the probabilities of the various hypoth-
eses by considering all the classifier scores. This is because such
a manner can utilise all the available information correctly to
reach a decision. According to the Bayes theorem, we can
rewrite the a posteriori probability as follows

P zkjx1;…; xCð Þ ¼
P x1;…; xC jzkð Þp zkð Þ

P x1;…; xCð Þ
ð6Þ
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where p(x1, …, xC) is the joint probability density of uncon-
ditional classifier scores. The conditional joint probability dis-
tribution of the classifier score is represented by p(x1, …,
xC|zk). Following ref. [18], suppose that the classifier scores
are conditionally independent with each other by given zk. As a
consequence, we derive the Equation (7)

P x1;…; xC jzkð Þ ¼∏
C

i¼1
p xijzkð Þ

P x1;…; xCð Þ ¼
XL

k¼1

p zkð Þ∏
C

i¼1
p xijzkð Þ

ð7Þ

where p(xi|zk) is the model of the ith classifier. Substituting
from Equation (7) into Equation (6), we obtain

P zkjx1;…; xCð Þ ¼
p zkð Þ∏C

i¼1 p xijzkð Þ
PL

k¼1p zkð Þ∏C
i¼1 p xijzkð Þ

ð8Þ

Moreover, we can find the following decision rule by using
Equation (8) in Equation (5), which quantifies the likelihood of
a hypothesis by combining the a posteriori probabilities
generated by the individual classifiers via a product rule.

p zlð Þ∏
C

i¼1
p xijzlð Þ ¼max

L

k¼1
p zkð Þ∏

C

i¼1
p xijzkð Þ ð9Þ

According to the Bayes theorem, the Equation (9) can be
expressed as follows

p−ðC−1Þ zlð Þ∏
C

i¼1
p zljxið Þ ¼

max L
k¼1p

−ðC−1Þ zkð Þ∏
C

i¼1
p zkjxið Þ

ð10Þ

Following ref. [22], we assume that a posteriori probability
of each classifier does not deviate dramatically from the prior
probability, where posteriori probabilities can be given by

p zkjxið Þ ¼ p zkð Þ 1þ ϵkið Þ ð11Þ

where ϵki is far <1. The following equation can be obtained by
substituting Equation (11) for the posteriori probabilities in
Equation (10)

p−ðC−1Þ zkð Þ∏
C

i¼1
p zkjxið Þ ¼ p zkð Þ∏

C

i¼1
1þ ϵkið Þ

¼ p zkð Þ þ p zkð Þ
XC

i¼1
ϵki

ð12Þ

In our work, we make full use of both probability and raw
information obtained from convolutional neural networks,
which are received with and without using normalisation,
respectively. Finally, we can obtain a sum decision rule given by

F zlð Þ ¼max
L

k¼1
p−ðC−1Þ zkð Þ∏

C

i¼1
p zkjxið ÞOk

¼max L
k¼1p

−ðC−1Þ zkð Þ∏
C

i¼1
p zkð Þ 1þ ϵkið ÞOk

¼max L
k¼1 p zkð ÞOk þ

XC

i¼1

p zkð ÞϵkiOk

" #

¼max L
k¼1 ð1 − CÞp zkð ÞOk þ

XC

i¼1
p zkjxið ÞOk

" #

ð13Þ

where Ok is the raw output value of the network for ith label
and F(zl) is the final prediction which means that the given
pixel belongs to semantic class zl.

4 | OPEN DATASET EVALUATION

In this section, we evaluate the performance of our proposed
method on virtual‐to‐realistic driving scene understanding. The
used synthetic and realistic datasets are described in Sec-
tion 4.1. Section 4.2 presents the network configuration
generator and discriminator along with description of plat-
form. Section 4.3 discusses the metrics used for quantitatively
evaluating the performances among different methods. Sec-
tion 4.4 conducts an ablation study to identify the contribu-
tions of different components of our method. Section 4.5
discusses the quantitative and qualitative results on synthetic‐
to‐realistic driving scene understanding, where our proposed
method is compared against other advanced methods.

4.1 | Datasets

Three open datasets are evaluated including two synthetic
datasets (GTA5 [2], SYNTHIA [2]) and one realistic dataset
(Cityscapes [2]). GTA5 and SYNTHIA are the source domain
datasets. There are 24,966 vehicle‐egocentric images in GTA5
with the resolution 1914 � 1024. SYNTHIA contains 9400
images of the resolution 1290 � 760. These high‐resolution
synthetic images are produced through a photorealistic
open‐world computer game called ‘Grand Theft Auto V’ and
annotated with 19 semantic classes for evaluation. Cityscapes
is the target domain dataset, which is a real‐world dataset with
5000 images of urban scenes in Germany and neighbouring
countries. These images are annotated with 19 semantic
classes for evaluation as well. The resolution of images within
Cityscapes dataset is 1280 � 720 pixels for an image. Both
GTA5 and Cityscapes datasets use the same 19 semantic la-
bels in pixel‐level so their annotations are compatible with
each other. For SYNTHIA, images of 13‐class categories are
used to assess the performance. For achieving fair compari-
son, we follow the settings in ref. [2, 7, 23], where generative
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networks are trained on all 24,966 images from GTA5 dataset
and 9000 images from SYNTHIA dataset, respectively and
then their performances are evaluated by using Cityscapes
dataset.

4.2 | Implementation details

We implement our method by using PyTorch toolbox and the
networks are trained and tested on a single GeForce RTX
2080ti with 11 GB graphic memory. To extract more efficient
features, the backbone of source‐only generative network G
uses the pre‐trained ResNet‐101 [24], where more efficient
features are extracted by residual blocks. For discriminator D, it
consists of five convolution layers. Each layer is filtered by a 4‐
by‐4 kernel with the stride size of 2. The channel number from
front to back layers are 512, 256, 128, 64, and 1, respectively. It
follows the setting of ref. [2, 7, 25] and the parametric ReLU is
activation function to concatenate a sequence of convolutional
layers. The definition of parametric ReLU activation function is
given as follows.

f ðxÞ ¼
x if x ≥ 0
x
α

if x < 0

8
<

:

where the parameterα is a fix positive value. According to ref. [7],
it is set as 0.2. The output of last layer is upsampled to the original
size of an input image. Stochastic gradient decent is an optimiser
used in generative network G. Adam is an optimiser used in
discriminative network D, respectively. For SGD, the initial
learning rate is 2.5� 104 with momentum set as 0.9. For Adam,
the initial learning rate is 5 � 104 with β1 and β2 set as 0.9 and
0.99. The original input image is resized to the resolution of
512 � 1024 during training for saving the computation load. A
prediction map is utilised to derive original size of the image
during evaluation for the convenience of assessing the perfor-
mance of mean intersection of union (mIoU). As clarified in ref.
[26], the interpolated surface of bicubic upsampling is smoother
with fewer interpolation artefacts and thus bicubic upsampling is
used to produce the original size of images in our work. For the
ensembles of multi‐class cross entropy, α. The decay and
maximum epoch are set as 5 � 104 and 1 � 105.

F I GURE 2 Semantic segmentation results of various optimisation objectives, training iterations, and network initialisation: the first row is target images, the
second and third rows are prediction results from different ensembles (the first column represents the results of different optimisation objectives; the second
column represents the results from different training iterations; the third column represents the results from different network initialisation), and the last row is
ground truth annotations. The predictions of different optimisation objectives, training iterations, and network initialisation are highlighted in yellow and blue
rectangle boxes as shown each column respectively.
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4.3 | Evaluation metrics

Various domain adaptation methods are compared to assess
the performance of virtual‐to‐realistic driving scene under-
standing. In the experiments, all comparative methods are
evaluated on GTA5, SYNTHIA synthetic datasets and City-
scapes realistic dataset. The quantitative results of these
methods are evaluated with regards to intersection‐over‐union
(IoU) and mean of IoU, where the former is to assess the
performance of each class so as to avoid the effect of class
imbalances and the latter is to assess the overall performance
of all classes. The IoU is defined as follows.

IoU ¼
TP

TP þ FN þ FP

where TP, FN, and FP denote the true positives false negatives,
and false positives, respectively.

4.4 | Ablation study

In this section, ablation study is conducted on comparing
different ensemble schemes and fusion strategies.

4.4.1 | Comparison of ensemble schemes and
configurations

Various optimisation objectives, training iterations, and network
initialisation can provide diverse information for SS. Models
trained on different optimisation objectives lead to diverse
performance on different semantic classes. In our proposed
method, we use a unified form to present multi‐class cross
entropy loss and focal loss to handle problems of imbalanced
data and small object detection meanwhile keep the good
performance on major classes. The first column of Figure 2
presents the predicted semantic map by using different opti-
misation objectives. We can see multi‐class cross entropy per-
forms better in recognising a person and the focal loss can
predict sky better, where the corresponding predictions are
highlighted in yellow and blue rectangle boxes respectively.
During the training of adversarial learning, the model from a
specific training iteration can be efficient to recognise some
semantic classes. The prediction results of different training it-
erations are not same with each other. As shown in the second
column of Figure 2, models of different training iterations are
more efficient to recognise bus and road respectively, which is
highlighted in yellow and blue rectangle boxes. Similar to
different training iterations, the diverse information can be also

TABLE 1 Comparison of ensemble schemes (unit %).

Semantic
class

eGAN
(1 ensemble)

ceGAN
(2 ensembles)

Self‐GAN
(2 ensembles)

Loss ce‐GANs
(2 ensembles)

Mixture ce‐GAN
(4 ensembles) ED‐GAN

Road 87.4 88.9 89.0 89.0 89.4 89.4

Sidewalk 30.8 30.8 34.1 31.3 32.8 32.1

Building 80.7 81.2 80.8 81.5 81.3 81.3

Wall 29.5 30.1 29.7 31.0 33.0 32.2

Fence 23.9 25.0 26.1 26.0 22.0 25.2

Pole 30.3 29.2 29.8 30.1 30.4 29.5

Light 34.8 35.1 33.5 35.0 34.6 34.7

Sign 23.1 22.7 24.5 23.9 23.6 24.9

Vegetation 82.9 83.4 83.7 84.0 83.8 84.0

Terrain 31.6 34.8 38.2 37.2 38.7 39.2

Sky 75.1 75.6 76.2 76.7 78.0 77.7

Person 58.4 60.0 59.2 60.1 59.8 60.4

Rider 24.9 28.9 29.0 28.7 28.3 28.4

Car 83.7 84.8 84.8 84.5 84.8 84.7

Truck 31.3 33.0 34.9 33.9 37.2 39.7

Bus 42.7 43.6 43.3 45.0 44.3 44.5

Train 2.1 1.2 0.9 0.3 0.3 0.0

Motorcycle 26.8 29.3 28.4 27.4 30.2 30.8

Bicycle 29.4 26.8 26.3 24.2 25.4 25.3

mIoU 43.7 44.4 44.8 45.0 45.1 45.5

Note: The bold values represent the highest‐performing results achieved by various methods within each semantic class.
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obtained from different network initialisation. In the third col-
umn of Figure 2, the network initialisation of the second row
model is more powerful to classify a road and the network
initialisation of the third row model is more powerful to classify
a bus when comparing them. With this consideration, a pool of
generative models are combined together to make the final
predictions. In this section, we compare our proposed GAN‐
based ensemble scheme with other GAN‐based ensemble
schemes, including e‐GAN, ce‐GAN, self‐GAN, and mixture
ce‐GANwith different configurations. In order to guarantee the
fairness of comparison, we fuse ensembles in different
ensemble schemes by using weighted averaging strategy. To
carry out comprehensive comparison, mixture ce‐GAN is
implemented under different configurations. To make the dif-
ference of various ensemble schemes clearer, we obtained the
results before considering perceptual loss. The corresponding
experimental results of different ensemble schemes and con-
figurations are summarised in Table 1. We can draw the
following observations:

� Our proposed ED‐GAN outperforms other ensemble
schemes by exploring diverse information from different
optimisation objectives, training iterations, and network ini-
tialisation. More specifically, our proposed ensemble scheme
achieves best performance with regard to mIoU, which is
45.5%.

� Compared to different ensemble schemes, our pro-
posed method achieves the best performance of SS, where
there are 9 out of 19 semantic classes obtaining the best
results. For the rest of semantic classes, the performance of
our proposed method is close to most of the best ones.

� If only averaging the different predictions of ED‐GAN, the
performance of recognising train lead to a decreasing. To
tackle the problem, we propose a uncertainty‐aware fusion
strategy for combining the predictions of different ensem-
bles, so that the performance of recognising train can be
significantly improved. The detailed discussion and corre-
sponding results can be found in Section 4‐4.4.2.

4.4.2 | Comparison of fusion strategies

In our virtual‐to‐realistic adaptation problem, we do not have
labels from a realistic dataset. This leads supervised based
methods are not suitable for our work. Instead of, several
unsupervised methods are used to fuse ensembles to derive
final predictions. Here, our proposed uncertainty‐aware fusion
strategy is compared with other fusion strategies, such as
majority voting and weighted averaging. To make the com-
parison fair, we test different fusion strategies. The results of
different fusion strategies are presented in Table 2. According
to Table 2, two observations can be obtained as follows.

� Taking uncertainty into account for fusing different en-
sembles, our proposed uncertainty‐aware fusion strategy
outperforms other fusion strategies, which provides the best

performance, 47.9% of mIoU, when perceptual loss is
considered along with the discrepancy of multi‐views. More
specifically, there are 15 out of 19 semantic classes providing
the best performance with using uncertainty‐aware fusion
compared to the other two fusion strategies.

� In general, majority voting fusion underperforms the other
two fusion strategies for predicting semantic classes, except
for terrain and motorcycle. For majority voting, it provides a
sightly better performance when recognising terrain, car,
and motorcycle.

4.5 | Comparative performance of SS

For assessing the performance of adapted segmentation, our
proposed method is compared with other advanced methods.
The qualitative results and quantitative comparison of adapted
segmentation are presented in Figure 3 and in Tables 3 and 4,
respectively. The performance of individual semantic class is
assessed by the IoU and the overall performance of all semantic
classes is assessed by mIoU various semantic classes, which are
provided in Tables 3 and 4. Here, we can draw the three
observations:

TABLE 2 Comparison of fusion strategies (unit %).

Semantic
class

Majority
voting

Weighted
averaging
(ED‐GAN)

Uncertainty‐
aware
(UE2D‐GAN)

Road 89.1 89.4 90.9

Sidewalk 29.8 32.1 47.1

Building 80.8 81.3 84.0

Wall 31.0 32.2 32.8

Fence 23.1 25.2 25.6

Pole 28.9 29.5 32.2

Light 34.4 34.7 37.5

Sign 21.8 24.9 33.2

Vegetation 84.0 84.0 84.2

Terrain 41.2 39.2 38.4

Sky 78.1 77.7 83.7

Person 59.8 60.4 60.4

Rider 28.5 28.4 28.6

Car 85.0 84.7 84.1

Truck 39.1 39.7 36.4

Bus 43.9 44.5 46.7

Train 0.0 0.0 0.4

Motorcycle 31.0 30.8 25.8

Bicycle 23.6 25.3 37.6

mIoU 44.9 45.5 47.9

Note: The bold values represent the highest‐performing results achieved by various
methods within each semantic class.
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� With the help of introducing uncertainty‐aware fusion into
ensemble scheme, our proposed UE2D‐GAN method does
not only enhance the segmentation results, but also improve
the generalisation. Consequently, our proposed method
outperforms other advanced methods with regard to mIoU,
which are able to achieve 47.9% of mIoU on GTA5 to
Cityscapes (Table 3) and 47.3% of mIoU on SYNTHIA to
Cityscapes adaptation (Table 4), respectively.

� Compared to different ensemble schemes, our proposed
method achieves the best performance of SS for GTA5 to
Cityscapes adaptation, where there are 16 out of 19 semantic

classes obtaining the best results. For the rest of semantic
classes, the performance of our proposed method is very
close to the best ones. Our proposed method also achieves
the best performance for SYNTHIA to Cityscapes adaption,
especially for the classes of sidewalk, light, sign, and bicycle.

� The proposed uncertainty‐aware fusion strategy can effi-
ciently capture uncertain information to achieve better
segmentation predictions. For instance, our proposed fusion
strategy can significantly outperform the other fusion stra-
tegies when recognising the semantic class of train as shown
in Table 2.

F I GURE 3 Qualitative semantic segmentation results on adaptation from GTA5 to Cityscapes. From left to right: target image, non‐adapted results (source
only), adapted results with UE2D‐GAN, and the ground truth annotations, respectively.

TABLE 3 Quantitative comparison results from GTA5 to cityscapes (unit %).

Semantic class FCNs wild [4] MCD [27] CDA [28] CyCADA [29] CBST [30] DCAN [31] AdaSegNet [2] CLAN [32] Ours

Road 70.4 86.4 74.9 85.2 90.4 82.3 86.5 87.0 90.9

Sidewalk 32.4 8.5 22.0 37.2 50.8 26.7 36.0 27.1 47.1

Building 62.1 76.1 71.7 76.5 72.0 77.4 79.9 79.6 84.0

Wall 14.9 18.6 6.0 21.8 18.3 23.7 23.4 27.3 32.8

Fence 5.4 9.7 11.9 15.0 9.5 20.5 23.3 23.3 25.6

Pole 10.9 14.9 8.4 23.8 27.2 20.4 23.9 28.3 32.2

Light 14.2 7.8 16.3 22.9 28.6 30.3 35.2 35.5 37.5

Sign 2.7 0.6 11.1 21.5 14.1 15.9 14.8 24.2 33.2

Vegetation 79.2 82.8 75.7 80.5 82.4 80.9 83.4 83.6 84.2

Terrain 21.3 32.7 13.3 31.3 25.1 25.4 33.3 27.4 38.4

Sky 64.6 71.4 66.5 60.7 70.8 69.5 75.6 74.2 83.7

Person 44.1 25.2 38.0 50.5 42.6 52.6 58.5 58.6 60.4

Rider 4.2 1.1 9.3 9.0 14.5 11.1 27.6 28.0 28.6

Car 70.4 76.3 55.2 76.9 76.9 79.6 73.7 76.2 84.1

Truck 8.0 16.1 18.8 17.1 5.9 24.9 32.5 33.1 36.4

Bus 7.3 17.1 18.9 28.2 12.5 21.2 35.4 36.7 46.7

Train 0.0 1.4 0.0 4.5 1.2 1.3 3.9 6.7 0.4

Motorcycle 3.5 0.2 16.8 9.8 14.0 17.0 30.1 31.9 25.8

Bicycle 0.0 0.0 14.6 0.0 28.6 6.7 28.1 31.4 37.6

mIoU 27.1 28.8 28.9 35.4 36.1 36.2 42.4 43.2 47.9

Note: The bold values represent the highest‐performing results achieved by various methods within each semantic class. The value highlighted in blue represents the highest overall
performance (mIoU) across all semantic classes.

10 - HUA ET AL.

 24682322, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12257 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 | CONCLUSIONS

This paper proposes an uncertainty‐aware diversified ensemble
method to narrow the gap between synthetic data and realistic
data for solving the problem of virtual‐to‐realistic driving
scene understanding. In the proposed method, we explore the
strengths of different optimisation objectives, training itera-
tions, and network initialisation and their strengths are made
fully use through an ensemble scheme. Moreover, an
uncertainty‐aware fusion strategy is developed to integrated
diversified ensembles together based on the uncertainty of
predictions. Subsequently, the final pixel‐level prediction can
be provided a SS map for each image. Such a design fully takes
advantage of generative ensembles so as to improve the per-
formance of SS in the target domain. To evaluate our method,
SS models are trained on synthetic driving dataset and test on
realistic driving data. Experimental results demonstrate that
our method can learn in‐variant features more efficiently so
that the knowledge can be transferred from synthetic datasets,
GTA5 and SYNTHIA, to realistic dataset, Cityscapes. There-
fore, our proposed method outperforms other advanced
methods on adapted segmentation results of the target domain.
For now, most of GANs need to be trained for a large number
iterations to provide promising results. In future, we will
attempt to reduce the training workload of GANs by simpli-
fying the architecture of deep neural networks.
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