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Neural and behavioral signatures of the
multidimensionality of manipulable object
processing
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Ramakrishna Chakravarthi5, Zohar Tal 1,2 & Jonathan Walbrin1,2

Understanding how we recognize objects requires unravelling the variables that govern the

way we think about objects and the neural organization of object representations. A tenable

hypothesis is that the organization of object knowledge follows key object-related dimen-

sions. Here, we explored, behaviorally and neurally, the multidimensionality of object pro-

cessing. We focused on within-domain object information as a proxy for the decisions we

typically engage in our daily lives – e.g., identifying a hammer in the context of other tools.

We extracted object-related dimensions from subjective human judgments on a set of

manipulable objects. We show that the extracted dimensions are cognitively interpretable

and relevant – i.e., participants are able to consistently label them, and these dimensions can

guide object categorization; and are important for the neural organization of knowledge – i.e.,

they predict neural signals elicited by manipulable objects. This shows that multi-

dimensionality is a hallmark of the organization of manipulable object knowledge.
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Our ability to recognize one object amongst many others is
one of the most important features of the human mind,
and successful completion of our daily activities depends

upon it. This is nicely illustrated by the performance of neuro-
logical patients that present with semantic impairments, and
are severely dysfunctional even when performing mundane
activities1–5. Our capacity to recognize objects is most probably
dependent on how we represent object-knowledge and on how
these representations are organized in the brain6–8. One tenable
hypothesis on the organization of object knowledge holds that
object representations are, at some level, grounded on, and
framed by, relevant object-related dimensions in which objects
vary9–13. These object-related dimensions would allow for the
hard, fine-grained, and most times within-category distinctions
that are typically required when recognizing objects. However,
there are substantial gaps to be closed under such a hypothesis –
most importantly, what are these object-related dimensions that
govern the fine-grained neural organization of object repre-
sentations? Here, we will extract object-related dimensions from
participants’ understanding of objects, and show that these
dimensions are cognitively and neurally relevant.

Research on the organization of object knowledge in both
human and non-human primates points to the existence of clusters
of neurons that show categorical preferences for particular domains
such as faces, animals, body parts, places, and manipulable
objects12,14–23. Moreover, data from brain-damaged patients
also points to the presence of cognitive modules dedicated to those
same domains1–4,24. In ventral temporal cortex, these object pre-
ferences follow a lateral-to-medial organization with clusters
of neurons preferring faces or animals situated within lateral fusi-
form gyrus, and clusters of neurons preferring places or manipul-
able objects located more medially8,25. This has been described
either as 1) a sharp functional division reflecting true domain
distinctions1,3,15,26–31, laid out by connectivity constraints between
these object-preferring regions and other regions elsewhere in brain
that code for the same domain32–34; or as 2) a continuous map
of similarity over one single dimension such as animacy35, or
shape36,37 (for other dimensions see refs. 38,39).

Thus, most current approaches propose overarching explana-
tions for the general organization of object knowledge by object-
preferring regions, in lieu of focusing on the fine-grained orga-
nization of conceptual content within these different regions.
That is, their focus has been on explaining the pattern of results
from neuropsychology and neuroimaging at a general level,
appealing to a first principle of organization that has to be
somehow related with between-domain differences1,3,27–39. These
efforts, while necessary, may have deterred the field from also
explaining the finer-grained distinctions – those that seem to be
affected in category-specific brain-damaged patients1–4. Under-
standing how we identify a hammer from other objects such as
axes, flyswatters, or screwdrivers – i.e., those kinds of distinctions
that we probably have to deal with every day, and that are affected
in category-specific deficits – requires uncovering finer-grained
types of information than identifying a hammer from a cat, a
truck, or a mimosa.

To solve this, we may think of object representations as being
organized in particular multidimensional spaces. These spaces
preserve individual properties of objects, while reducing the
complexity that is inherent to object recognition, by situating
each object’s representation within key object-related dimensions.
Recently, there have been some attempts at describing the mul-
tidimensional space that underlies object knowledge13,24,40–42.
For instance, Hebart and collaborators have suggested a series of
dimensions explain, at a general level, how individuals represent
many different objects13. The dimensions obtained are relatively
interpretable (e.g., colorful; fire-related) and are able to predict

performance in an odd-one-out similarity judgement task. While
these efforts certainly advance our understanding of the processes
at play during object recognition, they still follow a “between-
category” approach. Understanding fine-grained decisions is
probably better served (or at least it is also served) by studies that
focus on “within-category” strategies.

In this paper, we focus on demonstrating that a series of object-
related dimensions extracted from participants’ understanding of
manipulable objects, relate to the neural representations of those
objects, and guide object perception. We selected manipulable
objects because they have a set of properties that are useful when
trying to define object-related dimensions. Namely, 1) they are
everyday manmade objects that we perceive and interact with
constantly, and are, thus, fairly familiar; 2) they hold relatively
defined sets of information associated with them: by definition
these objects have particular functions that they fulfill, have
associated motor programs for their use, and have specific
structural features (e.g., shape) that may help fulfill both their
function and facilitate their manipulation; and 3) their visual
inspection engages a set of neural regions that includes aspects of
the left inferior parietal lobule (IPL), the anterior intraparietal
sulcus (aIPS), bilateral superior and posterior parietal cortex
(SPL) and caudal IPS, bilateral dorsal occipital regions proximal
to V3A, the left posterior middle temporal gyrus (pMTG), and
bilateral medial fusiform gyrus14,18–21,26,43–49. Moreover, con-
ceptual knowledge about manipulable objects can be selectively
impaired or spared in brain damaged patients2.

Here, we will independently capture subjective object similarity
in terms of the visual properties of the target objects, the manner
with which we manipulate these objects, and the function that is
typically associated with them. We selected these knowledge types
(i.e., vision, function and manipulation) because these are central
for the representation of manipulable objects. We hypothesize
that: 1) participants can learn to recognize and categorize objects
according to these dimensions, and 2): sensitivity to these
dimensions will be captured with neural responses.

Specifically, we expect that the dimensions extracted conform
to general major subdivisions within each knowledge type, and
that the spatial extent of the neural responses explained by each
dimension reflects the type of content they represent. For
instance, dimensions that structure our understanding of object
function should revolve around the action goals that we fulfill
with manipulable objects (e.g., cleaning, cooking, cutting, writ-
ing), and/or the context where an object is typically encountered
in (e.g., kitchen; bathroom;32,50–52). As such, these dimensions
should explain neural responses elicited by manipulable objects
within pMTG and lateral occipital cortex (LOC), ventral temporal
cortex in the vicinity of parahippocampal gyrus, as well as
potentially more anterior temporal regions32,50–52. On the one
hand, pMTG and LOC have been shown to code for object-
related action knowledge and meaning53–58. That is, these regions
seem to be involved in understanding the functional goals of
the actions we can perform with objects. On the other hand,
medial and anterior aspects of ventral temporal cortex are
involved in processing of spatial relations, and different (visual)
environments22,30 – and thus relate to the context in which an
object is encountered.

Dimensions that structure our understanding of the manner in
which an object is manipulated should relate both to motor
aspects that are directly available from the visual input (e.g.,
object affordances such as grasp types; e.g., see refs. 59–67), as well
as to aspects that may have to be derived from the visual input
and are part of an object-specific manipulation program (e.g.,
object-related specific movements such as different wrist rota-
tions). These dimensions should be able to explain responses in
regions that relate to the processing of affordances and praxis.
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These include occipito-parietal and posterior and superior par-
ietal cortical regions (in the vicinity of V3A, V7, and IPS)
that have been shown to be important for the computation of
object grasps and object affordances59–67, and for 3D object
processing68–78. Moreover, the left IPL, which has been shown to
be causally involved in processing object-specific praxis14,51,79,80,
should also be explained by dimensions structuring manipulation
similarity.

Finally, we expect that the way in which we understand the
visual properties of an object to be organized under two major
types of object-related dimensions: those that relate to geometric
properties (e.g., shape, size, elongation); and those that relate to
surface and material properties (e.g., type of material, shininess,
color). This distinction has been shown consistently in several
single case patient studies. For instance, Patient DF presented
with a clear deficit in processing visual form in the context of
spared processing of surface and material properties81–83,
whereas patient MS presented with deficits that are specific to the
processing of surface properties, in the context of spared shape
information82,83. This distinction is further supported by neu-
roimaging studies that demonstrate that more medial aspects of
ventral temporal cortex (from lingual gyrus anteriorly to the
parahippocampal gyrus) participate in the computation of surface
and material properties of the visual stimuli82–85, whereas more
lateral and posterior aspects of ventral temporal cortex82–84,86–88,
and dorsal occipital cortex19,69,89–91 code for geometric proper-
ties. Thus, we expect the dimensions we obtain that structure
visual similarity to relate, independently, to geometric and to
surface properties and materials, and to conform to these lateral-
to-medial, posterior-to-anterior neural dissociations.

Overall, we predict that these dimensions figure critically in
how we represent manipulable objects, and potentially support
within-category distinctions. Focusing on this level of analysis will
complement the literature on object recognition that has typically
addressed conceptual knowledge at a between-domain level of
analysis.

Results
Overview. We first selected a set of 80 common manipulable
objects (see Table S1 for all the objects; see Methods). These were
selected to be representative of the different types of objects used
routinely. We then obtained similarity spaces for these 80
manipulable objects in the 3 knowledge types (N= 60), and
extracted key object-related dimensions that govern our manip-
ulable object representational space using non-metric multi-
dimensional scaling (MDS92,93; Fig. 1A; see Methods). The
selected dimensions were subsequently labelled by a second group
of participants (N= 43) in order to ascertain their interpretability
(Fig. 1B). We then tested whether these dimensions could guide
participants’ behaviors. We taught participants (N= 210) to
categorize a subset of our 80 objects in terms of their scores along
a target dimension, and tested whether their learning could be
generalized to a subset of untrained items. We considered an
untrained categorization task. However, determining which
dimension participants would use (or whether they would use one
single dimension consistently throughout the experiment) would
likely result in large differences in interpretation of the task across
subjects. Instead, we used a learning paradigm to specifically test
whether participants could reliably learn the organization of each
dimension. Finally, we tested whether the extracted dimensions
explained neural responses to manipulable objects. We developed
an event-related functional magnetic resonance imaging experi-
ment (fMRI; see Fig. 1C) where we presented a new group of
participants (N= 26) with images of the 80 manipulable objects
(see Figure S1 for examples of the images used in this

experiment). We used parametric analysis94–96, casting our key
dimensions as first-order (i.e., linear) parametric modulators in a
General Linear Model (GLM; see Fig. 1C), and asked whether the
scores of each object in each dimension were able to explain
neural responses elicited by those same objects. Using parametric
modulations is the most appropriate approach because of the
continuous nature of the scores of the objects in the dimensions
extracted with MDS. Under this approach, we can directly test
(i.e., without transforming the data) whether the responses of a
voxel are a function of the scores in the target dimension.

Extraction and labelling of key object-related dimensions. The
number of dimensions in the final MDS solution per knowledge
type was determined based on stress value (Kruskal’s normalized
stress93). The final solutions led to the extraction of 4 orthogonal
functional dimensions (stress value for the solution 0.09), 6
orthogonal manipulation dimensions (stress value for the solu-
tion 0.08), and 5 orthogonal visual dimensions (stress value for
the solution 0.09; see Fig. 2 for these dimensions; see Figure S2 for
scree plots; see Methods for details).

An initial test of our dimensionality solution is to understand
how interpretable these dimensions. We collected and collated
labels for each of the extracted dimensions. In Fig. 2, we present a
rank order distribution of the 20 most extreme objects per
dimension (10 from each extreme), along with the selected label
and the collated percent label generation score (a visualization of
the labels generated can be found in Fig. S3). For most
dimensions, participants reliably reached similar interpretations.
The most consensual labels generated for the visual dimensions
include aspects related with shape (e.g., roundedness), size, or
material properties (e.g., presence of metal); the labels for the
functional dimensions include aspects related to different types of
activities performed (e.g., cleaning vs construction), or the
context in which the objects are seen (e.g., kitchen vs. office);
and labels for the manipulation dimensions include aspects
related to grasp types (e.g., power vs. precision), different types of
motion (e.g., rotation), and object properties that relate down-
stream to object manipulation (e.g., need for force or dexterity).
There are some dimensions whose labels were not consensual
(e.g., dimension 5 of vision present label generation percent
scores of about 20%). Interestingly, these lower scores are
observed more consistently in later (e.g., the fifth dimension)
rather than earlier (e.g., the first dimension) dimensions, as this
may relate to the fact that these dimensions explain less of the
total variance. Overall, however, the reliability of the labels
attributed to each dimension seems a first pass demonstration of
the feasibility of our approach.

Object-related dimensions guide object categorization beha-
vior. A much stronger test of the centrality of these dimensions is
to understand whether they can guide behavior. Figure 3 shows
categorization performance on untrained manipulable objects, as
to whether the target objects were more categorizable as closer to
one or the other extreme object in a target dimension. To analyze
these data, we first averaged responses for untrained objects per
bin according to the score of the objects in the target dimension
(i.e., 10 bins of 8 consecutive sets of items across the length of
each dimension; see Methods). We then fitted a cumulative
Gaussian curve to the bin-specific percent categorization
responses towards the object with the highest score in the target
dimension. We expected that if the object-dimensions were
cognitively important for our ability to process and recognize
objects, percent responses towards the extreme object with
the highest score should increase as a function of the increase in
the dimensional score per bin. R-square values per participant
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were obtained as a measure of goodness of fit between the
cumulative Gaussian curve and each participant’s data.

Crucially, participants were able to generalize their learning on
trained objects to untrained objects –the extracted dimensions
have high explanatory power, indexed by high R-square values
(violin plots in Fig. 3E). Moreover, there was a trend for lower
goodness of fit for those dimensions that were lower in the stress
ranking of our MDS solution (the last dimensions of function and
vision and the second to last dimension of manipulation).
Furthermore, it is also very clear that the control conditions (i.e.,
lexical frequency and a random item ordering; see Methods) did
not explain the behavioral data, as indicated by their lack of
learning generalization (and much weaker R-square values when
compared to those obtained for the key object-related
dimensions).

Object related-dimensions predict neural responses elicited by
manipulable objects. A final stage in demonstrating that multi-
dimensionality is a signature of high-level object processing, and
specifically of manipulable object processing, is to demonstrate
that the organization of our neural representations about
manipulable objects also relies on this multidimensional space.

As can be seen in Fig. 4, our object-related dimensions can
account for neural signal elicited by viewing manipulable objects
– all key object-related dimensions show linear slope (beta) values
that significantly differ from zero. That is, all dimensions
significantly modulate the neural responses to manipulable
objects in different regions as a function of the object dimensional
values. Note that the function dimension “Cooking Vs. Sports”
shows limited coverage under a cluster-forming height-thresh-
olding of p < 0.001, and the dimension “Material properties” fails
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to survive correction at that level. Nevertheless, these two
dimensions show significant results under a slightly more lenient
cluster-forming height-thresholding of p < 0.005 (for individual
maps of all dimensions see Fig. S4; N= 26 participants).

Moreover, these object-related dimensions appear to
capture signal variability in or around similar regions, in part
within those regions that show a preference for manipulable
objects14,18–21,26,34,43–49. This is in line with the role of
dimensionality in explaining neural organizing of information:
perhaps in the same way as the different dimensions that rule the
organization of low-level sensory-motor cortices overlap spatially,
so do dimensions that rule the organization of manipulable object
knowledge in the brain.

Object related-dimensions maintain content specificity in their
neural responses. Interestingly, and as predicted, these results
show specificity as a function of the type of content these
dimensions represent. This can be seen more generally when we
observe the neural parametric maps of these dimensions grouped
by knowledge type. For instance, as a group, function dimensions
seem to collectively explain responses (i.e., their responses are in
proximity of each other) in or around pMTG and lateral occipital
cortex (LOC; see Fig. 4). Manipulation dimensions show more
proximity in their explanatory power within occipito-parietal
regions (in the vicinity of V3A, caudal IPS, and Precuneus), and
also within medial ventral temporal cortical regions, posterior
lingual gyrus and pMTG/LOC. Finally, vision dimensions col-
lectively explain responses in ventral temporal cortex and pos-
terior lingual gyrus, as well as in lateral temporal cortex, and in
more posterior dorsal occipital regions.

Specificity in the multidimensional organization can also be
observed when we look at these dimensions individually
(individual parametric F-maps against 0 – i.e., no modulation –
can be seen in Fig. S4; The F-maps for the first two dimensions of
each knowledge type are presented in Fig. 5). These maps show
particular aspects that relate to the content represented by each of
these dimensions.

The first two function dimensions (“Cooking vs. Sports” and
“Kitchen vs. Office”) explain neural responses within broader
pMTG/LOC, although the dimension that relates to the physical

context in which the objects are typically observed (“Kitchen vs.
Office”) explained activations in more inferior aspects, whereas
the dimension that relates to particular types of activity
(“Cooking vs. Sports”) explained more superior activation (see
Fig. 5). Moreover, the dimension “Cooking vs. Sports” signifi-
cantly explains activation within right lingual gyrus extending
superiorly to the cuneus. Finally, the dimension “Kitchen vs.
Office” explains signal also within the border between left IPL and
post-central gyrus, and, importantly, within the parahippocampal
gyrus.

The two manipulation dimensions also lead to different
content-specific modulatory maps. The “Power vs. Precision”
dimension is capable of explaining activity within regions of the
posterior parietal cortex – namely aIPS (extending to post-central
gyrus), and regions proximal to V3A. The dimension “Force vs
Dexterity”, shows no occipito-parietal and posterior parietal
activations, but shows bilateral ventral (both posterior within
lingual gyrus, and anterior within parahippocampal gyrus) and
lateral occipito-temporal activation (see Fig. 5).

Finally, the two selected visual dimensions also show
differences in the spatial extent of their explanatory power. The
largest clusters of activation for the dimension “Metal vs. other
materials” are medially along the collateral sulcus (posterior to
anterior) bilaterally, parahippocampal gyrus and the posterior
lingual gyrus. The dimension “Elongated vs. Round” shows a
major cluster of explained signal in lateral ventral temporal
cortex, as well as in inferior occipital cortex, and also strongly in
some aspects of dorsal occipital cortex (Fig. 5).

Overall, our results show that neural responses elicited by
manipulable objects are explainable by their scores on key object-
related dimensions particularly within regions that typically
prefer manipulable objects to other categories of objects (e.g.,
faces). Moreover, the ability of these dimensions to explain neural
responses to objects seems to be related with the kinds content
that the dimensions represent.

Discussion
Unravelling the organization of object knowledge in the brain is a
necessary step in understanding how we recognize objects6–8.
Importantly, most efforts to understand object recognition and

Fig. 1 Experimental procedures and analysis pipeline. A In order to extract object-related dimensions we collected similarity measures between our 80
manipulable objects through a pile-sorting experiment92,93. Per individual (N= 60 particpants), we obtained a piling solution for each of the knowledge
types (function, manipulation and vision) whereby objects piled together were similar to one another but different from objects in other piles. These piling
solutions were coded into dichotomous matrices that represented pile membership. Participant-specific matrices were then averaged and transformed into
a dissimilarity matrix (one per knowledge type). Finally, we used non-metric MDS92,93 to extract dimensions independently per knowledge type. B We
wanted to test whether the obtained object-related dimensions were cognitively important for perceiving objects. Firstly, we had a different set of
participants perform a label generation task for each dimension. Participants were presented with 20 objects – 10 from each of the extremes of the target
dimension – and were asked to provide up to 5 labels that best explained the difference between the two sets of objects. Label frequency was used to select
a label for each of the extracted dimensions. We further tested the importance of these object-related dimensions by having yet another set of participants
learn to categorize objects according to their scores in each of the dimensions. Participants went first through 2 experimental phases where they were
taught to categorize a subset of the objects in terms of whether they were close to one of the two extremes of a target dimension and were given clear
feedback as to the correct responses. Importantly, in a third phase, they were asked to categorize all objects, including a subset of untrained objects, and
were not given any feedback. Moreover, we added two control dimensions. In one of these controls, we took one of the real dimensions and randomly
shuffled the scores of the dimension for the individual objects. For a more stringent control, we took lexical frequency values112 – i.e., count of the times a
particular lexical entry appears in a text corpus per million – for each of the objects and rank ordered them in terms of these values. We used these
dimensions to control for reliable generalization of object-related dimensional learning to untrained items. We tested whether participants generalized their
learning to untrained items. Percent response performance towards the extreme object with the highest score in the dimension was calculated and fitted
with a cumulative Gaussian curve. C Finally, we tested whether the object-related dimensions extracted were able to explain neural responses to objects.
We presented the 80 objects in an event-related fMRI experiment using greyscale images, and participants had to categorize each image as either a
manipulable object or an animal (the catch trials). We then used parametric mapping to analyze the fMRI data, and tested whether our object-related
dimensions could explain the neural responses elicited by the 80 manipulable objects. We used parametric analysis94–96 over the fMRI data, and cast our
key dimensions as first-order (i.e., linear) parametric modulators in a General Linear Model (GLM). That is, for each stimulus in the design matrix, the
corresponding dimensional scores were assigned as modulation values.
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the organization and representation of conceptual information in
the brain, have focused on explaining between-category differ-
ences, or on finding an overarching explanation for object
representation. However, the available neuroimaging and neu-
ropsychological data1,3,4,12,16–18,20–23,29,97–99 seem to point to the
parallel need to also look into finer-grained distinctions – i.e., into
within-category organization of information. Here, we tested a
principled way to explore the multidimensionality of object
processing focusing on the category of manipulable objects.
Specifically, we extracted object-related dimensions from human
subjective judgments on a large set of manipulable objects. We
did so over several knowledge types (i.e., vision, function and

manipulation), whose selection was motivated by the typical
characteristics that best describe these objects. Our results
demonstrate that these dimensions are cognitively interpretable,
that they can guide our ability to categorize and think about
objects, and that they explain neural responses elicited by the
mere visual presentation of these objects. Moreover, our results
show that these dimensions are highly generalizable across indi-
viduals and modalities of presentation of the stimuli (words vs.
pictures), suggesting some level of universality.

Our data seems to conform to some of the conceptual and
neural patterns we predicted for the different knowledge types. As
expected, dimensions pertaining to function knowledge revolved

Fig. 2 Interpretability of the objected-related dimensions. Here, we present the selected 15 dimensions that govern the internal representation of our set
of manipulable objects. Per dimension, we present the 20 objects with the most extreme scores (10 from each extreme). Labels were then selected based
on the frequency of label generation by the participants. On the left side of each dimension, we present the collated selected label, as well as the percent
generation score for that label (see Figure S3 for the label frequency plots).
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Fig. 3 Supervised learning of object-related dimensions in a categorization task. A–D Here we show percent response towards the object with the
highest score for each of the object-related dimensions and the two control dimensions (i.e., towards the extreme with the highest score). Percent
responses were averaged within each of the ten bins, and a cumulative Gaussian curve was fitted on the data of each individual. The presented plots are
based on the average of all participants. Error bars correspond to SEM (N= 10 participants per dimension in a total of 270 participants); depicted
cumulative Gaussian curve was fit on the average percent results for visualization purposes; E–G Violin plots of the R-square values of the Gaussian fit for
each dimension for each participant.
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around major action goals and the contexts in which objects are
usually encountered. Moreover, these dimensions were able,
collectively, to explain neural responses in pMTG/LOC, as these
regions code for object-related action knowledge and
meaning53–56,58. A particular result obtained in our parametric
modulation analysis relates to a superior-to-inferior dichotomy
within pMTG/LOC in the explanatory power of the first two
function dimensions. The “Kitchen vs. Office” dimension –
putatively related with context – explained activations in more
inferior aspects, whereas the “Cooking vs. Sports” dimension –
more related with particular types of activity – explained more
superior activation. Interestingly, pMTG/LOC has been shown to

be topographically organized in a superior-to-inferior gradient
that codes for sociability versus transitivity58 – perhaps spec-
ulatively, cooking and playing sports may reflect more action-
related sociability than the context in which actions are per-
formed (kitchen or an office). Related with this, and again as
predicted, activity within parahippocampal gyrus, putatively
coding for spatial relations between objects and layout
information22,30, was modulated by object scores in the context-
related “Kitchen vs. Office” function dimension. There were,
however, a couple of effects that were not expected for the
function dimensions. Specifically, the dimension “Cooking vs.
Sports” significantly explained activation in right lingual gyrus
extending superiorly to the cuneus. Interestingly, studies that
focus on the mere presence of other objects during a transitive
action (i.e., contextual objects), and the amount with which
these objects relate to the goal of the actor, lead to activations
around the regions obtained here57,100,101, which could arguably
be what leads to a modulatory effect in this region for this
dimension. Finally, signal in the left IPL seems to be modulated
by the scores of the “Kitchen vs. Office” function dimension. This
region is known to be important for praxis and object
manipulation14,44,45,51,79,80, and may require information about
function for accessing the full motor program associated with a
target manipulable object14,16,17. Thus, the fact that object func-
tion is needed in order to access object-specific motor programs
may potentially explain our results.

The content covered by manipulation dimensions also con-
forms, in part, to what was predicted, in that we obtained
dimensions that relate strongly to object affordances – in parti-
cular, the type of grasp afforded by the manipulable objects used
– and to motor aspects that are not necessarily directly available
from the inspection of an object (e.g., “Rotation”). Thus, posterior
parietal cortex and dorsal occipital cortex, including V3A, IPS
(extending to post-central gyrus), and Precuneus – areas involved
in hand shaping for grasp, grasp planning, processing different
types of grip formations32,44,59,60,62,64,90,102–106 (but see
refs. 60,61), and coding for shape properties and 3D representa-
tions of objects independently of action70,72–75,82,89,107 – were
predictably explained by manipulation dimensions, and especially
the “Power vs. Precision” dimension. Notably, several aspects
regarding the manipulation dimensions were not in line with our
initial expectations. Firstly, one of the major dimensions of
manipulation – “Dexterity vs. Force” – may be conceived more of
as a dimension that is important for interacting with an object
that is less motor-related than the other dimensions obtained. In
fact, and perhaps speculatively, the involvement of ventral regions
under this dimension (both posteriorly within lingual gyrus, and
anteriorly within parahippocampal gyrus), is consistent with the
importance of surface and material properties in deriving the
weight of an object108, and thus the amount of force or dexterity
needed to act with these objects109. Secondly, we predicted
manipulation dimensions would explain responses in more
anterior areas of parietal cortex, and namely the left IPL, as this
region is causally involved in the retrieval of praxis14,44,45,51,79,80.
Nevertheless, none of the manipulation dimensions obtained was
able to explain responses within left IPL. This unexpected result
may reflect the fact that the dimensions obtained relate to pie-
cemeal aspects of the full-blown motor program associated with
an object (e.g., grasp, wrist rotation), whereas left IPL seems to
be engaged when retrieving an object’s unique full motor
program51,80.

Finally, regarding visual dimensions, we did observe the pre-
dicted major dissociation between those dimensions that relate to
geometric properties (e.g., dimensions “Elongated vs. Round” and
“Size”) and those that mirror material properties of objects (e.g.,
dimension “Metal vs other materials”). This dissociation was also

Fig. 4 Neural effects of the object-related dimensions. Here, we show an
overlap map with all object-related dimension (F-maps per dimension
against zero – i.e., against no modulation) per knowledge type, each
dimension color coded by the colors in Fig. 3. Black corresponds to areas
where at least two individual dimensions overlap (all individual F-maps
cluster-forming height-thresholded at p < 0.001 – except for the dimensions
“Cooking vs. Sports” and “Material properties” that are cluster-forming
height-thresholded at p < 0.005 – and all corrected at FDR p < 0.05; all
N= 26 participants).
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reflected in the fact that the neural responses explained by the
scores within each dimension followed the lateral-to-medial
occipito-temporal gradients for geometric and surface related
content82–84. Specifically, the largest clusters of activation for the
dimension “Metal vs. other materials” are medially along the
collateral sulcus (posterior to anterior) bilaterally, para-
hippocampal gyrus and the posterior lingual gyrus. As discussed,
these regions have been associated with the processing of material
and surface properties of objects82–85. The dimension “Elongated
vs. Round” shows a major cluster of explained signal in more
lateral of ventral temporal cortex. Specifically, LOC is a center for
shape processing, and its disruption severely affects shape
processing82–84,86–88. Moreover, this dimension strongly

explained neural responses within aspects of dorsal occipital
cortex. As a group, both these lateral and ventral temporal, as well
as dorsal occipital regions are exactly those that have been shown
to be coding for object roundedness and elongation19,69,89–91.

One important aspect to discuss relates to whether these
dimensions (especially dimensions from different knowledge-
types) correlate in our environment and in the results reported
herein. Indeed, potential correlations between such dimensions
are not only a collateral effect of the complexity of the world that
surrounds us, and of information that is not strictly sensory, but
are also what potentially defines the nature of object-related
information – i.e., that it is multimodal, complex, mid-to-high
level object information. Importantly, a small number of our

Fig. 5 Content specificity in the neural responses. Here, we show modulatory effects (i.e., the beta values of each dimension that are significantly different
from zero) of the first two dimensions of each knowledge type (all individual F-maps cluster-forming height-thresholded at p < 0.001 – except for the
dimension “Cooking vs. Sports that is height-thresholded at p < 0.005 – and corrected at FDR p < 0.05; all N= 26). In yellow we present the first
dimensions of each knowledge type (“Cooking vs. Sports”; “Power vs. Precision”; “Metal vs. Other Materials”), whereas in light blue we present the second
dimensions of each knowledge type (“Kitchen vs. Office”; “Dexterity vs. Force”; “Elongation vs. Round”). Each map shows voxels where signal is explained
by the dimension when compared to no modulation (i.e., when compared to 0). Black corresponds to areas of overlap between the two dimensions
presented per map.
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dimensions do show moderate-to-high correlations with one
another (see Fig. S5). This may be a potential limitation of this
study, in that these correlations may mean that there is shared
information between the dimensions. However, and perhaps most
importantly, these correlations are a reflection of real-world
natural co-occurrences – e.g., most kitchen utensils are made of
metal, and the correlation between these two dimensions reflects
that. Moreover, there is also a large degree of independence
between even the most correlated dimensions, suggesting that this
sharedness of information between the dimensions may be
minimal.

Beyond the neural and content-specific results described above,
a major aspect of our data relates to the ability of these dimen-
sions to predict behavioral categorization judgements. Specifi-
cally, we trained participants to categorize objects while implicitly
using a metric based on (one of) these dimensions. Critically, we
showed that their learning could be generalized to untrained
items (cf. the lack of generalization for our control dimensions).
These data strongly suggest the validity of these dimensions in
organizing the conceptual space of manipulable objects, as well as
that of our approach to understanding the multidimensionality of
object space. However, the use of a learning paradigm, rather than
a less constrained paradigm where participants were free to use
any dimension, is a limitation of our study, and may raise doubts
as to the centrality and spontaneity of these dimensions to
manipulable object processing. We believe, however, that in order
to understand the role of each of these dimensions for object
categorization and processing we needed to direct participants,
implicitly, to our target dimensions, given the multitude of
dimensions we obtained per knowledge type. Moreover, some of
our data may help address this limitation. Specifically, we do not
obtain generalization effects for the lexical frequency control
dimension – a major linguistic dimension. Furthermore, we see a
clear trend for stronger generalization effects for the dimensions
that show higher stress values in the MDS solutions. These facts,
and particularly the latter one, strongly suggests that specificity in
the learning and generalization to novel objects is unique to the
key object-related dimensions and not just to any dimension, and
thus that these dimensions differentially structure how we think
about manipulable objects. That is, transfer of the learning is
not uniform but rather correlates with how central that dimen-
sion is for understanding how we represent objects in each
knowledge type.

Finally, not only is our data in line with what has been obtained
when trying to understand overall multidimensionality of object
processing13,40,110, but they also further our understanding of the
fine-grained properties of object processing that was lacking
hitherto. Several approaches have demonstrated, as we have here,
that multidimensionality is central for object processing13,40,42.
These studies have suggested a series of dimensions that underlie
object representations. Interestingly, when we look at some of the
individual dimensions proposed by these groups (e.g., round;
sport-related13) they do relate to those that we have obtained
here. Moreover, the nature of the dimensions reported here
potentially relates to mid-level object properties – and thus are
probably similar to what Fernandino and collaborators42 call
“experiential features” (notwithstanding potential differences in
the format of these representations; e.g., modal or amodal).
However, one aspect that differentiates these previous research
efforts and what we present here is that we focus on within-
category processing. Interestingly, some (perhaps even most) of
the dimensions obtained by these authors do relate to domain
(e.g., Tool-related; Animal-related; Body-part-related13). This
brings about two central issues: 1) that domain seems to be a
major principle of organization; and 2) that the presence of these
categorical dimensions may exhaust much of the variance present

in the data13,40,42. Overall, these issues call for within-domain
scrutiny of the multidimensionality of mental representations and
object processing. Here, we went further and explored the finer-
grained details of object processing at a within-category level, and
showed content-specific dimensions that guide the way we per-
ceive manipulable objects beyond (and in a way independently of)
the macroscopic differences between domains. These content-
specific dimensions are central to the representations we build of
the objects we perceive. We can then use these representations in
the process of identifying objects and compare them to the object
representations we have stored in our long-term memory.

Overall, then, we show that object-related dimensions,
extracted from the subjective understanding of a large group of
individuals over a large set of manipulable objects, can guide our
behavior towards these kinds of objects and can explain manip-
ulable object-specific neural responses, and potentially the finer-
grained organization of object-content in the brain, suggesting
that multidimensionality is a hallmark of neural and conceptual
organization.

Methods
Participants. A total of 339 individuals (305 women) from the
community of the University of Coimbra participated in the
experiments (age range: 18–41): 60 in the object similarity sorting
task, 43 in the label generation task (23 were presented with
words and 20 with pictures), 270 in the supervised learning
categorization task, and 26 in the fMRI task. All experiments were
approved by the ethics committee of the Faculty of Psychology
and Educational Sciences of the University of Coimbra, and fol-
lowed all ethical guidelines. Moreover, participants provided
written informed consent, and were compensated for their time
by receiving either course credit on a major psychology course or
financial compensation. All ethical regulations relevant to human
research participants were followed.

Stimuli. We first selected a set of 80 common manipulable
objects (see Table S1 for all the objects; see Figure S1 for examples
of the images used). These were selected to be representative of
the different types of manipulable objects that we use routinely.
For Experiments 1 and 3 we used words to represent the object
concepts, whereas for Experiment 4 we used images. We used
both images and words separately for Experiment 2. Images were
selected from the world wide web. We used an imaging editing
software to crop the images, extract any background, and gray
scale and resize the images to a 400-by-400 pixels square. Pre-
sented images subtended approximately 10° of the visual angle.
We selected 10 exemplars per object type in a total of 800 images.
For Experiment 4, we additionally selected 20 images of animals
to function as catch trials.

Similarity ratings and dimension extraction. We first obtained
similarity spaces for the different object-knowledge types tested
(visual information, functional information and manipulation
information). We presented participants with words referring to
our 80 manipulable objects and asked them to think about how
similar these objects were in each of the knowledge types (e.g.,
function). We used an object sorting task to derive dissimilarities
between our set of objects111 Fig. 1A), because sorting tasks have
been shown to be a highly efficient and feasible way to obtain
object similarities from large sets of objects. For each knowledge
type, each participant was asked to sort all 80 objects into dif-
ferent piles such that objects in a pile were similar to each other,
but different from objects in other piles, on the target knowledge
type. Each participant went through the three knowledge types
independently (order counterbalanced across participants) – that

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05323-x

10 COMMUNICATIONS BIOLOGY |           (2023) 6:940 | https://doi.org/10.1038/s42003-023-05323-x | www.nature.com/commsbio

www.nature.com/commsbio


is, each participant was asked to judge the similarity of the objects
3 different times in a row (one for each knowledge type). We used
words instead of pictures to avoid sorting based on exemplar-
specific similarities. The sorting was performed in Microsoft
power point. The final sorting was saved and later analyzed.

Label generation for extracted dimensions. To test for inter-
pretability of the extracted dimensions, we asked participants to
generate labels for the 15 key dimensions. Each participant went
through all of the 15 key dimensions (order of dimensions ran-
domized for each participant). For each dimension, participants
were presented with the 20 most extreme objects of that
dimension – 10 pertaining to each one of the extremes of the
target dimension – rank ordered by the value on the target
dimension. Pictures or words were presented such that in one
side of the screen we lined up the 10 objects of one of the
extremes, and on the other side of the screen the other 10 extreme
objects of the dimension. At the center of the screen, we pre-
sented ellipsis between parenthesis to convey continuation and
the presence of other objects in between. Participants were then
told that they could generate up to 5 labels per dimension that, in
their view, best explained the difference between the objects at the
two extremes (see Fig. 1B). Participants either saw images of the
objects or words referring to the objects throughout the experi-
ment. Participants were told to which object knowledge the
dimensions belonged to (i.e., vision, manipulation, or function).
We used these two modalities of presentation to avoid
presentation-specific results. We focused on which labels were
more consensual across participants in the label generation task
by collating the labels generated by the participants, and ana-
lyzing frequency of production of each label (see Fig. S3 for the
labels generated for each dimension).

Supervised learning of object-related dimensions. In this task,
we taught participants to categorize a subset of our 80 objects in
terms of their scores along a target dimension, and then tested
whether their learning could be generalized to a subset of
untrained (i.e., the remaining) items. We first divided the
dimensions into 10 bins of 8 objects each, defined according to
the values of the target dimension. We used the most extreme
objects at each end of the dimension (i.e., those with the highest
and the lowest score in the dimension) as anchors in the cate-
gorization tasks. Per trial, participants were asked to categorize, as
fast as possible, the presented target objects (in a word format) as
to whether they were closer to one or the other extreme object of
the target dimension (e.g., pepper grinder or horn for the func-
tion dimension “Cooking vs. Sports”). To do so, participants had
to press the right or left buttons of a button box – response
assignment was randomized across participants. Participants were
not told the labels of the target dimension, and were only
informed as to whether the dimension was related to vision,
function or manner of manipulation of the target objects.

The experiment was divided in three phases (in Fig. 1C, we
show the different phases of this experiment). In the first phase,
we wanted participants to learn to associate objects with high or
low dimension scores with the correct extreme. Thus, we selected
4 items from each of the 4 most extreme bins (i.e., bins 1, 2, 9, and
10), and 2 from each of the third most extreme bins (i.e., bins 3
and 8), in a total of 20 objects – i.e., we selected objects that were
most strongly related with the two extremes of the dimension in
order to establish a robust understanding of the target dimension.
These were selected randomly within each bin per each
participant. In each trial of the first phase of the experiment,
participants were first presented with the words referring to the
two extreme objects in the upper corners, according to the

response assignment, and a fixation cross for 500 ms. We then
presented the word referring to the target object at fixation, along
with the words referring to the two extremes of the target
dimension (in the upper corners of the screen). This remained on
the screen for 2.5 s after which the correct response was presented
right below the target object. Specifically, participants were
presented with a sentence that said that the object presented was
closer to one of the extremes. This sentence remained on screen
for another 2.5 s. Participants were asked to pay attention to these
sentences and learn the assignments between objects and extreme
anchors. Each of the 20 objects was repeated three times in a total
of 60 trials. Thus, in phase one, participants were not required to
respond, but just to learn the associations of each of the presented
objects with the extremes of the dimension.

In phase two, we wanted participants to continue learning the
associations between target objects and the extreme anchors, and
also to extended the learning set to all bins. Thus, we selected 5
items from each bin – including the 20 items used in phase one.
In this phase, participants were presented again with the target
object (3 repetitions, in a total of 150 trials), but this time were
required to respond and categorize the target objects as being
close to one of the extremes (e.g., closer to the pepper grinder or
the horn). After responding, participants were given feedback as
to whether they were correct or incorrect. The trial structure was
in all similar to the one in phase 2 except that the object was
presented for 2.5 s or until a response was obtained, and this was
immediately followed by feedback as to whether the response
given was correct. The feedback stayed on screen for 2 s.

Finally, in phase three, we wanted to test whether the learning
could be generalized to untrained items. Thus, all items were used
in this phase of the experiment (i.e., the 50 trained items and 30
untrained items – 3 from each of the ten bins) and were repeated
6 times (in a total of 480 trials). This phase of the experiment was
in all equal to phase 2, except that there was not feedback given –
that is, after categorizing a target object as to whether it was closer
to one or the other extreme of the target dimension, participants
would start the next trial.

All 15 key object-related dimensions were tested in this
experiment (each participant as tested on only one dimension; 10
participants took part in the experiment for each dimension).
Moreover, we added two control dimensions. In one of these
controls, we took one of the real dimensions (the first function
dimension) and randomly shuffled the scores of the dimension
for the objects. For the other control, we took lexical frequency
values112 for each of the objects and rank ordered them in terms
of these values. Each of these controls was run in 30 participants
(i.e., 10 associated with each knowledge type). We used these
dimensions to control for reliable generalization of object-related
dimensional learning to untrained items.

fMRI object categorization task. The fMRI task consisted of 1-3
sessions spread across separate days (due to the onset of COVID-
19 pandemic, only 19 subjects completed all 3 sessions, with 5 & 2
remaining subjects completing 2 & 1 sessions, respectively). Each
session contained 3 event-related runs (duration: 456 TRs
(repetition time; 912 s), resulting in 3-9 completed runs per
subject). In each run, subjects centrally fixated gray-scaled images
of: 1) Manipulable objects (160 trials per run; 1 exemplar for each
of the 80 objects was randomly selected from a larger stimulus set
of 800 images (80 object identities x 10 exemplars each), and
presented twice per run; and 2) ‘Catch’ animal stimuli (8 trials per
run; 8 unique animal exemplars randomly drawn from a set of 20
images). Trial length was 4 s (2 s image presentation + 2 s fixa-
tion) and 54 null events (4 s fixation) were also included in the
design. Because each object image was presented twice per run,
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randomization of trial order was performed for the first and
second half of each run separately (i.e., to avoid strong recency
effects where some items may, by chance, be repeated within a
much smaller time period than others), where 80 object stimuli
and 50% of catch trials and null events were presented in each
half. Subjects were instructed to maintain fixation continuously (a
fixation dot appeared in the center of the screen for the entirety of
the run) and to make a simple button-press judgment for each
image trial (object or animal).

MRI acquisition. Scanning was performed with a Siemens
MAGNETOM Prisma-fit 3 T MRI Scanner (Siemens Healthi-
neers) with a 64-channel head coil at the University of Coimbra
(Portugal; BIN - National Brain Imaging Network). Functional
images were acquired with the following parameters: T2*
weighted (single-shot/GRAPPA) echo-planar imaging pulse
sequence, repetition time (TR)= 2000 ms, echo time (TE)= 30
ms, flip angle = 75°, 37 interleaved axial slices, acquisition
matrix= 70 × 70 with field of view of 210 mm, and voxel size of
3 mm3. Structural T1-weighted images were obtained using a
magnetization prepared rapid gradient echo (MPRAGE)
sequence with the following parameters: TR= 2530 ms, TE=
3.5 ms, total acquisition time = 136 s, FA= 7°, acquisition
matrix = 256 × 256, with field of view of 256 mm, and voxel size
of 1 mm3.

Statistics and reproducibility. The size of each sample corre-
sponds to typical samples sizes of these kinds of experiments (e.g.,
see ref. 33).

Dimension extraction. In Fig. 1A, we show how data extracted
from the piling task was used to produce dissimilarity matrices.
Per participant, we obtained three (vision, function, and manip-
ulation) 80 by 80 dichotomous (0 and 1) matrices that coded for
membership of each pair of objects to the same sorting pile (i.e., if
objects i and j were on the same pile, the value of the cell ij was 1,
else it was 0). These individual matrices were then averaged over
the participants and transformed into 3 final dissimilarity
matrices – one per knowledge type.

The dissimilarity matrices were analyzed with the use of non-
metric multidimensional scaling using Matlab. The number of
dimensions to be extracted was determined based on stress value
(Kruskal’s normalized stress93 – i.e., the fit between the distances
among the objects in the dimensional structure obtained with n-
dimensions, and the scores in the input matrices. We obtained
stress values for the MDS solutions with different numbers
of dimensions. Stress values below 0.1 are considered
acceptable93,113, suggesting that the dimensional solution, and
estimated distances between objects, reasonably fits with the
dissimilarities from the input matrix, while still imposing good
dimensionality reduction. As such, we selected the first solution
below stress values of 0.1 (see Fig. S2 for scree plots for each of
the knowledge types).

Analysis of supervised learning data. To analyze the data of phase
three, we first averaged responses per bin (3 untrained items
repeated 6 times). For each participant and dimension, we plotted
the percent responses towards the object with the highest score
along that dimension as a function of the ten bins and fit a
cumulative Gaussian to these data following the equation:

y ¼ 1
2
erfc

�σ x � μ
� �

ffiffiffi
2

p
� �

where y is the percent responses, x is percentile bins, σ is the slope
of the cumulative Gaussian, μ is the midpoint of the curve, and

erfc is the complementary error function. The cumulative
Gaussian spans reports from 0% (lower asymptote) to 100%
(upper asymptote). We expected that if the object-dimensions
were cognitively important for our ability to process and recog-
nize objects, then participants would be able to generalize their
learning of the target dimensions to untrained items – thus,
percent responses towards the extreme object with the highest
score should increase as a function of the increase in the
dimensional score per bin. R-square values per participant were
obtained as a measure of goodness of fit between the cumulative
Gaussian curve and each participant’s data. We used a liberal
R-square cutoff value of 0.30. This specific cutoff is necessarily
arbitrary, but we used this liberal criterion to allow us to deter-
mine if any given dimension is reasonably predictive of each
participants’ behavior.

MRI preprocessing, and analysis. Data were preprocessed with
SPM12 (i.e., slice-time correction, realignment (and reslicing),
anatomical co-registration and segmentation, normalization, and
smoothing). Analysis was performed on smoothed, normalized
data (normalized to MNI template; 3 mm isotropic voxels).
General linear model (GLM) estimation was performed in SPM12
(data were high-pass filtered (256 s) and a first-order auto-
regression model (AR(1)) was used to estimate serial time-course
correlations). For each subject, a GLM was estimated separately
for each knowledge type because mathematically these dimen-
sions are necessarily uncorrelated with each other (i.e., MDS
produces uncorrelated dimensions). Each dimension/modulator
was first scaled to an interval of 0-1 (due to the large differences
in original scales of the key dimensions (ranging between −0.42
to 0.65) and then mean-centered, as is typical for parametric
analysis114. We ensured that serial orthogonalization of mod-
ulators was not implemented, so that all modulators would
compete equally for model variance (rather than in the case of
serial orthogonalization, assigning all shared variance to the first
modulator, with subsequent modulators competing for the
remaining unexplained variance, and therefore strongly biasing
effects towards the first modulator, at the expense of all others;
note that the lexical frequency dimension was also included as a
modulator and as such, key dimensions only account for variance
not explained by lexical frequency). The following regressors
comprised the design matrix for a given run: 1 regressor for
manipulable object stimuli (i.e. box-car regressor for all tool sti-
mulus events, convolved with the SPM canonical haemodynamic
response function), N key dimension modulators (e.g. vision
dimensions 1-5), 1 lexical frequency modulator, 1 catch stimuli
regressor (all catch stimuli; modeled but not analyzed), N ‘pla-
ceholder’ modulators for the catch regressor (i.e. a matched
number of dimension modulators were required here for design
balance, but these had no modulatory effect as all values were set
to zero), 6 head-motion regressors (plus an intercept regressor at
the end of the full design).

The resulting beta maps for each of the dimensions describe
the extent to which object stimulus responses vary as a function
of item position along a particular dimension. Importantly,
because the obtained dimensions reflect an arbitrary directional
ordering of items, and therefore are not inherently uni-directional
(i.e., across repeated non-metric MDS solutions (with random
initializations), relative item-to-item distances are stable but the
overall item ordering can be reversed in either direction), both
positive and negative slope effects here reflect sensitivity to a
given dimension, based on either possible directional ordering.
Thus, contrast images per dimension (contrast vector with 1 for
the dimension modulator, 0 for all other regressors) were then
entered into a group-level F-test to accommodate 2-tailed effects
(i.e., positive or negative slopes that differed from zero). F-maps
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were FDR cluster-corrected (p < 0.05) with a height-threshold of
p < 0.001 (but due to limited coverage for the first function
dimension and fourth vision dimension, a slightly more lenient
height-threshold of p < 0.005 (FDR cluster-corrected p < 0.05) was
used, as previously motivated (e.g., see refs. 115–117). In short, the
resulting F-maps show which brain areas demonstrate modula-
tion sensitivity to each specific dimension.

For easy visualization of brain coverage associated with the
dimensions of a particular knowledge type (see Fig. 4), a
composite dimension map was generated where supra-threshold
voxels for each dimension were coded with a unique integer/color
(and voxels with overlapping coverage from 2+ dimensions were
coded with a different integer/colored black) Similar composite
maps for the first 2 dimensions of each knowledge type were also
created (see Fig. 5). All maps were corrected for multiple
comparisons (cluster-forming threshold p < 0.001 – or p < 0.005
for “Cooking vs. Sports” and “Material properties” – and FDR
correction threshold p < 0.05). All maps were projected to an
inflated surface with the CONN toolbox118.

For reproducibility we provided the behavioral and fMRI data
obtained. See data availability statement below.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data can be found at https://osf.io/jzuf3/ (https://doi.org/10.17605/OSF.IO/
JZUF3)119.

Code availability
Custom code used can be found at https://osf.io/jzuf3/ (https://doi.org/10.17605/OSF.IO/
JZUF3)119.
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