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A B S T R A C T

Craters are one of the most important morphological features in planetary exploration. To that extent,
detecting, mapping and counting craters is a mainstream process in planetary science, done primarily manually,
which is a very laborious, time-consuming and inconsistent process. Recently, machine learning (ML) and
computer vision have been successfully applied for both detecting craters and estimating their size. Existing
ML models for automated crater detection have been trained in specific types of data e.g. digital elevation
model (DEM), images and associated metadata from orbiters such as the Lunar Reconnaissance Orbiter Camera
(LROC) etc. Due to that, each of the resulting ML schemes is applicable and reliable only to the type of data
used during the training process. Data from different sources, angles and setups can compromise the reliability
of these ML schemes. In this paper we present a flexible crater detection scheme that is based on the recently
proposed Segment Anything Model (SAM) from META AI. SAM is a promptable segmentation system with
zero-shot generalisation to unfamiliar objects and images without the need for additional training. Using SAM,
without additional training and fine-tuning, we can successfully identify crater-looking objects in various types
of data (e,g, raw satellite images Level-1 and 2 products, DEMs etc.) for different setups (e.g. Lunar, Mars) and
different capturing angles. Moreover, using shape indexes, we only keep the segmentation masks of crater-like
features. These masks are subsequently fitted with a circle or an ellipse, recovering both the location and the
size/geometry of the detected craters.
1. Introduction

Impact craters are circular–elliptical depressions on planetary sur-
faces caused by the impact of meteors (Melosh, 1989). The size and
the shape of craters depend on numerous factors (impact angle, com-
position of the target body, size and type of meteor etc. (Melosh,
1989)), giving rise to a plethora of crater types with varying diame-
ters (Salamunićcar et al., 2012). Impact craters are amongst the most
important morphological features in planetary exploration (McSween
et al., 2019), and they have been extensively used for inferring the
composition and structure of celestial bodies (Lemelin et al., 2019).
Craters act as natural excavation sites to study stratigraphy, strata
and stratification, providing pivotal information for the geology and
landscape evolution of the planet (Huang et al., 2018). The distribu-
tion of crater sizes has also been widely applied for estimating the
age of planetary surfaces, through calculation of crater size-frequency
distribution (CSFD) and chronostratigraphy (Hartman and Neukum,
2001). Apart from CSFD, the shape and the erosion of the crater have
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also been shown to have a causal relationship with the age of the
impact (Yang et al., 2020). Moreover, impact craters can potentially
become important sources of natural resources, such as frozen water in
the permanently shadowed craters on the Moon (Gläser et al., 2014).
Lastly, crater spatial distributions are important for terrain-relative
navigation (Emami et al., 2019; Downes et al.; Silvestrini et al., 2022);
and for selecting landing sites for spacecrafts and landers (Grant et al.,
2018).

To that extent, detecting and counting craters is of great importance
in planetary science (Silburt et al., 2018). Manually mapping craters
via visual inspection is a very laborious and time-consuming process,
that is impractical to be scaled up for large areas of investiga-
tion (Silburt et al., 2018); and cannot be utilised for real-time crater
detection (Downes et al.). Manual crater detection can also be subjected
to human errors and biases that can lead to up to 40% of disagree-
ments (Robbins et al., 2014b). The above led to the development of
semi-automatic crater detection algorithms (CDA) to allow for large
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scale real-time crater detection, and reduce human biases (Silburt et al.,
2018).

Automatic crater detection is a challenging scientific endeavour due
to the wide variety of impact craters, the diversity of input data, and the
level of background noise (Emami et al., 2019). Various methodologies
have been suggested for CDA over the years. From convolutional neural
networks (CNN) combined with Canny edge detection (Robbins et al.,
2014a), to hybrid supervised–unsupervised machine learning (Emami
et al., 2019), and using Adaboost with support vector machines for
detecting craters on Mars (Wetzler et al., 2005). In Salamunićcar et al.
(2011) 77 CDA methodologies are outlined, divided in image-based
and digital elevation model (DEM)-based approaches (Di et al., 2014).
With the recent advancements in deep learning, U-nets (a deep learning
framework based on convolutional neural networks originally sug-
gested as a segmentation algorithm in medical imaging (Ronneberger
et al., 2015)) have been successfully applied for detecting and estimat-
ing the size of impact craters. U-nets have been trained using Lunar
DEM (Silburt et al., 2018) and photo images from the Lunar Reconnais-
sance Orbiter Camera (LROC) (Downes et al.). In Wetzler et al. (2018),
a set of U-nets are trained using labelled photos from the Mars express
mission. In Lee (2019), topography data from Mars are used to train
U-nets. In Yang et al. (2020) data from Chang’E-1 and E-2 are used
for training ML for detecting craters, and approximate their age based
on their morphology. A segmentation approach capable of detecting
and mapping the shape of a crater is also suggested in Mohamad et al.
(2019). The method is based on Mask Region Convolutional Neural
Networks (MaskRCNN Kaiming et al., 2017) trained using orthoimages
of DEM data from the Moon. All these methods perform sufficiently well
when applied to data similar to the ones that they have been trained
for. Although models trained using DEM data from the Moon showed
promising results when applied to DEM data from Mercury (Silburt
et al., 2018), nonetheless using ML-based CDA trained with a specific
type of data to a different type of inputs is not advisable. As stated
in Wetzler et al. (2018) regarding using U-nets trained for identifying
craters on Mars, small differences between Mars and other celestial bod-
ies are enough to make this model unreliable outside of Mars (Wetzler
et al., 2018). To that extent, an algorithm that can identify craters in a
flexible manner, without being limited by the celestial body, data type,
or measurement setup, would be highly valuable (Silburt et al., 2018).

In the current paper we present a flexible approach for identifying
craters using the Segment Anything Model (SAM) (Kirillov et al., 2023).
SAM is a foundation model developed by META for computer vision
and image segmentation. SAM can segment (cut-out) any morpholog-
ical feature in any given image identifying which pixels belong to an
object. Foundation models like SAM are generalised ML models trained
in large datasets, allowing them to be fine-tuned for specific tasks
with a relatively small number of training samples. SAM was trained
with over 1 billion masks on non astronomical images to segment
images in a prompt-able way (i.e. using a compressed representation
of images) allowing transfer zero-shot to new image distributions. Via
this approach, regardless of the type of the data (e.g. photos, DEM,
spectra, gravity etc.) or the celestial body (e.g. Moon, Mars etc.) and the
measurement setup, the data will be segmented into different categories
and classes. Subsequently each mask is further classified into crater
and no-crater based on geometric indexes that evaluate how circular or
elliptical is the investigated mask. Via numerous examples, we illustrate
the effectiveness of this processing pipeline to different sets of data
from different planetary bodies and measurement setups. The results
highlight the potential of foundation segmentation models for crater
identification and pattern recognition in planetary science in general.

2. Methodology

The processing pipeline is composed of three sequential steps. Ini-
tially, the input image undergoes segmentation using SAM (Kirillov
et al., 2023). SAM was not fine-tuned with additional images; we use
2

the model as presented and described in Kirillov et al. (2023). There are
no restrictions regarding the celestial body, data type, resolution etc.,
any type of imagery data can be used as input. Next, each segmentation
mask is analysed to determine its shape. Any masks that are not
identified as circles or ellipses are filtered out, and the remaining masks
are subjected to further processing to extract their boundaries and fit
an ellipse to their edges. Finally, a post-processing filter is employed to
eliminate any potential duplicates, artefacts, or false positives.

2.1. Segment Anything Model (SAM)

Image segmentation is a branch of computer vision and digital
image processing aiming at segmenting a given image into several
masks (Szeliski, 2011). Numerous algorithms have been suggested for
image segmentation throughout the years from using unsupervised
clustering methods such as K-means (Dhanachandra et al., 2015) to
histogram-based methods (Qin et al., 2011) and data coding and com-
pression (Ma et al., 2007). In recent years, deep learning has been
extensively used for image segmentation with impressive results com-
pared to previous approaches (Farabet et al., 2013; Chen et al., 2018;
Kim et al., 2021; Kexin and Chenjun, 2020; Yang et al., 2018; Noh
et al., 2015). Deep learning has become the standard in remote sensing
segmentation in geosciences (Buscombe and Goldstein, 2022; Chen
et al., 2020; Collins et al., 2020; Gupta et al., 2021; Zhang et al., 2018),
and for real time identification of objects in Martian terrain for safe
rover navigation (Liu et al., 2023a; Goh et al., 2022; Liu et al., 2023b).

Foundation deep learning schemes (Sofiiuk et al., 2022; Qin et al.,
2022) have been developed for interactive image segmentation trained
with large and diverse image databases (COCO Lin et al., 2014, LVIS
Gupta et al., 2019 etc.). In April 2023, META released their own model
named ‘‘Segment Anything Model’’ (SAM) (Kirillov et al., 2023), a deep
learning image segmentation that outperforms previous approaches.
SAM has been trained in a high-quality dataset (SA-1B Kirillov et al.,
2023) consisting of 11 millions images from a provider that works di-
rectly with photographers (Kirillov et al., 2023), and billions of masks,
significantly larger than previous databases (Kirillov et al., 2023). SAM
consists of a computationally expensive deep image encoder that is
based on Masked Autoencoders (He et al., 2022) and a pretrained vision
transformer model (Dosovitskiy et al., 2021). The image embedding
produced from the image encoder is further enriched with a variety
of input prompts such as clicks, selected boxes and text (Kirillov et al.,
2023), or can use a dense grid of points to perform segmentation in an
automatic manner. The embeddings are subsequently given as inputs to
the mask decoder (based on a vision transformer model) that is trained
to map the causal relationship between given embeddings and their
associate segments/masks. SAM demonstrates excellent performance in
a wide range of images from databases significantly different compared
to its original training dataset SA-1B (Kirillov et al., 2023). The gener-
alisation capabilities of SAM make it a potential candidate for CDA,
overcoming the limitations of data-specific CDA without the need for
additional training and well-labelled data. Regarding SAM’s computa-
tional requirements, from our experience, 2 GPUs NVDIA T4 Tensor
cores are sufficient computational resources for providing real-time
results. Moreover, recent developments in radiation tolerant GPU-based
AI-processing in space (Fredrik et al., 2020) make it possible for the
proposed scheme to be used as an onboard real-time CDA in future
planetary missions.

Applying SAM to a given image results to the following outputs (Kir-
illov et al., 2023):

• Segmentation masks
• The areas of the masks in pixels
• The boundary box for each mask
• The quality of the mask (from 0 to 1), an indicator of how reliable

a mask is
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Fig. 1. (A) Mars Express HRSC natural colour image of Orcus Patera (B) Segmentation
of the input image using Segment Anything Model (SAM) (Kirillov et al., 2023). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

• The input point (x,y coordinates) that generated each mask. SAM
uses a dense grid of points and for each one of them it estimates
a mask in its near proximity. The point that corresponds to the
highest quality mask is the input point of the mask

• The stability score for each mask, which is an additional quality
index (from 0 to 1) that estimates how stable the mask is for
different input coordinates

• The crop of the image used to generate each mask

From the above it is evident that SAM in principle can both detect and
estimate the size of impact craters, since it provides direct information
regarding the area of the mask and its bounding box. SAM can be mod-
ified and tuned by changing its hyper-parameters, but it is generally
advised to use the default ones (Kirillov et al., 2023). The tunable
hyper-parameters of SAM control how dense the grid points are placed,
the thresholds for filtering out low quality masks (both quality and
stability), and the minimum size of the masks (Kirillov et al., 2023).

Fig. 1 illustrates an example of using SAM to a natural colour
image of Orcus Patera taken from Mars Express High Resolution Stereo
Camera (HRSC). Orcus patera is an elongated depression on Mars with
debatable formation, believed to be created by cratering, volcanic or
tectonic causes (van der Kolk et al., 2001; Williams and Friedlander,
2015). Despite SAM not being trained specifically for Mars Express
HRSC images, SAM appears to capture all the major features in the
image, which is indicative of its effectiveness. Additionally, access to
geometrical features of the masks enables further classification based
on shape and size. The next processing step involves filtering out non-
circular/elliptical masks and fitting circles and ellipses to the remaining
segments.

2.1.1. Circular–elliptical indexes
In the previous section SAM was applied to extract the segmentation

masks of different morphological features for an input image. SAM was
3

Fig. 2. (A) The remaining segmentation masks from Fig. 1 after filtering out the non-
circular/elliptical classes using geometrical indexes. (B) Canny filter is applied to each
one of the remaining masks, and the edges are fitted with circles and ellipses. The
black box is the focused area examined in Fig. 3. Notice that the ellipse that fits Orcus
patera is slightly shifted due to the irregular shape of this unique crater. Its original
mask is correctly identified, but an ideal ellipse is difficult to fit the elongated and
irregular shape of Orcus patera.

not fine-tuned and re-trained using astronomical images. Consequently,
SAM segments any morphological feature with distinct boundaries, and
it is not tuned for detecting just craters. Since the majority of impact
craters have a circular–elliptical shape (Melosh, 1989), it is a rational
choice to filter out all the segmentation masks that are not circular–
elliptical. To do that we need to define indexes based on which the
circularity–ellipticity of each mask will be assessed.

Regarding circularity, if the mask is a circle then its radius (𝑟) can
be inferred from the measured area (𝐴) (number of pixels) via 𝑟 =

√

𝐴
𝜋 .

Its circumference can also be calculated using the previously estimated
radius via 𝑑 = 2𝜋

√

𝐴
𝜋 . Subsequently, the perimeter of the mask (𝑃 ) is

calculated manually from the image, and if the shape is a circle then the
ratio 𝑛 = 𝑑∕𝑃 should be close to 1. This is a mainstream approach for
calculating the circularity of an object (Bottema, 2000) with minimum
computational requirements. One drawback of this approach is that
elliptical shapes with low eccentricity can result in 𝑛 ≈ 1 and therefore
give the false impression that an ellipse is a circle. To overcome this,
we first fit an ellipse to the investigated mask, and subsequently we
define the index 𝑚 = 𝑎

𝑏 where 𝑎 and 𝑏 are the major axes of the ellipse.
If both 𝑛 and 𝑚 equal 1± 𝑇 , then the shape is classified as a circle. The
threshold 𝑇 is to be tuned depending on the type of the image, but from
our experience a value 𝑇 ≈ 0.1–0.5 should be considered as a default.

For the ellipticity, first we fit an ellipse to the investigated mask,
and subsequently we infer its area from 𝑤 = 𝜋𝑎𝑏, where 𝑎 and 𝑏 are the
main axis of the fitted ellipse. Then we estimate the area of the mask
(𝐴) manually by measuring the pixels of the mask. If the mask is an
ellipse then the ratio 𝑞 = 𝑤

𝐴 should be 𝑞 ≈ 1±𝑇 . The threshold 𝑇 is to be
tuned but a value 𝑇 ≈ 0.1–0.5 should be considered as a default. Since
by definition a circle is also an ellipse with 𝑎 = 𝑏, in order to distinguish
between circular and elliptical objects we first evaluate if an image is
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Fig. 3. Applying the proposed CDA to the top left area of the Mars Express HRSC natural colour image of Orcus Patera shown in black box in Fig. 2. (A) is the input image, (B)
are the remaining masks after filtering based on geometrical indexes, and (C) are the final fitted craters. The small undetected craters shown in Fig. 2 are now correctly identified
and mapped after focusing in the investigated area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
a circle (using 𝑚 and 𝑛) and if not only then do we further check the
ellipticity index 𝑞. Lastly, additional constraints in the eccentricity and
the ratio of 𝑎∕𝑏 can be trivially implemented to filter out elongated
elliptical features.

To summarise, the circularity index 𝑛 is first estimated to assess if
an object is a circle or not. If an object is a circle, we further filter
out circles with high eccentricity using the index 𝑚. Subsequently,
the ellipticity index is calculated for all the remaining masks, and all
the masks with low ellipticity indexes are filtered out. Through this
approach, using 𝑚, 𝑛 and 𝑞 we filter out all the segmentation masks
that are not circular–elliptical. The remaining masks are classified as
circles or ellipses and a Canny filter is applied separately to each one
of them to derive their edges. Lastly, a circle or an ellipse (depending
on the mask classification) is fitted to the edges. The axes 𝑎, 𝑏, and the
coordinates of the centre are saved for each of the remaining masks.
The threshold 𝑇 is crucial for the final results. Using 𝑇 = 0 will result
on keeping only the ideal circles and ellipses and filtering out the rest
of the masks, while 𝑇 = 1 will keep all the objects masked by SAM.
From our experience a value between 𝑇 = 0.1–0.5 is advisable tuning it
accordingly for the investigated type of dataset.

Fig. 2 illustrates the results of applying the proposed CDA in Mars
Express HRSC natural colour image of Orcus Patera (see Fig. 1). It is
indicative that the majority of the craters are correctly identified and
mapped with a small amount of false positives. Even non-conventional
(speculated van der Kolk et al., 2001) craters like the well-known
elongated elliptical depression in the middle are correctly identified
and sufficiently mapped. The undetected small craters in Fig. 2 are due
to the size biases inherit in SAM, and as it is shown in Fig. 3, if we
zoom in an investigated area the majority of the small craters will be
correctly identified and mapped.

3. Case studies

The SAM-based CDA is not constrained to a specific type of data,
measurement setup and celestial body. This is because the core element
of the proposed CDA is SAM, a generic foundation model for segmen-
tation (Kirillov et al., 2023), not fine-tuned for specific type of data. To
demonstrate the flexibility of the proposed scheme we examine a set
of case studies from different celestial bodies using different types of
data and measurement setups.

Fig. 4 shows three case studies implementing the proposed CDA
with Lunar data. The dataset comprised a DEM and two Lunar Re-
connaissance Orbiter Camera (LROC) images captured from different
angles. The outcomes of the experiment revealed that the proposed
methodology could successfully identify and provide reasonably accu-
rate estimations of the size of craters. Nonetheless, as noted in the
previous section, the inability to identify smaller craters can probably
4

be attributed to the size limitations inherent in SAM. However, this
limitation can be mitigated by zooming into the image, as depicted
in Fig. 3. Focusing can potentially reduce the resolution of an image,
nonetheless, from our experience experimenting with numerous im-
ages, resolution does not significantly affect the performance of SAM as
shown in Fig. 3. Interestingly, as visible in the bottom panel of Fig. 4,
the algorithm is able to detect craters even in a high oblique angle
image captured by LROC, thus suggesting the possibility of real-time
detection of craters using operational rover and lander cameras.

The second case study involves data from Mars. Fig. 5 showcases
three examples using three different types of data (A) Thermal Emission
Imaging System (THEMIS) infrared images, (B) High Resolution Imag-
ing Experiment (HiRISE) orthoimages and (C) a mosaic from European
Space Agency’s (ESA) HRSC. Similar to the previous case studies, the
proposed CDA manages to both detect and measure the investigated
craters with sufficient accuracy. SAM-based CDA works equally well
regardless of the investigated celestial body indicating its potential to
be used as a universal CDA in future space exploration missions.

In the last example we examine Phobos, the largest of the two
Martian moons. We use a false colour image taken from Mars Re-
connaissance Orbiter (MRO). Fig. 6 shows the input, the remaining
masks after filtering non-circular/elliptical shapes, and finally the fitted
circles and ellipses. The results are sufficiently good despite the fact
that no specific training was done for this unique type of data. The
proposed CDA manages to identify most of the craters with minimum
false positives and negatives, despite the fact that it has not been
trained for false colour MRO images.

The three case studies examined in this section consists of a diverse
set of data from different celestial bodies using different instruments
and measurement configurations. Overall, 298 craters were detected
manually via visual inspection in all the examined case studies in
order to estimate the precision and recall of the proposed CDA. The
precision is defined as the ratio of the true positives over the summation
of true and false positives, while the recall is the ratio of true positives
over the summation of true positives plus false negatives. Via visual
inspection, we derived that the proposed scheme managed to correctly
detect 249 of them with 92 false positives . The recall and precision
are 0.8356 and 0.7302 respectively, and they stay relatively constant
for all the examined case studies. These numbers are comparable to the
current state of the art (Lee and Hogan, 2020), although additional
testing is needed to overcome any statistical uncertainties due the
small statistical sample used in this study. The main advantage of
the suggested scheme is its flexibility to various types of data. While
previous approaches are trained and are only applicable to a specific
type of data from a specific celestial body, the proposed CDA can be
generalised to a diverse set of datasets from arbitrary celestial bodies

while retaining its recall and precision.
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Fig. 4. The proposed CDA using different types of Lunar data. (A) column are the input images, (B) are the remaining masks after using geometrical indexes, and (C) are the
final fitted craters. The proposed CDA works reasonably well regardless of data type and measurement configuration.
4. Discussion: Limitations and future work

The proposed SAM-based CDA is essentially a shape detector that
focuses on circular/elliptical shapes. This is both an advantage and
a drawback. This generic detection objective allows for the algorithm
to work equally well despite the dataset and the investigated celestial
body. SAM is trained using millions of images to identify segments
and masks, and any mask that has a circular/elliptical shape will
be identified as a crater. At the same time, this can give rise to
false positives, since not all circular/elliptical shapes are craters. One
common artefact that we encountered was that the central peaks of
some craters were falsely identified as craters due to their circular
shape. This can be easily overcome by adding an additional filter that
removes craters with similar centres. However, this can also potentially
remove any actual crater with its centre coinciding with a larger
crater leading to false negatives. Another typical artefact was miss-
classification of shadows as craters due to their elliptical shape. These
artefacts were filtered out using eccentricity thresholds not allowing
elongated ellipses to be categorised as craters. Nonetheless, via this
threshold the algorithm will not be able to detect actual elongated and
elliptical craters. Another example of non-crater circular morphological
feature is shown with white arrow in Fig. 7. The circular elevated
topography seen in the image is falsely identified as crater due to its
5

shape and distinct features. In the same figure there are also some false
negatives that are highlighted with yellow arrows. The algorithm failed
to detect them despite detecting similar craters in the near proximity
of the false negatives. This is an unexpected behaviour, which indicates
that more research is needed to properly assess the limitations and
instabilities of the proposed scheme. Another drawback of the proposed
scheme is the need for tuning the threshold for the geometrical indexes.
Depending on the data the circularity/ellipticity threshold should be
tuned accordingly in order to filter out non-crater masks. In noisy, low
resolution and cluttered data, the threshold should be relaxed to allow
non-ideal circles and ellipses, which will consequently lead to false
positives.

SAM is not tuned for astronomical images and this can result to
partial classifications as shown in Fig. 1, fourth crater from the left.
In this example a linear feature cuts through the crater separating it
into two segments. Since SAM is not trained for these type of data, it
masks one of these segments separately leading to a partial detection
as shown in Fig. 2. Within that context the proposed CDA is expected
to underperform in challenging situations like craters subject to viscous
relaxation in icy bodies (Bland et al.) and craters populated by rocks
and boulders (Daly et al.). To overcome these issues SAM needs to be
re-trained and fine-tuned for these type of data to learn to identify such
unique morphological features.
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Fig. 5. The proposed CDA using different types of data from Mars. (A) column are the input images, (B) are the remaining masks after using geometrical indexes, and (C) are
the final fitted craters. Similar to Fig. 4, the proposed CDA works reasonably well regardless of data type and the measurement configuration.
Fig. 6. The proposed CDA applied to Phobos using a false colour image from Mars Reconnaissance Orbiter (MRO). (A) column is the input image, (B) are the remaining masks
after filtering non-circular/elliptical shapes, and (C) are the final fitted craters. Despite the unique nature of the input image, the proposed CDA works reasonably well, indicating
the flexibility of SAM-based crater detection and pattern recognition in general. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
SAM is a generic foundation model that can be fine-tuned for
planetary surfaces via transfer learning. Transfer learning refers to a
variety of techniques aimed at using an existing pre-trained model
on one task to perform another related task (Pan and Yang, 2010).
Transfer learning has been successfully applied in geophysics where
state of the art foundation models such as YOLO v3 (Redmon and
Farhadi, 2018), pre-trained in big datasets (such as Imagenet Deng
et al., 2009), were used to further learn to detect specific geophysical
targets of interest (Dramsch and Lüthje, 2018; Li et al., 2022). Similar
approaches, where a foundation pre-trained model is further trained
for a specific task, have been widely applied in various scientific
fields utilising the core capabilities of a foundation model combined
6

with domain knowledge from a specialised well-labelled dataset (Wang
et al., 2022; Sun et al., 2021; Chiba and Sasaoka, 2021; Minoofam
et al., 2021). For future work, the proposed SAM-based CDA could be
potentially improved by using SAM as the foundation model and further
train it with a diverse well-labelled dataset from various celestial bodies
and different types of planetary data.

5. Conclusions

Through a series of examples using different types of data from
various celestial bodies, we demonstrated the potential of SAM as
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Fig. 7. Two examples using HiRISE orthoimages from Mars. With white arrow is a false positive due to the circular elevated topography that is wrongly classified as crater. Yellow
arrows highlight false negatives on craters similar to the ones that the algorithm manage to correctly detect in the same image. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
a CDA and as a pattern recognition planetary tool in general. The
proposed CDA performs equally well for various types of datasets and
celestial bodies, and without the need for additional labelled data for
fine-tuning SAM. The current work lays the foundations for a single
flexible CDA for planetary science; and also introduces SAM as an
effective way to identify patterns and dominant features in planetary
data.
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