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A B S T R A C T   

Land use and land cover (LULC) projections do not always have sufficient spatial resolution to allow them to be 
used by environmental models that project how LULC impacts a range of variables, including ecosystem services, 
biodiversity, and hydrology. We present a downscaling method designed to generate the high resolution LULC 
projections often required for environmental modelling. LULC change is allocated to a high-resolution reference 
map based on the density of LULC classes in neighbouring grid cells. Increasing a parameter that controls the 
likelihood of cells adjacent to existing LULC classes being converted to the same class generated less spatially 
aggregated landscapes that better represented historic LULC patterns in Colombia between 1960 and 2019. This 
new downscaling method is available as an R package and will enable the reconciliation of the spatial resolution 
of LULC projections and key processes that are embedded in a range of environmental models.   

1. Introduction 

Humans have been altering the land surface for thousands of years 
through activities such as clearing natural vegetation, growing crops, 
and extensive grazing of animals (ArchaeoGLOBE Project, 2019). 
Around 75% of the Earth’s terrestrial surface has been impacted in some 
way by anthropogenic activities (Arneth et al., 2019; Luyssaert et al., 
2014) and approximately 10% is intensively managed (Erb et al., 2017). 
The rate of land use and land cover (LULC) change has increased over 
much of the last century (Winkler et al., 2021) and LULC change is ex-
pected to continue in the future due to population growth, shifts in diet, 
and the need for energy production (Foley et al., 2011; Tilman et al., 
2011). Land use has wide-ranging impacts on the climate system, 
biodiversity, hydrology, natural hazards such as landslides, and other 
components of the Earth System (Forzieri et al., 2017; Guo et al., 2022, 
2023a, 2023b; Jaureguiberry et al., 2022; Meier et al., 2021; Newbold 
et al., 2015; Rigby et al., 2022; Salehpour Jam et al., 2023), for instance 
through greenhouse gas emissions and conversion of species’ habitats 
(Jia et al., 2019; Pereira et al., 2012). Understanding the impacts of 
LULC change and modifying land use will be key to solving many of the 
challenges currently facing society, including climate change, food se-
curity, and the biodiversity crisis (Foley et al., 2011). 

Projections of how LULC will change in the future are used to 
investigate the effects of LULC on the environment. Land use models 
make spatially explicit predictions of how the area of LULC classes will 
change over time (Heistermann et al., 2006), often based on a particular 
storyline of socio-economic development such as a Shared 
Socio-economic Pathway (O’Neill et al., 2014; Popp et al., 2017). Land 
use projections from models have been used to investigate the impacts of 
LULC on the environment; for example, global-scale LULC projections 
have been employed to investigate the effects of future LULC change on 
health outcomes, carbon storage, habitat loss, and soil erosion (Baisero 
et al., 2020; Borrelli et al., 2020; Henry et al., 2022; Molotoks et al., 
2020). Similarly, Dullinger et al. (2020) used LULC projections from a 
local-scale agent-based model to simulate the distributions of plant 
species in the Austrian Alps, finding that LULC change was on average 
the most important predictor of species’ current distributions. 

Although there is a wide range of land use models available across 
local to regional scales (for example, Dullinger et al., 2020; Millington 
et al., 2021), global-scale land use models are important because some 
drivers of LULC change occur at a global scale, and geographically 
distant regions may be linked via mechanisms such as international 
trade (Heistermann et al., 2006), sometimes termed telecoupling (Hull 
and Liu, 2018). Although there have been a few global-scale land use 
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projections generated at fine scales (Chen et al., 2020; Li et al., 2017), 
there are many global-scale land use models which produce LULC pro-
jections that do not match the scale of environmental processes. For 
example, the outputs from many global land use models are at coarse 
resolutions (typically 0.25 or 0.5◦), which are not equivalent to the scale 
on which organisms are affected by land use (de Chazal and Rounsevell, 
2009; Titeux et al., 2016) or at which management decisions are made. 
Moreover, modelling a process at too coarse a resolution can lead to 
over- or underestimation of key model outputs. Suh et al. (2020) found 
that using land use projections at 5 arc minute resolution led to an 
over-estimation of carbon dioxide emitted from agricultural expansion 
in most regions, compared to using land use projections at 10 arc second 
resolution. Additionally, using coarser resolution land cover data as 
input to a mechanistic biodiversity model resulted in the model pre-
dicting substantially larger population sizes and rates of range expansion 
(Bocedi et al., 2012) than when the greater detail of finer resolution land 
cover was incorporated. There is strong evidence that the resolution of 
input LULC data is important for effectively modelling a range of key 
environmental processes. 

Spatial downscaling, where variables at a coarse spatial resolution 
are converted to a higher resolution (van Vuuren et al., 2010), offers a 
method of incorporating LULC projections from global-scale models into 
studies that require fine resolution LULC data. Downscaling has been 
applied to global-scale LULC projections to investigate the effects of 
future LULC change on ecosystem services, extinction risk of plant 
communities, and soil erosion (Borrelli et al., 2020; Di Marco et al., 
2019; Johnson et al., 2021; von Jeetze et al., 2023). A variety of methods 
are available for downscaling that range in complexity from simple al-
gorithms, such as proportional downscaling, to fully coupled multi-scale 
models (de Chazal and Rounsevell, 2009; van Vuuren et al., 2010). 
Hasegawa et al. (2017), for example, converted regional land use out-
puts from the AIM/CGE integrated assessment model to gridded maps. 
While simple downscaling algorithms may not capture the local-scale 
processes which influence LULC patterns, more complex approaches 
tend to require more input data and are less transparent (van Vuuren 
et al., 2010). 

Downscaling methods commonly use statistical relationships be-
tween LULC classes and covariates, such as human population density 
and soil nutrient availability, to determine the likelihood of fine reso-
lution grid cells being covered by different LULC classes (for example, 
Cao et al., 2019; Le Page et al., 2016; van Asselen and Verburg, 2013; 
von Jeetze et al., 2023). One disadvantage of using statistical models for 
downscaling is that they assume the underlying processes of LULC 
change remain the same through time (Veldkamp and Lambin, 2001), 
whereas it has been shown that LULC change drivers vary temporally 
and spatially (Alexander et al., 2015). Statistical relationships between 
covariates and LULC can be combined with additional constraints that 
influence the probability of a grid cell containing a particular LULC 
class, such as neighbourhood rules, which govern how the LULC in 
surrounding cells affects LULC in the cell of interest (van Vliet et al., 
2013). Regression models containing neighbourhood-based predictors 
only have been found to perform better at predicting LULC distributions 
in Belgium than those containing non-neighbourhood or mixed pre-
dictors (Dendoncker et al., 2007). However, a downscaling method 
based on neighbourhood-only regression models caused greater clus-
tering of LULC classes compared to the observed LULC patterns (Den-
doncker et al., 2006), suggesting that neighbourhood-based variables 
alone might not be sufficient for generating accurate landscape patterns 
through downscaling. 

We introduce LandScaleR, a downscaling method that allocates 
LULC change to a fine resolution reference map based on neighourhood 
rules and stochasticity in the placement of new LULC areas. LandScaleR 
is more likely to allocate LULC close to existing patches of the same 
LULC class, as has previously been observed (Dendoncker et al., 2007). 
We mitigate the clustering of LULC classes that can occur during 
downscaling by introducing a parameter that controls the degree of 

stochasticity in the placement of new LULC areas, and which also im-
pacts the likelihood that new LULC patches appear in the landscape. The 
method is generic and requires minimal input data aside from the LULC 
projections to be downscaled and a fine resolution reference map. We 
have implemented the method as an R package (R Core Team, 2022) due 
to the wide range of models and methods for handling LULC and envi-
ronmental data that are already available in R (for example, García 
Molinos et al., 2019; Kapitza et al., 2022; Malchow et al., 2021). The 
spatial arrangement of LULC is vitally important for environmental 
processes such as the persistence of a species in a landscape (Fischer and 
Lindenmayer, 2007), so we validated the landscape patterns generated 
by the downscaling method against historic LULC data for Colombia 
between 1960 and 2019 (Winkler et al., 2021). Our method will facili-
tate the integration of LULC with environmental models, such as 
biodiversity and geohazard models, by generating fine resolution pro-
jections that match the scale on which key environmental processes 
occur. 

2. Methods 

2.1. Overview of the approach 

LandScaleR takes LULC projections from a land use model and al-
locates the change in LULC projected from one time point to the next to 
grid cells on a finer resolution reference map. The algorithm does not 
require input covariates to determine where LULC change is allocated on 
the reference map; instead, grid cells that are adjacent to an existing 
LULC patch are more likely to be converted to the same class. The 
resulting downscaled map becomes the reference for downscaling the 
subsequent timestep of LULC change, so multiple timesteps of LULC 
output from a land use model can be downscaled in a single run (Fig. 1). 
LandScaleR is designed to use gridded LULC change projections and a 
discrete reference map where each grid cell contains a single LULC class. 
The LandScaleR R package and source code are available via GitHub 
(TamsinWoodman/LandScaleR). 

The first step in LandScaleR is to assign all fine resolution grid cells to 
their nearest coarse resolution grid cell, which determines where LULC 
change from the coarse cells will be allocated to on the reference map. 
Next, the areas of LULC change from the LULC projections are adjusted 
to match the total area of reference map grid cells per coarse resolution 
cell (Le Page et al., 2016). The LULC classes in the LULC projections are 
also matched to the reference map LULC classes. Given that the distri-
bution of LULC in neighbouring cells influences LULC in a cell of interest 
(van Vliet et al., 2013), a kernel density is calculated for each fine res-
olution grid cell and LULC class (Le Page et al., 2016; West et al., 2014). 
The kernel density values give a measure of the density of each LULC 
class surrounding a focal cell and are used to determine the order in 
which fine resolution cells are converted to a new LULC class. 

After calculating kernel densities for each fine resolution cell, 
LandScaleR begins the LULC change allocation process. Three methods 
are provided for allocating LULC change to the reference map: the quasi- 
deterministic method where LULC change is allocated to grid cells from 
highest to lowest kernel density, except where cells have a kernel density 
of zero in which case new LULC is allocated randomly; a “fuzzy” sto-
chastic method where each kernel density is adjusted by adding a de-
viation drawn from a Normal distribution, and a random method where 
cells are chosen at random to receive new LULC. Following LULC allo-
cation the new downscaled map is harmonised, meaning that the algo-
rithm takes any LULC change that was not placed on the reference map 
during allocation and attempts to allocate it within neighbouring coarse 
grid cells instead. Harmonisation gives the final downscaled map, which 
is then used as the reference map to downscale the next timestep of LULC 
change. 

2.1.1. Input maps 
LandScaleR requires two sets of input maps: gridded, coarse 
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resolution maps of LULC change, and a reference map at the resolution 
to which the LULC change maps will be downscaled. The input maps 
must have the same coordinate reference system and be on a regular 
grid, although the fine resolution cells do not need to nest exactly within 
the coarse resolution cells (Fig. 2). The coarse resolution LULC change 
maps provide the total area of change for each LULC class in each grid 
cell to LandScaleR, and the values of change can be positive or negative. 
There must be one map of LULC change per timestep. The fine resolution 
reference map should contain observed LULC in the timestep before the 
first timestep of the sequence of LULC change maps; for example, if the 
first timestep of LULC change provided is the change from 2010 to 2011 
the reference map should give observed LULC in 2010. The LULC change 
between 2010 and 2011 will then be applied to the reference map to give 
downscaled LULC in 2011. The reference map can either contain a single 
LULC class per cell or the fraction of each LULC class per cell, although 
here we only validate LandScaleR with reference maps that contain one 
LULC class per cell. The LULC change and reference maps can have 
different LULC classes as these will be matched later in the downscaling 
process. 

Fig. 1. Flow diagram showing the stages in the LandScaleR downscaling algorithm. 1. Input maps of LULC change and a high resolution reference map. 2. Cells from 
the reference map are each assigned to the nearest coarse resolution cell from the LULC change map. 3. LULC change areas in the LULC change map are adjusted and 
matched to those in the reference. 4. A kernel density is calculated for each LULC class and reference map grid cell based on the area of that LULC class in 
neighbouring cells. 5. LULC change is allocated to grid cells in the reference map according to the kernel density maps. 6. Unallocated LULC change is harmonised 
with the reference map until all change has been allocated. 7. The downscaled map becomes the input reference map for the next time step of LULC change. 

Fig. 2. Overlap of fine-scale grid cells at approximately 0.01◦ resolution (1 km 
at the equator) from the HILDA+ dataset and a set of hypothetical 0.5◦ reso-
lution coarse cells in northern Colombia. Fine resolution cells are shaded ac-
cording to their nearest coarse resolution cell, which they would be assigned to 
during downscaling. Black lines indicate 0.5◦ resolution grid cells. 
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2.1.2. Assign reference map grid cells to coarse resolution cells 
The first stage in LandScaleR is to define where the LULC change 

from each coarse resolution grid cell will be allocated on the reference 
map, by assigning each fine resolution reference map cell to the nearest 
coarse resolution cell. Assigning grid cells from the reference map to the 
nearest coarse cell ensures that any cells not contained within a coarse 
cell can still be allocated new LULC, which accounts for cases where grid 
cells in the LULC change map do not fully cover the fine resolution cells 
(Fig. 2). Each coarse resolution cell can be assigned a different number 
of reference map cells, which is accounted for later in the method by 
adjusting the areas of LULC change by the total area of reference map 
cells assigned to each coarse cell (section 2.1.3). We use the ‘get.knnx’ 
function from the “FNN” R package with the default kd tree algorithm to 
find the nearest coarse resolution grid cell to each reference map grid 
cell (Beygelzimer et al., 2022). 

2.1.3. Adjust land use and land cover change areas 
The areas of LULC change within each coarse resolution grid cell are 

adjusted by the total area of reference map cells assigned to each coarse 
cell, to prevent more LULC being allocated than the total area of 
assigned reference map cells (Le Page et al., 2016). The equation used by 
LandScaleR to adjust the LULC change areas by the corresponding area 
of assigned reference map grid cells is the same as equation (1) in Le 
Page et al. (2016). However, Le Page et al. (2016) downscaled LULC 
projections from the Global Change Assessment Model (GCAM), which 
produces regional rather than gridded LULC cover maps. Therefore, 
regions from GCAM output are replaced with coarse resolution grid cells 
in the adjustment equation in LandScaleR. The LULC area for a given 
LULC class and coarse resolution cell is adjusted by the ratio between the 
total area of assigned reference map cells and the area of the coarse cell: 

ΔAk,LC,t = δAk,LC,t •

∑J

m=1
Am

Ak
(1) 

Where A is area, ΔA is adjusted LULC change area and δA is the 
original LULC change area, k indicates a coarse resolution grid cell, LC is 
one LULC class, t is timestep, m is a reference map grid cell, and J is the 
number of m assigned to one k. The area of each coarse resolution grid 
cell can either be provided by the user as an extra layer in the input map 
or calculated within LandScaleR using the ‘cellSize’ function in the 
“terra” R package (Hijmans, 2022). The user can specify the units for 
calculating cell areas, which can be “m” for metres, “km” for kilometres, 
or “ha” for hectares (Hijmans, 2022). 

2.1.4. Match land use and land cover classes 
The downscaling procedure in LandScaleR next matches the LULC 

classes from the map of LULC change to those in the reference map using 
a similar procedure to that in Le Page et al. (2016) and Vernon et al. 
(2018). LandScaleR currently converts the LULC classes from the LULC 
change map into the same classes as the reference map according to 
user-defined fractions. The user inputs a table specifying the proportion 
of each LULC class from the LULC change map to be converted into each 
of the reference map LULC classes (for example, Table 1). The 

proportions of LULC classes in Table 1 are usually straightforward to 
determine; for example, the cropland class appears in both LULC maps. 
However, there may be definitional differences in LULC classes between 
the reference and LULC maps, in which case expert judgement can be 
used to determine the values in Table 1. The column names must contain 
the reference map LULC classes, and row names must be the LULC 
classes in the LULC change map. The values in the input table must be 
between zero and one and sum to one per each row. For managed forest 
in the example in Table 1, there is a value of one in the forest plantation 
column, meaning that if managed forest increased by 100 km2 all the 
increase would be allocated to the reference map as forest plantation. 
Similarly, other natural land cover has a value of 0.5 in the primary and 
secondary vegetation columns. This indicates that a decrease of 50 km2 

in other natural land cover would be treated by LandScaleR as a 25 km2 

decrease in both primary and secondary vegetation. 

2.1.5. Calculate kernel density values for each land use and land cover 
class 

New areas of LULC have been previously found to occur near existing 
areas of the same class (Dendoncker et al., 2007). Based on this 
assumption, the LandScaleR downscaling algorithm calculates a kernel 
density for each reference map grid cell and LULC class, which is the 
distance-weighted sum of the area of a LULC class in neighbouring cells, 
divided by the number of neighbouring cells (Le Page et al., 2016; West 
et al., 2014). The kernel densities are used later in the downscaling 
process to select cells for LULC change allocation. We implemented 
equation (2) from Le Page et al. (2016) using the ‘focal’ function from 
the “terra” R package (Hijmans, 2022): 

kdLC,m =
1
n
•
∑n

i=1

ALC,i

(Di)
2 (2)  

Where kdLC,m is the kernel density for LULC class LC in the focal refer-
ence map cell m, n is the number of neighbouring cells used in the 
calculation, ALC,i is the area of LULC class LC in neighbour cell i, and Di is 
the distance between the neighbour cell i and the focal cell m. The user 
can specify the radius of cells that are used to calculate kernel density, 
which controls the number of neighbour cells n used in the kernel 
density equation; for example, a radius of one would mean eight 
neighbour cells are used. The distance D between a neighbour cell and a 
focal cell is calculated by setting the shortest possible distance between 
centroids in the reference map to one. Thus, the distance between a focal 
cell and it’s four connected neighbour cells would be one, and the dis-
tance between the focal cell and the four diagonally connected cells 
would be 1.41. 

2.1.6. Allocation of land use and land cover change to the baseline map 
The next step in LandScaleR is to allocate LULC change areas from 

the coarse resolution LULC change map to the reference map. Allocation 
of LULC change areas occurs independently for each coarse resolution 
cell because LULC change from one coarse cell can only be allocated to 
its assigned reference map cells. For each coarse cell, the first step in 
allocating LULC change is to define the magnitude of transitions 

Table 1 
Example showing how LULC classes from a map of LULC change could be matched to classes in a reference map by LandScaleR. Row names contain LULC classes from 
the LULC change map, while column names give classes from the reference map. Values in each row are specified by the user and give the proportions by which each 
LULC class from the LULC change map are divided between the reference map classes.    

LULC classes from the reference map   
Primary vegetation Secondary vegetation Forest plantation Cropland Pasture Urban 

LULC classes from the LULC change map Managed forest 0 0 1 0 0 0 
Unmanaged forest 1 0 0 0 0 0 
Other natural 0.5 0.5 0 0 0 0 
Cropland 0 0 0 1 0 0 
Pasture 0 0 0 0 1 0 
Urban 0 0 0 0 0 1  
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between each LULC class. Next, LULC change is allocated in order from 
the largest to the smallest LULC transitions in a cell. Three methods are 
described below for selecting where to place new LULC on a reference 
map: quasi-deterministic, the ‘fuzzy’ stochastic method, and random. 
The three LULC allocation methods lie on a continuum of stochasticity, 
with the quasi-deterministic method being the most deterministic and 
random the least. 

2.1.6.1. Defining land use and land cover transitions. Land use models 
may not output the exact area of LULC that was converted between each 
class. Instead, a land use model might generate the total area or the 
change in each LULC class per timestep. Therefore, before allocating 
LULC change to the reference map LandScaleR calculates the area of 
each LULC class to be converted to each other class within a coarse 
resolution grid cell. For each LULC class that increases in representation 
within a coarse cell in the current timestep, the increase is divided 
proportionally between the LULC classes that decrease within the same 
grid cell. For example, assume that one LULC change map grid cell has 
an 80 km2 increase in cropland, a 20 km2 increase in pasture, a 60 km2 

decrease in forest and a further 40 km2 decrease in grassland. Land-
ScaleR would convert 48 km2 of forest and 32 km2 of grassland into 
cropland, while 12 km2 of forest and 8 km2 of grassland would become 
pasture. 

LULC change in each coarse resolution cell is allocated sequentially 
to the reference map, starting with the LULC class with the largest in-
crease in area in a cell. The LULC class with the highest increase in area 
is allocated to the reference map in order from the LULC class that de-
creases the most to the one that decreases the least. The algorithm then 
moves to the LULC class with the second largest increase in area, and so 
on until all LULC change has been allocated. In the example above the 
largest increase in LULC is 80 km2 of cropland, so the algorithm begins 
by converting 48 km2 of forest into cropland before replacing 32 km2 of 
grassland with cropland. The algorithm then moves to the next largest 
increasing LULC class, which in our example is pasture. A total of 12 km2 

of forest is converted into pasture, and lastly the remaining 8 km2 of 
grassland is changed to pasture. 

2.1.6.2. Selection of cells to receive new land use and land cover. Land-
ScaleR begins the process of converting LULC in the reference map once 
the magnitude and order of LULC conversions within one coarse reso-
lution grid cell have been calculated. To convert one LULC class to 
another, the algorithm first selects all reference map grid cells that are 
eligible to receive the increasing LULC class. Grid cells are eligible if they 
contain the LULC class to be converted; for instance, in our example the 
first LULC transition is a conversion of 48 km2 of forest into cropland, so 
all cells containing forest cover are suitable for conversion to cropland. 

2.1.6.3. Quasi-deterministic method of land use and land cover allocation. 
The quasi-deterministic method of allocating LULC change places new 
LULC areas in reference map grid cells according to the kernel density of 
each grid cell for the new LULC class. Once all of the decreasing LULC 
class in cells with a kernel density value greater than zero has been 
converted, new LULC is randomly allocated to grid cells with a kernel 
density of zero. This provides a mechanism for new patches of a LULC 
class to occur in the landscape. The first step in the quasi-deterministic 
method is to obtain kernel densities for all cells that are eligible for 
conversion to the new LULC class and sort them from highest to lowest 
value. Any cells with a kernel density of zero are randomly sorted at the 
end of the list of grid cells. The algorithm works through the sorted grid 
cells and in each cell replaces all of the decreasing LULC class with the 
new LULC class, until the total area for that LULC transition has been 
converted. 

For example, for a LULC transition of 48 km2 from forest to cropland 
the algorithm would find and sort the cropland kernel densities for all 
reference map grid cells that contain forest cover. In order from highest 

to lowest kernel density, the algorithm converts all forest area in each 
grid cell to cropland until 48 km2 of forest has become cropland. If all 
forest area in grid cells with a cropland kernel density of greater than 
zero has been converted to cropland, the algorithm begins changing 
forest to cropland in the randomly sorted cells with cropland kernel 
density equal to zero, until 48 km2 of forest has been replaced by 
cropland. Therefore, for each grid cell the area of forest converted to 
cropland is the minimum of the area of forest within that cell and the 
remaining forest to be converted. 

2.1.6.4. Fuzzy method of land use and land cover allocation. The fuzzy 
method of allocating LULC change to a reference map introduces sto-
chasticity into the placement of new areas of LULC to account for factors 
that affect LULC change other than distance from existing LULC patches, 
such as soil properties and topography. As in the quasi-deterministic 
method, the first step in the fuzzy method of LULC change allocation 
is to obtain kernel densities for all cells that are eligible for conversion to 
the new LULC class. The standard deviation σ of these kernel densities is 
then calculated as below, where kdLC,c is the kernel density for a single 
eligible baseline map cell c and LULC class LC, and G is the number of 
cells eligible to receive the new LULC class. 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑G

c=1
kdLC,c − kdLC,G

G − 1

√
√
√
√
√

(3) 

For each cell c that is eligible for conversion, a deviation E is drawn 
from a Normal distribution with a mean of zero and standard deviation 
equal to the standard deviation of kernel densities (σ), multiplied by the 
user-specified parameter f : 

ELC,c ∼ N(0, f • σ) (4) 

The higher the value of f specified by the user, the more variation 
there will be in the values of E. The kernel density kdLC,c and random 
deviation ELC,c are summed for each cell to get the adjusted kernel 
density KDLC,c. 

KDLC,c = kdLC,c + ELC,c (5) 

Using an f value of zero with the fuzzy method should generate the 
same outcomes as the quasi-deterministic method, while very high 
values of f will tend towards random LULC allocation. After adjusted 
kernel densities have been generated for all cells that are eligible to 
receive the new LULC class, they are sorted from highest to lowest. 
Starting with the cell with the highest adjusted kernel density, Land-
ScaleR goes through the sorted list of cells and replaces all of the 
decreasing LULC class with the new LULC class, until the total LULC 
transition between the two classes has been met. 

2.1.6.5. Random method of land use and land cover allocation. The 
random method of LULC allocation uses no information to select where 
to place new areas of LULC change on a reference map. LandScaleR 
randomly selects a reference map cell that is eligible to receive the new 
LULC class and replaces all of the decreasing LULC class in that cell with 
the new LULC class. The algorithm then randomly selects another 
eligible cell and continues the process of LULC conversion until the total 
area of the LULC transition has been converted. 

2.1.7. Harmonisation of land use and land cover 
There may be occasions when the downscaling algorithm cannot 

convert enough of one LULC class into another in a coarse resolution 
grid cell to meet the calculated LULC transition. For example, the al-
gorithm might calculate that 48 km2 of forest should be converted into 
cropland in a coarse grid cell. However, if the reference map grid cells 
assigned to that coarse cell contain only 10 km2 of forest cover it will 
only be possible to convert 10 km2 of forest to cropland, leaving 38 km2 

of cropland unallocated. Similarly, if the reference map grid cells are 
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completely covered by cropland it will not be possible to increase the 
area of cropland within them further; this would result in 48 km2 of 
unallocated cropland. The downscaling algorithm therefore attempts to 
place any unallocated LULC change in nearby grid cells in a process 
known as harmonisation, to prevent large areas of unallocated LULC 
change and ensure consistency between the reference and LULC change 
maps (Rabin et al., 2020). 

Our approach to harmonisation follows that of Rabin et al. (2020) in 
that LandScaleR searches neighbouring grid cells for a place where it can 
allocate the remaining LULC change. For a coarse resolution grid cell 
with unallocated LULC, the algorithm first redefines the LULC transi-
tions within that cell as described in section 2.1.6.1. LandScaleR then 
selects the diagonally connected neighbour cell to the northwest of the 
focal cell and attempts to meet the LULC transitions by converting LULC 
within that cell. If there is still unallocated LULC change remaining after 
this, the algorithm moves to the first-neighbour cell to the north of the 
focal cell, recalculates the LULC transitions, and tries again to meet these 
transitions by converting LULC within the cell. The algorithm continues 
attempting to place unallocated LULC change in neighbouring coarse 
resolution cells until all LULC has been allocated, working through 
first-neighbour cells, followed by second-neighbour cells, in order from 
north-west to south-east and moving across each row from east to west. 
Harmonisation of a single coarse resolution grid cell stops when all 
unallocated LULC change has been placed on the reference map or once 
the algorithm has attempted to allocate LULC in all first- and 
second-neighbour cells, so up to a maximum of 24 alternative cells. If 
there is any unallocated LULC change after harmonisation, LandScaleR 
will generate a warning and print out the remaining unallocated LULC 
change within each grid cell. 

2.1.8. Output maps 
LandScaleR generates one output file per timestep containing a 

downscaled map with the area of each LULC class per grid cell, at the 
same resolution as the input reference map. There is also an option to 
output a second map file per timestep that contains the LULC class with 
largest area in each grid cell of the downscaled map. All output maps are 
in the GeoTIFF file format. 

2.2. Method validation: downscaling land use and land cover change in 
Colombia 

Colombia is a highly biodiverse country in northern South America, 
encompassing two of the world’s biodiversity hotspots (Myers et al., 
2000) and containing over 75,000 species of animals and plants (SiB 
Colombia, 2022). Large changes in LULC have occurred in Colombia 
historically (Etter et al., 2008), particularly in the Andean and Carib-
bean regions and in the last two decades also in the regions of the 
Amazon and Orinoco (Correa Ayram et al., 2020). Although the main 
drivers of changes in LULC vary by region, they include clearing of land 
for cattle grazing, crops, mining, and urbanization (Armenteras et al., 
2011; Etter et al., 2008; González-González et al., 2021). Moreover, a 
peace agreement reached in 2016 between the government and the 
FARC (Fuerzas Armadas Revolucionarias de Colombia) has led to 
increased deforestation in areas that were previously inaccessible due to 
the conflict but now lack state control and have become more open to 
land grabbing and colonization (Armenteras et al., 2019). Forests are 
being converted into pastures for cattle ranching, licit and illicit crops, 
and human settlements (Ganzenmüller et al., 2022; Murillo-Sandoval 
et al., 2021; Van Dexter and Visseren-Hamakers, 2020). 

Downscaling models have previously been applied to historic LULC 
data to assess their accuracy and validity (Cao et al., 2019; Le Page et al., 
2016). Here, we applied LandScaleR to maps of LULC change in 
Colombia from 1960 to 2019 to test how well the algorithm can recreate 
historic land use patterns. Maps of LULC change in Colombia were 
generated from the HILDA+ dataset (Winkler et al., 2020, 2021), which 
provides global historic LULC data between 1899 and 2019 at 

approximately 0.01◦ spatial resolution (1 × 1 km at the equator). 

2.2.1. Input maps for downscaling land use and land cover change in 
Colombia 

First, the global HILDA+ maps from 1960 to 2019 were cropped 
using an outline of Colombia from the ‘rnaturalearth’ package (South, 
2017) to generate maps with approximately 0.01◦ spatial and yearly 
temporal resolution. The map of LULC in Colombia in 1960 at 0.01◦

resolution (Fig. 3a) was used as the baseline map for downscaling LULC 
change to 2019. 

Maps of LULC change in Colombia from 1960 to 2019 were gener-
ated from the cropped HILDA+ maps of LULC in Colombia. A 0.5◦ res-
olution grid was created from 82.5◦W to 66.5◦W latitude and 4.5◦S to 
14◦N longitude, which covered the entire terrestrial surface of 
Colombia. For each year between 1960 and 2019, the grid was overlaid 
with the 0.01◦ resolution map of LULC in Colombia and the area of each 
LULC class in each 0.5◦ grid cell was calculated to generate a map of 
LULC in Colombia at 0.5◦ spatial resolution. LULC change areas for each 
year were calculated by subtracting the area of each LULC class in each 
0.5◦ grid cell from the area in the previous year. This process generated 
59 maps of LULC change in Colombia at 0.5◦ spatial and yearly temporal 
resolution from 1961 to 2019, which were saved as GeoTIFF files for use 
with LandScaleR. All maps were handled in R (R Core Team, 2022) using 
the ‘terra’ R package version 1.6–17 (Hijmans, 2022). An example of 
LULC change in Colombia from 1960 to 1961 for four LULC classes is 
shown in Fig. 3b. 

2.2.2. Parameters for downscaling land use and land cover change in 
Colombia 

The 0.5◦ resolution maps of LULC change in Colombia produced from 
the HILDA+ dataset were downscaled using seven different methods, to 
test which was the most effective in recreating historic LULC patterns in 
Colombia. The five methods were: quasi-deterministic; five variations of 
the fuzzy method with the f parameter ranging from 1.0 to 2.0 at in-
tervals of 0.25, and random. Ten simulations were run for each method 
to assess the variability generated by the downscaling algorithm. Aside 
from the method used to allocate LULC change, all other parameters 
were kept the same. The radius used to calculate kernel density was set 
to 1 as initial tests suggested that values greater than this generated very 
highly spatially aggregated landscapes. The unit for cell areas was kil-
ometres. The LULC classes were the same in the LULC maps and the 
reference map of Colombia, so each LULC class from the LULC change 
maps was matched entirely to the same LULC class in the reference map. 

2.2.3. Analysis 
We tested how well LandScaleR was able to recreate historic LULC 

patterns in Colombia from the HILDA+ dataset. LandScaleR was inten-
ded to generate realistic landscape patterns whilst using minimal 
covariates to predict the location of LULC change, so it was not expected 
to generate maps that exactly matched LULC in Colombia over time. 
Moreover, the HILDA+ dataset describes gross LULC change whereas 
the downscaling algorithm works with net LULC change, so there should 
be more LULC change occurring in the HILDA+ dataset than in the 
downscaled maps. Based on these factors and the importance of land-
scape patterns for a range of environmental processes such as the 
movements of individual organisms (Fischer and Lindenmayer, 2007), 
fire ignition and spread (Pais et al., 2021; Ryu et al., 2007), hydrological 
dynamics (Amiri et al., 2018), and accumulation of soil organic carbon 
(Liu et al., 2022), we calculated landscape pattern metrics at both the 
landscape- and class-levels to test whether LandScaleR could accurately 
reproduce historic landscape configurations. We also calculated the 
proportion of grid cells in downscaled maps that contained the same 
LULC class as the HILDA+ map, known as overall accuracy (Mas et al., 
2022), to give a measure of the similarity between the observed and 
predicted maps and how this similarity decayed over time. Additionally, 
Figure of Merit (FM; Paegelow et al., 2022; Pontius et al., 2008) was 
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computed at yearly intervals and across the entire study period to 
measure the overlap of change between downscaled and HILDA+ maps. 
All analyses were performed in R version 4.1.3. 

2.2.3.1. Overall accuracy. The proportion of grid cells in each down-
scaled map that contained the same LULC class as the corresponding grid 
cell from the observed HILDA+ dataset was calculated for each year of 
the study period to test the accuracy of LandScaleR at grid cell level. This 
statistic is known as overall accuracy (Mas et al., 2022) and was calcu-
lated for each simulation and time step by summing the number of cells 
that had the same LULC class in both the downscaled and HILDA+ maps, 
then dividing by the total number of terrestrial grid cells. Version 1.5–21 
of the ‘terra’ R package (Hijmans, 2022) was used to calculate the 
proportion of cells with the expected LULC class. 

2.2.3.2. Figure of Merit. FM is a measurement of the overlap between 
change that was observed in a reference map and change predicted by a 
land use model (Paegelow et al., 2022; Pontius et al., 2008). FM was 
calculated as: 

FM =
B

(A + B + C + D)
× 100% (6)  

Where A is the number of grid cells which changed LULC class in the 
HILDA+ map but not in the downscaled map; B is the number of grid 
cells which changed class in both maps and were correctly predicted by 
LandScaleR; C is the number of grid cells which changed in both maps 
but the LULC class was incorrectly predicted by LandScaleR, and D is the 
number of grid cells which did not change class in HILDA+ but were 
predicted to change by LandScaleR. A FM metric of 0% would indicate 
that the location and class of LULC change was entirely incorrectly 

predicted by the downscaling algorithm, while a value of 100% would 
show that the location and class of all LULC change was correctly pre-
dicted (Paegelow et al., 2022; Pontius et al., 2008). We calculated FM for 
each downscaling method in two ways. First, FM was calculated at 
yearly time steps across the study period by comparing the transitions 
that occurred in each year during downscaling to the transitions 
observed in the same year in HILDA+, to test the accuracy of LandScaleR 
in predicting yearly change. Second, because incorrect LULC transitions 
in one year might be compensated for by the same change in HILDA+ in 
another year, we calculated FM across the entire study period using the 
difference in LULC between 1960 and 2019. 

2.2.3.3. Landscape pattern analysis. Five landscape pattern metrics were 
chosen to compare the downscaled maps with the HILDA+ maps: per-
centage of landscape covered by each LULC class, mean patch area, 
number of patches, Aggregation Index, and edge density. We calculated 
the percentage of Colombia covered by each LULC class to ensure that 
LandScaleR generated the correct area of each class, as this was not 
prescribed by the model. A previous study found that downscaling based 
on neighbourhood-based variables alone generated larger, more aggre-
gated patches with shorter edge length than observed (Dendoncker 
et al., 2006), hence we selected mean patch area, Aggregation Index, 
and edge density to test whether LandScaleR generated patches of the 
expected size and aggregation. Moreover, mean patch area is important 
in many environmental processes; for example, the species-area rela-
tionship states that larger habitat patches will hold more species (Fischer 
and Lindenmayer, 2007). The Aggregation Index measures habitat ag-
gregation and distinguishes the effects of habitat fragmentation from 
habitat loss in a landscape (Wang et al., 2014). Aggregation Index scales 
from zero to one hundred and is calculated as the number of edges 
shared by grid cells containing the same LULC class divided by the 

Fig. 3. LULC in Colombia in 1960 (a) and LULC change for four LULC classes between 1960 and 1961 (b), derived from the HILDA+ historic LULC dataset.  
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hypothetical maximum possible number of edges that could be shared 
between those cells (Hesselbarth et al., 2019). Edge density is deter-
mined as the length of edges in the landscape divided by the total area of 
the landscape (Hesselbarth et al., 2019) and was recently found to be a 
suitable metric for calibrating a cellular automata model of LULC change 
(Lin et al., 2020). Finally, the number of patches provides a measure of 
the fragmentation of a landscape (Wang et al., 2014) and would be ex-
pected to increase as aggregation decreases. Number of patches has also 
been employed in previous studies to assess the accuracy of LULC 
models (Dezhkam et al., 2016). 

The five landscape pattern metrics were calculated for the entire 
landscape and for each LULC class using the ‘landscapemetrics’ R 
package, version 1.5.5 (Hesselbarth et al., 2019), because class-level and 
landscape-level metrics can show different results in terms of the accu-
racy of a land use model (Dezhkam et al., 2016). Prior to calculating 
landscape statistics, the HILDA+ maps of Colombia at 0.01◦ resolution 
from 1960 to 2019 and the downscaled maps across the same period 
were converted from the EPSG:4326 coordinate reference system to the 
equal area World Eckert IV system, as the ‘landscapemetrics’ package 
recommends that maps are provided in units of metres. Landscape 
pattern metrics were calculated for the downscaled maps generated 
from every method of allocating LULC change and every simulation, so a 
total of 59 maps for 70 individual downscaling simulations. The 
resulting landscape pattern metrics were then summarised by calcu-
lating the mean and standard deviation across the ten simulations for 
each LULC change allocation method. 

3. Results 

3.1. Percentage of landscape in each land use and land cover class 

LandScaleR accurately recreated the percentage of Colombia 
covered by each LULC class for each year of the simulations and for all 
LULC change allocation methods (Fig. S 1). The largest LULC class in 
Colombia in every year from 1960 to 2019 was evergreen broad leaf 
forest, which decreased consistently across the study period from 60.1% 
of Colombia in 1960 to 52.4% in 2019. Pasture was the second major 
LULC class in Colombia and it increased between 1960 and 2019, likely 
at the expense of evergreen broad leaf forest as no other LULC classes 
decreased substantially. The percentage of Colombia covered by grass/ 
shrubland was very low (2.3%) at the beginning of the study period but 
increased from around 1990 onwards to reach 5.3% in 2019. The other 
LULC classes covered a small percentage of Colombia in the HILDA+
dataset and deciduous needle leaf forest disappeared from HILDA+ and 
all downscaling simulations just after the year 2000. Therefore, dividing 
increases in one LULC class proportionally between any decreasing 
LULC classes in one year appeared to be an adequate strategy for 
defining LULC transitions during downscaling. 

3.2. Overall accuracy 

The overall accuracy of LandScaleR, calculated as the proportion of 
grid cells in a downscaled map that contained the same LULC class as the 
corresponding cell in the HILDA+ map from the same time step, varied 
little between the quasi-deterministic and fuzzy methods (Fig. 4a). The 
quasi-deterministic and fuzzy with f of 1.0 LULC allocation methods 
generated downscaled maps with the highest overall accuracy (means 
and standard deviations of 0.88 ± 1.4 × 10− 4 and 0.88 ± 2.8 × 10− 3 in 
2019 for quasi-deterministic and fuzzy with f of 1.0, respectively). 
Overall accuracy decreased very slightly as the f parameter for the fuzzy 
method increased, while the random LULC allocation method consis-
tently produced downscaled maps with the lowest accuracy (0.85 ± 1.5 
× 10− 4 in 2019), suggesting that both the quasi-deterministic and fuzzy 
methods of LULC allocation were more accurate than allocating LULC at 
random. 

Overall accuracy generally decreased over time as errors 

compounded across each simulation (Fig. 4a). Larger decreases in 
overall accuracy were observed in years when more LULC change 
occurred (Fig. 4b), which was expected as there will be a higher likeli-
hood of the downscaling algorithm making errors when more LULC is 
added to a reference map. The overall accuracy was very similar for all 
methods, except the random method, in most years of the study period. 
A particularly large decrease in overall accuracy of the downscaling 
method occurred in 2001 when 23,757 km2 of grass/shrubland was 
added to the reference map in regions that previously had very little 
grass/shrubland cover (Fig. S 2), meaning that there was little infor-
mation available in the downscaling algorithm to guide where the new 
grass/shrubland was allocated on the reference map. Unexpectedly, 
there were three years (2003, 2012 and 2013) when overall accuracy 
increased for all LULC allocation methods. These increases were asso-
ciated with a loss of grass/shrubland cover, generating larger, more 
uniform patches of LULC that were more similar across the downscaled 
and HILDA+ maps than the small, scattered patches of grass/shrubland 
that they replaced (Fig. S 2). 

3.3. Figure of Merit 

FM also showed little variation across the seven LULC allocation 
methods when calculated at yearly time steps over the study period 
(Fig. 5a). However, the random method of LULC allocation had a 
consistently lower FM index compared to the quasi-deterministic and 
fuzzy methods, suggesting that these methods perform better than 
allocating LULC at random. FM was often relatively low at yearly in-
tervals, with mean values ranging from 0.3% to 21.1%. Comparatively, 
FM was generally higher when calculated across the entire study period 
from 1960 to 2019 (Fig. 5b), so incorrect LULC transitions during 

Fig. 4. Overall accuracy decreases as the LULC allocation method becomes 
more stochastic. a) Mean overall accuracy decays over time. Lines give the 
mean and shaded areas the standard deviation of the proportion of cells con-
taining the expected LULC class across ten simulations per LULC allocation 
method. Standard deviations were small (range of 1.9 × 10− 6 to 3.9 × 10− 4) 
and were not sufficiently large to appear on the plot. b) Difference in the mean 
overall accuracy between years according to the percentage of land area in 
Colombia that changed LULC class in the same year. 
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downscaling in one year might be correct in HILDA+ in another year. 
FM was found to decrease slightly with increasing stochasticity in LULC 
allocation when calculated across the whole study period. FM was 
highest for the quasi-deterministic and fuzzy with f of 1.0 methods 
(33.8% ± 0.056 and 33.8% ± 0.10 for the quasi-deterministic and fuzzy 
f of 1.0 methods, respectively) and lowest for the random method 
(21.6% ± 0.048). The fuzzy method with f of 2.0 had the second lowest 
FM value of 31.2% ± 0.11, which was only slightly less than the highest 
FM ratios. Therefore, there was little difference in the accuracy of 
LandScaleR between the quasi-deterministic and fuzzy methods in terms 
of both overall accuracy and FM, although there was a tendency for 
accuracy to decrease with increasing stochasticity in LULC allocation. 
The random method of LULC allocation consistently performed worse 
than the quasi-deterministic and fuzzy methods. 

3.4. Landscape pattern analysis 

The seven LULC change allocation methods used to downscale LULC 
change in Colombia produced maps with differing landscape patterns. 
For all four landscape pattern metrics in Fig. 6, the fuzzy LULC change 
allocation method with an f-value of 2.0 was closest to the observed 
patterns in HILDA+ in 2019. Downscaling LULC change with the quasi- 
deterministic method generated landscapes with much larger mean 
patch area, higher Aggregation Index, and lower number of patches and 
edge density, than the actual HILDA+ landscapes. Increasing stochas-
ticity in the placement of LULC change on reference maps by increasing 
the f parameter in the fuzzy method reduced the tendency of LandScaleR 
to produce very aggregated landscapes and generated maps with more 
similar patterns to HILDA+. The random method of LULC allocation led 
to landscapes with a much smaller mean patch area and Aggregation 
Index than observed in Colombia from the HILDA+ data, suggesting that 
increasing stochasticity in LULC change allocation will generate land-
scapes more similar to observed ones up to an optimal value. The 

Fig. 5. Figure of Merit decreases slightly as the LULC allocation method be-
comes more stochastic. a) Mean Figure of Merit varied across years in the study 
period. Lines give the mean and shaded areas the standard deviation of 
Figure of Merit across ten simulations per LULC allocation method. b) Figure of 
Merit index as calculated for the entire study period (between 1960 and 2019). 

Fig. 6. Using a more stochastic LULC allocation method can better recreate landscape patterns observed in HILDA+. Mean patch area (ha) (a), number of patches (b), 
Aggregation Index (c), and edge density (m ha− 1) (d) by year. Lines give the mean and shaded areas the standard deviation of each landscape pattern metric across 
ten simulations where LULC change in Colombia was downscaled using one method of LULC change allocation. Standard deviations were small (range of 0 to 73 for 
mean patch area; 0 to 182 for number of patches; 0 to 0.039 for Aggregation Index, and 0 to 6.9 × 10− 3 for edge density) so may not be sufficiently large to appear on 
the plot. 
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optimal value of f for downscaling LULC change in Colombia varied over 
time as the landscape properties in Colombia were not constant over the 
study period (Fig. 6). 

The optimal method for downscaling LULC change in Colombia 
varied by LULC class as well as through time (Fig. 7). For example, mean 
patch area of pasture in 2019 in Colombia from the HILDA+ dataset was 
24,332 ha and the most similar downscaled mean patch area was 
23,954 ha from the fuzzy method with an f-value of 1.5. Comparatively, 
mean patch area of evergreen broad leaf forest in Colombia from 
HILDA+ was 26,277 ha and the fuzzy method with f -value of 2.0 
generated the most similar mean patch area (33,981 ha). Moreover, 
while all methods of LULC change allocation apart from random pro-
duced downscaled landscapes with a comparable Aggregation Index to 
HILDA+ for the pasture and evergreen broad leaf forest classes, the 
quasi-deterministic and fuzzy methods all overestimated the Aggrega-
tion Index for grass/shrubland. Therefore, in the case of grass/shrubland 
a higher f -value than tested here might be optimal for reproducing the 
Aggregation Index. The quasi-deterministic and fuzzy methods all ten-
ded to produce more similar patterns of pasture, evergreen broad leaf 
forest and grass/shrubland to HILDA+ than the random method of LULC 
change allocation. 

A region of Colombia is shown in Fig. 8 to demonstrate how the 
pattern of the downscaled landscapes compared to HILDA+ for three 
LULC change allocation methods in 2019: quasi-deterministic, fuzzy 
with f of 2.0, and random. The quasi-deterministic method generated a 
more aggregated landscape with fewer patches compared to the 
HILDA+ landscape. Comparatively, the random method led to a dis-
aggregated landscape with many small patches of grass/shrubland and 

visible outlines of at least two of the individual coarse-scale 0.5◦ grid 
cells. The downscaled landscape produced by the fuzzy method of 
allocation with f of 2.0 was most similar to the HILDA+ landscape in 
terms of the number and size of patches, but sometimes the patches were 
more aggregated than observed in HILDA+ and occurred in different 
locations. Landscapes from one simulation per LULC allocation method 
only are shown in Fig. 8, and although landscapes from simulations 
using the same allocation method have very similar average landscape 
patterns (Fig. 6) they may vary in the placement of LULC patches (Fig. S 
3). 

4. Discussion 

The LandScaleR downscaling algorithm was able to reproduce LULC 
patterns as observed in Colombia between 1960 and 2019. The quasi- 
deterministic method of LULC allocation generated landscapes that 
were more spatially aggregated than HILDA+. Previous work demon-
strated that modelling LULC change in Belgium using only neighbour-
hood variables led to much higher mean patch areas and lower total 
edge length than observed LULC (Dendoncker et al., 2006). Introducing 
stochasticity into LandScaleR, which is based on neighbourhood rules 
alone, generated more similar landscape patterns to observed ones by 
allowing for new patches of LULC to appear, and thereby decreasing 
mean patch area and increasing edge length. Increasing the LandScaleR 
f -parameter in the fuzzy method produces increasingly less aggregated 
LULC patterns, with an f -parameter value of 2.0 producing patterns 
similar to those observed in Colombia. Downscaling methods which 
incorporate both neighbourhood and non-neighbourhood variables (Cao 

Fig. 7. Landscape pattern metrics for HILDA+ and downscaled maps of Colombia for the three largest LULC classes in Colombia in 2019. Mean patch area (ha) (a), 
number of patches (b), Aggregation Index (c) and edge density (m ha− 1) (d) by year and LULC class. Lines give the mean and shaded areas the standard deviation for 
a landscape pattern metric for one method of LULC change allocation across ten simulations. Standard deviations were small (range of 0 to 3378 for mean patch area; 
0 to 122 for number of patches; 0 to 1.4 for Aggregation Index, and 0 to 7.4 × 10− 3 for edge density) so may not be sufficiently large to appear on the plot. 

T.L. Woodman et al.                                                                                                                                                                                                                           



Environmental Modelling and Software 169 (2023) 105826

11

et al., 2019; Le Page et al., 2016; von Jeetze et al., 2023) enable the 
appearance of new LULC patches in a landscape through correlations 
between LULC classes and environmental variables, so the f -parameter 
in LandScaleR is likely emulating some of the processes that drive LULC 
patterns, such as soil properties, topography, and land management. 

In addition to landscape pattern metrics we also calculated the 
overall accuracy and FM of the downscaling method for recreating 
historic LULC in Colombia. LandScaleR was much more effective at 
correctly predicting LULC transitions in some years than others, as 
yearly FM varied from 0.3% to 21.1%. Pontius et al. (2008) found that 
FM of a range of LULC models increased with increasing net LULC 
change, so it may be that the low yearly FM ratios we observed were due 
to the low net LULC change observed in Colombia in HILDA+ in several 
years of the study period. The results for FM calculated over the entire 
period (31.2–33.8% for the quasi-deterministic and fuzzy LULC alloca-
tion methods) were comparable to other LULC models, which often have 
FM indices of less than 50% (Cao et al., 2019; Hu et al., 2022; Pontius 
et al., 2008). All quasi-deterministic and fuzzy methods had a higher FM 
than allocating LULC at random and there was little difference in FM 
between these methods, suggesting that any of the quasi-deterministic 
and fuzzy methods would be sufficient in terms of grid cell-based ac-
curacy for downscaling LULC in Colombia from HILDA+. 

Overall accuracy was approximately 0.88 in 2019 when downscaling 
was run with the quasi-deterministic and fuzzy with f of 1.0 LULC 
allocation methods, which was relatively high and comparable to the 
accuracy of a multinomial logistic regression model used to predict 
LULC in Belgium with neighbourhood variables only (Dendoncker et al., 
2006). The errors made by the downscaling algorithm accumulated over 
time, which is a feature of other downscaling models (Chen et al., 2019), 
and higher decreases in accuracy were observed in years when more 
LULC change occurred. 

The largest decrease in the overall accuracy of LandScaleR occurred 

in 2001 when many small patches of grass/shrubland appeared in 
HILDA+ in the Llanos region, which is a globally important area of 
tropical savannas that covers 17 million hectares of land in Colombia 
(Romero-Ruiz et al., 2010). Conversely, twelve years later there was an 
increase in overall accuracy as the small patches of grass/shrubland in 
the Llanos region disappeared. HILDA+ is a time series of global LULC 
maps that integrates data from a number of other LULC products. From 
2001 to 2013 HILDA+ incorporated yearly MODIS data at a global scale 
(Winkler et al., 2020, 2021), which corresponds to the timings of the 
substantial fluctuations in grass/shrubland cover in the Llanos region 
and suggests that differences in LULC classifications between MODIS 
and the other LULC products used by HILDA+ likely caused these 
apparent changes in grass/shrubland cover. Differences in LULC classi-
fications might be created by difficulties in distinguishing between 
natural grass/shrubland and pasture areas, especially as extensive cattle 
grazing is one of the dominant land uses in the Llanos region (Romer-
o-Ruiz et al., 2012). Therefore, the particularly large decrease and 
subsequent increase in the overall accuracy of LandScaleR in 2001 and 
2013, respectively, were caused by inconsistencies in the input data. 
Downscaling the inconsistencies in grass/shrubland cover showed that 
LandScaleR may be less accurate at the grid cell level when there are few 
or no existing patches of a LULC class in a region, because any new areas 
of that LULC class will be allocated in a highly stochastic manner. 

Validation of LandScaleR with historic LULC data from Colombia 
demonstrated that there is a trade-off between overall accuracy and 
landscape patterns in the method, as has been found previously when 
assessing the accuracy of a set of cellular automata models with cell- 
based and pattern-based metrics (Lin et al., 2020). Overall accuracy of 
the downscaling algorithm decreased marginally with higher stochas-
ticity in LULC allocation, whereas landscape patterns became increas-
ingly similar to those observed in Colombia up to an optimal f value. 
LandScaleR includes minimal covariate data for LULC allocation and is 

Fig. 8. The LULC change allocation method used in downscaling can be adjusted to better recreate historic LULC patterns. LULC in Colombia in 2019 from the 
HILDA+ dataset (a) with a black square indicating the inset in b). LULC in 2019 is shown in the inset (b) for the HILDA+ dataset and three methods of allocating 
LULC change during downscaling: quasi-deterministic, fuzzy with f -parameter of 2.0, and random. 
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intended to generate landscapes that have realistic LULC patterns rather 
than high predictive accuracy at the grid cell level. LandScaleR can be 
calibrated against historic LULC datasets to find the optimal values of 
the f -parameter and kernel radius for a region and LULC class to be 
downscaled; for example, based on our results it would be appropriate to 
select the fuzzy method with an f -value of 2.0 to downscale future LULC 
change in Colombia. This LULC allocation method best recreated 
landscape-level LULC patterns in Colombia but was not optimal for all 
years or LULC classes. For example, using an f -value of 2.0 tended to 
produce more aggregated grass/shrubland patches than observed in 
HILDA+, so higher values of f could be tested in future to assess whether 
they better reproduce the characteristics of grass/shrubland patches in 
Colombia. Future work could also investigate the effects of scale on 
calibration of the f-parameter and kernel radius, and the accuracy of 
downscaled maps, as scale has been shown to be important in land use 
modelling (Blanchard et al., 2015). The f -parameter and kernel radius 
could also be chosen to depict specific socio-economic scenarios. For 
instance, a future scenario where land systems become dominated by a 
few land managers might have more spatially aggregated patterns of 
LULC than a scenario where there are many land managers who control 
smaller areas. 

While some LULC downscaling algorithms have been developed for 
downscaling LULC outputs from a specific land use model (for example, 
Hasegawa et al., 2017; Le Page et al., 2016; Vernon et al., 2018), 
LandScaleR is generic and can be applied to any gridded LULC pro-
jections. The algorithm is provided in the ‘LandScaleR’ R package and 
requires minimal input data because it allocates LULC based on the 
density of LULC classes in surrounding grid cells and the user-defined 
f -parameter, and does not rely on statistical relationships between 
LULC and environmental covariates that might change over time. 
LandScaleR only has two input parameters (f and kernel radius) 
compared to some downscaling models which might have ten or more 
parameters (von Jeetze et al., 2023). Both the f-parameter and kernel 
radius parameter can be calibrated using historic LULC data or adjusted 
for specific socio-economic scenarios. Further development of the 
LandScaleR algorithm could allow the f-parameter to vary by LULC 
class, through space, and over time, which would enable the algorithm 
to better recreate LULC patterns of individual classes, although at the 
cost of greater effort required for calibration. Developing approaches to 
formally fit the f -parameter to spatio-temporal patterns of LULC change, 
for example using Bayesian approaches, would be a natural direction to 
progress this work in and would open up opportunities for improving 
understanding of land-use change dynamics as well as improving fore-
casting capability. 

5. Conclusions 

We present LandScaleR, a spatial downscaling algorithm that is able 
to generate realistic spatial landscape configurations with minimal input 
data. LandScaleR controls the placement of new areas of LULC on a 
reference map via the density of LULC classes in neighbouring grid cells 
and a stochasticity parameter that alters the likelihood of grid cells 
receiving new LULC. The introduction of stochasticity into LandScaleR 
allows for the appearance of new LULC patches in the landscape and the 
stochasticity parameter can be calibrated by the user to best recreate 
historic LULC patterns in a particular region, or to represent a socio- 
economic scenario. LandScaleR was able to recreate historic LULC pat-
terns in Colombia, a country with high biodiversity and ongoing loss of 
natural land covers. Increasing stochasticity of LULC allocation gener-
ated landscape patterns which better matched historic patterns in 
Colombia, up to an optimum amount of stochasticity. The LandScaleR 
algorithm is provided as an R package with the aim of furthering the 
integration of LULC with models that investigate the impact of LULC on 
key environmental processes such as hydrology, biodiversity, carbon 
emissions, and landslide risk. Downscaled projections from LandScaleR 
could also be applied in natural hazard models that require LULC 

projections (Guo et al., 2022, 2023a, 2023b). Furthermore, LandScaleR 
could aid in the design of land management strategies with high spatial 
resolution that minimise the impacts of LULC on environmental 
processes. 

Software and data availability 

Software name: LandScaleR. 
Developer: Tamsin L. Woodman. 
Developer contact information: tlw36@cantab.ac.uk. 
First year available: 2023. 
Hardware requirements: PC/Mac. 
Software requirements: R statistical environment and language; 
Software availability: https://github.com/TamsinWoodman/L 

andScaleR; 
Cost: free. 
Program language: R. 
Program size: 3.56 MB. 
The code and HILDA+ dataset that were used to validate the Land-

ScaleR method are available at https://github.com/TamsinWoodman 
/LandScaleR-validation and https://doi.pangaea.de/10.1594/PAN-
GAEA.921846 (Winkler et al., 2020), respectively. 
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