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Abstract: Typically, a musical score alludes only briefly to the ways in which timbre and tempo vary through the piece, leaving
it to the performer to answer the question of how to interpret those elements in detail. If a musical piece is programmed with a
computer, timbre and tempo must be specified throughout the piece. This leaves us with the problem of how to program tempo
and timbre if we are given a musical score. We describe here some systematic techniques for reading timbre and tempo from a
musical score. The basic idea is to associate an algebraic structure to our score, and, by associating certain parameters to that
algebraic structure, derive the timbre and tempo of the piece. Our first approach is to associate a consonance structure to the
score, and reflect that in the timbre and tempo of the piece. This is what we do in sections 2-5 and section 7. Here, our approach
relates to the problem of tuning the notes of our piece in a consistent way. A second approach is to reflect higher dimensional
arrows implied by temporal subdivisions of the piece. This is what we do in section 6. In section 8 we mention a third crude
approach, where we just count through the notes of a piece successively, so our notes are indexed by elements of an interval in
Z, which we reflect in the timbre of our piece using a function.
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1. Introduction

When programming a computer to play an unornamented
musical score, it is simplest to set notes to have a constant
amplitude and to be played with a constant tempo. The result
is a sound which can be quite plain, compared to the sound
made if the same piece is interpreted artistically by humans.
This plainness means that when we hear the music, it faithfully
reflects the score, without embellishment. However, the ear
can yearn for some variation of timbre and tempo. Here, we
describe some systematic approaches to introducing variation
in timbre and tempo into computer generated interpretations
of a musical score. To do this, in sections 2 to 5, and section
7, we reflect a consonance structure implied by the score in
the timbre and tempo of an interpretation. Alternatively, in
section 6, we reflect higher dimensional arrows, implied by
temporal subdivisions of the piece, in the timbre and tempo of
an interpretation. Throughout, a consonance structure implied
by the score is reflected in the consonance structure of pitches
of an interpretation.

Let S denote the set of finite subsets of R× × R>0 with

distinct second coordinates. For an element s ∈ S, let

ξs(t) =
∑

(a,f)∈s

a sin(2πft).

Thus ξs is a function from R to R which, when played
through loudspeakers, determines a sound. We have the
diagonal action of R× × R>0 on S, in which the groups R×
and R>0 act by multiplication. We say ξs and ξt have the same
timbre if s and t belong to the same orbit under this action on
S.

Some remarks:
We say two musical notes are consonant if they share a

common harmonic. For example, ξs and ξt as above are
consonant if s and t contain elements with a common second
coordinate.

If we allow the timbre of notes to vary throughout an
interpretation of a piece, but in doing so, preserve some of the
consonances of the original, then the fundamental pitches may
be forced to diverge from their original values.

We construct our sounds by additive synthesis. Music
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constructed like this goes back some way, eg. [12].
Our manipulation of consonance structures is a sort of

retuning. Less complicated tuning systems are explored
elsewhere, eg. [3]. The use of tunings which vary with time is
not new, see eg. [11].

We derive music by similarity, cf. [7]. However, our
approach differs from an approach that derives music by
similarity from a large body of work (eg. [5]) - we only work
with one piece at a time.

We make tunings using consonances, as defined above. We
do not in general limit ourselves to ‘consonant’ frequency
ratios involving the primes 2, 3, and 5, as happens in
just intonation approximating 12 tone equal temperament.
However we do limit ourselves in this way in Examples 3.1,
4.1, 6.1, and 6.2.

We have given a more detailed analysis of consonance
structures elsewhere [14].

There are sound files to accompany the paper [15].

2. Substituting for Equal Temperament
Let f : R → R be a function. Let n be a fixed natural

number with 5 ≤ n ≤ 10. Let g : {1, 2, ..., n} → Z be given
by g(1) = 0, g(2) = 12, g(3) = 19, g(4) = 24, g(5) = 28,
g(6) = 31, g(7) = 34, g(8) = 36, g(9) = 38, g(10) = 40.
We extend g to a function from {1, 2, ..., n} · {1, 2, ..., n}−1 to
Z via g(ab ) = g(a) − g(b). We associate to a natural number
m a function εm from R to R given by

εm(t) =

n∑
i=1

sin(2πf(m+ g(i))t).

To a musical score, we associate an interpretation in which
the note m semitones above the note an octave below middle
C is given by the function εm. Consonances in the score
correspond to pairs of notes represented by integers m and
m′ where m − m′ = g(ab ) for some 1 ≤ a, b ≤ n. These
correspond to consonances in our interpretation, since we have
m+ g(b) = m′ + g(a), and therefore the bth harmonic of the
note represented by m is equal to the ath harmonic of the note
represented by m′.

In case f(t) = 110 · 2 1
4 · 2 t

12 , our interpretations correspond
to tunings in equal temperament.

Example 2.1. Let n = 6. Our examples are interpretations
of Bach’s Two Part Invention No. 9 [1]. For d ∈ R, let

f(t) = 110 · 2 1
4 · (15 · ( t

60
)d + 1).

Our two examples are the cases when d = 1 and where
d = 3.

3. Quivers Associated to Two Part
Compositions

Here we generalise the tunings of previous work on
consonance structures [14], to incorporate variations in timbre

that reflect those consonance structures.
Let M denote the subgroup of Q× generated by 2, 3, 5, 7.

Consider the group homomorphism m : M → Z sending
2, 3, 5, 7 to 12, 19, 28, 34 respectively. Suppose we have a
fixed natural number n with 5 ≤ n ≤ 10. We define g to
be the restriction of m to {1, 2, ..., n} · {1, 2, ..., n}−1. Let G
denote the image of g. Suppose we have a fixed section s of g.

Suppose we are given a two part composition on the stave,
such as a Bach Two-Part Invention. We denote one of the parts
1 and the other part 2. We have a linear order of the notes of
our composition, where notes are ordered by start time, and
given two notes starting at the same time we precede the note
in part 2 by the note in part 1. We denote by N the number of
notes of our composition.

For 1 ≤ x ≤ y ≤ N define the sequence S(x, y) of
elements of {1, 2, ..., N} to be

(x+ 1, x+ 2, x+ 3, ..., y, x− 1, x− 2, x− 3, ..., 1).

We denote by i(x, y) ∈ Z the number of semitones required
to ascend from the xth note to the yth note.

We define a quiver Q whose vertices are given by the
notes of our composition, and whose arrows are labelled
with elements of G. This is the consonance structure which,
when represented, defines an interpretation of our two part
composition.

Our algorithm to defineQ begins with a quiver with a single
vertex, corresponding to the first note of the composition, and
no arrows; it adds vertices and arrows successively. We run
through elements y of {1, 2, ..., N} consecutively, in standard
order. For a fixed y we run through the elements x with
1 ≤ x ≤ y in reverse order. For a fixed x and y we search
through S(x, y) for vertices in our quiver to connect to x. If x
already belongs to our quiver, we abandon our search through
S(x, y) straightaway. Otherwise we run through the elements
z of S(x, y) in sequence. If i(x, z) ∈ G and z belongs to
our quiver, we add x to our quiver, draw an arrow from x
to z, labelled with i(x, z), and discontinue the search through
S(x, y).

The underlying graph of Q is a tree, since our algorithm
involves adding leaves successively. We will assume that the
vertex set of Q is the set of all notes of our composition,
although there do exist examples where this is not the case.
The idea here is to construct Q from consonances between
notes which are close in the score.

Let l : Q×>0 → N×N be the function which sends a fraction
a
b in its lowest terms to (a, b).

Suppose we have an element θv = (θv,1, θv,2, θv,3, ..., θv,n)
of Rn>0, where θv,1 = 1, for every vertex v of Q.

We label the arrows of the double quiver of Q as follows.
Given an arrow from v1 to v2 inQ, labelled with γ, we label the
corresponding arrow in the double quiver with the real number
θv2,l(s(γ))1θv1,l(s(γ))2

−1. We label the corresponding reverse
arrow in the double quiver with the inverse of this real number.

A path in the underlying graph of Q determines a path
in the double of Q, and thus a real number, via the above
representation: this real number is the product of the real
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numbers labelling the arrows in the path. Choose an initial
frequency F0 ∈ R. Every vertex v of our quiver is connected
by a unique path in the underlying graph of Q from the first
note of the composition, and thus multiplying the real number
given by this path by F0 determines a frequency, which gives
the frequency Fv of v.

Suppose we have an element σv = (σv,1, σv,2, ..., σvn) of
Rn for every vertex v of Q.

To the vertex v in Q we assign the function ηv from R to R,
sending t to the sum

∑n
i=1 σv,i sin(2πFvθv,it). We call Fvθv,i

the ith harmonic of this function.
By construction, an arrow in Q directed from v1 to v2

corresponds to at least one common harmonic of the functions
assigned to v1 and v2. Indeed, if l(s(i(v1, v2))) = (α1, α2),
for 1 ≤ α1, α2 ≤ n, then the frequencies of v1 and v2 differ
by the factor θv2,α1

θv1,α2

−1, which implies the αth2 harmonic
of the function assigned to v1 is equal to the αth1 harmonic of
the function assigned to v2.

We obtain a piece by playing, for every vertex v, the
function ηv assigned to v, for the duration of the note
associated to v in our score. This piece is a representation
of the consonance structure Q, and an interpretation of the
original two part composition. It is a retuning of the original
two part composition.

The above construction relies on selecting a tuple
((σv,1, θv,1), ..., (σv,n, θv,n)), for v a vertex of Q. We next
use Q to derive such data from the consonance structure of our
two part composition.

Suppose we are given S0 ∈ Rn and S2, S3, S5, S7 ∈ Rn.
These determine n homomorphisms S(1), ..., S(n) :M→ R,
where S(i) sends 2, 3, 5, 7 to S2i, S3i, S5i, S7i, for 1 ≤ i ≤ n.

Fix i with 1 ≤ i ≤ n. Consider the double of Q. We label
the arrows of the double ofQ as follows: given an arrow in our
quiver labelled by γ, we label the corresponding arrow in our
double quiver with S(i)(s(γ)) and the corresponding reverse
arrow with −S(i)(s(γ)).

A path in the underlying graph of Q determines a path
in the double of Q, and thus a real number, via the above
representation: this real number is the sum of the real numbers
labelling the arrows in the path. Every vertex v of our quiver
is connected by a unique path in the underlying graph of Q
from the first note of the composition, and thus adding the
real number given by this path to S0i determines an amplitude,
which we call σv,i.

Suppose we are given T0 ∈ Rn>0 with T0i·j = T0i · T0j for
1 ≤ i, j, i · j ≤ n. Suppose we are also given T2, T3, T5, T7 ∈
Rn>0 with Tki·j = Tki · Tkj for 1 ≤ i, j, i · j ≤ n and
k = 2, 3, 5, 7. These determine n − 1 homomorphisms
T (2), ..., T (n) : M → R>0, where T (i) sends 2, 3, 5, 7 to
T2i, T3i, T5i, T7i, for 1 ≤ i ≤ n.

Fix i with 2 ≤ i ≤ n. Consider the double of Q. We label
the arrows of the double ofQ as follows: given an arrow in our
quiver labelled by γ, we label the corresponding arrow in our
double quiver with T (i)(s(γ)) and the corresponding reverse
arrow with T (i)(s(γ))−1.

A path in the underlying graph of Q determines a path
in the double of Q, and thus a real number, via the above

representation: this real number is the product of the real
numbers labelling the arrows in the path. Every vertex v of our
quiver is connected by a unique path in the underlying graph of
Q from the first note of the composition, and thus multiplying
the real number given by this path by T0i determines a scalar,
which we call θv,i.

Our examples are all interpretations of Bach’s Two Part
Invention No. 9.

Example 3.1. Let n = 5. We set S0 = (1, 1, 1, 1, 1),
and S2 = (0.1, 0, 0, 0.1, 0), S3 = (0, 0.1, 0, 0, 0.1), S5 =
(0, 0, 0.1, 0, 0). We set T0 = (1, 2, 3, 4, 5), and T2 = T3 =
T5 = (1, 1, 1, 1, 1), and thus do not allow θv to vary throughout
the interpretation. We set F0 = 1056.

Example 3.2. Let n = 5. In this example, we set S0 =
(1, 1, 1, 1, 1) and S2 = S3 = S5 = (0, 0, 0, 0, 0), and thus
do not allow amplitudes to vary through the interpretation.
We set T0 = (1, 2, 3, 4, 5), and T2 = T5 = (1, 1, 1, 1, 1),
T3 = (1, 1, 1, 1, (6/5)

1
27 ). We set F0 = 2112. When v is the

last note of our piece, θv = (1, 2, 3, 4, 6). Part way through
our piece, θv is approximately (1, 2, 3, 4, 163 ). This is audible
as a section in which nearby intervals are approximately given
by unisons, or stacks of fourths and fifths.

Example 3.3. Let n = 5. We set S0 = (1, 1, 1, 1, 1),
and S2 = (−0.1, 0, 0,−0.1, 0), S3 = (0,−0.1, 0, 0,−0.1),
S5 = (0, 0,−0.1,−0.1,−0.1). We set T0 = (1, 32 , 2,

9
4 , 3),

and T2 = (1, 1.001, 1, 1.002001, 1), T3 = (1, 1, 0.999, 1, 1),
T5 = (1, 1, 1, 1, 1.001). Let F0 = 1056.

Example 3.4. Let n = 5. We set S0 = (1, 1, 1, 1, 1), and
S2 = (−0.1, 0, 0,−0.1, 0), S3 = (0,−0.1, 0, 0,−0.1), S5 =
(0, 0,−0.1,−0.1,−0.1). We set T2 = (1, 1.03, 1, 1.0609, 1),
T3 = (1, 1, 0.985, 1, 1), and T5 = (1, 1, 1, 1, 1.03). Our two
examples are given by T0 = (1, 2, 3, 4, 5), F0 = 1056, and
T0 = (1, 1, 1, 1, 1), F0 = 2112.

4. Ckeleta

A note of a piece associated to a two part composition in
the preceding section is somewhat fleshy, in the sense that it
possesses harmonics which do not contribute to consonances
given by Q. We define the consonance skeleton, or ckeleton,
of this piece to be that which eliminates this excess in the
following way:

An arrow in Q directed from v1 to v2 defines a pair of
harmonics of the same frequency. Indeed, if l(s(i(v1, v2))) =
(α1, α2), for 1 ≤ α1, α2 ≤ n, then the frequencies of
v1 and v2 differ by the factor θv2,α1

θv1,α2

−1, which implies
the αth2 harmonic of the function assigned to v1 is equal
to the αth1 harmonic of the function assigned to v2. Such
harmonics sound, as sine waves with amplitude 1, in the
ckeleton for the duration of the corresponding note in our two
part composition. These are the only sounds in the ckeleton.
In this way, each arrow in Q defines a call and a response of a
certain sine wave in the corresponding ckeleton.

Example 4.1. Let n = 5. We set T0 = (1, 2, 3, 4, 5), and
T2 = T3 = T5 = (1, 1, 1, 1, 1), and thus do not allow θv
to vary throughout. We set F0 = 528, and take the resulting
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ckeleton (4.1a).

5. Rubato

There is another parameter in which we can represent our
consonance structure, namely tempo. Let us describe how to
do this.

Suppose we are given U0 ∈ R>0, and U2, U3, U5, U7 ∈
R>0. This determines a homomorphism U :M → R>0 that
sends 2, 3, 5, 7 to U2, U3, U5, U7.

Consider the double ofQ. We label the arrows of the double
of Q as follows: given an arrow in our quiver labelled by γ,
we label the corresponding arrow in our double quiver with
U(s(γ)) and the corresponding reverse arrow with U(s(γ))−1.

A path in the underlying graph of Q determines a path
in the double of Q, and thus a real number, via the above
representation: this real number is the product of the real
numbers labelling the arrows in the path. Every vertex v of our
quiver is connected by a unique path in the underlying graph of
Q from the first note of the composition, and thus multiplying
the real number given by this path by U0 determines a tempo,
which we call υv . When we play our interpretation, we play
the note v with tempo υv .

Example 5.1. We use the data from Example 3.4a: we set
T2 = (1, 1.03, 1, 1.0609, 1), T3 = (1, 1, 0.985, 1, 1), and
T5 = (1, 1, 1, 1, 1.03), T0 = (1, 2, 3, 4, 5), F0 = 1056. We
take the ckeleton of the resulting interpretation, and set U0 to
give one semiquaver a duration of 0.4s. We set (U2, U3, U5) =
(1.12, 1.15, 1.18).

6. Higher Dimensional Arrows

We have derived our parameters σv , θv , and υv from the
quiver Q, which is in turn derived from the consonance
structure of our piece. Here we present an alternative
derivation of such parameters from the score, this time
from higher dimensional arrows derived from the rhythmical
structure of the score (note: there is a significant body of
previous work on higher dimensional arrows, some of it
musical, eg. [2, 4, 8, 9, 10] and references therein).

Figure 1. A 3-arrow.

Let S denote a set. We define a 0-path to be an element of
S. We define the source and target of a 0-path to be ◦. For
d ≥ 1 we define a d-path P to be a sequence (a0, a1, ..., al) of
d − 1-paths with the same source and target. We then define

the source of P to be al and the target of P to be a0. We define
the dth coordinate of the d− 1-path ar to be r

l .
For i = 0, ..., d − 1, we define the set of i-gens of P to

be the disjoint union of the sets of i-gens of a0, a1, ..., al. We
define the set of d-gens of P to be the singleton set {P}. For
1 ≤ i ≤ d, each 0-gen x of P is a 0-gen of a unique i− 1-gen,
and the ith coordinates of these i−1-gens associate a sequence
of coordinates x̃ = (x1, ..., xd) ∈ [0, 1]d to x.

Suppose we have a map φ from the notes of a piece written
on the stave to the set of 0-gens of a d-path P . For example,
consider Bach’s Two Part Invention No. 9. Let S = {•}.
Let s = •, a 0-path to symbolise a semiquaver of our piece.
Let q = (s, s), a 1-path to symbolise a quaver of our piece.
Let c = (q, q), a 2-path to symbolise a crotchet of our piece.
Let b = (c, c, c), a 3-path to symbolise a bar of our piece.
Let f = (b, b, b, b), a 4-path to symbolise four bars of our
piece, and t = (b, b), a 4-path to symbolise two bars of our
piece. Let P = (f, f, f, f, f, f, f, f, t), a 5-path to symbolise
our piece, partitioned into eight four bar sections followed by
a two bar section. The 0-gens of P correspond in this way
to the quavers of our piece. We have partitioned the piece
using i-gens to reflect the rhythmical structure of the score.
A note corresponds to the semi-quaver at its start, which has
coordinates in [0, 1]5.

Suppose we now have an element η of Rn, and an n×d real
matrix ζ. Associated to each note p of our piece, we have a
vector η + ζ ˜φ(p) in Rn. This determines a set of amplitudes
for harmonics of the notes of the piece.

Suppose we have an element u of R>0 and an element v
of Rd. Associated to each note p of our piece, we have an
element u exp(v. ˜φ(p))). This gives us a set of real numbers,
which, when multiplied by the number of semiquavers in the
relevant notes, determine durations for the notes of our piece.

Example 6.1. We take n = d = 5, with Bach’s Two Part
Invention No. 9 represented as a 5-path P as above. We take
η = (0.1, 0.1, 0.1, 0.1, 0.1), and

ζ =


0.01 0.02 0.06 0.12 −0.4
−0.02 −0.03 −0.08 0.15 −0.08
0.03 0.04 −0.1 0.03 0.16
−0.04 0.05 −0.02 −0.06 −0.24
−0.05 0.01 0.04 0.09 0.32

 .

We take u = 0.2 and v = (0.075,−0.06, 0.09,−0.09, 0.12).
We can allow the timbre of a note to vary for the duration of

the note, and do this in such a way to represent the d-path P ,
as follows:

Let η1, η2, η3 be elements of Rn, and ζ1, ζ2, ζ3 be n×d real
matrices. Associated to each note p of our piece, we have a
vector ηi+ ζi ˜φ(p) in Rn, for i = 1, 2, 3. This determines three
amplitudes for harmonics of a note of the piece, which we take
to represent the amplitudes of our harmonics at the beginning,
at m, and at the end of the note (for i = 1, 2, 3 respectively).
Here, m is some point between the beginning and the end of
our note. We linearly interpolate amplitudes for harmonics in
between the beginning of the note, and m, and in between m
and the end of the note.
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How do we define m?
Suppose we have elements u1, u2 of R>0 and elements

v1, v2 of Rd. Associated to each note p of our piece, we
have an element ui exp(vi. ˜φ(p))), for i = 1, 2. Suppose for
i = 2 and every note p this element is < 1. The elements
u1 exp(v1. ˜φ(p))). give a set of real numbers, which, when
multiplied by the number of semiquavers in the relevant notes,
determine durations for the notes of our piece. The element
u2 exp(v2. ˜φ(p)))u1 exp(v1. ˜φ(p))) is a real number less than
the u1 exp(v1. ˜φ(p))), which, when multiplied by the number
of semiquavers in the relevant note, determines a point in time
m between the beginning of the note and the end of the note.

Example 6.2. We take n = d = 5, with Bach’s Two Part
Invention No. 9 represented as a 5-path P as above. We take
η1 = (0.1, 0.1, 0.1, 0.1, 0.1), and η2 = η3 = (0, 0, 0, 0, 0). We
take

ζ1 =


0.01 0.02 0.06 0.12 −0.4
−0.02 −0.03 −0.08 0.15 −0.08
0.03 0.04 −0.1 0.03 0.16
−0.04 0.05 −0.02 −0.06 −0.24
−0.05 0.01 0.04 0.09 0.32

 ,

ζ2 =


−0.1 0.04 0.06 0.06 0.08
−0.04 −0.03 −0.04 −0.03 0.8
0.03 0.02 0.02 −0.3 0.32
−0.02 −0.01 0.2 −0.12 −0.24
0.01 −0.1 0.08 0.09 0.16

 ,

ζ3 =


−0.05 0.01 0.02 0.03 0.08
−0.01 −0.01 −0.02 −0.03 0.4
0.01 0.01 0.02 −0.15 0.08
−0.01 −0.01 0.1 −0.03 −0.08
0.01 −0.05 0.02 0.03 0.08

 .

We take u1 = 0.2 and v1 = (0.075,−0.06, 0.09,−0.09, 0.12).
We take u2 = 3

5 and v2 = (−0.2, 0.2,−0.4, 0.6,−0.16).

7. Reordering

When we retune a two part composition using a quiver, as in
section 3, the resulting interpretation can have lines with quite
a different structure from those in the original composition.
For example, two successive notes in the original, the second
of which is higher in pitch than the first, can become two
successive notes in the retuned interpretation, the first of which
is higher in pitch than the second. We can correct for this effect
as follows:

Take a two part composition, interpreted as in section 3. For
each bar, take the fundamental frequencies Fv of the notes
n1, n1 + 1, n1 + 2, ..., n1 + n2 − 1 of that bar in order,
and take a permutation σ that permutes these notes so that
these fundamental frequencies lie in increasing order. Take
the fundamental frequencies of the notes n1, n1 + 1, n1 +
2, ..., n1 + n2 − 1 of the original composition, and take a
permutation τ that permutes these notes, so these fundamental
frequencies lie in increasing order. Apply the permutation

τ−1σ to the notes of the bar of the retuned interpretation, and
reorder the frequencies of the piece correspondingly. In this
way, we obtain a reordered composition which, within bars at
least, has fundamental frequencies that occur in the same order
as those in the original composition.

We have not stated how we should permute notes in a bar
so that fundamental frequencies lie in increasing order. To
do this, we begin with our list of fundamental frequencies:
f0, f1, f2, ..., fn2−1. We let i run from 1 to n2 − 1, and if
fi−1 > fi we swap fi−1 and fi. We then repeat this run n2−1
times, at which point our frequencies will be in ascending
order. This algorithm determines a permutation as required.

Our reason for restricting our reordering to within bars is
the following: given two vertices of our quiver Q which are
connected by an arrow, the corresponding notes of the retuned
composition of section 3 will be close together in time, by
construction, and consequently the corresponding notes of the
reordered retuned composition will be fairly close together in
time.

Example 7.1. We take example 3.4a, and reorder its
frequencies as stated above.

We can also merely reorder notes in a bar so that
fundamental frequencies lie in increasing order, as in the
following example:

Example 7.2. Let n = 5. We set S0 = (1, 1, 1, 1, 1),
and S2 = (−0.1, 0, 0,−0.1, 0), S3 = (0,−0.1, 0, 0,−0.1),
S5 = (0, 0,−0.1,−0.1,−0.1). We set T0 = (1, 6316 , 2,

15
2 ,

31
2 ),

and T2 = T3 = T5 = (1, 1, 1, 1, 1). Let F0 = 264.
The piece here is Bach Invention No. 9, but the reordered

retuned composition is perhaps structured more like a Bach
prelude.

8. Enumeration of Notes

A general way to vary the timbre through a piece is to first
define a bijection φ from a set {1, 2, 3, ..., N} to the set of
notes of the piece, where given a note φ(i) that is earlier in
the piece than φ(j) we have i < j. We then specify functions
a1, ..., an : N→ R, and set the amplitude of the kth harmonic
of the note φ(i) to be ak(i), for k = 1, ..., n.

Example 8.1. For a piece written in 31 tone equal
temperament ([13], section 9, cf. also [6]), we take ak(i) =
500−i
500 (1− i

100k )
3.

9. Conclusion

We have introduced a number of different methods for
varying timbre and tempo when programming a computer
to play a musical score. Our techniques involve algebraic
structures, with a topological combinatorial flavour (quivers,
higher dimensional arrows) This should not be too surprising
- associations are expressed algebraically, and musical data is
often combinatorial. In some of our constructions we relate
the problem of choosing timbre and tempo to the problem of
tuning the piece - in both cases we are organising the notes of
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the score in a given way.
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