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Abstract

Objectives: Using equations to predict resting metabolic rate (RMR) has

yielded different degrees of validity, particularly when sex and different physi-

cal activity levels were considered. Therefore, the purpose of the present study

was to determine the validity of several different predictive equations to esti-

mate RMR in female and male adults with varying physical activity levels.

Method: We measured the RMR of 50 adults (26 females and 24 males) evenly

distributed through activity levels varying from sedentary to ultra-endurance.

Body composition was measured by dual X–ray absorptiometry and physical

activity was monitored by accelerometry. Ten equations to predict RMR were

applied (using Body Mass [BM]: Harris & Benedict, 1919; Mifflin et al., 1990

[MifflinBM]; Pontzer et al., 2021 [PontzerBM]; Schofield, 1985; FAO/WHO/

UNU, 2004; and using Fat-Free Mass (FFM): Cunningham, 1991; Johnstone

et al., 2006; Mifflin et al., 1990 [MifflinFFM]; Nelson et al. 1992; Pontzer et al.,

2021 [PontzerFFM]). The accuracy of these equations was analyzed, and the

effect of sex and physical activity was evaluated using different accuracy

metrics.

Results: Equations using BM were less accurate for females, and their accu-

racy was influenced by physical activity and body composition. FFM equations

were slightly less accurate for males but there was no obvious effect of physical

activity or other sample parameters. PontzerFFM provides higher accuracy than

other models independent of the magnitude of RMR, sex, activity levels, and

sample characteristics.

Conclusion: Equations using FFM were more accurate than BM equations in

our sample. Future studies are needed to test the accuracy of RMR prediction

equations in diverse samples.
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1 | INTRODUCTION

Resting metabolic rate (RMR) is usually defined as the
minimum energy an individual needs to sustain basic
vital functions (Henry, 2005; Leonard, 2012) and com-
prising 60%–75% is considered the largest component of
total energy expenditure (TEE; Donahoo et al., 2004;
Speakman & Selman, 2003). Indirect calorimetry is the
gold standard for measuring RMR but it is expensive,
time-consuming, and requires trained technicians to per-
form. As such, predictive equations are a convenient,
often-used alternative to estimate RMR (Levine, 2005).

Equations based on body mass are commonly used
(i.e., FAO/WHO/UNU, 2004; Harris & Benedict, 1919;
Schofield, 1985) given the allometric relationship that
exists between body size and RMR (Heymsfield
et al., 2018; Kleiber, 1932). However, their accuracy has
been questioned (Flack et al., 2016; Frankenfield
et al., 2003; Lindsey et al., 2021; Shetty et al., 1996; but
see Bendavid et al., 2021) because changes in total weight
could comprise very different contributions of fat and
lean tissue which have very different metabolic rates.
Fat-free mass (FFM) accounts for approximately 70% of
the variation in the RMR (Cunningham, 1991; Johnstone
et al., 2006; Nelson et al., 1992), and thus, equations
based on FFM are considered more accurate than those
based on body mass (i.e., FAO/WHO/UNU, 2004;
Harris & Benedict, 1919; Schofield, 1985).

There are significant differences in body composition
(FFM and fat mass -FM-) between sexes (Karastergiou
et al., 2012; Klausen et al., 1997). However, some
(Lindsey et al., 2021), but not all previous studies have
addressed the influence of sex on the accuracy of predic-
tive equations. Moreover, it has recently been suggested
that variability in RMR is greater in males than females,
even after adjusting for differences in FFM (Halsey
et al., 2022; but see Buchholz et al., 2001). In addition,
physical activity tends to be lower in females compared
with males (Matthews et al., 2023) and this could impact
RMR (Speakman & Selman, 2003; Thompson &
Manore, 1996). Therefore, sex differences in physical
activity (Hands et al., 2016) may also impact the accuracy
of RMR equations.

The magnitude of under- or overestimation with pre-
dictive equations has also been related to demographic
characteristics of the populations under study (see
Henry, 2005 and the references therein), with some of
the historical equations having an overrepresentation
of a specific group, (i.e., Italian males in Schofield, 1985).
These equations were developed in Caucasians (Reneau
et al., 2019). However, the use of different populations
may contribute to variability in RMR (Sabounchi
et al., 2013) due, at least in part, to an effect of body

composition and body fat distribution (Reneau
et al., 2019). In addition, environmental adaptations have
a significant effect on RMR (Froehle, 2008; Leonard
et al., 2002; Ocobock, 2016, 2023; Ocobock et al., 2020).
However, neither ethnicity nor environmental adapta-
tions (such as temperature, diet, or lifestyle) were consid-
ered in historical formulas to predict energy
requirements (Froehle, 2008; Leonard et al., 2005;
Reneau et al., 2019; Snodgrass et al., 2005). These limita-
tions led to the necessity of testing new equations based
on recent, large, and diverse datasets, such as the equa-
tion recently developed by Pontzer et al. (2021).

Thus, the purpose of the present study was to deter-
mine the validity of predictive equations based on body
mass and fat-free mass to estimate RMR in female and
male adults with varying physical activity levels.

2 | MATERIALS AND METHODS

2.1 | Participants

As part of a larger study, 50 healthy adults (26 females,
24 males), aged 19–58 (35 ± 10) years were recruited. The
participants were uniformly distributed across levels of
self-reported physical activity varying from sedentary,
walking, and/or running from 0 km per week, to ultra-
endurance level, regularly running more than 80 km/
week (Figure 1).

Eligible volunteers were informed about the nature of
the study and both verbal and written consent were
obtained. Individuals who were smokers, consumed diets
with extremes of macronutrient intake (e.g., ketogenic

FIGURE 1 Sample size (n) distribution by self-reported km

walked/ran per week and correspondence with Counts per Minute/

day (CPM/d) measured by accelerometry. Data represented as

mean (gray diamond) and 95% confidence intervals (Fisher LSD)

(blue brackets). ♀ = Females; ♂ = Males.
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diet), were pregnant or breastfeeding, and/or took medi-
cations or had a medical history that could impact meta-
bolic rate or make participation unsafe were excluded.
All experimental procedures were approved by the Insti-
tutional Review Board at the Virginia Polytechnic
Institute and State University (Virginia Tech) (IRB
#21-567).

2.2 | Procedures

Height was determined to the nearest 0.1 cm and body
bass (BM) to the nearest 0.1 kg using a stadiometer and
stand-on scale (Scale-Tronix 5002), respectively. Fat mass
(FM) and fat-free mass (FFM) were determined by dual-
energy X-ray absorptiometry (DXA scan, Lunar Digital
Prodigy Advance, software enCORE version 15, GE
Healthcare; Madison, WI, USA), and were expressed in
total kilograms and as a percentage of BM (%). Body mass
index (BMI) was calculated as BM (in kilograms) divided
by the square of height (in meters).

RMR was measured using indirect calorimetry (Parvo
Medics, TrueOne 2400 Metabolic Measurement System,
OUSW 4.3.4; Murray, Utah, USA) with a ventilated can-
opy following a 12-h fast as previously described (Van
Pelt et al., 1997) and at least 12 hours after the last exer-
cise training session in runners to not interfere with their
habitual physiological state. RMR was measured in the
supine position in a dimly lit, temperature-controlled
room between 22–24�C; participants wore laboratory-
provided clothing and were covered with a blanket; the
last 30 min of a 45-min period was used for analysis.
RMR was measured on two occasions, separated by
14 days during which body mass was stable. As such, we
utilized the second measurement for our analysis.
We observed excellent test–retest reliability (r = .93;
p < .001) for RMR; the within-person coefficient of varia-
tion was 2.92%.

We estimated the RMR of our participants using
10 different equations. Five of them relied on BM as an
independent variable (FAO/WHO/UNU, 2004 [WHO];
Harris & Benedict, 1919 [H-B]; Mifflin et al., 1990 [Mif-
flinBM]; Pontzer et al., 2021 Model 4 [PontzerBM];
Schofield, 1985 [Schofield]), and the other five relied on
FFM (Cunningham, 1991 [Cunningham]; Johnstone
et al., 2006 [Johnstone]; Mifflin et al., 1990 Model 1 [Mif-
flinFFM]; Nelson et al., 1992 [Nelson]; Pontzer et al., 2021
Model 5 [PontzerFFM]). A description of the models is
provided in Table S1. We selected these equations to
compare widely used predictive formulas with recent
models published by Pontzer et al. (2021). All the predic-
tive equations applied were obtained from individuals of
a wide range of adult ages and body sizes, and their

sample size was ≥150 individuals with the data obtained
via primary collection or meta-analysis. Equations exclu-
sively developed in athletes were not included (i.e., De
Lorenzo et al., 1999; Freire et al., 2021; Ten Haaf &
Weijs, 2014).

Physical activity was measured using a triaxial accel-
erometer (ActiGraph GT3X, Actigraph Corporation, Pen-
sacola, FL). Subjects were asked to wear the
accelerometer on an elastic belt around their waist con-
tinuously for 14 days and to remove the device only for
swimming, showering, bathing, or sleeping. Wear time
log sheets were kept by each participant and accelerome-
ter data were screened using standard methods
(Chomistek et al., 2017; Troiano et al., 2008; Tudor-Locke
et al., 2012). The data collection interval was set at 10-s
epochs with a sampling rate of 30 Hz. At least 4 days over
a 1-week period with 10 h/d or more wear time were
included for analysis.

Mean counts per minute per day (CPM/d) of the three
axes (triaxial vector magnitude) on valid monitoring days
were used to objectively quantify physical activity levels.
Self-reported physical activity levels (km walking and/or
running per week) were correlated with objectively mea-
sured steps per day (correlation coefficient = .71;
p < .001) and counts per minute/day (CPM/d; correlation
coefficient = .55; p < .001) obtained from accelerometry
(Figure 1).

2.3 | Statistical analysis

T-test analyses were used to compare sample demo-
graphics, body weight, and composition by sex and mea-
sured to predicted RMR means. The level of significance
was set at p < .05. Agreement between measured and
predicted RMR was analyzed by Bland–Altman plots
(Bland & Altman, 1986). The association between the
magnitude of the RMR and the difference between pre-
dicted and measured RMR (heteroscedasticity), was
examined by regression analysis, and the slope (β)
pointed when the relationship was significant (p < .05)
in the Bland–Altman plots (Freire et al., 2021; Ruiz
et al., 2011). This analysis was made for the entire sample
and each sex separately. Bias was calculated as the mean
of the difference between measured and predicted RMR,
with Standard Deviation (SD). Lower (LLOA) and upper
limits of agreement (ULOA) were calculated (Formula
1 in Supplementary Material).

Mean absolute percent error (MAPE) and mean dif-
ference, as a percentage (%) (Formulas 2 and 3, respec-
tively, in Supplementary Material), were calculated to
test the accuracy of predictive equations. A positive error
score in these calculations demonstrates an
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underestimation of the models. A mean difference (%)
lower than 10% is usually indicative of adequate accu-
racy (Pavlidou et al., 2018). The root mean square of
error (RMSE) was used to calculate the average differ-
ence between predicted and measured RMR values
(Formula 4 in Supplementary Material). In addition,
the percentage of RMSE (RMSE%) was assessed
(Formula 5 in Supplementary Material). An RMSE%
value under 10% has been considered acceptable when
comparing measured and predicted RMR in previous
publications (i.e., Amaro-Gahete et al., 2019; Balci
et al., 2021; Freire et al., 2021).

To test the accuracy of the predictive equations at an
individual level, the percentage of subjects with a pre-
dicted RMR within ±10% of measured RMR was also
assessed (Frankenfield et al., 2005; Marra et al., 2019;
Miller et al., 2013; Xue et al., 2019). Three criteria had to
be met to be considered an accurate predictive equation:
no statistical difference between measured and predicted
RMR (T-test, p ≥ .05); mean difference (%) ≤10%; and
RMSE% ≤ 10% (Freire et al., 2021).

One-way ANOVA analyses were used to test the effect
of sex on equation accuracy. Absolute biases of predicted
RMR were examined against age, BM, FFM, FM, %FFM,
%FM, and CPM/d by multiple regression analysis with
forward stepwise selection to detect if participants' char-
acteristics and physical activity were affecting the error
magnitude of the estimations. The statistical analyses
were carried out with Statgraphics Centurion XIX® soft-
ware (Statgraphics Technologies, 2022).

3 | RESULTS

3.1 | Sample characteristics

The main characteristics of our sample are described in
Table 1. BM, height, and FFM were significantly higher
for males, while the percentage of FM (%FM) was lower
when compared to females (p < .001). There were no dif-
ferences in age (p = .82) or BMI (p = .16) between sexes.
RMR was higher in males compared with females
(p < .001), but there were no significant differences in
steps/day (p = .58) or CPM/d (p = .82) between the two
groups (Table 1).

3.2 | Performance of predictive
equations based on BM

The comparison between estimated and measured RMR,
positive MAPE, and positive mean difference (%) values
indicated that all predictive equations underestimated
the RMR in the whole sample (Table 2) and in both
males and females when considered separately
(Table S2). Based on the accuracy metrics, the WHO
equation performed best, followed by H-B (Tables 2 and
3). The highest percentages of individuals with a pre-
dicted RMR within ±10% of the measured value were
observed with WHO and H-B equations (Table 2 and
Table S2). However, all of the equations were considered
inaccurate for females (Table 3 and Table S2).

TABLE 1 Summary characteristics

of the sample. Data expressed as mean

± standard deviation.

Total sample (n = 50)

♀ (n = 26) ♂ (n = 24)

Age (years) 35 ± 10 35 ± 10

BM (kg) 58.76 ± 5.77 72.99 ± 6.80*

Height (cm) 164.11 ± 5.27 179.74 ± 6.22*

BMI (kg/m2) 21.84 ± 1.84 22.6 ± 1.89

FFM (kg) 44.51 ± 4.61 60.16 ± 5.02*

%FFM 76.02 ± 7.08 82.63 ± 4.89*

FM (kg) 14.4 ± 4.86 13.01 ± 4.29

%FM 25.31 ± 6.53 18.38 ± 4.97*

RMR (kcal/d) 1447 ± 130.74 1817 ± 161.90*

Steps/d 12 270 ± 4222
(Min. 4007 – Max. 21 555)

11 610 ± 4210
(Min. 6064 – Max. 21 712)

CPM/d 781.97 ± 226.95
(Min. 367 – Max. 1151)

797.04 ± 238.26
(Min. 238 – Max. 1198)

Abbreviations: ♀, Females; ♂, Males; BM, body mass; BMI, Body Mass Index; CPM/d, counts per minute/

day; FFM, fat-free mass; FM, fat mass; RMR, Resting Metabolic Rate.
*Significant differences by sex (T-Student test, p-value < .05).
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FIGURE 2 Legend on next page.

PRADO-NÓVOA ET AL. 7 of 14

 15206300, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ajhb.24005 by U

niversity O
f A

berdeen T
he U

ni, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



There were large limits of agreement and RMSE
values for all of the equations (BM equations in Table 2
and Figure 2). In the combined group of males and
females, the extent of error of the predictive equations
did not vary notably with the magnitude of the RMR
(homoscedasticity; blue dotted line in Figure 2, p > .05).
However, when each sex was considered separately, there
was marked heteroscedasticity (p < .01; purple [females]
and black [males] dotted lines in Figure 2), especially
females (higher slopes [β]).

Sex influenced some indicators of accuracy, so the
precision of the equations was generally lower when
applied to females: higher bias, MAPE, RMSE, %RMSE,
lower accuracy (%), and significantly higher mean differ-
ence (%) in every equation but H-B (ANOVA test,
Table S2).

Multiple stepwise regressions showed that CPM/d
were weakly but positively correlated with bias at H-B
(Adjusted R2 = .11, p = .01) and MifflinBM equations
(Adjusted R2 = .07, p = .03) when applied to the whole
sample (Table S3). When each sex was considered sepa-
rately, FFM was the only factor (positive correlation)
remaining in the models against bias in every equation
applied to females (Table S3). Therefore, all equations'
biases were higher for leaner females.

3.3 | Performance of predictive
equations based on FFM

All the equations underestimated RMR in all our partici-
pants (Table 2) and when each sex was considered sepa-
rately (Table S2). However, only the PontzerFFM equation
met the three accuracy criteria when applied to the whole
sample and regardless of sex (Tables 2 and 3; Table S2).
The PontzerFFM equation demonstrated the best general
performance, predicting 88% of the individuals' RMR
accurately in the entire sample (Accuracy (%), Table 2),
92% of females and 83% of males (Accuracy [%],
Table S2).

Equations based on FFM exhibited large limits of
agreement and RMSE values (Table 2 and Figure 2). Dif-
ferent degrees of heteroscedasticity (p < .05) could be

observed when the whole sample was analyzed in every
equation (Blue dotted lines in Figure 2) but Nelson.
When each sex was evaluated separately, greater hetero-
scedasticity (higher β) was observed in males than
females (Figure 2).

Sex did not generally influence the metrics of accu-
racy (ANOVA test, Table S2), except for the Nelson equa-
tion, with MAPE and mean difference % significantly
lower for males. However, most of the equations showed
a higher precision when applied to females (Table S2).
No significant multiple regression models were found
when the predictive equations' bias was evaluated against
age, BM, FFM, FM, %FFM, %FM, and CPM/d (Table S3).

3.4 | Comparison of predictive equations
using BM with predictive
equations using FFM

Bias, MAPE, and mean difference (%) were generally
higher for BM than FFM equations (Table 2; Table S2).
Most models using BM as the independent variable had a
higher percentage of individuals with a predicted RMR
within ±10% of the measurement than equations based
on FFM (Accuracy (%) at Table 2; Table S2). However,
the WHO model could not be considered consistently
accurate (females in Table 3 and Table S3). On the con-
trary, PontzerFFM equation was accurate under each cir-
cumstance (Table 3) and consistently had the highest
accuracy rate (%) (Table 2; Table S2).

BM equations were generally less accurate for
females, while FFM equations were less accurate
for males (Table S2). All equations presented large limits
of agreement and RMSE values, with limits of agreement
being slightly higher using BM equations (Figure 2 and
Table 2). Heteroscedasticity was evident in all the FFM
equations when the whole sample was included (slight at
every equation but Nelson in Figure 2). Nevertheless, BM
equations had generally marked heteroscedasticity by
sex, higher than FFM equations, and with steeper slopes
for females (Figure 2). Therefore, the magnitude of the
RMR had a greater impact on the prediction error of BM
equations: worst performance predicting individuals with

FIGURE 2 Bland–Altman plots for measured and predicted Resting Metabolic Rate (RMR). H-B, Harris & Benedict, 1919; MifflinBM,

Mifflin et al. (1990), Model #3; PontzerBM, Pontzer et al. (2021), Model #4; Schofield, Schofield, (1985); WHO, FAO/WHO/UNU, (2004).

Cunningham, Cunningham, (1991); Johnstone, Johnstone et al., (2006); MifflinFFM, Mifflin et al. (1990), Model #1; Nelson, Nelson et al.

(1992); PontzerFFM, Pontzer et al. (2021), Model #5. Purple (♀ = females), black (♂ = males), and blue (both sexes) dotted lines represent the

relationship between the magnitude of the RMR and the extent of error of the predictive equations by sex (homoscedasticity or

heteroscedasticity). Asterisks (*) represent significant heteroscedasticity (p-value < .01); β = slope of the line. Green solid line shows the

mean difference between measured and predicted RMR for each equation. Orange dashed lines show the limits of agreement (Bias

± 1.96*Standard Deviation).
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higher RMRs, especially females. BM equations' bias was
also more affected by sample attributes such as physical
activity (CPM/d) and FFM (Table S3).

Lastly, the most accurate equation using FFM
(PontzerFFM) performed notably better when predicting
RMR than the most accurate equation using BM (WHO):
lower mean RMR difference, bias, mean difference %,
and %RMSE, and higher number of individuals with a
predicted RMR within ±10% of measured RMR (Table 2;
Table S2).

4 | DISCUSSION

The major finding of the present study was that all of the
equations evaluated underestimated RMR in our sample,
the degree to which tended to be greater with increasing
RMR and, for some BM equations, with increasing levels
of physical activity. Importantly, all the equations had
large limits of agreement and %RMSE, reflecting sizeable
errors in estimation at the individual level. The equation
based on FFM developed by Pontzer et al. (2021) was the
only one to meet all three accuracy metrics. In addition,
the PontzerFFM equation demonstrated agreement with
measured RMR across a wide spectrum of physical activ-
ity, and independently of sex.

The underestimation of the RMR by predictive equa-
tions may suggest an effect of physical activity to increase
RMR in our sample (Speakman & Selman, 2003). Our
participants may have a higher RMR per kilogram of BM
and FFM than the primarily sedentary populations
(Jagim et al., 2018) used to develop the predictive formu-
las (i.e., table 4 at Schofield, 1985, or Table 2 at Nelson
et al., 1992). That the equation developed by Pontzer
et al. (2021) demonstrated agreement with measured
RMR across a wide spectrum of physical activity may be
a reflection of the more heterogeneous physical activity
of the sample studied.

The results of our study indicated that the accuracy of
BM equations is more dependent on the level of the
RMR, particularly when sex is considered (Figure 2).
However, lower levels of heteroscedasticity were detected
in FFM models (Figure 2). As such, FFM models may be
more robust when applied to subjects with higher than
predicted RMR, particularly in females (Table S2). Our
observations are consistent with Jagim et al. (2019) and
Lindsey et al. (2021) but not Flack et al. (2016), who did
not demonstrate clear differences in heteroscedasticity
between BM and FFM models. The latter may be impor-
tant when applying predictive models to specific
populations.

In general, multiple regression model bias had a
greater impact on sample parameters (activity levels and

body composition) in BM equations than in FFM equa-
tions (Table S3). Bias was greater when the BM equations
were applied to leaner females. In our sample, these
females tended to have higher RMRs (Figure 2). Other
authors have also found a positive correlation between
bias and FFM (Flack et al., 2016; Javed et al., 2010; Wang
et al., 2000; but see Li et al., 2010). In general, a higher
FM is associated with a smaller difference between mea-
sured and predicted RMR. This suggests that some equa-
tions may have been developed using populations with
higher values of FM than our sample, as mentioned by
Nösslinger et al. (2021). At the same time, this may also
reflect the effect of exercise on our participants (leaner
population).

There were no sample parameters that significantly
predicted FFM equations bias (Table S3). However, we
would have expected this, due to differences in body size
and composition between our sample and the popula-
tions included in the predictive models, that is, the inclu-
sion of overweight or obese individuals according to
Table 1 in Cunningham (1991), Johnstone et al. (2006),
and Mifflin et al. (1990); Table 2 in Nelson et al. (1992);
and heavier subjects at table S1 in Pontzer et al. (2021).
Therefore, it seems that, in our study, FFM equations
dealt better with the variability of our participants'
characteristics.

In general, most of the equations evaluated could be
considered accurate for clinical use based on an accept-
able margin of error (estimation bias ±250 kcal/d) and a
mean difference % of less than 10% (Hasson et al., 2011;
Pavlidou et al., 2018) (see exceptions at Table 2;
Table S2). However, we proposed the best-fit equations
based on three accuracy metrics (Freire et al., 2021).
Based on these criteria, PontzerFFM (Pontzer et al., 2021)
was the most accurate of the FFM equations and overall
(88% of prediction accuracy and mean absolute bias of
51.7 ± 117.1 kcal/d when applied to the entire sample).
Bendavid et al. (2021) reported that the accuracy of most
predictive equations does not exceed 70% and many
equations are widely used despite the low levels of perfor-
mance. All equations evaluated demonstrated large limits
of agreement and RMSE values (Table 2 and Figure 2).
Taken together, these observations reinforce the need to
apply caution when applying these prediction equations
to individuals in the clinical setting.

The PontzerFFM equation performed remarkably bet-
ter than the rest in the present study. This may not be
surprising given FFM is a better predictor of RMR than
BM. In contrast, others have not observed superior per-
formance of a variety of FFM equations (Balci
et al., 2021; De Lorenzo et al., 2001; Flack et al., 2016;
Jagim et al., 2018, 2019; Nösslinger et al., 2021). Never-
theless, the notable accuracy of PontzerFFM equation may
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be related to the sample size and better representation of
individuals with characteristics similar to those in the
present study. Our sample was composed primarily of
Caucasians following a Western lifestyle and living in a
temperate climate. The diversity of the PontzerFFM popu-
lation may be more generalizable to other groups exposed
to similar environmental adaptations variability that have
not systematically been considered by historical formulas
(Froehle, 2008; Galloway et al., 2000; Leonard
et al., 2005; Ocobock, 2016; Snodgrass et al., 2005).

Furthermore, the PontzerFFM model was developed
most recently, and Speakman et al. (2023) have reported
that RMR has declined over the last three decades. As
such, our sample may be more similar to that studied by
Pontzer et al. (2021). In turn, we may anticipate that
older equations would overestimate RMR in our partici-
pants. However, our findings suggest otherwise. Pont-
zerFFM may be more accurate for females in our sample
because they were better represented than males in their
model (Table S1). We also found a strong correlation
between FFM and RMR in our sample (Table S4).
Besides, PontzerFFM formula may be more accurate for
females because FFM � RMR relationship is stronger
than for males in our study (Table S4). This is supported
by other studies (Frings-Meuthen et al., 2021; Jagim
et al., 2019; Nielsen et al., 2000; but see Buchholz
et al., 2001). Future studies evaluating the effects of sex-
ual dimorphism on metabolism after accounting for body
composition differences are needed.

4.1 | Practical applications

We have tested the accuracy of several predictive models
in a sample of participants varying in physical activity
levels. Our analyses indicated that, if body composition is
not available, the (FAO/WHO/UNU, 2004) model accu-
rately predicted RMR across physical activity levels, but
less so for females. However, the Pontzer et al. (2021)
model using FFM performed accurately for both sexes
and independently of physical activity (CPM/d). The
PontzerFFM model precision demonstrated less depen-
dency on the magnitude of RMR and sample characteris-
tics (no correlations with age, body mass and
composition, and physical activity) than other RMR pre-
diction equations. More investigations are needed to test
the accuracy of the PontzerFFM model in other, more
diverse populations. Importantly, the accuracy of predic-
tion equations likely depends, at least in part, on the
method used to measure body composition. DXA and iso-
tope dilution used in the previous study and by Pontzer
et al. (2021), respectively, are well-established and accu-
rate methods for assessing body composition. Less

accurate approaches, for example, bioelectrical
impedance analysis (BIA; Achamrah et al., 2018), may
negatively impact accuracy.

4.2 | Strengths and limitations

There are some strengths of our study that should be
highlighted. We demonstrated excellent reproducibility
of our RMR measurements and utilized dual-energy
X-ray absorptiometry for the assessment of body compo-
sition. In addition, a balanced distribution among sexes
and physical activity levels allowed us to test differences,
and we included new predictive models (Pontzer
et al., 2021) in our analysis. The use of three criteria to
evaluate the best-fit equations is also a strength and
beyond what others have performed. Nevertheless, we
are aware that this may limit the comparison of our
results with those that consider fewer variables in their
predictive models.

There are some limitations to our study which also
should be considered. First, our sample size is relatively
small and a different outcome might occur with a larger
sample. Second, our sample was primarily Caucasian,
young, and with normal weight. The accuracy of predic-
tive equations may be compromised when applied to
other groups or those with obesity (Fern�andez-Verdejo &
Galgani, 2022). More diverse datasets are needed to
account for RMR variability and the validity of predictive
equations. Third, we did not control for menstrual cycle
phase (Benton et al., 2020; Henry et al., 2003) or circulat-
ing hormones (Johnstone et al., 2005) that influence
RMR variability (Compher et al., 2006). Finally, our par-
ticipants were instructed to avoid vigorous physical activ-
ity at least 12 h before RMR measurements as is
consistent with others (Fullmer et al., 2015). Other
authors have had participants avoid exercise for longer
durations (Compher et al., 2006; Melby et al., 1993;
Speakman & Selman, 2003). In our case, allowing a lon-
ger period (e.g., 24–48 h) without vigorous physical activ-
ity may have disrupted the habitual physiological state of
endurance athletes. Besides, having participants in their
habitual state provides us with more applicable data.

5 | CONCLUSION

The present study demonstrated that a new equation by
Pontzer et al. (2021), with FFM as the main predictor of
RMR, yielded significantly better results than classic for-
mulas when applied to a sample varying in physical
activity levels. FFM equations generally demonstrated
higher independence on the magnitude of RMR, sex,
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activity levels, and sample characteristics (age, body
mass, and body composition) than other models. Due to
the potential applicability issues to general populations,
more investigations are encouraged to test new models,
based on other diverse populations.
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