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Abstract

Arid and semi-arid zones, including the southern Mediterranean countries, are among the world’s most affected
by water scarcity. Unconventional water resources, such as submarine fresh groundwater, may be key contributors
to mitigate ongoing and future water crises for coastal regions and islands. In the Gulf of Gabes, Tunisia, several
deep confined aquifers have been identified and the parts that are onshore have been well characterized. However,
the offshore extension of these aquifers has been unexplored to date, except beneath Kerkenah and Djerba islands,
where a number of exploitation wells are operating. In this work, the existing, but fragmented, geological,
geophysical and hydrogeological data from both the marine and terrestrial sides of the Gulf of Gabes are
synthesized for the first time in order to map the offshore extension of the deep aquifers and identify the quality
of their groundwaters. Geological data confirmed the offshore continuity of the deep aquifers contained in the
Miocene siliciclastic formations, particularly the Serravallian-Tortonian (ST) water-bearing horizon, on which the
present research focuses more specifically, because of its wide extension and potential. In the study region, the ST
aquifer is present onshore and is currently exploited in Kerkenah and Djerba islands. Offshore, the average
thickness of the ST aquifer is about 200 m. Wireline log data suggest total porosity and salinity ranges of 30-36 %
and 5.5-7.5 g/L, respectively. These conditions make the offshore water-bearing horizon of potential interest for
agriculture, industry and domestic purposes, including after adequate treatments, such as desalination or dilution

with freshwater.
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1 Introduction

The Mediterranean region is facing major difficulties related to limited groundwater resources, their widespread
overexploitation and depletion, and the deterioration of their quality (Custodio and Bruggeman, 1987; Edmunds
et al. 2003).. Meeting the growing water needs has become a challenge (Ritchie and Roser, 2017; Boretti, and
Rosa, 2019). Semi-arid and arid regions such as the Southern Mediterranean countries are among the most affected
by water scarcity (Tramblay et al., 2016) and at high risk in terms of future water security. Surface waters are
scarce in these regions, and increasingly unreliable as a consequence of climate change causing more frequent and
intense drought periods. Hence, secure water supplies are primarily relying on groundwater of highly variable
geochemistry (Robertson, 1989; Dona et al., 2006; Cobbing et al., 2019), often dictated by local aquifer geological
characteristics (Domenico and Schwartz, 1990; Guler and Thyne, 2004; Ayenew et al., 2008).

Tunisia has been suffering for several years of recurrent water shortages, which are worsening over time due to
population growth and climate change. Tunisia is also characterized by irregular distribution of precipitation and
surface water in time and space (Henia, 1993; Kingumbi et al., 2001). Overall precipitation is relatively low,
varying from 1,500 mm yr! in the North to less than 100 mm yr! in the South. In response to fresh water scarcity,
Tunisia has developed several management strategies (Ben Jemaa et al., 1998; Bouri and Ben Dhia, 2010;
Kammoun et al., 2020) to ensure sustainable safe use of the resources for drinking, agricultural and industrial
purposes including seawater desalination plants.

The utilization of unconventional water resources has become of increasing interest as one of the solutions to the
ongoing and future water crises. Among them, submarine fresh groundwater and submarine groundwater discharge
(SGD) are promising solutions particularly for coastal regions and islands (Bakker, 2006; Micallef et al., 2021).
Submarine fresh groundwater refers to underground water found in aquifers beneath the seabed or coastal areas,
and it has a low salinity level. Submarine groundwater discharge (SGD) is the means by which groundwater flows
from the land or coastal areas into the sea.

In the 1960s, during petroleum exploration in the Atlantic Ocean off North America, offshore freshwater reservoirs
were first discovered beneath the Florida continental shelf (Kohout, 1964). Since then, several researchers have
compiled and analyzed global datasets and published regional coastal aquifer reviews, to elucidate the governing
factors of offshore fresh groundwater bodies (e.g. Brown et al., 2001; Hensen et al., 2004; Mora, 2005; Lin et al.,
2010; Hong et al., 2019; Weymer et al., 2020, Micallef et al., 2021). Post et al. (2013) showed that the presence of

offshore fresh groundwater systems in continental shelves is globally widespread. Offshore fresh-to-brackish
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groundwater, which the authors termed ‘freshened groundwater’, i.e. a slightly to moderately saline water (less
than 10 g/L), have been confirmed in many continental shelves around the world (e.g. the Northeast United States,
Suriname, South Africa, Peru, Greenland, Australia, Tanzania, Malta and New Zealand).

The majority of offshore freshened groundwater bodies are hosted in siliciclastic sedimentary aquifer systems with
total porosities typically ranging between 30 % and 60 %. They occur in continental margins, where the sea is
generally less than 200 m deep (Post et al., 2013; Knight et al., 2018; Micallef et al., 2021). According to Gustafson
et al. (2019), Thomas et al. (2019) and Micallef et al. (2018), the main mechanism responsible for the formation
of offshore freshened groundwater is the existence of meteoric freshwater recharge regardless of its geologic age,
either from paleo-meteoric water or as modern meteoric water originating from recent or contemporary rainfall.
During the Earth’s history, coastal plains and shorelines migrated in response to global sea level oscillations
(Lambeck and Chappell, 2001). The most recent low sea-level was during the Last Glacial Period (late Pleistocene
to Holocene), which began about 1.5 Myr and ended about 15,000 years before present (BP) (Miller et al., 2012).
The position of the relative level of the Mediterranean Sea during the Last Glacial Maximum, from 26,500 to about
19,000 years BP was around 115 m lower than today (Clark, et al., 2009, Jouet et al., 2006). The Messinian salinity
crisis (Miocene-Cenozoic era, 5.97 Myr to 5.33 Myr BP), during which most of the Mediterranean Sea evaporated
and the water level dropped more than 1,000 m (Krijgsman et al., 1999), has been proposed as one of the time
periods having favorable conditions for the formation of freshened groundwater in the vastly emerged continental
shelf (Krijgsman et al., 1999; Manzi et al., 2013; Kastner et al., 1990).

As a result of sea retreat, the paleo-morphology of the emerged coastal plains was reconfigured similarly to the
current ones. The exposed lowlands hosted rivers and lake systems, depositing fluvial sediments and allowing
meteoric recharge and groundwater flow processes (Middelburg and de Lange, 1989; Southgate and Moller, 2000;
Zamrsky et al., 2020). During the subsequent transgression, the sea-level rise caused an abrupt change in
sedimentary facies, depositing marine low-permeability to impermeable sediments, and hence creating confining
conditions for the underlying fresh groundwater aquifers (Jouet et al., 2006).

The global shoreline position corresponds neither to the downstream boundary of terrestrial groundwater systems
nor to the sea water boundary (Post, 2005). Seawater can penetrate onshore freshwater aquifers through a process
known as seawater intrusion (SWI) (Xiao et al., 2018; Bachtouli and Comte, 2019) and fresh terrestrial water may
discharge offshore through a process known as submarine groundwater discharge (SGD) (Bratton, 2010; Moore,
2010).. Hydrological studies (eg. Kooi and Groen, 2001; Bakker, 2006) have shown that, under active connections

between onshore aquifers and sub-seabed geological formations, SGD can extend offshore far beyond the present
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shoreline through long distance offshore freshened groundwater flow (OFG-flow) between layers of impermeable
materials (Kooi and Groen, 2001; Knight et al., 2018; Weymer et al., 2020). According to Knight et al. (2018),
OFG-flow differs from SGD in that the latter is recognized as direct groundwater discharge into the sea water.
However, OFG-flow reflects preferential pathways for offshore freshened groundwater bodies within continental
shelves, from onshore recharge to SGD. It also includes freshwater reaching the freshwater/seawater interface in
the subsea bed sediments. Hydraulic gradients and topographic relief-driven fluid flow are the most important
driving forces enabling fresh groundwater circulation to depths and towards the outward regions of the continental
shelf where it has been discovered (Mulligan and Charette, 2009).

There is currently a growing interest by both scientists and water managers to explore and assess offshore freshened
groundwater reserves as an alternative source of water, mainly for water-scarce coastal regions and islands. The
presence of freshened water in the continental shelves may provide a high economic benefit for countries that
depend on desalination as their main source of freshwater. Water desalination costs could be significantly reduced
by the use of water with lower total dissolved solids (TDS) than seawater (Bertoni et al., 2020). The cost of
desalting seawater with a TDS of 38 g/L range from $ 0.65 to $ 2.00 per m® and from $ 0.24 to $ 0.55 per m? for

brackish groundwater with a TDS < 10 g/L. (WRA, 2012; Borghini et al., 2014; Arroyo and Shirazi, 2012).

In recent years, growth in industrial and agricultural activities has caused an increase in water demand met by
groundwater abstraction throughout the Tunisian regions, which generated serious alteration of groundwater
systems particularly in the South of the country (OSS, 2003, OSS 2005; Kamel et al., 2006) where weakly
renewable or non-renewable groundwater reserves are the main water resource (Mamou and Kassah, 2002). Within
the study area, groundwater serves as the primary water source for both the chemical industry centers located in
the cities of Sfax, Skhira, and Gabes, as well as the main irrigated areas surrounding these cities and populations
throughout the study region (Fig. 1).

The present study has been motivated by the recent efforts in advancing the knowledge and understanding of
offshore freshened groundwater resources in Mediterranean countries where offshore fresh groundwater aquifers
have been previously identified. The objective of this study is to provide regional evidence of the existence of
offshore freshened groundwater bodies beneath the Tunisian continental shelf. This is achieved through
compilation, synthesis and integrated analysis of extensive, yet fragmented, historical geological, geophysical and

hydrogeological data acquired in both the terrestrial and the marine sides of the Gulf of Gabes.
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2 Study area

The Gulf of Gabes in South-Eastern Tunisia spans between the region of Sfax to the North and the island of Djerba
to the South. It covers an area of 35,900 km?, with a shallow (less than 200 m deep) gently dipping continental
shelf (Ben Othman, 1973). The Gulf of Gabes, including the Kerkenah and Djerba islands, has a coastline length
of 715 km in the Mediterranean Sea (Fig.1).

The region has an arid to semi-arid climate influenced by dry and hot air masses coming from the Sahara Desert
to the South, while exposed to humid air masses from the Mediterranean Sea to the North and East. The summer
season (June to September) is dry and hot, and the winter months, from January to March, are wet and cool. The
average temperature is about 11 °C in the winter and 23 °C during summer. The precipitation is highly irregular,
with an average annual precipitation of less than 250 mm and high evapotranspiration rates of over 1700 mm yr!.
The deep groundwater resources in the study area are found as three main aquifer systems occurring within the
Gabes sedimentary basin formations that were deposited between the Cretaceous and Holocene periods. These
three deep aquifer systems are referred to as the Sfax deep aquifer, Gabes aquifer system, and Medenine aquifer

system.

2.1 Structural and Geological context

The Gulf of Gabes basin has recorded different paleo-tectonic events that have affected the region since the
Paleozoic Era.

The Sfax region is characterized by a series of long-wavelength NE-SW anticlines, controlled by faults. In contrast,
the Gabes region is characterized by a chessboard-like topography with horst and graben structures bounded by
the directions of the main faults (Fig.1). The Jeffara of Gabes basin is a collapsed block inclined towards the
Mediterranean coast, with elevations not exceeding 150 m. The Jorf-Zarzis-Djerba region is situated at the southern
extremity of the Gulf of Gabes. It is a part of Jeffara of Medenine basin with a structural style of a collapsed block
separated from the Dahar Plateau by the Medenine fault (Benton et al. 2000; Bouaziz et al. 2002).

The Jorf, Zarzis and Djerba Island region is a flat area affected by numerous faults orientated NW-SE, inherited
from extensional tectonic events, with a maximum elevation of 54 m in the South of the Djerba Island. The offshore
side of the Gulf of Gabes basin has a horst and graben structure bordered by lystric NW-SE normal faults (Bédir,
1995). The NW-SE faults seem to be developed as part of the extensional tectonic during early Permian (Pe) to
Triassic (T) rifting phases (Fig.1). These structural features predominantly influenced the depth and geometry of

aquifer reservoirs and their hydraulic connections, particularly in the Gabes and Medenine regions.
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The different stratigraphic horizons, reflecting the sedimentary succession that deposited since the Upper Permian
throughout the Gulf of Gabes, have been identified from seismic profiles and from borehole lithological data.
Onshore, outcrop geology maps of the Gulf of Gabes show that the Mio-Plio-Quaternary (MPQ) siliciclastic
materials are the dominant lithology (Castany, 1951, 1954; Burollet, 1956; Busson, 1967; Bouaziz, 1995,). Figure
2 shows a simplified lithostratigraphic log for the region of the Gulf of Gabes. The middle Miocene (MM) horizons
are made of alternating clay, sand and sandstone with a fluvio-deltaic environment. The upper Miocene (UM)
horizon includes the continental facies of sandy formation and the marine facies of peri-reef environment
composed of fossiliferous limestone strata (Biely et al., 1972, Ben Ferjani et al., 1990).; Moktar and Mannai-

Tayech, 2014).

2.2 Hydrogeological setting

The main aquifers of the region are: 1/ The Sfax deep aquifer (SDA), mainly composed of Miocene sand and

sandstone (Serravallian-Tortonian). 2/ The Gabes aquifer system, composed of Turonian (Tu) and Senonian (Se)
carbonate layers (limestone and dolomite) and a Serravallian-Tortonian siliciclastic layer (STG). 3/ The Medenine
aquifer system, composed of a Triassic (T) siliciclastic aquifer, Jurassic (J) carbonate aquifer and Serravallian-
Tortonian siliciclastic aquifer (STZ).

The Gabes and Medenine deep aquifers are hydraulically interconnected with groundwater flow from one aquifer

to another (Fig. 2).

2.2.1. Sfax deep aquifer (SDA)

The SDA extends across the Sfax region from onshore to the Kerkenah Islands, covering an area of approximately
7,500 km? with about 235 km of Mediterranean coastline (Fig.3). The Serravallian-Tortonian (ST) formations
make up the main deep aquifer reservoir, composed of sand and sandstone interbedded with clay. The Northern
boundary of the continental (onshore) part of the SDA corresponds to the major impervious East-West fault of
Ksour Essaf. Its Western boundary coincides with the North-South axis. In its Southern part, the aquifer system
partially connects to the Gabes aquifer system in the Skhira region. A superficial phreatic aquifer exists in the Mio-
Plio-Quaternary undifferentiated siliciclastic layers above the SDA. Its groundwater is mostly saline offshore but
freshwater occurs onshore forming a coastal wedge and as a lens beneath Kerkenah islands. The aquifer has a
lenticular aspect, with lateral and vertical variations over depth and water-bearing layers. The phreatic aquifer has

limited freshwater resources due to the low meteoric recharge and a relatively high salinity of groundwater overall.
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It is highly vulnerable to groundwater contamination from human activities and seawater intrusion in the coastal
and offshore areas (Trabelsi at al., 2007). Figure 3 illustrates a conceptual model of the SDA (AB cross-section on
Fig.1) and the superficial local aquifer. This scheme is also encountered, with some modifications, in the aquifer

systems of the Gulf of Gabes.

Borehole lithological data show that the thickness and depth of the SDA water-bearing ST horizon vary across the
Sfax region. Average thickness is 250 m buried at depths from 200 m to more than 350 m as indicated in the cross
sections of Fig. 4. The maximum thickness has been recorded in the central part of the region, and gradually
decreases towards the Northern and Southern borders (Fig. 4 a). In the NW-SE direction, the ST thickness is less
variable as shown on the cross-section EF in Fig. 4-b.

The increasing water demand associated with economic and social growth in the Sfax region has made the SDA
one of the main resources for water supplies in the region.

The exploitation of the SDA aquifer went from an average of 10 million (M)m?® for the period 1980-1986,

increasing significantly from 1987, to reaching over 35 Mm? in 2018 (Fig. 5).

Since 1987, the rapid increase of water consumption has resulted in intensive exploitation of the aquifer, leading
to declines of groundwater levels, as shown in Fig. 6 for the period 2000-2018 (DGRE, 2018 b). The average rate

of water-level decline in the SDA is about 0.6 m year™! over the considered observation period.

Currently, the annual abstraction volume for agriculture, industry and domestic usages is about 85 % of the SDA’s
estimated annual renewable resources. The average abstraction is close to 30 Mm? year! while the amount of
lateral inflow is estimated to be 35 Mm? year! (DGRE, 2018 a), coming mainly from neighboring aquifers. The
SDA discharge to the Mediterranean Sea was estimated to be approximately 23 Mm? year! (CRDA Sfax, 2005).

The SDA is characterized by a salinity between 2.7 g/L and 10.3 g/L (Fig. 7), with highest values found in the

Skhira region (CRDA Sfax, 2005; Trabelsi et al. 2007).

2.2.2 The Gabes aquifer system
The Gabes aquifer system covers an area of about 7,200 km?. It consists of a multi-layered system with variations
in lithological composition, thickness and depth of water-bearing horizons. It is mainly formed by the Senonian

(Se) and Turonian (Tu) carbonate formations and the ST siliciclastic formation. The Se aquifer is the main
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exploited aquifer in the region. It is divided into two lithostratigraphic horizons: the lower one, marked by karstic
gypsum and layers of low-permeability marls of approximately 50 m thickness, followed by a limestone horizon
of variable thickness, up to 500 m. The Tu aquifer horizon is composed of dolomites and fissured limestones, with
constant thickness rarely exceeding 50 m. The ST aquifer of the North of Gabes (STG) is formed by the fluvial
materials of Begluia Formation (Bouaziz, 1995; Benton et al., 2000). It is hosted by a fine- to coarse-grained
sandstones horizon of variable thickness from 25 to 80 m, increasing toward the Mediterranean Sea direction.
The Jeffara of Gabes basin is affected by high fault density, as a result of extensive tectonic activities during the
Mesozoic era (Bouaziz, 1995) creating a vertical compartmentalization of the Gabes aquifer system. The structural
configuration influences the hydrodynamic behavior of the aquifer system and connections between the different
water-bearing horizons (Fig. 8). According to the OSS (2005), these aquifers are recharged at 75 % by groundwater
inflow from the neighboring Continental Intercalary (CI) mega-aquifer. The remainder comes from rainfall
infiltration, through the outcropping Miocene formation. The mean annual inflow is estimated to be 74.7 Mm? y*!
(Abidi, 2004).

The CI is considered as a fossil aquifer with non-renewable groundwater resources hosted within the detrital
sediments of the Asfer group deposited during the Lower Cretaceous epoch (Neocomian-Albian). This aquifer is
formed by a succession of cross stratified sandstones intercalated with clay-rich strata. The CI has a maximum
thickness of 1,500 m (Edmunds et al. 2003).

The previous multidisciplinary studies confirmed the existence of a lateral communication between the CI and the
Gabes aquifers through the El Hamma active fault, oriented N-S and NW- SE (Abid et al., 2011; Abid et al., 2012).
The hydraulic heads of the CI aquifer indicate W to E groundwater flow. The CI artesian pressure head near El
Hamma fault is about 200 m compared with only 50 m in the neighboring aquifers (OSS, 2003), implying discharge
of the groundwater from the former aquifer into the latter (Mekrazi, 1975; Mamou, 1990; Sahli et al., 2013). Driven
by hydraulic potential gradients, groundwaters of the Tu and Se aquifers, in turn, discharge into the uppermost

STG via NE-SW and E-W fault networks (Sahli et al., 2013).

Groundwater samples of the Gabes aquifer system exhibit a salinity between 0.8 g/L and 4.9 g/L, while the STG
exhibits salinities between 2.9 g/L and 4.9 g/L (Fig. 9). The exploitation survey shows an abstracted annual volume
of groundwater of about 92.4 % of the total annual renewable resource, i.e. the total annual abstraction was
estimated to be 106.5 Mm? year! compared to a recharge rate by lateral inflow estimated to be 115.3 Mm? year™!

in 2018 (Fig .9). Of these 106.5 Mm? year™,, it is estimated that over 71% comes from the Se horizon (more than



240 75 Mm?® year™'). However, the average abstraction from the STG is close to 16.5 Mm?® year' (DGRE, 2018 a). The
241  SGD is about 58 Mm? year! (Abidi, 2004)

242 The temporal evolution of water-table depth between 2005 and 2018 in the STG (see Fig. 10) shows a continuous
243  decline from about 37 m to 49 m and 34 m to 45 m in P17 and P20, respectively (DGRE, 2018 b) with an average
244  drawdown of 0.85 m year™.

245

246  2.2.3. The Medenine Aquifer System

247  The Medenine aquifer system is composed of three aquifer horizons: The Triassic sandstone aquifer of the Sahel
248  El Abebssa (T); the Jurassic carbonate aquifer of Zeuss[ | Koutine (J) composed of limestone and dolomite; and the
249 ST aquifer of Jorf-Zarzis-Djerba region (STZ). These aquifers are hydraulically connected, making up the largest
250  confined aquifer in the Jeffara of Medenine basin (OSS, 2006; Hamzaoui Azaza et al., 2013). The STZ covers the
251  areabetween the two peninsulas of Jorf and Zarzis and extends to the Djerba island. The STZ covers approximately
252 2,800 km?, including 514 km? in the Djerba Island with a total coastline of about 350 km. It is a confined water-
253  bearing horizon, consisting of sandy material of the Begulia Formation. The aquifer thickness varies from 45 to
254 300 m. It is confined beneath the Mio-Plio-Quaternary sediments composed of marl, sand, clay and gypsum
255  intercalations, reaching 250 m in thickness (Fig. 11).

256

257  The STZ receives annually an overall recharge of 22.1 Mm?3 (DGRE, 2018 a) with an estimated abstraction of 0.6
258  Mm?®year’, 9.2 Mm?® year™!, and 12 Mm? year!, n Jorf peninsula, Zarzis peninsula and Djerba Island, respectively.
259  The recharge takes place through lateral water leakage via faults. The STZ is recharged by inflow from the J aquifer,
260  which in turn is recharged by groundwater from the T aquifer through the Tajra fault. Hence, groundwater flows
261  from the Southwest (older aquifers) to the Northeast (younger aquifer), crossing Jorf and Zarzis peninsulas to
262  Dijerba Island.

263  Early measurements (2018) showed a large range of variation in groundwater salinity of the Medenine aquifer
264  system, between 0.5 g/L and 7.8 g/L (Fig. 12). Groundwater salinity of the STZ aquifer varies from 5 g/L to 5.6
265  g/LinJorf peninsula, from 5.6 g/L to 7.4 g/L in Zarzis peninsula, and from 4.9 g/L. to 7.8 g/L in Djerba Island. The
266  groundwater usage in Medenine region has grown tremendously during the past three decades. Currently, over 70 %
267  of groundwater resources in Medenine region are exploited compared to 50 % during the period before the 1980s
268  (Trabelsi, 2009, DGRE, 2018a). The SGD is about 40 Mm?® year! from the Medenine aquifer system to the

269  Mediterranean Sea (OSS, 2005).
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The total annual abstraction from the Medenine aquifer system is estimated to be 48.2 Mm? year™!, compared to
lateral inflow rate of 38.1 Mm? year™!, and reflects therefore an overexploitation and mining of the groundwater
resources, causing an increase in water depth from about 6 m to 14 m in P41 and from 6 m to 17 m in P45. Even
though there is a gap in data between 2007 and 2018, due to interruption of groundwater monitoring in this period,
the maximum drawdown rate is observed from 2007 to 2018 when the abstraction increased dramatically (Fig. 13).
Groundwater abstraction rates in the STZ were estimated in 2018 to be 17.7 Mm? year™!, including 0.7 Mm? year

1, 8 Mm? year' and 9 Mm? year™! in Jorf peninsula, Zarzis peninsula and Djerba Island, respectively (DGRE, 2018a).

3 Data and Methods

Several studies have been carried out to understand the hydrogeological behavior in the onshore part of the Gulf
of Gabes aquifers (Abidi, 2004; Trabelsi et al. 2007; Sahli et al., 2013). However, the offshore extension has been
unexplored to date. The present study constitutes a first attempt to provide clues of offshore freshened groundwater
beneath the Tunisian continental shelf. Lithological, geophysical and hydrological data acquired in both
onshore/offshore sides of the Gulf of Gabes are analyzed to set the map extent of the offshore part and to understand

the connection between onshore and offshore water-bearing horizons.

3.1 Lithology data analysis

Lithostratigraphic data from 85 boreholes logs, including 14 petroleum boreholes logs from the offshore Gulf of
Gabes, have been used to produce contour maps of the depth, the top and the base of the ST horizons, and an
isopach map of their thickness. Data were collected from the DGRE (General Directorate of Water Resources,
Tunisia) database and from the ETAP (Tunisian Company for Petroleum Activities) database. The 2D isopach

maps were created through Kriging interpolation using Surfer Software (Golden Software, 2014).

3.2 Transmissivity and hydraulic conductivity data

Estimated transmissivity and hydraulic conductivity data were collected from literature for all aquifers of the SDA,
Gabes aquifer system and the Medenine aquifer system. Transmissivity values were obtained from drawdown-
pumping tests of available production wells. Hydraulic conductivity values were calculated directly as the ratio

between transmissivity and aquifer thickness.

3.3 Piezometric data analysis

10
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The groundwater monitoring network of the deep aquifer systems in the Gulf of Gabes is composed of 45
piezometers, with groundwater heads recorded since the 1980s. Analysis of historical piezometric data showed
significant data gaps. These data were used for building piezometric maps through Kriging interpolation with
Surfer, using the data of the most recent and complete piezometric survey carried out by the DGRE in 2018.
Piezometric maps for the all hydrogeological systems in the Gulf of Gabes, including the SDA, the Gabes aquifer
system and the Medenine aquifer system, were used to improve understanding of the processes responsible for

land-sea water exchanges and the onshore-offshore groundwater flow relation.

3.4 Wireline log data analysis

Use of borehole wireline logging for aquifer characterization and groundwater behavior studies is relatively
common practice (e.g. Muldoon et al., 2001; Williams et al., 2002). Electrical resistivity, spontaneous polarization
(SP) and gamma-ray (GR) logs were analyzed to investigate the ST sandy horizons in the Gulf of Gabes continental
shelf and to assess the potential submarine freshened groundwater occurrence.

Available data include long normal resistivity (Rt), short normal resistivity (Rxo), SP and GR, which have been
used to provide information on formation porosity, lithology and, where existing, pore fluid salinity. Electrical
resistivity logs were used to estimate the porosity of the offshore ST horizons, which is required to identify the
existence of potential traps for offshore freshened groundwater. In contrast, GR and SP logs were used to delineate
the offshore ST sequence and its subunits within this sandy-sandstone layer. GR and SP logs are commonly used
in hydrogeological exploration to localize sandy and clayey facies and to define aquifer confinement conditions
(Jackson and Kauahikaua, 1987; Asquith et al., 2004).

Based on the original work of Archie (1942), resistivity logs are commonly used to determine reservoir static
properties, such as porosity, water saturation and saturating fluid salinity, in clay-free formations, and the logs are
compared to the SP results. The water pore salinity and porosity values can be obtained from the following equation

1 (Archie, 1942).

Ro Rxo

T Rw

pa i a®™™=f""  (Eqn. 1)

F: Formation resistivity factor.

Ro: Resistivity of the 100 % water saturated rock.
Rw: Resistivity of the fluid saturating the formation.

Rxo: Resistivity of the invaded zone.

Rmf: Resistivity of the mud filtrate.
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¢: Porosity.

Where resistivities Ro, Rw, Rxo and Rmf are in Q m [ML*T-I-?], and a and m are unitless_constants related to the
coefficient of saturation and the cementation factor, respectively. From an empirical study by Winsauer et al.,
(1952) for sandstones, a was determined as 0.62 and m as 2.15 (Humble formula), which gives the following Eqn
2 expression for the formation factor:

F = 0.62¢~215 (Eqn. 2)

4 Results

4.1 The ST aquifer series stratigraphy and depositional environment

The ST aquifer series shows a complex stratigraphic setting, reflecting regional tectonic activity and global
climatic and eustatic variations and resulting in large spatial and temporal variations of sedimentary facies (Cohen
et al., 1980; Zargouni, 1985; Ben Ayed, 1986; Bédir et al., 1995). The paleogeographic reconstruction of the ST
horizon has been analysed by several authors (e.g. EL Euch-EL Koundi et al., 2007; Mannai-Tayech, 2009; Moktar
and Mannai-Tayech, 2014). Sedimentary distributions of the ST lithofacies in the Southeast Tunisian basin show
a continental domain gradually migrating towards the Northwest to an open marine basin (Moktar and Mannai-
Tayech, 2014). Lithological and geochronological studies carried out to classify the geological horizons in the
basin of the Gulf of Gabes showed a transition between fluvio-deltaic and lagoon fluvio-deltaic depositional
environments. In the Southern onshore and offshore parts of the Gulf of Gabes basin, the ST deposits consist of
the Begulia Formation, which is interpreted as a regressive sequence, and composed primarily of sand and
sandstones horizons. In the Northern parts, the depositional horizons reflect a transgressive-regressive sequence
of clays, sandstones and lignite intercalations (the Saouaf Formation).

The ST horizons (Begulia and/or Saouaf Formations) are water-bearing formations under confined conditions. The
geometry of each aquifer system is inherited from tectonic history. Buried under the Mio-Plio-Quaternary deposits,
the depth of the top of the ST varies from 30 to about 700 m. The shallowest depths are observed within the Jeffara
of Gabes and the western plains of the Jeffara of Medenine: see locations Jorf and Zarzis in Fig. 14. The ST
thickness, within these locations, varies between approximately 20 and 90 m with an increasing trend towards the
Mediterranean Sea, and is underlain by the Senonian carbonate Formation.

The onshore Sfax region contains a larger areal extent of the ST horizons than in the Jeffara of Gabes and Jeffara
of Medenine regions. Moreover, within the Sfax region, both the thicker and thinner sections of the ST horizons

(Saouaf Formation) have been identified. As shown on the contour map of Figure 14c, the ST thickness gradually
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decreases towards the NE and SW borders. The thinnest horizon (15 m) is found in the southern zone of Sfax
(Skhira region), where the SDA seems to meet the Gabes aquifer system. The thicker ST occupies both the western
border and the central part of the Sfax region. Integration of the ST depth maps (Figs. 14a, 14b) and the structural
configuration shows that the spatial distribution of the ST water-bearing horizons is concordant with the geological
structure of the region. The deepest ST deposits, in Sfax region, are encountered inside a graben where the top of
the ST can be found between about 700 m and 1000 m depth.

The presence of ST is identified in the Kerkenah archipelago and Djerba Island where it has an average thickness
of between about 45 m and more than 110 m (Fig.14c). Beneath these emerged Islands, ST horizons are buried
under younger deposits at depth between 300 m and 400 m. The thinnest and shallowest ST is detected in the South
West coast of Djerba Island.

Offshore, the ST has been identified across the entire Gulf of Gabes basin. From North to South, the ST horizon
is overlain and underlain, respectively, by the Melgart and Mahmoud clay-dominated formations. The ST forms a
confined sandy horizon of relatively uniform thickness not exceeding 315 m (Fig. 14c). The geometry of the
offshore ST horizons reveals an increase in depth towards the South-East. These horizons are found buried at larger
depths in the Ashtart basin, where they reach depths of over 1000 m (Fig. 14a). Likewise, the thickest ST horizon
is identified in the Ashtart basin (Fig. 14c). This geometry for the ST horizons in the basin is consistent with a
subsiding and faulted depositional system formed during the Middle Cretaceous (Burollet et al., 1979).

Based on the logs of boreholes B46, B71, B73, B76 and B77, and considering the work of Bedir (1995), a NW-
SE geological cross section (KL) was drawn through the basin of the Gulf of Gabes (Fig. 15). A horst and graben
structure were identified, showing an increase of both thickness and burial depth of ST in the Ashtart syncline

basin as a response to its sedimentary architecture and subsidence history.

4.2 Groundwater flow dynamics in the Gulf of Gabes deep aquifers

4.2.1 Hydrodynamic parameters

The SDA, the STG and the STZ show similarity in hydraulic conductivity and transmissivity values.
Transmissivity and hydraulic conductivity exhibit a wide range of values across the aquifer systems of the Gulf of
Gabes regions (Fig.16). Independently, each aquifer system material is permeable enough to allow groundwater
flow from one aquifer to another and, specifically towards, through and from the ST aquifers.

The SDA has relatively uniform hydraulic conductivities ranging from 1.2x10** m s™'to 6.6x10*m s™!, but because

of large variations in thickness, transmissivities are highly variable and ranging between 1.2x10* m? s*! and
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1.3x10"' m? 5™, with an average value of about 2.1x102 m? s*'. Hydraulic conductivity values in the Gabes aquifer
system generally vary from 7.5x10° m s! to 8.1x10° m s!. The Se water-bearing limestone horizon is
characterized by open water-saturated fractures. The pumping tests provided transmissivity values between
0.9x107% and 3.5x10"! m? s”! (Mamou, 1990). The Tu water-bearing horizon, which is also characterized by a dual-
porosity, exhibits high transmissivities, with arithmetic mean values of about 1.0x10"! m? s*' (Rouatbi, 1967). The
STG is characterized by transmissivity values ranging from 3.0x107 to 3.4x1072 m? s”! (Mekrazi, 1975). Hydraulic
conductivity values in the J aquifer vary from 1x10-° m.s! to 8.7x10"* m.s”' and the transmissivity values are
between 5.5x10% m? s7! and 2x102 m? s''. The estimated transmissivity value in the STZ is 3.4x10? m? s*!, and

the hydraulic conductivity between 1.0x10* m s'and 5.0x10* m s,

4.2.2. Piezometry

The 2018 piezometric maps of the aquifer systems (SDA, STG and STZ) are presented in figure 17. The
piezometric map indicates that groundwater flows from the aquifer’s recharge zones, i.e. lateral inflow from the
neighboring aquifers for SDA, STG and STZ, towards the offshore extension in the Mediterranean Sea.
Piezometric levels in the Southern zones (South of Gabes and Medenine regions) are relatively higher than in the
Northern ones (Sfax and North of Gabes regions) as they are receiving water from the CI mega aquifer.
Groundwater in each region flows independently towards the Mediterranean Sea direction, and they are locally
abstracted in Kerkenah archipelago (Sfax region) and Djerba Island (Medenine region). Groundwater flows are
driven by hydraulic gradients which have an average value of about 0.09 m/km in the SDA, 4.2 m/km in the Gabes
aquifer system and about 1 m/km in the Medenine Aquifer system.

In more detail across the regions, the general groundwater flow direction in the SDA in the Sfax basin is from the
North-West to the South-East, whereas it is from South-West to North-East in the North of Gabes and the Medenine
basins. The piezometric levels in the SDA decrease gradually from 49 m to 25 m towards the sea, compared to 39
m to 22 m in the North of Gabes basin, and from 43 m to 21 m in the Medenine basin. At the Northern and Southern
edges of the SDA, significant drawdowns in groundwater levels are observed, probably related to intensive

exploitation in these areas.

4.3 Wireline logging data

The Electrical resistivity, SP and GR logs, penetrated the ST reservoir layers to the following thickness: 325 m,

205 m and 350 m in B71, 239 m, 256 m and 319 m in B74 and 317 m, 257 m and 377 m in B75. The response of
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the natural GR and SP (Fig. 18) shows three different log curve shapes. Analysis of the GR and SP records clearly
show that the ST horizons are sealed by significantly thick impermeable clay layers. The upper and lower
boundaries of the ST horizon were found at depths of 789 m and 1104 m for B71, 796 m and 1052 m for B74, and
869 m and 1126 m for B75, respectively. Likewise, GR and SP curves indicate a dominant sand fraction for the
ST deposits. Detailed analysis of the log curve shape, at this horizon, indicates the presence of significant clean
sand and sandstone with slight intercalations of thin clayey sand beds.

Assessment of freshwater in sandy zones of the ST was done through the comparison of GR, SP and resistivity
logs. The resistivity measurements of both the long normal resistivity (Rt) log and the short normal resistivity
(Rxo0) are usually greater in the ST than values measured in the Melgart and Mahmoud impermeable formations
and reflect the ST rocks’ water content. The resistivity logs analysis shows that resistivity increases rapidly in
clayey sand intercalations. Increasing the ratio of clay to water pore content could reasonably lead to an increase

in electrical resistivity.

The NaCl-salinity is calculated using a salinity—resistivity (Rw) chart at standard formation temperature
(Schlumberger, 1959). The formation-water resistivity (Rw) is obtained, according to the Archie equation, from
Ro, Rxo and Rmf. The NaCl-salinity of the ST water-bearing horizon yielded values for interstitial waters of
between 5.5 g/l and 7.5 g/L (Tab.1). Relatively low resistivity and high NaCl levels (22 g/L.) were observed in the
layers L2 and L3 of B75. In all probability, this is due to the presence of evaporitic beds, as described in the
lithostratigraphic log of the well B75. Moreover, in front of the ST sandy horizons, the SP curve exhibits right-
sided positive deflections from the shale baseline, highly evident in L1 and L4 of B75 borehole. These positive
deflections indicate a formation water with salinities lower than those of the drilling mud filtrate (15-25 g/L NaCl
TDS-equivalent), providing an initial clue to the existence of potential offshore freshwater groundwater bodies
(Quiroga et al., 2023).

Likewise, porosity values are calculated using a formation factor—porosity chart (Schlumberger, 1959). This chart
helps to quickly solve the Humble empirical equation (Eq. 2). The determination of the formation factor is a
function of Ro and Rw (Archie's Law). Correlation results show high porosity values of the offshore ST horizons,

ranging between 30 % and 38 % (Table 1).

15



449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

Table 1 Porosity of the Serravallian-Tortonian (ST) reservoir layers and water salinity calculated from electrical

resistivity data.

Borehole Layer Rxo (Ohm m) Rt (Ohm m) Rw (Ohm m) Porosity (%) Salinity (g/L)
B71 L1 0.8 0.6 0.75 32 7.5
L2 0.9 0.8 0.9 30 6
B74 L1 1 0.8 1 32 5.6
L2 0.75 0.6 1 38 5.6
L3 1 0.9 1 30 5.6
B75 L1 1.2 0.5 0.8 36 7
L2 0.85 0.12 0.28 - 22
L3 0.85 0.12 0.28 - 22
L4 1.2 0.5 0.8 36 7

5 Discussion

The Gulf of Gabes continental shelf has not been the subject of hydrogeological exploration or analysis to date.
Characterization of the present offshore aquifers, which involved synthesis of lithological, structural and
hydrological properties (mostly from oil & gas exploration studies), shows similarity with the offshore freshened
groundwater bodies found elsewhere worldwide.

The most offshore extended aquifer in the study region is composed of siliciclastic material of ST age, sealed by
impervious marl and clay. This aquifer’s recharge is mainly ensured by lateral inflow from neighbouring aquifers.
Figure 19 shows the thickness, salinity and porosity values of the studied aquifers (SDA, Gabes aquifer system
and Medenine aquifer system) in the onshore and offshore parts. Compared to results from previous international
research, the findings from the present work are consistent with other worldwide examples of offshore aquifers

(Gustafson et al., 2019, Lofi et al., 2013a, Lofi et al., 2013b, Varma and Michael, 2012, Laurent, 1993).

From the previous research worldwide, case study examples include the United States continental shelf,
specifically the New Jersey offshore freshened aquifer. That case is relevant to the present study, as the aquifers
are made of siliciclastic materials of Miocene age and capped at the top and the bottom by low-permeability clay
acting as confining boundary layers (Gustafson et al., 2019). Also, groundwater in the South-Eastern Australian
continental shelf has been found within confined sediments that show similar lithological composition in both the
terrestrial and marine sides (Glenton 1983; Kuttan et al., 1986). In the North-Western Mediterranean basin, fresh

to brackish water bodies, underlain by saline water, were discovered beneath the seabed on the Gulf of Lions
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continental shelf (Lofi et al., 2013b). Earlier examples of offshore freshened groundwater aquifers were
discovered in the continents of America, Australia and Europe, where the offshore water is derived from recent
meteoric water via an active present-day onshore-offshore transport mechanism. Identification of these offshore
aquifers and their structures has been carried out by using similar geological and geophysical methods as presented
in this work.

This research provides evidence that extensive offshore freshened groundwater resources exist in Tunisia and
likely elsewhere in the Southern Mediterranean coast with a similar geological setting. In Gabes, the offshore
aquifers are already exploited for water supply in Kerkenah and Djerba Islands, which are an emerged extension
of the Gulf of Gabes continental shelf.

Already operational groundwater desalination plants in Kerkenah, Gabes and Djerba may also use these freshened
groundwater resources through new offshore water wells. More elaborate socioeconomic projects that make use

of this resource, like ecotourism islands, green farming and so on, are also possible.

6 CONCLUSIONS

The combination of geological, geophysical and hydrogeological analyses provides solid evidence for the
existence of freshened offshore groundwater stored in confined material beneath the Gulf of Gabes, Tunisia.
Over the coastal region of the Gulf of Gabes, the hydrogeological structure of the deep confined aquifers and the
groundwater occurrence are relatively simple. The main aquifer is found in confined ST sandy horizons which
have variable thickness and depth, and a general dip towards the sea. Regional mapping of water heads shows high
potentiometric surfaces, providing positive vertical hydraulic gradients with seaward flow directions. The water
budget (as inflows minus pumping abstraction) indicates a residual outflow term, assumed to support submarine
groundwater discharge SGD. Analysis of the estimated total inflows to the SDA, Gabes aquifer system and
Medenine aquifer system (i.e. aquifer recharge rates) and the outflows (i.e. discharge to the sea and groundwater
pumping) show inconsistent data. Hence, the use of numerical models is needed to improve understanding of the
aquifer systems and better quantify the water budget components.

The spatial distribution of the lithostratigraphic horizons suggests continuity between the onshore and offshore
parts. Offshore, the ST horizons are identified across the entire Gulf of Gabes basin. The sandy horizons extend
seaward with porous and permeable sediments, making a good aquifer with a confined sandy horizon of a porosity
over 30 % and an average thickness of 200 m. This aquifer is sealed by the thick confining beds of the Melqart

Formation at its top and of the Mahmoud Formation at its base. Groundwater NaCl-salinity values, obtained from

17



501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

borehole resistivity measurements, range from about 5.5 g/L to 7.5 g/L, which are in the same range as salinity
values observed in the onshore part of the aquifer system. The offshore freshened groundwater beneath the Gulf
of Gabes can be extracted via existing hydrocarbon infrastructures.

Further detailed and integrated studies are necessary to precisely delineate the freshened offshore groundwater
bodies and estimate more accurately the reservoir water storage and balance using numerical modeling techniques.
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FIGURE CAPTIONS:

Fig. 1 Location of the deep confined aquifers and main structural features of the Gulf of Gabes (SDA: Sfax deep

aquifer, STG: Serravallian-Tortonian aquifer of Gabes region, STZ: Serravallian-Tortonian aquifer of Medenine

region, Se: Senonian aquifer, Tu: Turonian aquifer, J: Jurassic aquifer, T: Triassic aquifer.

Fig. 2 Lithostratigraphic log for the Cretaceous to Quaternary formations in the Gulf of Gabes.

Fig. 3 General simplified schematic representation of the SDA (AB cross-section on figure 1).

Fig. 4 Geological cross-sections (a) NE-SW and (b) NW-SE (modified from CRDA Sfax, 2005, see figure 1 for

cross sections location). Z = elevation in meters relative to sea level

Fig. 5 SDA exploitation evolution for the period 1980 to 2018.

Fig. 6 Groundwater depth evolution for the period 2001-2018 in the SDA.

Fig. 7 Annual lateral inflow, abstraction rate, submarine groundwater discharge (SGD) and groundwater salinity

in the SDA.

Fig. 8 Geological cross-section through the Jeffara of Gabes (modified from Abidi, 2001; see figure 1 for cross

section locations).

Fig. 9 Annual lateral inflow, abstraction rate, SGD and groundwater salinity ranges in the Gabes aquifer system.

Fig. 10: Groundwater depth evolution for the period 2005 and 2017 in the STG.

Fig. 11 NE-SW geological cross-section (modified from Ben Baccar, 1982; see figure 1 for location).

Fig. 12 Annual lateral inflow, abstraction rate, SGD and groundwater salinity in the Medenine aquifer system.
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810

811  Fig. 13 Groundwater depth evolution for the period 1999 and 2018 in the STZ.

812

813  Fig. 14 Contour maps of the (a) depth of the top, (b) depth of the base, and (c) thickness of the Serravallian-
814  Tortonian (ST) horizon in the Gulf of Gabes. (On-shore extension of ST horizon in yellow color).

815

816  Fig. 15 Offshore geological cross-section through the Gulf of Gabes (see Fig.1 for location).

817

818  Fig. 16 Transmissivity and hydraulic conductivity ranges in the Gulf of Gabes aquifers systems.

819

820  Fig. 17: Piezometric maps for (a) the Gulf of Gabes aquifers systems: SDA, J, Tu, Se, STG, T, J] and STZ; and
821  (b) ST aquifer level.

822

823  Fig. 18 Resistivity, SP and GR logs for boreholes B71, B74 and B75.

824

825  Fig. 19 Onshore-offshore comparison of aquifer thickness, salinity and porosity for the (a) SDA, (b) Gabes aquifer

826  system and (c¢) Medenine aquifer system.
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