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Abstract

Vegetation classification is an essential prerequisite for understanding vegetation-

water relations at a range of spatial scales. However, in site-specific applications, such

classifications were mostly based on a single Unmanned Aerial Vehicle (UAV) flight,

which can be challenging in grasslands and/or herbaceous-dominated systems, as

those communities are small in size and highly mixed. Here, we conducted monthly

UAV flights for two years in a riparian wetland in Germany, with acquired imagery

used for vegetation classification on a monthly basis under different strategies (with

or without auxiliary information from other flights) to increase understanding in eco-

hydrology. The results show that multi-flight-based classification outperformed single-

flight-based classification due to the higher classification accuracy. Moreover,

improved sensitivity of temporal changes in community distribution highlights the

benefits of multi-flight-based classification - providing a more comprehensive picture

of community evolution. From reference to the monthly community distribution, we

argue that a combination of two or three flights in early- and late-summer is enough

to achieve comparable results to monthly flights, while mid-summer would be a better

timing in case only one flight is scheduled. With such detailed vegetation mapping, we

further interpreted the complex spatio-temporal heterogeneity in NDVI and explored

the dominant areas and developmental progress of each community. Impacts from

management (mowing events) were also evaluated based on the different responses

between communities in two years. Finally, we explored how such vegetation map-

ping could help understand landscape ecohydrology, and found that the spatio-

temporal distribution of minimal soil moisture was related to NDVI peaks of local com-

munity, while grass distribution was explained by both topography and low moisture

conditions. Such bi-directional relationships proved that apart from contributing to an

evidence base for wetland management, multi-flight UAV vegetation mapping could

also provide fundamental insights into the ecohydrology of wetlands.
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1 | INTRODUCTION

Vegetation-water interactions are of central interest to the field of

ecohydrology as vegetation exerts a key control on hydrological parti-

tioning and the water cycle (Tabacchi et al., 2000). Vegetation com-

munities obviously need water to survive, grow and reproduce, and

thus, their distribution, structure and phenology are directly influ-

enced by spatio-temporal patterns of water availability (Dumont

et al., 2012). Moreover, vegetation is usually the primary conduit for

returning terrestrial water to the atmosphere via transpiration, while

also affecting albedo and canopy roughness (Chapin et al., 2011),

which in turn exert a strong effect on the local energy balance and

hydrological fluxes. Especially given the increased development

and application of distributed ecohydrological models in recent years

(Wellen et al., 2015), detailed mapping of vegetation cover, regarding

both spatial distributions and phenological dynamics, have powerful

potential for informing and improving such models; particularly in

terms of providing valuable constraints on vegetation-water interac-

tions, and contributing to an evidence base for better quantifying the

hydrological impacts of current and future land management at a

range of spatial and temporal scales (Rapinel et al., 2019).

Remote sensing offers a practical, rapid and economic means of

vegetation mapping (Nordberg & Evertson, 2005). As a direct product

of remote sensing, numerous vegetation indices (VIs) have been

widely explored for characterizing vegetation (e.g., productivity etc.)

(Pettorelli et al., 2005). For instance, the relationship between the nor-

malized difference vegetation index (NDVI) and the fraction of

absorbed photosynthetic active radiation (fAPAR) has been well docu-

mented both theoretically (Sellers et al., 1992) and empirically (Asrar

et al., 1984). Therefore, NDVI has been widely used as a proxy to

assess vegetation productivity and phenological patterns in many ter-

restrial ecosystems (Kariyeva & van Leeuwen, 2011; Nemani

et al., 2003; Wu et al., 2017; Yu et al., 2003). Furthermore, benefiting

from the development of Unmanned Arial Vehicle (UAV)-borne sen-

sors in recent years, NDVI can be mapped at ultra-high resolution for

smaller scale assessment, which has proved to be informative and

supportive for precision farming and other agricultural applications

(Candiago et al., 2015; Yeom et al., 2019).

However, in less intensively managed systems, which are differ-

ent from arable land where more homogenous crops are dominant,

the spatial patterns are generally more complicated and exhibit higher

temporal variability (Cole & Sheldon, 2017; Donaldson &

Lindroth, 2008; Roth et al., 2015). For example, in complex riparian

wetlands dominated by various grass and herbaceous communities/

species - which are small in size and highly mixed (Bradter et al., 2019)

- extracting information from NDVI maps is often problematic due to

the extreme spatial heterogeneity.

In this context, vegetation classification can be advantageous, as

it can downscale the VI analysis to the community or species level,

whose distribution is the major cause of such spatial heterogeneity.

Many classification applications have been conducted based on UAV-

acquired imagery in grass-dominated ecosystems (Table 1), which gen-

erally followed a similar workflow: (i) image pre-processing, (ii) image

segmentation (for object-based analysis), (iii) feature extractions, and

(iv) classification/validation (Belgiu & Dr�agu, 2016; Xie et al., 2008).

Some of the applications achieved strong performance, for example,

high accuracies were achieved with only spectral information (but

without including auxiliary data such as topography, soil type) in Brad-

ter et al. (2019). However, many studies still acknowledged the chal-

lenges in vegetation classifications, which mainly originate from the

spectral and structural similarities of different grass or herbaceous

species, resulting in low classification accuracies (Geerling

et al., 2007). Moreover, the spectral separability is not only affected

by vegetation, but also the site conditions (Pottier et al., 2014); as the

spectra is inherently associated with the soil cover and water content

(Feilhauer & Schmidtlein, 2011), while heterogeneity of these environ-

mental variables can also affect the vegetation phenology due to their

close coupling with local soil properties and moisture availability

(Dumont et al., 2012; Marion et al., 2010). In addition, when anthro-

pogenic activities such as grazing or grassland management

(e.g., mowing, fertilization etc.) are involved (Dumont et al., 2012),

vegetation-spectral associations are usually further complicated, and

thus, impede precise mapping (Dirnböck et al., 2003).

Therefore, to date, remotely-sensed vegetation classification is

still often problematic even with high-resolution UAV-acquired imag-

ery. Although a wide range of previous studies have explored alterna-

tive aspects of UAV-based classification, such as data sources [visual

spectral (Pande-Chhetri et al., 2017), multispectral (Komarek

et al., 2018); hyperspectral (Yan et al., 2019) and texture indices

(Laliberte & Rango, 2009)], image analysis method [objective- (Ahmed

et al., 2017) or pixel-based (Hamylton et al., 2020)], classification algo-

rithms [statistics (L�opez-Granados et al., 2016) or machine/deep learn-

ing algorithms (Palace et al., 2018)] and classification targets [species

discrimination (Komarek et al., 2018) or identification of invasive species

(Baron & Hill, 2020)], a general and transferable method is still lacking

due to the complex relationship between spectra and vegetation spe-

cies/communities.

A potential solution to clarify the complex relationships is to use

multi-temporal imagery instead of single-date imagery, as the differ-

ent degrees of variation in spectra through the seasons help differen-

tiate the vegetation species/communities (Andrew & Ustin, 2008;

Laba et al., 2005). However, such applications are usually conducted

with satellite imagery owing to the relatively low costs for image

acquisition at a high frequency (Bradter et al., 2019; Senf et al., 2015;

Son et al., 2013; Wang et al., 2013; Weisberg et al., 2021), while

UAV-based studies are emerging but still very limited (e.g., Müllerová

et al., 2017; van Iersel et al., 2018; Weil et al., 2017). For example, the

application in van Iersel et al. (2018) benefited from the auxiliary data

from multi-temporal flights, that is, including multispectral-based veg-

etation indices and vegetation heights from six different flights, which

increased the classification accuracy to 99.3%. Similarly, Weil et al.

(2017) successfully classified woody vegetation species using UAV-

acquired imagery at five different dates and weekly NDVI time series

from a near-surface camera; while Weisberg et al. (2021) used

spectral information from 8 flights in growing seasons to identify two

invasive species. These studies demonstrated the advantages of

multi-temporal flight missions; however, most of the applications have

either relatively low temporal frequency (i.e., limited coverage of
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seasonal differences) or limited temporal/spatial coverage. To authors'

knowledge, mapping at monthly frequency spanning two years is still

rare. Accordingly, guidance on UAV flight strategies on how to use

fewer flights to obtain still representative results over longer periods like

an entire year (acquired from monthly flights), is generally missing.

Therefore, in this study, multi-temporal UAV flights and simulta-

neous field surveys were conducted on a monthly basis over two

years (01.2021–12.2022) in a fen peatland/wetland in Germany. With

multi-spectral imagery and field surveys covering different seasons,

the vegetation was classified each month at the community level.

Then we investigated the spatio-temporal pattern of vegetation pro-

ductivity by summarizing the NDVI for each community, and evalu-

ated the impacts of management owing to the occurrence of two

major mowing events. The links between classified results (community

distribution and phenological dynamics) and soil moisture were further

investigated. The overarching goal of this study was to assess the

value of multi-temporal UAV flights, to downscale the monthly vege-

tation dynamics into community level, and to investigate their rela-

tionships to the site hydrology. The specific research questions were:

• Can data fusion from multi-temporal flight assist UAV-based vege-

tation classification in a complex wetland?

• What are the spatial patterns and temporal dynamics in vegetation

productivity and their response to the land use management? How

can vegetation classification improve such evaluation?

• What are the implications of multi-temporal, detailed vegetation

mapping for understanding landscape ecohydrological processes?

2 | MATERIALS AND METHODS

2.1 | Study area

The studied wetland is located in a long-term experimental catchment

(the Demnitzer Millcreek catchment, DMC; Figure 1b) in north-

eastern Germany (52�250 N, 14�140 E). The riparian area is a peat fen

dominated by histosols (1–4 m deep) and traversed by a � 2.1 km

stream, while areas at the edge of the fen are characterized by sandy

brown earth soils. The peat has been drained historically by a network

of ditches feeding the central river channel. The vegetation distribu-

tions are also closely related to the proximity to the stream network,

with grass and herbaceous communities dominating the riparian peaty

area (though highly diverse and mixed) while forests are distributed

on the sandy soils (Wu et al., 2021).

TABLE 1 Overview of recent studies of vegetation classification in grass-dominated ecosystem based on UAV imagery.

Input datasets Classes/objective Res. (cm) Classifer References

R, G, B Several grass, shrub, forest species 8 SVM/ANN (Pande-Chhetri et al., 2017)

R, G, B 2 grass and 3 shrub species 6 KNN (Laliberte, Winters, &

Rango, 2011)

R, G, B Grass, shrubs, forest 10 SVM/RF (Wang et al., 2019)

R, G, B 9 wetland vegetation categories 5 ANN (Zweig et al., 2015)

R, G, B Grass, shrub, and forest <8 T (Zhang et al., 2019)

R, G, B, RE, NIR Several grass and shrub species 14 KNN (Laliberte, Goforth, et al., 2011)

R, G, B, texture indices Shrub and grass 5 DT (Laliberte & Rango, 2009)

R, G, B, texture indices 5 grass and shrub categories �1 ANN (Palace et al., 2018)

R, G, B, NIR, texture indices Several forest, shrub, herbaceous

species

4–13 RF (Ahmed et al., 2017)

G, R, RE, NIR, multi-band indices, texture

indices

Fraction of centaurea maculosa 2.9 RF (Baron & Hill, 2020)

R, G, B, RE, NIR, texture indices Sunflower and weeds 2–5 Othersa (L�opez-Granados et al., 2016)

R, G, B, RE, NIR, LWIR 2 grass and 15 forest species 3–18 SVM (Komarek et al., 2018)

Hyperspectral data and camera angles 3 herbaceous and 2 forest species 4 DT (Yan et al., 2019)

Hyperspectral data Young/intermediate/old grassland 100–500 PLSR (Astor et al., 2014)

R, G, B, NIR, texture indices in 2 time steps 2 invasion grass species 50 SVM/RF (Müllerová et al., 2017)

R, G, B, NIR, DSM in 6 time steps 6 herbaceous and grassland species 5 RF (van Iersel et al., 2018)

R, G, B in 4 time steps (10 years interval) Detection of Lomandra 3 CNN (Hamylton et al., 2020)

R, G, B, NIR, texture indices in 4 time steps 4 grass species �5 RF (Lu & He, 2017)

R, G, B, NIR, RE, LWIR, DSM, texture

(monthly)

4 grass species and forest 10 RF This study

Abbreviations: KNN, k-nearest neighbours algorithm; PLSR, partial least squares regression; SVM, support vector machine; T, threshold-based

classification.
aOthers: stepwise threshold classification.
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The area experiences a humid continental climate with a modest

annual precipitation (�570 mm/year), energy input (average net radia-

tion of �52.9 W/m2), and higher potential evapotranspiration (650–

700 mm/year) than rainfall (Smith et al., 2021). These hydroclimatic

conditions formalized relatively dry conditions across the wetland in

summer, which have been further exacerbated by a prolonged period

of below-average rainfall since 2013, and reflected by relatively low

annual discharge (0.02 and 0.06 m3/s at inlet and outlet of the study

area) (Wu, Tetzlaff, Goldhammer, et al., 2022).

The anthropogenic impacts of grassland management stem mainly

from mowing events, which generally took place in summer (between

July and August). However, the timing and the mowing areas are not

constant over the years, as they mainly depend on how much grass

and area are needed for sheep grazing (which are decided by local

farmers and stakeholders).

2.2 | UAV imagery acquisition, pre-processing and
vegetation indices

UAV flights were conducted to collect multi-spectral imagery in

NADIR conditions over the wetland on a monthly basis from 03.2021

to 12.2022 with occasional gaps (20 flights in total). The UAV plat-

form used was the Matrice 210 V2 RTK, DJI. For each flight, the stud-

ied wetland and surrounding forests were covered by four sequential

sub-flights from north to south. The areas of these sub-flights were

delineated by waypoints in the flight control system (DJI Pilot flight

planning), from which flight paths were generated to ensure that the

adjacent flights have �10% of overlapping area. All settings were

fixed after the first flight in order to retain the identical area and path-

ways for the following missions.

The imaging sensor used in this study was a Micasense Altum

camera. It has a resolution of 3.2 megapixels, and provides imagery in

six multi-spectral center wavelengths and bandwidths: blue (475 nm,

32 nm), green (560 nm, 27 nm), red (668 nm, 16 nm), red edge

(717 nm, 12 nm), near infrared (840 nm, 57 nm) and longwave infra-

red (11 μm, 6 μm; the thermal sensor has lower resolution 160 � 120

than the other channels). During each mission, the UAV was flown

with relatively stable mid-day illumination (11 a.m. to 2 p.m.) at an alti-

tude of 100 m above ground, the maximum height allowed by the air-

space authority at the time. This resulted in a high spatial resolution

of images (�5 cm). The forward and side overlapping of images were

80% and 75%, respectively.

The flight paths were controlled by the UAV's onboard RTK sys-

tem and ground reference station (DJI D-RTK 2). All images were

georeferenced by the on-board GPS receiver of the camera. More-

over, the radiometric reference of the six bands were taken before

and after each sub-flight (eight references in total) and the camera's

companion downwelling light sensor (Micasense DLS2) measured

sun-to-sensor angle and direct and diffuse irradiance components.

The image processing was conducted using Pix4Dmapper on a

high-performance desktop (Intel(R) Xeon(R) W-1290P CPU @

3.70GHz with 128GB RAM and an NVIDIA GeForce RTX 3090

graphics card) to obtain the reflectance maps of six bands. Images

from each of the four flights were processed individually for reflec-

tance maps of the six bands and a digital surface model (DSM) using

structure-from-motion (SfM) photogrammetry (Schonberger &

Frahm, 2016). To merge the processed maps more accurately, around

20 ground control points collected over the wetland in winter time

(October and December 2021) were used, while in other seasons,

manual tie points were sampled via on-screen digitizing in Pix4Dmap-

per due to the difficulty of placing ground control points over the

F IGURE 1 The study area located in (a) NE Germany, (b) the Demnitzer Millcreek catchment. Subplot (c) shows the true colour image from a
flight in early spring (30.03.2021) of the study area, while subplot (d) shows the overview captured by a visual camera.

4 of 16 WU ET AL.

 10991085, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14988 by U

niversity O
f A

berdeen T
he U

ni, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



dense vegetation. The missing of ground control points resulted in

uncertainty in absolute values of DSM, but the relative DSM was con-

vincing due to the use of RTK and manual tie points. The radiometric

calibration was conducted iteratively against eight references col-

lected during the flights to exclude the references producing abnormal

results. Accordingly, calibration against the remaining references all

led to similar results, and one reference was selected to generate the

reflectance maps. Based on the reflectance, monthly maps of normal-

ized difference vegetation index (NDVI) were calculated as a proxy of

vegetation productivity:

NDVI¼Nir�Red
NirþRed

2.3 | Vegetation classification and interpretation

2.3.1 | Reference data collection

A medium thematic resolution containing five different vegetation

communities (i.e., grassland, early-season low herbaceous, late-season

low herbaceous, high herbaceous, and forest) was selected based on

their structure and phenological characteristics. For the definition and

species composition for each community please refer to Table 2.

During each flight mission in 2021, the dominant community was

identified at �50 sites that were evenly distributed across the study

area, with coordinates recorded using handheld GPS (Garmin eTrex

30X). Photos of the surrounding environment were also taken for a

wider estimate of community distributions. Then, �500 samples were

complemented based on the photos via on-screen digitizing, which is

common in UAV-based classifications (Lu & He, 2017; van Iersel

et al., 2018). Some classes (i.e., forest, shadow, and water surface) only

had few ground true points (<5) from the field surveys and were

mainly sampled by on-screen digitizing; however, they were generally

distinct either in the DSM or spectral information and easily identifi-

able on the maps.

In addition to vegetation-related data, hydrological characteristics

were also investigated during each flight by measuring moisture con-

tent in the upper soil layer (top 10 cm) via a handheld soil moisture

probe (ML3 ThetaProbe Sensor, Delta-t, Germany) at �30 sites that

were randomly selected but evenly distributed across the study area,

with coordinates recorded using handheld GPS.

2.3.2 | Classification workflow

The vegetation classification was realized using object-based image

analysis, which is more robust than pixel-based analysis for fine-

resolution classification (Modica et al., 2021). This includes three

major steps, that is, image segmentation, feature extraction and ran-

dom forest classification (Figure 2). The entire workflow was built in

Python (available at: https://github.com/songjun-wu/Vegetation-

classification.git) and is briefly described here.

First, the imagery was segmented into objects using an open-

source algorithm (Shepherd algorithm; Shepherd et al., 2019) imple-

mented in the Remote Sensing and Geographical Information Systems

software library (RSGISLib; Bunting et al., 2014). The algorithm has

been tested in Modica et al. (2021), which achieved an equivalent per-

formance for high-resolution segmentation compared to commonly

used Large-Scale Mean-Shift algorithm in Orfeo ToolBox and Multi-

Resolution Segmentation in eCognition. Briefly, the segmentation is

realized based on an iterative elimination method consisting of three

steps: (a) applying K-means clustering (McQueen, 1967) to identify

the unique spectral signatures within the image and assign pixels to

the associated cluster center; (b) then a clumping process was con-

ducted to create unique regions; finally, (3) objects were formalized

by iteratively removing regions below the minimum pixels and merg-

ing them to the neighbouring clumps that are spectrally closest

(assessed through the Euclidean distance) (Shepherd et al., 2019). The

key parameters were set via trial-and-error, whose description and

selected values were shown in Table 3. Note that the optimized

values may vary between imageries with different complexities or

resolutions.

Then, features were extracted for segmented objects. Due to the

availability of UAV-acquired data at multiple dates, three different

strategies were selected for classification (Figure 2).

Strategy 1 (S1): like most applications which are based on a

single-date data source (Kumar & Sinha, 2014; Martínez-L�opez

et al., 2014), this classification was conducted on the datasets on

that date. The main features used for classification include the mean

and standard deviation of six spectral bands, DSM, and four more

vegetation indices (NDVI, Blue-NDVI, Green-NDVI, and Rededge-

NDVI, see description in Table 4). The texture indices, which are the

second-order statistics derived from the grey-level co-occurrence

matrix (GLCM), were also incorporated into model training as well,

which was shown previously to assist classification in several high-

resolution applications (Baron & Hill, 2020; Laliberte &

Rango, 2011). For full description of selected features please refer to

Table 4.

TABLE 2 The description and species composition of each
community.

Community Description Species composition

Grassland Sparse grass community

with height <30 cm

Fescue (Festuca),

ryegrass (Lolium)

Early-season

low

herbaceous

Herbaceous community

with height between

30 and 60 cm; mainly

exists in early summer

Chee Grass (Stipa

splendens), ryegrass

(Lolium)

Late-season

low

herbaceous

Herbaceous community

with height between

30 and 60 cm; mainly

exists in late summer

Nut Grass (Cyperus

rotundus), ryegrass

(Lolium)

High

herbaceous

Herbaceous community

with height >60 cm

Nettle (Urtica dioica),

ryegrass (Lolium),

reed (Phragmites

australis)

Forest Forest community Scots Pine (Pinus), etc.
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Strategy 2 (S2): Apart from the basic features extracted in S1, a

data fusion from previous flights was conducted for model training.

Unlike previous studies which directly used the spectral information

from other dates (e.g., Rapinel et al., 2019 or Weisberg et al., 2021),

we calculated monthly NDVI variations instead. The variations of pre-

vious and current months were included in classification in this

strategy.

Strategy 3 (S3): The classification was conducted using features in

S1 plus the aforementioned NDVI variations, regardless of whether

they (i.e., the variations) originated from the dates before or after cur-

rent flight.

Finally, the extracted features (Table 4) were used for vegetation

classification using a Random Forest Classifier (Pal, 2005), with

hyperparameters determined via trial-and-error approach: the num-

ber of trees in models was set as 5000 due to the availability of com-

putational capacity (parallel use of >50 cores in the high

performance computer cluster from Humboldt University Berlin),

while the maximum depth of the tree was set to 20 to avoid overfit-

ting. For images acquired at different times, classification models

were established separately, since there were considerable temporal

changes of classes. This resulted in monthly maps of vegetation

distribution.

Further, to prevent impacts from sample selection, 5-fold cross-

validations were repeated for 10 occasions (Rapinel et al., 2019). The

average accuracy of either each individual class or all classes was cal-

culated, and the best performing model was selected based on overall

accuracy for further prediction.

2.3.3 | Summary of community phenology

Since nine vegetation maps were produced in 2021 (Figure 6), the

spatial dominance of each community could be summarized based on

its temporal frequency of occurrence on a monthly basis. More specif-

ically, for each pixel, the dominant community was defined as the

most frequent community if it was detected more than four times

over the nine sets of classification results. Otherwise, the pixel was

characterized as grassland. Then, the NDVI was extracted and summa-

rized from the dominant area of each community. The classified vege-

tation distribution was also used to extract NDVI in 2022, which

could result in uncertainty if vegetation communities switch dramati-

cally between years. However, based on our field-based observations

and knowledge from weekly sampling since 2019, the vegetation evo-

lution is relatively stable interannually at our site. Additional on-screen

verification of the vegetation distribution in 2022 was also conducted

to ensure the creditability of our results.

TABLE 3 The key parameters in object-based image
segmentation.

Parameter Value Description

numClusters 20 The number of clusters within the

K-Means clustering

samplingNum 70 The subsampling of image data used within

the K-Means

minPxls 200 The minimum number pixels within an

object

kmMaxIter 3000 Maximum iterations for K-Means

F IGURE 2 Main workflow of the vegetation classification. The input datasets and key procedures are shown in blue and brown, respectively.
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3 | RESULTS

3.1 | Meteorological background of flight missions

Precipitation, air temperature, wind speed, and air pressure were mea-

sured every 15 min at a climate station � km away from the wetland

(Station Alt Madlitz, Figure 1). Potential evapotranspiration (PET) was

estimated via the Penman–Monteith equation (Penman, 1948) using

these variables. The climatic indices showed clear seasonal patterns

(Figure 3): air temperature and PET gradually increased after March in

both years and reached maxima (28.0�C and 7.6 mm/d) in July. The

subsequent decline started in late August. As for precipitation, the

winter season was characterized by frequent but less intense frontal

events, while summer rainfall was mainly in the form of sporadic con-

vective events with higher intensity.

The inter-annual differences showed drier and warmer conditions

in 2022 compared to 2021. This was reflected by 44.0% decrease in

annual precipitation and 9.7% increase in temperature in 2022, which

was partly due to the two intense summer events in 2021 when the

precipitation amount reached >80 mm in June and August.

3.2 | Assessing vegetation classification based on
different strategies

3.2.1 | Classification accuracy

The overall accuracies of classification gradually increased after incor-

porating the temporal dynamics of NDVI (from S1 to S3), but all three

strategies achieved relatively high accuracies with average values of

87.0%, 92.9%, and 94.7% for S1, S2, and S3, respectively (Figure 4).

The accuracy slightly decreased in growing seasons, but still remained

above 80% (84.2%, 89.5%, and 91.1%).

In terms of individual classes, forest could be most effectively dif-

ferentiated from other classes with accuracies close to 100% (98.0%,

98.9%, and 99.0% for S1, S2, and S3), while grassland and early-season

herbaceous classes were more difficult to identify. For instance, the

accuracies of classifications based on S1 for early-season low herba-

ceous were below 80% in May and August, mainly because of the sim-

ilar spectral reflectance to grassland. Accordingly, the classification of

grassland was less accurate in both months (78.0% and 83.8%).

However, the data fusion from other flights assisted the differen-

tiation between these two classes, leading to increased accuracies in

these two months (93.0/90.1% and 96.5/95.0% for grassland and

early-season herbaceous based on S2 and S3). Such increased accura-

cies could also be observed when classifying the late-season herba-

ceous community. As the community that was most widely

distributed across the study area and highly mixed with all other com-

munities, it was most intractable for classification under the default

strategy (S1) with the lowest average accuracy of 82.5%. However,

incorporating phenology dynamics increased the accuracy to 89.0%

and 89.2% under S2 and S3.

TABLE 4 Features selected for image segmentation.

Abbreviation Description

Bb Band blue

Gb Band green

Rb Band red

REb Band red edge

NIRb Band near infrared

Tb Surface temperature calculated from long-

wave radiation

DSMb Digital surface model estimated via structure-

from-motion photogrammetry

NDVIb Normalized difference vegetation index:

(NIR-R)/(NIR + R)

B-NDVIb Normalized difference blue index: (NIR-B)/

(NIR + RE)

RE-NDVIb Normalized difference red edge index:

(NIR-RE)/(NIR + RE)

contrast_GLCM The intensity contrast between pixels within

an object

dissimilarity_GLCM A measure of distance between pairs of

pixels

homogeneity_GLCM The closeness of the element distribution of

in an object to its diagonal

energy_GLCM The sum of squared elements

correlation_GLCM Grey-tone linear-dependencies in the image

ASM_GLCM Angular second moment: a measure of

homogeneity of the image

Δ NDVI montha The NDVI change of an object from last

month: NDVI(month) � NDVI(month-1)

Max NDVI date The date of occurrence of maximum NDVI

value within an object

Average NDVIa The average NDVI over whole sampling

period (differs between S2 and S3)

aThe feature was extracted as the average value within the segmented

object.
bMeans both mean and standard deviation were extracted.

F IGURE 3 Daily precipitation (P in blue), potential
evapotranspiration (PET in red), and air temperature (T in green). The
dates of flight missions are shown as grey lines.

WU ET AL. 7 of 16

 10991085, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14988 by U

niversity O
f A

berdeen T
he U

ni, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



It is clear and encouraging that the two strategies considering

temporal phenological changes achieved a significant improvement on

classification accuracies. Interestingly, the differences in their perfor-

mances (S2 and S3) were slight or negligible for most communities

and for most of the months. An exception was the tall herbaceous

community in May, as it shares similar phenology (regarding the size

and NDVI) with other communities by then (all at the early developing

stages in the early growing season), leading to challenges in classifica-

tion without summer phenology.

3.2.2 | Feature importance

Generally, the averaged values of features within the segmented

object were more important than their standard deviation (Figure 5).

The only exception was the DSM, whose standard deviation also

effectively contributed to the classification.

Among all the selected features, DSM and NDVI were constantly

important for the classification, while the importance of other features

varied significantly between flights. For instance, the band green, red

edge and near-infrared exhibited higher importance in winter, while

NDVI became more influential on classification in growing seasons. The

texture indices showed little contribution to the classification results.

When applying data fusion for classification, the NDVI variations

between flights also showed certain importance for classification.

Such contribution was especially clear in the growing seasons, when

communities are highly mixed. In contrast, the average value of NDVI

and the date of maximum NDVI occurrence were negligible.

F IGURE 4 The classification accuracy for different communities
based on strategy S1 (a), S2 (b), and S3 (c). White grids mean that no
community was detected in that flight. “x” means the species was not
detected.

F IGURE 5 The feature importance in the monthly RF models trained based on S1 (a), S2 (b), and S3 (c). “mean” and “std” are the average
values and standard deviations within an object. “x” means the feature was not included in the classification.
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3.2.3 | Classification results

As shown in Figure 6, each community had its main area: early-season

low herbaceous vegetation dominated the south-eastern part of the

wetland; high herbaceous communities were focused in the riparian

area or directly in the stream channel, while some were also distrib-

uted in a scattered manner within the southern part. The remaining

riparian areas were covered by late-season low herbaceous commu-

nity. Forest only accounted for a relatively small fraction of the study

area – the north/east corners and edges.

From a temporal perspective, communities in the riparian wetland

could not be distinguished until the beginning of the growth period in

May. Interestingly, the dominating area of each community was not

constant, but instead changes between communities were frequently

observed as the growing season progressed. For example, in early

summer the early-season low herbaceous community dominated the

southern part of the wetland; however, that dominance gradually

changed to the late-season low herbaceous community in late sum-

mer due to its senescence.

Such changes in community-dominance were also affected by

management, specifically by mowing events. For instance, the early-

season low herbaceous communities were distributed intermittently

in the northern section of the wetland, however, they were replaced

by late-season low herbaceous communities after the mowing

event.

3.3 | Evaluating monthly NDVI variations at the
ecosystem and community level

3.3.1 | Ecosystem level

From a temporal perspective, vegetation development, reflected by

the increase in NDVI, started at the end of March in most areas

(Figure 7). NDVI reached a maximum in early summer (around May

and June) followed by a gradual decline. Management interventions

also played an important role, as the vegetation development across

extensive areas was reset when it was mowed and removed in June

2021 and July 2022. For instance, at the end of July 2021, the vegeta-

tion productivity remained relatively high in the northern part (mowed

areas) while in unmowed southern part vegetation already senesced.

Such a marked reset in development was also observed in the south-

ern part of study area in 2022, as NDVI reached �0.8 two months

after mowing in this herbaceous-dominated area while in the remain-

ing areas, NDVI almost dropped below 0.5. Interestingly, however, the

secondary increase in NDVI of the mowed areas was relatively minor

in the northern section in the drier and warmer 2022.

From a spatial perspective, NDVI was highly heterogeneous.

Moreover, the spatial patterns were highly variable in time due to the

different phenological developmental progress between vegetation

communities and the impact from mowing events. For example, NDVI

showed similar values on both sides of the downstream river in March

F IGURE 6 Distributions of classified vegetation communities based on three strategies (S1–S3).
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to May 2021, but turned significantly different in July because of the

mowing activity on the western riparian areas. Therefore, it is difficult

to summarize any constant spatial pattern when directly looking into

the monthly NDVI maps.

3.3.2 | Community level

Vegetation classification provided an opportunity to examine the

dynamics of vegetation growth and development in more detail, as

the temporal patterns of phenology were distinct between different

communities (Figure 8). Among all the communities, the forest

showed the highest NDVI over the whole year; with the greening

starting in April and May, and NDVI remaining relatively high after

June. The late-season low herbaceous community covered the most

extensive area, and thus, their phenology was highly heterogenous. In

general, plants in this community started to grow after April and flour-

ished between May and August. Thereafter, a gradual senescence was

observed. In contrast, the development and senescence of the early-

season low herbaceous community (mostly in middle-east section of

the wetland) were much earlier, with significant NDVI increase and

decrease were already observed in March and June, respectively. The

high herbaceous community development only started later in May

while senescence progressed after September. This led to a relatively

short maturing period (from June to August). Grassland productivity

increased from April in both years and remained relatively high during

May to July. The senescence was observed afterwards.

Notably, grassland responded differently to mowing in different

years. In 2021, when mowing took place in June, the development of

grassland was reset with an immediate recovery (shown as high NDVI

values in following July, Figure 8b). However, such re-growth of the

grass community was less strong with only a mild increase in NDVI

after the mowing in July 2022. Such interannual differences in re-

development, reflected by lower increases in NDVI after mowing

events, could be also observed in early-season low herbaceous

communities, while in contrast, late-season low herbaceous and high

herbaceous communities showed fast recovery from mowing in both

years.

3.4 | Monthly soil moisture distribution across the
wetland

The volumetric moisture contents in upper soils (top 10 cm) were

measured at �30 sites each month (randomly selected each time but

evenly distributed across the wetland), and showed strong spatio-

temporal heterogeneity (Figure 9a). From a temporal perspective, the

lowest moisture contents (down to <20%) were observed in summer

from end of June to September, while in winter the moisture could

reach above 50%. Soil moisture was spatially highly variable and no

general patterns could be summarized, for example, the moisture in

the NE section was lower than the SE section in March 2021 but an

opposite pattern was found in June, September, and August. However,

more insights wwere available when incorporating the classification

results (Figure 9b), as the moisture content was generally negatively

related to the NDVI of the local community, and lowest soil moisture

was usually observed during NDVI peaks. The inter-community differ-

ences were also marked, given moisture content was similar between

areas dominated by three herbaceous community while the lowest

moisture contents were always found under grassland.

4 | DISCUSSION

4.1 | Advances of multi-flight-based classification

Vegetation classification has always been a useful tool to aid land

management (Belgiu & Dr�agu, 2016; Xie et al., 2008), especially con-

sidering the modern UAV technologies that provide imagery with

ultra-high resolution (Candiago et al., 2015; Yeom et al., 2019).

F IGURE 7 Monthly maps of NDVI.
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However, though benefiting from finer resolutions, the classification

in grass-dominated areas is still often problematic, as those grass or

herbaceous species and communities are generally small in size and

highly mixed. But its hydrological important areas such as wetlands

that are often characterized by these complex vegetation communi-

ties. Here, to address this issue, unique monthly UAV imagery was

collected for two years for vegetation classification at the community

level in a managed wetland to improve understanding of vegetation-

water interlinakges. Such datasets with relatively long duration and

monthly resolution have been, to authors' knowledge, rarely used for

vegetation classification in wetlands (though there are several studies

in grasslands based on multi-seasonal flights but with less temporal

frequency, e.g., Bendig et al., 2014 and van Iersel et al., 2018). Such

studies are very informative for evaluating multi-flight-based classifi-

cation against traditional single-flight-based applications, and helping

guide the development of optimal strategies for UAV surveys that bal-

ance time and resource availability against the degree of accuracy

required.

F IGURE 9 Upper soil moisture contents (top 10 cm; a) and their relationships with vegetation distribution (b).

F IGURE 8 (a) The distribution of major communities. (b) The phenology of each community summarized as NDVI histogram in their dominant
area. The dates of mowing events are shown as blue arrows. Red dotes denote the median values.
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Like many previous studies (e.g., Dumont et al., 2012; Marion

et al., 2010), the classification was not ideal when starting with data-

sets from a single flight. Our application based on S1 achieved an

acceptable overall accuracy, it included some classes that are very dis-

tinct from grass/herbaceous communities and thus, can be always

successfully distinguished (e.g., forest and open water). In contrast,,

the accuracies of grass or herbaceous communities could sometimes

drop to <60%, especially in early summer when most vegetations

were developing. Such difficulties in discrimination have also been

found in other applications (e.g., Bradter et al., 2019), as fully devel-

oped vegetation canopies can result in mixed spectra within or

between communities and thus impede precise classification.

Multi-flight-based classification clearly performs better when spectra

information from a single flight is not sufficient to distinguish these

small-sized grass/herbaceous communities. By incorporating the

NVDI variations between flights, the model was now informed by not

only the current spectra information in each segmented object across

the wetland, but also where and when different vegetation started to

develop in that object, and how that development progressed through

time. Assisted with such axillary “historical” information, those mixed

communities could be better distinguished with higher accuracy.

Moreover, multiple-flight-based application could potentially reduce

the impacts from radiometric uncertainties, which are almost unavoid-

able in UAV applications. Although the reflectance maps were itera-

tively calibrated against different radiometric references (to exclude

the ones producing abnormal results), it is likely that the selected ref-

erence for calibration could not entirely cover the weather conditions

throughout the flight but additional information from multi-temporal

flights apparently reduced the risk of distorted radiometry.

Multi-flight-based classifications bring also benefits from an eco-

logical perspective. When mapping vegetation at community level

throughout an entire growing season, the evolution between different

communities and their changing distributions become much clearer.

Multiple flights (particular spanning over several seasons) could pro-

vide a more comprehensive picture of vegetation change over the

year (in the form of dynamic boundaries of each community acquired

from monthly classification results) than single flights.

Despite multi-flight-based classifications providing more robust

results with higher accuracy, monthly UAV flights are still rare as

resources for data acquisition are usually limited, and remote sensing

is often meant to be used for data scarce regions (Nordberg &

Evertson, 2005). Therefore, it is key to identify optimal strategies for

classification-oriented UAV surveys for wetland or grassland manage-

ment, which aim for more informative and robust vegetation data

from as few flights as possible.

From inspection of the monthly vegetation distributions, the main

communities were observed in most classifications during the growing

season (Figure 6). The main differences between these months were

the gradual changes from early-season herbaceous to late-season her-

baceous communities in early summer (end of May) and the change

from late-season herbaceous community to grass in late summer

(at the end of September and October). A full picture of vegetation

distribution could likely be adequately summarized from only a few

flights, at the beginning of the growing season, in early summer and

late summer, respectively. This is of course site-dependent, but can be

informative for many regions sharing a similar climatic background

(e.g., temperate grasslands or wetlands across the extensive Northern

European Plain). Similar conclusions were also reached for woody or

forest communities with only three optimal time steps, mostly in early

and late summer (Michez et al., 2016; van Iersel et al., 2018; Weil

et al., 2017). However, in the case that only one flight is scheduled

within a year, mid-summer (June or July in the northern hemisphere)

would be a more appropriate timing, as most communities are fully

developed and exert relatively strong impacts on the ecohydrology by

then, compared to spring (late-season herbaceous community is still

developing) or late summer (when early-season herbaceous commu-

nity already starts to senesce).

4.2 | Improved mapping of vegetation dynamics
via community-level analysis

The initial goal of this study was to characterize the vegetation devel-

opment in a riparian wetland. However, we found it challenging to

directly analyse the VIs derived from UAV imagery in our wetland

because of the extreme spatial heterogeneity captured by the fine-

resolution sensor (Bradter et al., 2019). Such complexity was further

amplified when the boundaries between the dominant areas of each

community changed through time, making it almost impossible to

directly interpret the spatio-temporal pattern of VIs, though time

series of NDVI are available for almost two years (Figure 7). In this

context, vegetation classification helped as it allowed downscaling of

the VI analysis to a realistic community level (Geerling et al., 2007),

providing invaluable information on not only the spatial distribution of

each community across the wetland, but also how their development

changed temporally (Section 3.3.2).

Another important finding is related to how vegetation responded

differently to management disturbances through mowing for hay pro-

duction. We found different responses of grassland and early-season

low herbaceous communities to the major mowing events in two

years. their re-developments were marked with an immediate recov-

ery (shown as relatively high NDVI value in the following month) in

2021 but being damped with only a mild increase in NDVI after the

mowing in July 2022. This, could be either attributed to the dry and

warmer conditions in 2022, as re-developments of these communities

need certain degrees of soil moisture for root water uptake (Dumont

et al., 2012); or to the timing of management as the mowing was con-

ducted in different months (June in 2021; July in 2022). The sup-

pressed recovery in 2022 suggests that the vegetation resilience to

anthropogenic activities was also related to when that activity took

place and at which development stage the communities were at that

moment. This further emphasizes the importance of an appropriate

timing when applying management practices in wetlands, because

management interventions during later development stages may

result in an abrupt senescence of specific vegetation communities

(e.g., grass or early-season herbaceous in our wetland). However, the

inter-annual differences in recovery were not observed in the late-

season low herbaceous and high herbaceous as they both showed a
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strong recovery from mowing. It seems that grass and early-season

herbaceous communities are more vulnerable to external pressures,

as their development could be strongly affected or even truncated by

mowing activities in mid-summer while other communities could still

effectively recover. Of course, such conclusions are only based on

NDVI values in two years, which could be different from a long-term

perspective or in another ecosystem.

These detailed insights brought by community-level analysis pro-

vided not only a solid evidence-base for wetland management, but

also a starting point for stronger interdisciplinary research using

remote sensing techniques as vegetation is fundamental to almost all

wetland ecosystem services and functions.

4.3 | Wider implication for ecohydrology

The interdependent relationship between vegetation and hydrology

has long recognized that plants naturally rely on water availability,

while also contributing to the water cycle via interception and transpi-

ration (Chapin et al., 2011; Tabacchi et al., 2000; Tetzlaff et al., 2021).

Measurements of hydrological fluxes at local scales help to infer inter-

esting and integrated insights into vegetation-water interactions.

We measured the moisture content of the upper soil layer (10 cm)

during each flight at �30 sites across the wetland (Figure 9a), and

tested its relationship with the local vegetation communities and NDVI

(Figure 9b). Maximum vegetation development was usually observed

during periods of minimum values of soil moisture, mostly when the

NDVI of the local vegetation community peaked. This reflects the

close relationship between vegetation development and the evolution

of soil moisture deficits, which are consistent with higher transpiration

in summer (Smith et al., 2021). Without such detailed UAV-based map-

ping, we would have been unable to explain why the strongest deficit

of soil moisture was observed at different months under early-season

and late-season low herbaceous communities, given that these sites

share very similar soil properties and hydroclimatic characteristics.

Moreover, when considering inter-community differences, lower

moisture contents were mainly observed under grassland, especially

for those occasions when soil moisture fell below 20% (Figure 9b).

Given that the grass in our wetland is small in size and with less dense

distribution compared to the herbaceous communities, the water defi-

cit is unlikely attributed to the high transpiration rates (though soil

evaporation could increase due to coarser vegetation cover). One rea-

son for the low moisture contents under grassland could be the

ground elevationas the grass communities are more present on “ele-
vated” areas across the wetland (though the elevations of those prom-

inence are only slightly higher by <0.5 m than their surroundings).

Considering the groundwater table is flat (spatially) and relatively sta-

ble (temporally) in this area (see groundwater level at three wells

across the wetland since 2015 in Figure S1), such variations in ground

elevation could be sufficient to cause accentuated water deficits in

the upper soil layer and limit vegetation uptake (Scheliga et al., 2019).

Thus, the vegetation communities are not a driver of variable hydro-

logical states/fluxes, but instead their distributions are an integrated

result of local hydrological conditions and topography.

Such improved understanding of water-vegetation relationships

can assist the prediction of soil moisture using statistical or machine

learning models, as previous applications based on fine resolution

imagery often met challenges due to the lack of fine-resolution input

features that were able to interpret the extreme spatial heterogeneity

in soil moisture (e.g., Araya et al., 2021; Zaman et al., 2012). Given the

bidirectional relationships observed in our wetland, vegetation classifi-

cation and the following species-level analysis of VIs can potentially

help the direct prediction of soil moisture distribution, which is a

planned next step in research at the study site.

Finally, the detailed vegetation mapping is also informative for

process-based hydrological modelling (besides being directly used to

analyse or predict the hydrological observations via data-driven

models), given vegetation functioning is a fundamental compartment

in almost every ecohydrological model (Wellen et al., 2015). Knowl-

edge about the community distribution and its developmental pro-

gress can certainly improve the conceptualisation of interception and

transpiration at finer spatial and temporal scales. The spatial distribu-

tion of different vegetation communities also provides an evidence

base for the parameterisation of distributed modelling, which signifi-

cantly reduces the computation burden and parametric uncertainty,

while retaining a comparable representation of the spatial heteroge-

neity (Herman et al., 2013; Werkhoven et al., 2008; Wu, Tetzlaff,

Yang, & Soulsby, 2022). For instance, the mapping acquired from this

study has been used in recent modelling in this area via a physics-

based, fully distributed ecohydrological model EcH2O-iso. With such

detailed vegetation conceptualisation, the model managed to capture

the spatio-temporal patterns of multiple hydrological indices

(e.g., discharge, stream isotopes, groundwater isotopes, and soil mois-

ture at distributed sites) with internal flux simulations also being phys-

ically realistic (Wu et al., submitted). Such an interdisciplinary fusion

of field and remote sensing ecohydrological data with ecohydrological

modelling has many advantages given the well-known challenges

often arising for distributed modelling to capture full spatial heteroge-

neity in ecohydrological function (Beven & Freer, 2001; Wellen

et al., 2015). These challenges are, of course, related to errors and

uncertainties in model structure or measurements, but can also be

linked to the coarse conceptualisation of spatial inputs and outputs in

which vegetation plays a key role in partitioning.

5 | CONCLUSION

In this study, monthly UAV surveys were conducted over two years in

a riparian wetland in north-eastern Germany, with collected imagery

used for vegetation classification on a monthly basis. Different strate-

gies were tested for classification, that is, respectively using imagery

from the current survey (S1), from the current and the previous sur-

veys (S2), and from all surveys (S3).

The results show that multi-flight-based classification (S2 and S3)

outperformed single-flight-based classification (S1) due to the higher

classification accuracy (though the performances of S2 and S3 were

similarly good). Moreover, we observed marked temporal changes in

the boundaries of community distributions according to the classified
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maps, which highlights the benefits of multi-flight-based classification -

providing a more comprehensive picture of intra- and inter-annual

vegetation community evolution. After checking the performance of

classification applications, we further suggest that a combination

of two or three flights in early- and late-summer would be enough to

achieve comparable results to monthly flights, while mid-summer

would be the best timing in case only one flight is possible.

With such detailed information from monthly vegetation mapping,

the complex spatio-temporal heterogeneity in NDVI could be, to a cer-

tain extent, interpreted by community distribution and evolution. More-

over, we evaluated the impacts of management interventions such as

mowing events based on the different responses between communi-

ties, which were mainly attributed to the inherent characteristics of the

community (less resilience for grass and early-season herbaceous), the

timing of management (early or late summer), and the wetness condi-

tion (drier and warmer conditions in 2022). We also could summarize

the dominant areas and developmental progress of each community.

Finally, we explored how such vegetation mapping could help

understand landscape ecohydrology, and found the spatio-temporal

distribution of minimal soil moisture was related to NDVI peaks of the

local community and grass distribution could be interpreted by topog-

raphy and low moisture conditions. Such bidirectional relationships

proved that apart from the direct evidence base for wetland manage-

ment, multi-flight-based vegetation mapping could also help improve

understanding on landscape ecohydrology providing a fundamental

prerequisite for further interdisciplinary research and parametrisation

of process-based models.
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