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A B S T R A C T

High dynamic range (HDR) imaging from multiple low dynamic range (LDR) images has been suffering from
ghosting artifacts caused by scene and objects motion. Existing methods, such as optical flow based and
end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts
removal. Comprehensive empirical evidence shows that ghosting artifacts caused by large foreground motion
are mainly low-frequency signals and the details are mainly high-frequency signals. In this work, we propose
a novel frequency-guided end-to-end deep neural network (FHDRNet) to conduct HDR fusion in the frequency
domain, and Discrete Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals
are used for preserving details. Using a U-Net as the backbone, we propose two novel modules: merging
module and frequency-guided upsampling module. The merging module applies the attention mechanism to
the low-frequency components to deal with the ghost caused by large foreground motion. The frequency-
guided upsampling module reconstructs details from multiple frequency-specific components with rich details.
In addition, a new RAW dataset is created for training and evaluating multi-frame HDR imaging algorithms
in the RAW domain. Extensive experiments are conducted on public datasets and our RAW dataset, showing
that the proposed FHDRNet achieves state-of-the-art performance.
. Introduction

High dynamic range (HDR) imaging using multiple low dynamic
ange (LDR) images as inputs is a technique used in computational
hotography to generate high-quality HDR images. This technique
chieves a large range of luminosity by utilizing the information from
ultiple LDR images. A digital camera usually captures an LDR image
ith only a limited range of luminosity at a time, where there might
ppear some over-exposed and/or under-exposed regions, degrading
he image quality. Cameras embedded in wearable devices usually have
mall optical sensors and small apertures, which limit the number of
lectrons to reach each pixel, making them difficult to capture HDR
mages at a time. A practical solution for wearable devices is to capture
everal LDR images with different exposure times and fuse them into
single HDR image. To generate an HDR image, the method should

e able to restore the missing information (over-exposed and under-
xposed regions) from multiple LDR images, and more importantly, be
host-free.

∗ Corresponding author.
E-mail address: shanxin.yuan@qmul.ac.uk (S. Yuan).

1 These authors contributed equally to this work.

Existing methods (Kalantari and Ramamoorthi, 2017; Wu et al.,
2018; Yan et al., 2020; Prabhakar et al., 2020; Yan et al., 2019a,b)
suffer from different kinds of artifacts, including ghosting, missing
details, color degradation, etc. The traditional method by Debevec
and Malik (1997) can generate a decent high quality HDR image by
merging several static LDR images with different exposures, but it
might introduce ghosting artifacts when there is motion. Other early
works (Khan et al., 2006; Pece and Kautz, 2010; Li et al., 2014; Bogoni,
2000; Gallo et al., 2015) try to deal with motion through detecting and
rejecting moving pixels (Khan et al., 2006; Pece and Kautz, 2010; Li
et al., 2014), or through aligning and merging LDR images (Bogoni,
2000; Gallo et al., 2015). They can address a small range of motion
but they cannot handle moving content effectively.

Recently, deep learning-based methods (Kalantari and Ramamoor-
thi, 2017; Wu et al., 2018; Yan et al., 2019a) have been proposed and
made great improvements over traditional methods, benefiting from
CNN’s good representation ability and large amount of training data.
These methods either use optical flow to align the inputs, followed by
a merging module (Kalantari and Ramamoorthi, 2017), or formulate
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Fig. 1. Comparison between our method and other baselines on the Prabhakar
dataset (Prabhakar et al., 2019). Left: Three LDR images with different exposures (low,
medium, and high). Center: Our generated HDR image after tone mapping and cropped
LDR patches. Right: Results of six methods and the ground truth.

Fig. 2. The visualization of frequency sub-bands in the wavelet domain. The first and
second row are the results of DWT decomposition of an RGB image and a feature map
as the input. (a) Inputs. (b)–(e) Visualization of different frequency sub-bands.

the HDR imaging task as an image-to-image translation problem (Wu
et al., 2018; Yan et al., 2019a). Although these methods have made
great progress in this area, they still suffer from the ghosting problem
(see Fig. 1). We notice that none of the existing methods tries to exploit
the fact that the ghosting artifacts caused by large foreground motion
are mainly of low-frequency, while the details are of high-frequency.
We argue that it is beneficial to separate these low-frequency and high-
frequency signals and deal with them separately. Frequency operation
has also been used in a few existing HDR imaging methods (Pouli et al.,
2014; Hasinoff et al., 2016), e.g., Pouli et al. (2014) decomposes HDR
rames into different frequency bands, where the most suitable band
s selected adaptively to prevent ghosts, Hasinoff et al. (2016) uses
airwise frequency-domain temporal filter operation for a robust and
ast alignment.

In this paper, we choose Discrete Wavelet Transform (DWT) to
ecompose signals into different frequency bands. Compared with other
ethods, such as Discrete Fourier Transform (DFT) and Discrete Cosine
ransform (DCT), DWT can capture both frequency and spatial informa-
ion of the images (or feature maps), which helps to preserve detailed
exture. In order to verify our hypothesis, we select the output of
HDR (Yan et al., 2019a) in Prabhakar dataset (Prabhakar et al., 2019),
here a distinct ghosting artifact is presented because of the object
otion, as an example to visualize the decomposed signals in each

requency sub-band. After decomposing, the corresponding frequency
ub-bands are given in the first row of Fig. 2. It clearly shows that
he ghosting artifacts are mainly in the low-frequency sub-band (LL),
hile the high-frequency sub-bands (LH, HL, HH) include textures in
ifferent directions. In order to extend this verification to the feature
2

space, we also investigate the feature map from the last but one layer
of AHDR. In the second row of Fig. 2, it presents a similar trend in the
feature space where the ghosting artifacts caused by large foreground
motion is mainly in the low-frequency sub-band. Thus, it is highly
worth exploring frequency-specific processing in both the RGB and
deep feature domains for the HDR imaging task.

In this work, we propose a frequency-guided network (FHDRNet)
to explicitly deal with signals of different frequency sub-bands for HDR
imaging (see Fig. 3 ). FHDRNet also performs well in the RAW domain.
For RAW domain evaluation, we propose a new RAW dataset.s2 Pro-
cessing HDR fusion in the RAW domain has the following advantages,
especially for wearable devices: (1) From the Image Signal Processing
(ISP) pipeline’s perspective, it can bring the HDR fusion module to the
early stage (e.g., earlier than demosaicing) of the whole ISP pipeline.
It can save computations for other modules (e.g., demosaicing) that
otherwise have to be done three times, each for one LDR RAW image;
(2) RAW data usually have higher bit width (e.g., 16 bit) and contain
more metadata. HDR fusion in the RAW domain will recover more
original useful information than that in the RGB domain (8 bit).

The paper’s contributions can be summarized as:

• The proposed method — FHDRNet, working in the wavelet do-
main, is the first to explicitly deal with frequency-specific prob-
lems in the HDR imaging task, e.g., ghosting caused by large
foreground motion, where the attention mechanism is used on
the low-frequency sub-band for fusion to remove such artifacts.
The high-frequency sub-bands are used to preserve details (e.g.,
texture) in the generated HDR image.

• A novel frequency-guided upsampling module is proposed to fuse
multiple components with different frequency sub-bands from
different images into a single set of low and high-frequency
sub-bands to upscale the output using Inverse Discrete Wavelet
Transform (IDWT).

• A new dataset is built for training and evaluating HDR algorithms
in the RAW domain, which includes 85 and 15 sets of training and
testing samples. This is the first RAW dataset for HDR imaging.

• Our method achieves state-of-the-art performance on several pub-
lic datasets and the new RAW dataset. It also has a good balance
between quality and computational efficiency.

2. Related work

In this section, we review the most relevant works, including HDR
imaging (Khan et al., 2006; Kalantari and Ramamoorthi, 2017; Wu
et al., 2018; Yan et al., 2020, 2019a,b, 2021; Prabhakar et al., 2019;
Niu et al., 2021) and learning in the wavelet domain (Li et al., 2020;
Abdelhamed et al., 2020; Liu et al., 2018).

2.1. High dynamic range imaging

When the scene and camera are completely static, the traditional
method (Debevec and Malik, 1997) can generate a high quality HDR
image by merging them together. But it generates ghosting artifacts
when there is motion among the LDR images. Early works (Khan et al.,
2006; Pece and Kautz, 2010; Li et al., 2014) that try to detect and reject
the moving pixels fail to handle moving content effectively. To make
use of the moving content, Bogoni (2000) and Gallo et al. (2015) first
align the input images and then merge the aligned images into one HDR
image. These methods (Bogoni, 2000; Gallo et al., 2015) simply merge
the aligned LDR images, and are unable to avoid alignment artifacts.

Recently, many deep learning-based methods (Kalantari and Ra-
mamoorthi, 2017; Wu et al., 2018; Yan et al., 2020) have been de-
veloped. Kalantari and Ramamoorthi (2017) propose a deep learning-
based model that first aligns the LDR image using optical flow, and

2 More details about the RAW dataset are included in Section 4.1.
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Fig. 3. Overall architecture of the proposed FHDRNet. We consider three pairs of LDR and its HDR as inputs to our FHDRNet and the final reconstructed HDR output is viewed
after tone mapping. The proposed network structure contains three parts: an encoder, a merger and a decoder. In the encoder, the input feature maps are decomposed into different
frequency sub-bands for further fusion and reconstruction by using DWT. In the merger, the low-frequency sub-bands from the last layer of the encoder are used to generate a
single fused feature map. In the decoder, the pre-saved frequency sub-bands are used along with the fused feature map to reconstruct into an upper scale feature map through a
frequency-guided upsampling module (FGU). Finally, a global residual connection is used to enhance the feature representation ability of the network. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
then uses a convolutional neural network to generate an HDR image.
However, it is difficult to correct the misalignment errors of optical
flow, e.g., in the moving area, particularly when there also exists occlu-
sion. Wu et al. (2018) treat the HDR imaging as an image translation
problem and use a U-Net to cope with large foreground motion. Though
it can reduce the ghosting artifacts, it also blurs image details and
hallucinates fine details in the over/under-exposed regions. Yan et al.
(2019b) adopt three sub-networks with different scales to reconstruct
the HDR image gradually. NHDRRNet (Yan et al., 2020) uses a U-
Net to extract features in a low dimension, and then the features are
sent into a global non-local network which can fuse the features from
inputs according to their correspondence. This method can remove the
ghosting artifacts from the final output efficiently. AHDR (Yan et al.,
2019a) employs an attention mechanism to solve misalignment and
avoids the ghosting artifacts. On the basis of AHDR, DAHDR (Yan
et al., 2021) designs a recurrent spatial and channel attention module
to improve the performance. HDRGAN (Niu et al., 2021) proposes
a novel adversarial training paradigm to restore missing content in
the predicted HDR outputs, utilizing an extra reference-based residual
merging block to remove artefacts caused by misalignment. HDRGAN
also achieves the state-of-the-art results on the public dataset (Kalantari
and Ramamoorthi, 2017). SCHDR (Prabhakar et al., 2019) uses a
lightweight optical flow PWC-Net (Sun et al., 2018) followed with
refinement to align the LDR images first, and then conducts feature
aggregation and feature merging to generate an HDR image. These
methods fail to explicitly remove the ghosting artifacts and fully exploit
the useful information in the inputs.

2.2. Learning in the wavelet domain

Learning in the wavelet domain has the advantage of explicitly
dealing with signals in different frequency sub-bands, and it has been
applied to some high-level vision and low-level vision problems, such
as classification (Li et al., 2020; Williams and Li, 2018; Ji et al.,
2012; Cid et al., 2017), style transfer (Yoo et al., 2019), video water-
marker (Amini et al., 2018; Huan et al., 2021), image denoising (Ab-
delhamed et al., 2020; Remenyi et al., 2014; Ho and Hwang, 2012),
image demoireing (Liu et al., 2020), image deblurring (Yue et al.,
2017), image/video compression (Suzuki, 2019; Haghighat et al., 2019;
Mishra et al., 2021), network compression (Gueguen et al., 2018),
and super-resolution (Huang et al., 2017; Liu et al., 2018), etc. One
3

of the classical image denoising approach is through image shrink-
age (Donoho, 1995), where the noisy image is decomposed into low
and high-frequency components and then thresholding is applied to
the high-frequency coefficients to remove high-frequency noise. For
image super-resolution (Robinson et al., 2010), the classical approaches
are to estimate or interpolate the coefficients of wavelet sub-bands
for refining image details. Recently, DWT has also been applied in
deep learning-based image denoising. The winner of the NTIRE 2020
Denoising Challenge (Abdelhamed et al., 2020) proposes a multi-level
wavelet ResNet for image denoising, where DWT and IDWT are used
for downsampling and upsampling. Guo et al. (2017) propose a deep
wavelet super-resolution model to recover the residuals of wavelet
coefficients of the low resolution image. Bae et al. (2017) present
a wavelet residual network for image denoising and image super-
resolution. Both Guo et al. (2017) and Bae et al. (2017) only use
one level wavelet transformation. Liu et al. (2020) develop WDNet
for image demoireing working directly in the wavelet domain. Liu
et al. (2018) propose a multi-level wavelet-CNN that shows good
performance on several image restoration tasks.

In recent years, discrete wavelet transform (DWT) has also been
applied in HDR imaging. Omrani et al. (2020) propose a wavelet-based
method that aims to use the high-frequency sub-bands obtained from
the wavelet decomposition of the input images to recover the details.
However, it does not fully utilize the low-frequency sub-band. Kaftan
et al. (2009) introduce a wavelet-based method to remove noise from
the input images with a correlation analysis among them. Ramakrish-
nan and Pete (2022) use Haar wavelet to decompose input images
into four different frequency bands. Then, different frequency sub-
bands are fused using different predefined fusion rules. Finally, IDWT
is applied to achieve the final HDR image using the fused frequency
sub-bands. Zheng et al. (2022) introduce the cross-transform domain
neural network for HDR imaging, which consists of a merging module
and a restoration module. In the restoration module, DWT is used to
build a cross-transform domain learning block to effectively remove
the ghosting artifacts. In the experiments, we observe that in HDR
imaging, ghosting artifacts caused by large foreground motion are of
low-frequency, while the details are of high-frequency. Since DWT can
decompose the input image into different frequency sub-bands, we
can take advantage of this property to remove ghosting artifacts or
recover details using different frequency sub-bands. Therefore, different
from above approaches, our FHDRNet combines wavelet transform
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Fig. 4. Structure of the merging module. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with deep learning based method to treat different frequency sub-
bands separately. The attention module is used to remove the ghosting
artifacts on the low-frequency sub-band and high-frequency sub-bands
are used to restore details.

3. Methodology

Given a set of LDR images {𝐿1, 𝐿2,… , 𝐿𝑛} with different exposure
times, the task of HDR imaging aims to reconstruct an HDR image 𝐻
that is aligned with the reference frame 𝐿ref (e.g., the medium expo-
ure LDR image) In this paper, we follow Kalantari and Ramamoorthi
2017), Wu et al. (2018), Yan et al. (2019a) and use three pairs of LDR
nd HDR images as input. The corresponding HDR images are obtained
rom the LDR inputs using a gamma correction function:

𝑖 =
𝐿𝛾
𝑖
𝑡𝑖

, 𝑖 = 1, 2, 3, (1)

here 𝛾 is set to 2.2 as the default gamma parameter, and 𝑡𝑖 is the
xposure time of 𝐿𝑖. The final input of the network is the concatenation
f the LDR and the corresponding HDR images, forming a 3-pair
-channel input:

𝐼1, 𝐼2, 𝐼3} = {{𝐿1,𝐻1}, {𝐿2,𝐻2}, {𝐿3,𝐻3}}. (2)

.1. Overview of our network structure

The proposed network has a U-Net like structure, as shown in Fig. 3,
ontaining an encoder, a merger and a decoder with skip connections.
n the encoder, the inputs {𝐼1, 𝐼2, 𝐼3} are sent into three independent
ub-networks. In each sub-network, DWT is used for decomposing the
eature maps into different frequency sub-bands {𝐿𝐿𝑖, 𝐿𝐻𝑖,𝐻𝐿𝑖,𝐻𝐻𝑖}

(𝑖 = 1, 2, 3), among which only the low-frequency sub-band 𝐿𝐿𝑖 is
used for the next stage (scale) processing. All frequency sub-bands are
also sent to the corresponding frequency-guided upsampling modules
through skip connections. The merger fuses the three inputs (in the
low-frequency sub-band) into a ghost-free one, which is then sent to the
decoder. The network also includes two significant modules: merging
module (Section 3.3) and frequency-guided upsampling module (Sec-
tion 3.4). The merging module takes only low-frequency components
of the previous stage as input and generates a merged result, focus-
ing on structural information. In the decoder, the frequency-guided
upsampling module is used to process features in the low-frequency
and high-frequency sub-bands independently and then reconstruct the
feature maps to a finer scale using IDWT. A global residual connec-
tion is also used to enhance the feature representation ability of the
network. The output of the network passes through a tone mapping
function (using 𝜇-law) to generate the final tone-mapped HDR image:

 (𝐻) =
log(1 + 𝜇𝐻)
log(1 + 𝜇)

, (3)

here 𝐻 is the generated HDR output and 𝜇 is set to 5000 as default
o adjust the compression level.
4

.2. Encoder using DWT

The original inputs {𝐼1, 𝐼2, 𝐼3} are firstly sent into three independent
ub-networks to extract features individually. The features after the first
onvolution layer (conv1) are transformed into different frequency sub-
ands through DWT, including one low-frequency component 𝐿𝐿level-1

𝑖
nd three high-frequency components, {𝐿𝐻 level-1

𝑖 ,𝐻𝐿level-1
𝑖 ,𝐻𝐻 level-1

𝑖 },
here 𝑖 denotes the 𝑖th input. According to Liu et al. (2020), the

ow-frequency sub-band contains more structure information and the
igh-frequency sub-bands contain more detailed information. In order
o effectively leverage the decomposed data, the low-frequency compo-
ent 𝐿𝐿level-1

𝑖 is used for further decomposition. In the corresponding
requency-guided upsampling module, the high-frequency components
an provide details. So we keep them {𝐿𝐻 level-1

𝑖 ,𝐻𝐿level-1
𝑖 ,𝐻𝐻 level-1

𝑖 }
or reconstruction. Then, 𝐿𝐿level-1

𝑖 goes through the feature extraction
(conv2) and DWT again. The resulting high-frequency components
{𝐿𝐻 level-2

𝑖 ,𝐻𝐿level-2
𝑖 ,𝐻𝐻 level-2

𝑖 } are kept for later reconstruction, while
the low-frequency component 𝐿𝐿level-2

𝑖 is sent to the feature merging
module (Section 3.3) to conduct feature fusion.

3.3. Merging module

The merging module aims at reducing the low-frequency artifacts
(e.g., ghosting) by fusing only the low-frequency components (see
Fig. 4). Inspired by AHDR (Yan et al., 2019a), attention mechanism
is applied to deal with the misalignment and saturated regions. The
support frames {𝐿𝐿level-2

1 , 𝐿𝐿level-2
3 } are firstly sent into the attention

modules along with the reference frame 𝐿𝐿level-2
2 to generate corre-

sponding weighted masks 𝑀1 and 𝑀3. The attention module includes
two convolution layers (3 × 3 kernel size), with stride and zero padding
equal to 1. A sigmoid function is used to normalize the values of the
masks to [0, 1]. Next, the feature maps of the support frames are
masked and weighted with the masks using element-wise multiplication
to get the filtered feature maps {𝐿𝐿level-2′

1 , 𝐿𝐿level-2′
3 }:

𝐿𝐿level-2′
𝑖 = 𝑀𝑖 ⊙ 𝐿𝐿level-2

𝑖 , 𝑖 = 1, 3, (4)

where ⊙ denotes element-wise multiplication. These filtered feature
maps and the reference frame’s feature maps are concatenated and go
through a convolution layer. DWT is applied again to decompose the
previous feature map into frequency components with a lower scale
for efficient fusion, where the low-frequency component 𝐿𝐿level-3

𝑖 goes
through 9 residual blocks to conduct feature fusion. Finally, the pre-
saved high-frequency components 𝐿𝐻 level-3

𝑖 ,𝐻𝐿level-3
𝑖 ,𝐻𝐻 level-3

𝑖 , and
the merged feature are used as the input of IDWT to recover fused
feature maps 𝐹 level-2′ for the frequency-guided upsampling module.

3.4. Frequency-guided upsampling module

Different from the previous works (Liu et al., 2018; Guo et al., 2017)
that use IDWT to reconstruct feature maps from the filtered frequency
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Fig. 5. Structure of the frequency-guided upsampling module. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
sub-bands that all go through the same process, our method leverages
the decomposed components that go through different processes with
the aim of further fusing lower frequency components. As shown in
Fig. 5, three sets (each for one input) of decomposed components
are used for restoration. Firstly, the high-frequency components are
re-grouped into three groups according to their frequency sub-bands:
𝐿𝐻𝑠,𝐻𝐿𝑠,𝐻𝐻𝑠, where 𝐿𝐻𝑠 = {𝐿𝐻1, 𝐿𝐻2, 𝐿𝐻3}, etc. Then, each
group is fused by two convolution layers to generate a single set of
high-frequency components. The low-frequency components are fused
in a similar way to the merging module by going through the attention
modules, and {𝐿𝐿′

1, 𝐿𝐿2, 𝐿𝐿′
3} along with fused feature maps 𝐹 ′ (from

he previous stage) are concatenated and go though a convolution layer
or fusion. Finally, IDWT is applied on the fused low and high-frequency
omponents to reconstruct the feature maps. An extra convolution layer
s used to squeeze the output’s size.

.5. Training loss

Two types of loss are used to train our network: reconstruction loss
nd Sobel loss. The reconstruction loss is 𝓁1 loss which is the sum
f the pixel-wise errors between the generated HDR image and the
round truth. We adopt 𝓁1 loss because it is proved effective for image

restoration tasks (Yan et al., 2019a). For the HDR imaging problem,
it has been shown that 𝓁1 loss of the tone-mapped images is better
than the 𝓁1 loss in the linear space. The tone mapping function  (⋅) is
applied to the output to generate the HDR image using 𝜇-law. A basic
reconstruction loss is defined as below:

 = ‖

‖

‖

 (𝐻̂) −  (𝐻)‖‖
‖1

, (5)

where 𝐻̂ is the predicted HDR linear RGB image and 𝐻 is the ground
truth.

In order to keep the structure information in the generated HDR
image, we also use the Sobel loss, which is:

𝑠𝑜𝑏𝑒𝑙 = ‖∇𝑥 (𝐻̂) − ∇𝑥 (𝐻)‖1 (6)

+ ‖∇𝑦 (𝐻̂) − ∇𝑦 (𝐻)‖1, (7)

where ∇𝑥 and ∇𝑦 are the Sobel edge operator in the 𝑥 direction and 𝑦
direction respectively. Our final loss is defined as:

𝑡𝑜𝑡𝑎𝑙 =  + 𝜆 ⋅ 𝑠𝑜𝑏𝑒𝑙 , (8)

and 𝜆 is a balancing parameter.

4. Experiments and results

4.1. Datasets

In Section 1, we have introduced the advantages that processing
HDR fusion in the RAW domain. In order to satisfy the requirements

that developing HDR imaging algorithms in the wearable devices (e.g.,

5

smart phone). We create a new dataset for training and evaluating HDR
imaging algorithms in the RAW domain. The data capturing and ground
truth merging is according to the method in Kalantari (Kalantari and
Ramamoorthi, 2017) and the device is SONY ILCE-7RM2. We capture
two sets of images for the same scene: the static set and the dynamic set.
Each set contains three images captured with different exposure bias
and with high resolution (5120 × 3456) using RAW format. In the static
set, the object is kept static during the capturing, and these images are
mainly used to generate the ground truth HDR images. In the dynamic
set, the object will do some different movements, and these images are
used as inputs for the network. In our dataset, we capture both classic
HDR imaging scenes and objective scenes. In order to have an objective
evaluation of the generated HDR images, some professional standards
are introduced to our dataset, such as Film calibration plate (e.g.,
details) and SpyderCheckr (e.g., color). The examples of our dataset are
in Fig. 6.

Furthermore, we also provide the corresponding RGB images and
metadata (e.g., ISO, F-number, exposure time, exposure bias, and white
balance coefficients) for each set of samples, and these extra data can
be used for future works (e.g., training deep learning based end-to-end
ISP pipelines). The provided metadata can also be used to calculate the
precise exposure ratio (ER) between images, instead of using exposure
bias to get an approximate value.

Finally, We capture 253 sets of samples in total and keep 100 sets,
where there is no scene motion or object motion in the static sets (e.g.,
pixel shift is smaller than 5 pixels) for producing better ground truth
HDR images. In the experiment, 85 sets of samples are used for training,
and 15 sets of samples are used for evaluating.

The experiments are conducted on four public datasets, includ-
ing three real datasets: Kalantari dataset (Kalantari and Ramamoor-
thi, 2017), Prabhakar dataset (Prabhakar et al., 2019) and Tursun
dataset (Tursun et al., 2016), and one synthetic dataset: Samsung
dataset (Hu et al., 2020). Among them, Kalantari, Prabhakar, and
Samsung datasets are used for quantitative and qualitative evaluation,
while Tursun dataset is used for qualitative comparison only as it does
not provide ground truth. In addition, our RAW dataset is also used
for training and evaluating the proposed method in the RAW domain.
The Kalantari dataset (Kalantari and Ramamoorthi, 2017) includes
74 training samples and 15 testing samples. Each sample contains
three LDR images which are captured with different exposure biases:
{−2, 0, 2} or {−3, 0, 3}, and the size of each image is 1500 × 1000.
Prabhakar dataset (Prabhakar et al., 2019) has 116 testing samples and
it is used only for evaluation. The Samsung dataset (Hu et al., 2020)
is a synthetic one, containing 100 samples. The dataset is created in
a similar way to the Kalantari dataset, except that all the data are
synthesized through a game engine. We choose the first 85 samples for
training, and the last 15 for testing. Our RAW dataset is also created in a
similar way with higher resolution, and it includes 85 training samples
and 15 testing samples.

In the experiments, the training and evaluation are divided into
three parts: (1) For real images, the model is trained on the Kalantari
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Fig. 6. Examples of LDR inputs and corresponding ground truth HDR images in the RAW dataset. (a)–(c) LDR inputs with different exposure bias. (d) Ground truth HDR images.
Face has been processed by using Gaussian filter for privacy protection.
and Ramamoorthi’s (2017) training samples and evaluated on the
Kalantari and Ramamoorthi (2017) and Prabhakar et al. (2019) testing
samples; (2) For synthetic images, the training and evaluation are on
the Samsung dataset (Hu et al., 2020); (3) For RAW images, training
and evaluation are on the RAW dataset. For those training samples with
ground truth, during training, the images are randomly cropped into
256 × 256 small patches and then data augmentation (e.g., flip and
otate) is applied for effective training. During evaluation, the entire
est images are fed into the network to predict the HDR images.

.2. Experimental settings

(1) Implementation Details: During training, Adam (Kingma and Ba,
015) is selected as the optimizer. The initial learning rate is 2 × 10−4.
fter 20,000 epochs, it is reduced to 2 × 10−5, and after 20,000
pochs, it is further reduced to 2 × 10−6. We train the network for
0,000 epochs. The batch size is 16. Haar wavelet is used for frequency
ecomposition. The balancing parameter 𝜆 is set to 0.25. The code and
he dataset are available at: https://github.com/TianhongDai/wavelet-
dr.
(2) Compared Methods and Evaluation Metrics: Our model is com-

ared with 9 state-of-the-art methods, including Sen et al. (2012), Hu
t al. (2013), Kalantari and Ramamoorthi (2017), Wu18 (Wu et al.,
018), NHDRRNet (Yan et al., 2020), SCHDR (Prabhakar et al., 2019),
HDR (Yan et al., 2019a), DAHDR (Yan et al., 2021) and HDRGAN (Niu
t al., 2021). Among them, there are two patch-based (Sen et al.,
012; Hu et al., 2013), two optical flow based with CNNs (Kalantari
nd Ramamoorthi, 2017; Prabhakar et al., 2019) and five CNN based
ithout using optical flow (Wu et al., 2018; Yan et al., 2019a, 2020,
021; Niu et al., 2021). For quantitative evaluation, we follow Kalantari
nd Ramamoorthi (2017) to compare PSNR and SSIM results for the
inear RGB images and for the tone-mapped images. PSNR-𝜇 and SSIM-

are for the HDR images after tone mapping using 𝜇-law. PSNR-L
nd SSIM-L are for the HDR images in the linear space. PSNR-PU
nd SSIM-PU are for the HDR images using the perceptual uniform
ncoding (Azimi et al., 2021), and the value of peak luminance is
000. PSNR-M is for the tone-mapped HDR images using the MATLAB
uilt-in function. In addition, we also use HDR-VDP-2 (Mantiuk et al.,
011), which is an evaluation metric specially designed to evaluate
he visual quality of HDR images, and following parameters are used:
isplay diagonal is 21, viewing distance is 1, and color encoding is ‘‘rgb-
ative’’. Furthermore, in order to provide a fair comparison, we re-train
DRGAN (Niu et al., 2021) by using the official code with a 256 × 256
atch size (the original model uses a patch size of 512 × 512), and other
yperparameters are the same as the default setting.
6

4.3. Comparison with state-of-the-arts

(1) Quantitative Results: Table 1 shows the quantitative compari-
son between the state-of-the-art models and ours on three datasets:
Kalantari and Ramamoorthi (2017), Prabhakar et al. (2019), and
Samsung (Hu et al., 2020). Our model outperforms most of them,
especially on the Kalantari and the Samsung datasets, where it achieves
six best and two second best results in eight evaluation metrics on the
Kalantari dataset, and achieves five best and two second best results
in eight evaluation metrics on the Samsung dataset. For the Prabhakar
dataset, our model has four best and three second best results in eight
evaluation metrics. HDRGAN (Niu et al., 2021) achieves the second
best results in most of metrics on the Kalantari dataset, because it uses
adversarial learning to restore the missing information in the generated
HDR. However, HDRGAN performs poorly on the Samsung dataset,
probably due to the sensitivity of the adversarial training to hyper-
parameters and network structure. Different from other optical flow
free methods using the U-Net structure, AHDR (Yan et al., 2019a) and
DAHDR (Yan et al., 2021) adopt a network structure in a fixed scale.
Therefore, AHDR and DAHDR can preserve more information during
encoding and merging. With the assistance of the attention mechanism
which can detect the misalignment and saturated regions, AHDR and
DAHDR achieve the top three scores in most cases. Compared with
AHDR and DAHDR, our model consistently outperforms them across
all three datasets.

(2) Qualitative Results: From Figs. 7 to 11, we show the qualitative
comparisons on three public datasets (Kalantari and Ramamoorthi,
2017; Prabhakar et al., 2019; Hu et al., 2020). Sen et al. (2012) and
Hu et al. (2013) generate strong ghosting artifacts in the images with
large foreground motion. These traditional methods have worse per-
formances compared with deep learning-based methods. Optical flow
based methods Kalantari17 (Kalantari and Ramamoorthi, 2017) and
SCHDR (Prabhakar et al., 2019), in which the input frames are aligned
using optical flow before the further merging operation, benefiting a
lot from the explicit alignment. But inaccurate optical flow estimation
leads to ghosting artifacts, especially in the areas of large motion (see
Figs. 7 and 8). Wu18 (Wu et al., 2018) and NHDRRNet (Yan et al.,
2020) produce gridding artifacts (see Figs. 8 and 11), because of decon-
volution for upsampling. AHDR (Yan et al., 2019a) and DAHDR (Yan
et al., 2021) also produce ghosts in Fig. 8 and Fig. 7, respectively. From
these results, our method shows better details than other baselines,
because details are preserved in high-frequency sub-bands. Through
merging features using low-frequency components with the attention
mechanism, the ghosting artifacts are also relieved compared with
other methods.

https://github.com/TianhongDai/wavelet-hdr
https://github.com/TianhongDai/wavelet-hdr
https://github.com/TianhongDai/wavelet-hdr
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Table 1
Quantitative comparison between the baselines and our proposed network on three public testing datasets: Kalantari (Kalantari and Ramamoorthi, 2017), Prabhakar (Prabhakar
et al., 2019) and Samsung (Hu et al., 2020).

Dataset Model Sen Hu Kalantari17 Wu18 NHDRRNet SCHDR AHDR DAHDR HDRGAN Ours

Kalantari

PSNR-𝜇 40.9453 32.1872 42.7423 41.6377 42.4769 40.4700 43.6172 43.8400 43.8746 43.9066
SSIM-𝜇 0.9805 0.9716 0.9877 0.9869 0.9942 0.9931 0.9956 0.9956 0.9958 0.9957
PSNR-L 38.3147 30.8395 41.2518 40.9082 40.1978 39.6800 41.0309 41.3100 41.0931 41.4736
SSIM-L 0.9749 0.9511 0.9845 0.9847 0.9889 0.9899 0.9903 0.9905 0.9907 0.9907
PSNR-PU 34.4651 27.8629 36.3597 35.8021 36.0498 36.3154 37.2419 37.0055 37.4420 37.4677
SSIM-PU 0.9783 0.9623 0.9844 0.9811 0.9810 0.9829 0.9848 0.9850 0.9862 0.9858
PSNR-M 30.5507 25.5937 32.0458 31.0998 34.4113 32.3244 33.0429 33.2900 35.2171 35.4163
HDR-VDP-2 60.5425 57.8278 64.6319 58.3739 63.1585 62.6192 64.8465 64.6765 64.7617 65.3235

Prabhakar

PSNR-𝜇 32.7831 30.8200 35.3400 31.3100 33.0926 30.5700 33.7200 35.3408 35.1984 35.5652
SSIM-𝜇 0.9740 0.9710 0.9782 0.9733 0.9597 0.9715 0.9789 0.9798 0.9829 0.9811
PSNR-L 30.4985 28.8700 32.0800 30.7200 28.8839 31.4400 31.8300 32.1148 30.9183 33.0187
SSIM-L 0.9749 0.9564 0.9818 0.9518 0.9389 0.9722 0.9674 0.9784 0.9717 0.9779
PSNR-PU 26.3589 23.8109 29.9942 26.9620 26.3631 26.3823 27.5110 28.8940 28.4855 29.0431
SSIM-PU 0.9394 0.9346 0.9477 0.9304 0.8984 0.9356 0.9500 0.9478 0.9560 0.9520
PSNR-M 23.5772 27.2642 28.4386 28.2246 27.5843 27.7573 28.8104 29.3938 29.3619 29.4924
HDR-VDP-2 58.4144 59.6765 62.9073 62.4351 59.9271 62.4376 62.3386 61.9452 62.9463 63.4667

Samsung

PSNR-𝜇 22.8929 34.0052 23.0547 41.2544 41.6741 40.1686 45.1167 45.4359 44.0909 45.6199
SSIM-𝜇 0.8870 0.9896 0.8922 0.9938 0.9942 0.9902 0.9972 0.9975 0.9958 0.9974
PSNR-L 24.0611 30.3692 26.1808 44.0798 43.9048 41.4633 46.4468 47.2869 44.9299 48.1514
SSIM-L 0.9541 0.9872 0.9628 0.9976 0.9976 0.9967 0.9989 0.9990 0.9986 0.9991
PSNR-PU 17.4251 27.5395 17.7897 36.5663 36.0027 34.5844 39.3863 39.7680 38.5820 39.9739
SSIM-PU 0.8545 0.9796 0.8646 0.9883 0.9880 0.9824 0.9943 0.9947 0.9926 0.9943
PSNR-M 21.2455 30.7557 16.0222 30.9670 32.4359 28.6001 28.8571 26.6076 32.5280 34.1855
HDR-VDP-2 55.4090 66.2029 58.2501 71.6399 70.1484 70.7524 74.6180 75.0042 74.6636 74.2816

The best and the second best results are bold and underlined, respectively.
Fig. 7. Qualitative comparison between our method and the baselines on the Kalantari testing dataset (Kalantari and Ramamoorthi, 2017).
.4. Ablation studies

In this section, we conduct ablation studies to investigate the con-
ribution of each module in our model on the Kalantari dataset. As
hown in Table 2, our ablation studies focus on the following parts:
1) only process low-frequency and high-frequency separately, (2) the
mportance of the attention mechanism, (3) different types of wavelet,
4) different types of methods to fuse high-frequency components in the
psampling module, (5) the Sobel loss function, and (6) the importance
f using ONLY the low-frequency component for further processing
next scale) and merging.
7

(1) Frequency-Specific Processing: We design a ‘‘U-Net + DWT’’ model
that is basically a U-Net except that it processes the low and high-
frequency sub-bands separately. The naive replacement leads to an
improvement of 0.78 dB in terms of PSNR-𝜇 over the U-Net baseline.
This model can outperform several state-of-the-art deep learning mod-
els (Wu et al., 2018; Yan et al., 2020; Prabhakar et al., 2019) that adopt
U-Net as the backbone. This is because the high-frequency components
can preserve more details. As shown in Fig. 12, the results of ‘‘U-Net +
DWT’’ are smoother and also with better details than U-Net.

(2) Attention Mechanism: Inspired by AHDR, attention modules are
also used in both the merging module and the upsampling module of
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Fig. 8. Qualitative comparison between our method and the baselines on the Prabhakar testing dataset (Prabhakar et al., 2019).
Fig. 9. Qualitative comparison between our method and the baselines on the Samsung testing dataset (Hu et al., 2020).
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he proposed model. To verify its contribution, we remove the attention
odules (indicated as ‘‘w/o Attention’’ in Table 2). Compared with

ur final model, it shows that removing the attention modules leads to
.52dB decrease in terms of PSNR-𝜇. Different from AHDR and DAHDR
hich applies the attention to all feature maps of the original scale, we
nly apply the attention to the low-frequency components of the feature
aps on smaller scales (1/8, 1/4, and 1/2). By designing in this way,
e specifically align the lower-frequency sub-band to remove ghosting
rtifacts and also save computation. As shown in Fig. 12, the results of
‘w/o Attention’’ have ghosting artifacts.
 i

8

(3) Types of Wavelet: In addition to the default Haar wavelet, various
ypes of wavelet are also evaluated: Symlet wavelet (indicated as
‘sym2’’) and Daubechies wavelets with approximation order 2 and 3
indicated as ‘‘db2’’ and ‘‘db3’’). Our model with Haar wavelet outper-
orms the models with other wavelets. However, using other types of
avelet still gets comparable results, which shows the robustness of our
ethod to the type of wavelet.
(4) Fusion Methods of High-Frequency Components: Another approach

o fuse the high-frequency components in the upsampling module
s also investigated. Firstly, it groups the components from different
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Fig. 10. Qualitative comparison between our method and the baselines on the Tursun dataset (Flames) (Tursun et al., 2016).
Fig. 11. Qualitative comparison between our method and the baselines on the Tursun dataset (ToyTrain) (Tursun et al., 2016).
s

4

t

inputs with specific frequencies, and then averages the values of these
components pixel by pixel to get the fused high-frequency components.
The average fusion method has worse performance than the CNN
fusion.

(5) Sobel Loss Function: The Sobel loss contributes 0.28 dB improve-
ment for the score of PSNR-𝜇. It can guide the model to recover better
edge information.

(6) Using only Low-Frequency after Decomposition: To verify our
design of using only the low-frequency component after decomposition,
 e

9

all frequency sub-bands are used for the next stage’s processing (indi-
cated as ‘‘Ours−’’), and it leads to a decrease of PSNR-𝜇 by 1.01 dB. As
hown in Fig. 12, the results (Ours−) contain ghosting artifacts.

.5. Trade-off between quality and efficiency

High dynamic range (HDR) imaging algorithms are widely used in
he real-world devices (e.g., smart phones). Therefore, computational
fficiency is also an important factor to evaluate the performance of
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Table 2
Quantitative results of ablation studies on the Kalantari testing dataset (Kalantari and Ramamoorthi, 2017).

Model U-Net U-Net+DWT w/o Attention Wavelet:sym2 Wavelet:db2 Wavelet:db3 Average Fusion w/o Sobel Loss Ours− Ours

PSNR-𝜇 42.0488 42.8238 43.4657 43.6048 43.5820 43.4675 43.1682 43.6257 42.8969 43.9066
SSIM-𝜇 0.9936 0.9950 0.9953 0.9955 0.9955 0.9954 0.9951 0.9954 0.9947 0.9957
PSNR-L 39.0038 40.2282 40.5313 40.8969 40.7055 40.8254 40.7980 40.9293 40.8455 41.4736
SSIM-L 0.9852 0.9892 0.9895 0.9899 0.9897 0.9901 0.9903 0.9899 0.9899 0.9907
PSNR-M 32.6175 34.4052 34.5538 35.3321 34.5855 35.7751 35.0043 35.1833 34.8647 35.4163
HDR-VDP-2 61.3812 63.3845 63.5026 64.8847 64.3280 64.4923 64.6400 64.4789 64.5697 65.3235

The best and the second best results are bold and underlined, respectively.
Table 3
Comparison of the running time (second) and GPU memory (GB) with corresponding PSNR-𝜇 (dB) between the baselines and our method for
generating a 1500 × 1000 HDR image.

Model Sen Hu Kalantari17 Wu18 NHDRRNet SCHDR AHDR DAHDR HDRGAN Ours

Time 51.96 293.61 68.81 0.21 0.34 0.32 0.78 0.92 0.45 0.59
Memory – – – 3.33 3.60 8.60 10.37 14.83 8.48 7.36
PSNR-𝜇 40.95 32.19 42.74 41.64 42.48 40.47 43.62 43.84 43.87 43.91

The sign ‘‘–" denotes the method is evaluated on a CPU.
Table 4
Quantitative results between baselines and our proposed network on our RAW dataset.

Model Sen Hu Wu18 NHDRRNet AHDR DAHDR Ours

PSNR-𝜇 32.0580 29.9452 37.532 37.4309 38.7193 38.8811 39.1243
SSIM-𝜇 0.9705 0.9720 0.9869 0.9877 0.9900 0.9903 0.9911
PSNR-L 35.7427 28.6619 39.1129 38.6586 39.5321 39.7531 39.7821
SSIM-L 0.9386 0.9031 0.9944 0.9943 0.9944 0.9947 0.9952
PSNR-PU 25.6776 23.1445 31.5875 31.2615 32.4102 32.6657 31.9010
SSIM-PU 0.9363 0.9366 0.9644 0.9639 0.9712 0.9727 0.9716
PSNR-M 29.8978 27.9381 29.1849 28.4560 29.0868 29.2939 29.1621
HDR-VDP-2 65.2848 59.7245 65.0400 65.6121 65.6350 65.7841 65.6577

The best and the second best results are bold and underlined, respectively.
(
N
t
f
o
r

T
t

Fig. 12. Qualitative comparison between our method and the baseline variants on the
Kalantari testing dataset (Kalantari and Ramamoorthi, 2017).

the algorithms. In this experiment, we test the running time and the
memory cost with the corresponding PSNR-𝜇 scores of the baselines and
our method in Table 3. The proposed method needs around 0.59 s to
generate an HDR image with 1500 × 1000 resolution on a RTX-2080Ti
GPU, whereas DAHDR need 0.92 s and has a lower score on PSNR-𝜇.
Besides, DAHDR takes up the most memory among the 8 competitors,
because DAHDR merges LDR images in the original scale, and has a
‘‘heavy-weighted’’ network structure. Furthermore, our method, with
50% less memory than DAHDR, can still achieve better performance.
Thus, our method has a good balance between quality and efficiency.

4.6. Evaluation on the RAW dataset

We evaluate FHDRNet and compare with state-of-the-art on our new
RAW dataset. As shown in Table 4, FHDRNet achieves the best per-
formance in terms of PSNR-𝜇, SSIM-𝜇, PSNR-L and SSIM-L, indicating
that our model can also be used in the RAW domain. In the qualitative
 p

10
comparison, our method preserves more details in the texture than
the baselines (see Fig. 13), because of the efficient utilization of high-
frequency sub-bands. For example, in Fig. 13, our method restores
better details in the bottle. Thus, the proposed method can also keep
its advantages in the RAW domain.

4.7. Limitations and future work

Although in this work our proposed FHDRNet outperforms other
baselines on the several datasets, and our new created dataset also
provides a platform for training and evaluating HDR algorithms in the
RAW domain, these two contributions still have some limitations to be
addressed in the future.

(1) Other Challenges: Our proposed FHDRNet and other approaches
Wu et al., 2018; Prabhakar et al., 2019; Yan et al., 2019a, 2021, 2020;
iu et al., 2021) mentioned in this work mainly focus on mitigating

he ghosting artifacts caused by large foreground motion in the multi-
rame HDR image reconstruction. However, there are some other types
f artifacts that need to be addressed in the multi-frame HDR image
econstruction task (Johnson, 2015; Mantiuk et al., 2015):

• Blurry Artifacts: It is usually caused by the global camera motion,
such as taking photos with a hand-held camera. The instability of
the capturing process will lead misaligned images and make the
generated HDR image blurry.

• Noise Artifacts: This is due to some HDR fusin algorithms that are
operated on a per-pixel basis. This means the value of each pixel
of the generated HDR image is estimated using the value of the
pixel at the same location in all input images.

• Glare Artifacts: It is introduced by the defective camera lens or
light streaks around the light source created by special filters
mounted on the lens.

hus, in the future, we need to explore more potential solutions so
hat other types of artifacts can also be addressed at the same time to
rovide better results.
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Fig. 13. Qualitative comparison between our method and the baselines on the RAW testing dataset. The RAW images are visualized through the same ISP pipeline.
,

(2) Raw Dataset: While we capture the images follow a comprehen-
sive pipeline, it still has some aspects to introduce several bias to affect
the capability of the models:

• Camera Motion: When we capture the LDR images, a tripod is
used to stabilize the camera. However, in a real-world scenario,
the tripod is not always available to users, which can occasionally
lead to large camera motion. In this case, our dataset does not
cover this situation effectively and it can affect the final perfor-
mance of the model. There are some possible solutions to mitigate
this problem: (1) the camera can be held in the hand to capture
some new data to expand our current dataset. (2) global motion
can be added to the existing data manually (e.g., shift images).

• Limited Scenarios: In our dataset, the images that captured in the
outdoor environment are mostly located in the city center, sur-
rounded by buildings and vehicles. Samples with other outdoor
scenarios (e.g., natural scenery) are not included in the current
dataset, however capturing photos in various environments is
also a requirement for the HDR imaging. To further improve the
performance of the model in different scenarios, we will collect
more samples in various environments to cover more daily use
cases in the dataset.

• Limited Size: In this dataset, we keep only 100 high-quality sam-
ples for training and evaluation. Although the amount of samples
is comparable to the existing datasets, such as Kalantari and
Ramamoorthi (2017), Prabhakar et al. (2019) and Samsung (Hu
et al., 2020) datasets, it still remains a huge gap compared to the
number of samples in datasets from other domains. For example,
Flickr2K (Timofte et al., 2017) is a dataset for the single image
super-resolution task, which consists of 2650 images with 2K
resolution for training and evaluation. The limited training data
could affect the generalization ability of the model. Therefore, we
will collect more data from different environments to augment

our dataset.
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5. Conclusion

In this paper, we have proposed a frequency-guided network (FH-
DRNet) for high dynamic range (HDR) imaging. In the proposed method
the input LDR images are transformed into the wavelet domain using
Discrete Wavelet Transform (DWT). The low-frequency sub-bands are
mainly used to avoid ghosting artifacts caused by large motion, while
the high-frequency sub-bands are used for preserving details. The atten-
tion mechanism is adopted to merge low-frequency information to deal
with misalignment. The extensive experiments have shown that our
method can remove ghosts and preserve more details. It also achieves
state-of-the-art results on several public datasets and our RAW dataset
with lower computational costs, compared with previous approaches.
We believe it has great potential for more extensive applications of HDR
imaging.
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