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Abstract 

We perform quantitative visualization experiments of hollow cylinders falling through Newtonian liquid. 

The Archimedes number is in the range 5 to 105, the length over outer diameter of the cylinders is in the 

range 2.5 to 10, and the inner over outer diameter is from 0 to 0.85. Our definition of the Archimedes 

number includes the inner and outer cylinder diameter and we show that cylinders with the same 

Archimedes number having different diameter ratio behave similarly. Particle-resolved simulations have 

been used to enhance our insight in the fluid flow generated by the settling cylinder. They also have been 

used to assess the flow through a hollow cylinder during settling.     
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1 Introduction 

We study sedimentation of a rigid, hollow, cylindrical particle through liquid. There are a number of 

reasons to study a relatively simple system as this one is. Some reasons directly relate to practical 

applications, mostly in chemical engineering. Other reasons relate to the development and improvement 

of modeling of the dynamical behavior of non-spherical particles in fluids with such modeling having 

practical importance over a broad range of technological applications. 

In various branches of engineering, one encounters solid particles suspended in a fluid. In civil and 

environmental engineering one can think of dredging [1], sediment transport in rivers and coastal areas [2] 

and waste water treatment. In chemical engineering fluidization and catalytic slurry reactors are used for 

(reactive) mass transfer between solids and fluid. An application in petroleum engineering is transport of 

drilling mud (drilling fluid laden with rock cuttings). In modeling such systems and processes, the shape 

of the solids is often not explicitly considered and particles are – implicitly – assumed spherical. For 

example, two-fluid models as part of multiphase computational fluid dynamics solvers use correlations 

for drag on spherical particles to account for fluid-solids interaction [3]. Where the assumption of 

spherical shape is a very reasonable one for e.g. sand grains and FCC (fluid catalytic cracking) powders, 

there are situations in which particles deviate so strongly from the spherical form that their shape 

significantly influences their individual and collective behavior. The processing of biomass is a prominent 

example [4]. Biomass is a dense suspension containing fibrous solid material that is notoriously difficult 

to transport and convert [5]. Particles of cylindrical shape are also contained in the thick slurries from 

which Li-ion battery electrodes are produced [6]. Hollow (cylindrical) particles have the potential for 

transfer enhancement as a result of the additional surface area of their pore(s). Specific particle shapes 

have been designed that optimize mass and heat transfer processes in fixed and fluidized bed reactors [7-

9]. 

Particularly for sedimentation, the shape of particles is a decisive factor of how sedimentation processes 

evolve. In 1969, Strinham et al. [10] studied the settling behavior of the disks, cylinders, oblate and 

prolate spheroids, and spheres falling in a quiescent liquid, including the particle’s orientation, settling 

speed, and the path traveled. It was concluded that the stability of falling particles is related to the 

stability of the pressure distribution in the wake of the particle. Komar et al. [11] investigated the 

influence of particle shape on drag coefficient and settling speed. They used ellipsoidal pebbles falling 

through glycerol. They interpreted their results in terms of a sphericity shape factor that allows for the 

estimations of drag coefficients of non-spherical grains. More recently, the motion of freely falling 

cylinders in a low-viscosity fluid was experimentally studied by Toupoint et al. [12]. The influence of the 
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Archimedes number (ranging from 200 to 1100) and the length-over-diameter aspect ratio (2 to 20) on the 

settlement path of the cylinder was reported. 

In the research described in this paper we report on experiments of hollow cylinders settling in a 

Newtonian liquid. Through quantitative visualization we measure how their settling speed and orientation 

evolve over time starting from vertical release. The effects of the length over outer diameter aspect ratio 

as well as the outer over inner diameter ratio of the cylinders have been investigated. By varying the size 

of the cylinders and also the liquid viscosity, we have been able to cover a wide range of Archimedes 

numbers. 

The experiments are supported by numerical simulations that explicitly account for the hollow cylinder 

shape. One aim of the experiments reported in this paper is to establish a database that can be used for 

validating simulation work and we want to show here what such validation could look like. Also, the 

simulations provide additional insights, such as the structure of the liquid flow field induced by the 

sedimenting particle and the strength of the flow through the cylinder’s inner diameter. As discussed 

above, the latter has potential relevance for applications involving mass transfer. Vice versa, the 

experimental results are used to assess the quality of the predictions made by the simulations and thus to 

validate the – inevitable – assumptions and approximations made in designing and executing the 

simulation procedure.  

Our numerical simulations attempt to resolve the flow around – and through – the settling hollow 

cylinders, i.e. they represent the shape of the particle by solving the flow on a mesh that is finer by one 

order of magnitude than the outer diameter of the cylinder and explicitly apply no-slip at the solid 

surfaces. Such particle-resolved simulations (PRS’s) are a relatively recent development [13], initially 

used for flow around moving spheres [14]. PRS’s of sedimenting non-spherical particles have been 

reported by Wachs et al [15]; PRS’s of fluidization of cylindrical particles by Derksen [16].   

This paper builds upon our previous experimental and numerical work on the settling of solid cylinders 

[17] where it was shown that the Archimedes number was the principal parameter that determines the 

sedimentation process, both in terms of settling speed and the evolution of the cylinder’s orientation. The 

current paper extends this work by adding the inner diameter as an additional degree of freedom. By a 

careful choice of the definition of the Archimedes number for hollow cylinders we are able to have a 

common framework for settling of solid and hollow cylinders. 

This paper is organized along the following lines. The next three sections present the experimental 

methods and dimensional analysis as well as numerical methods. In the latter section we define the 

dimensionless numbers that govern the flow system – most importantly the Archimedes number – and 

discuss the ranges over which they have been varied. In the subsequent Results section, we first show 
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visualizations of cylinder settling and impressions of the simulations. We quantify the visualizations in 

terms of cylinder orientation angle and settling speed. Experiments and simulations are compared on 

those quantities and the way they depend on the Archimedes number and on the cylinder aspect ratios. 

The final section summarizes, reiterates the main conclusions, and looks forward at future work. 

2 Experimental setup 

The settling column has a square 80 mm ×  80 mm footprint and is 800 mm high. It has transparent 

(acrylic) side walls.  It is filled with a glycerol-water mixture. This is a clear, Newtonian liquid. The 

relative amount of the two components determines the viscosity and density of the mixture. The 

temperature of the system was maintained at 25 1±  �. 

A total of 36 cylindrical particles were utilized in the experiment, most of them hollow. They are all made 

of stainless steel ( 38.04 /s g cmρ = ). They have lengths ranging from 1.00l =  to 29.20 mm, outer 

diameters ranging from 1.00od =  to 2.99 mm, and inner diameter ranging from 0id =  (solid cylinder) to 

1.70 mm. The mass of each cylinder is measured with an electronic balance with an accuracy of 0.01±  

mg. The measurement error of cylinder diameter and length is 0.05 mm. 

At the start of an experiment, the cylindrical particle was completely immersed in the liquid before being 

released, ensuring that the hollow space of the cylinder was completely filled with the glycerol-water 

mixture. Tweezers were used to hold one end of the vertically oriented cylinder while it was slowly 

lowered into the liquid near the centre of the cross-section of the settling column. When the liquid surface 

was free of ripples, the tweezers were loosened and the particle was let go with the cylinder vertical 

within an angle of ± 0.5°. 

The settling of the cylinder was filmed with a digital camera. It has 1920 ×  1080 pixels and can be 

operated with variable frame rate f . The frame rate of the camera was adjusted according to the settling 

speed. Given the frame rate, the position of the centre of gravity of the cylinder can be determined as a 

function of time. Each pixel represents a square with side length 0.77 0.01δ = ±  mm in the liquid column. 

The particle diameter is less than 4% of the lateral length of the settling column so that – at least during 

the initial vertical stage of settling – the effect of the walls is small. When the cylinder starts changing its 

orientation there are occasions when it comes close to, or even touches, one of the side walls. If one end 

of the cylinder gets in contact with a side wall, that experiment is discarded. 

3 Dimensional analysis 
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In order to generalize the conditions and results obtained in this study, they will be specified and 

presented mostly in dimensionless form. The hollow cylinders have three length scales: outer diameterod , 

inner diameter id  and length l , so that there are two independents for which we take / ol d  and /i od d . 

The solid over liquid density ratio is /s lγ ρ ρ= . The Archimedes number expresses the relative effects of 

gravity and viscosity in the sedimentation process. For a particle with a single length scale, e.g. a sphere 

with diameterd , a common definition of the Archimedes number is 3 2( 1) /Ar d gγ ν= −  with g  

gravitational acceleration and ν  the kinematic viscosity. Under highly viscous (i.e. Stokes flow) 

conditions the sphere’s settling velocity is proportional to 2( 1) /d gγ ν−  so that the Archimedes number 

can be interpreted as a Reynolds number. For the hollow cylinders we have adopted the following 

definition of the Archimedes number: 2 2 2( 1)( ) /o i oAr d d d gγ ν= − −  with the reasoning that the velocity of 

a horizontally settling hollow cylinder is proportional to 2 2( 1)( ) /o id d gγ ν− −  (the length l  to a fair 

approximation cancels given that drag and net gravity are both proportional to l ). If we take od  as the 

length scale in the Reynolds number (and thus Archimedes number) we arrive at the above expression for 

Ar . 

If a cylinder – at least a solid one – is vertically released in a Newtonian fluid it will eventually change its 

orientation to horizontal [17]. The time scales over which this happens and if it happens in a monotonic or 

a wobbling way depend on the Archimedes number and the aspect ratio(s) [12]. As in our previous paper 

[17], we characterize this process by measuring two dimensionless parameters. The first is the 

dimensionless time mt  after which the cylinder reaches a horizontal orientation (i.e. 0θ = ) for the first 

time: 2/m h ot t dν=  with ht  the dimensional, measured time (in seconds), the relative uncertainty of ht  for 

repeated experiments is about 5.6%. The second is the Reynolds number at the moment :ht t=  

/oRe U d ν= , with U  the absolute value of the vertical velocity of the centre of the cylinder at that 

moment. 

In order to determine U , we need to analyze the image frames close to the moment the cylinder gets 

horizontal for the first time. We select two image frames, one before (frame n# ) and one after (m# ) the 

moment at which 0θ =  with 2 5m n≤ − ≤  and determine the vertical distance traveled by the cylinder’s 

centre of mass sδ  Then /U s tδ δ=  with /t m n fδ = −  and f  the frame rate. The uncertainty in sδ  

mainly comes from the size of the pixels, and is estimated to be 1-2 pixels. This leads to a worst-case 

relative error in U  of approximately 10%. 
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Each experiment is repeated at least three times and the values reported (dimensionless velocities and 

times-to-horizontal) are the averages of the multiple realizations. The error bars presented are the standard 

deviations of the averages. 

4 Simulations setup 

We have performed three-dimensional, time-dependent, particle-resolved simulations to compare with the 

experimental data and to enhance our understanding of the fluid flow phenomena associated with the 

settling hollow of cylinders. As in our previous paper on settling cylinders [17], the lattice-Boltzmann 

(LB) method has been used for solving the fluid flow. In the LB method, the flow variables are 

represented by velocity distribution functions that satisfy a discrete version of the Boltzmann equation [18, 

19]. This equation is solved numerically on a cubic lattice with spacing ∆  and evolved in time with a time 

step t∆ . The velocity distributions are defined in the center point (“node”) of each cubic cell and from the 

distributions one derives fluid velocity and pressure [20].  

At the surface of the (hollow) cylinder, a no-slip condition is imposed through an immersed boundary (IB) 

method [21]. For this, the surface is defined by a set of closely spaced points (nearest neighbor spacing 

0.5∆∼ ). These off-lattice points we call marker points. At each marker point the fluid velocity is 

determined based on tri-linear interpolation from the lattice nodes and then compared with the solid 

velocity at that marker point which is known given the linear and angular velocity of the cylinder and the 

location of the marker point relative to the center location of the cylinder. If the two velocities (of fluid 

and solid) are different, a force is exerted on the fluid that drives this velocity difference to zero thereby 

achieving no-slip [22]. 

Integrating the force distribution over the surface of the cylinder gives the overall force and torque exerted 

by the fluid on the cylinder. These are used to update the cylinder’s linear and angular velocity. We use a 

split-derivative algorithm to integrate Newton’s 2nd law (linear motion) and Euler’s equations (rotation) in 

time with a time step t∆  that is the same as the LB time step. Finally, the location and orientation of the 

cylinder are updated. For the latter a quaternion [23] has been used. 

The default spatial resolution of the simulations is such that the outer cylinder diameter spans 12 lattice 

spacings: / 12od ∆ = . In previous work [17] it was shown that simulations with higher resolution (

/ 16od ∆ = ) under the same physical conditions closely matched the ones with the lower resolution of 12. 

Also, in the current paper such comparisons have been made to establish the effect of spatial resolution for 

hollow cylinders. The default time step is such that 47.7 10 /ot d g−∆ = × . 
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The simulation domain is periodic in all three coordinate directions. This is because it is computationally 

not feasible to simulate the entire experimental column (also see the discussion on this topic in [17]). The 

default domain size in the three Cartesian coordinate directions is 12.5 5 150o o onx ny nz d d d⋅ ⋅ = ⋅ ⋅ . With 

gravity acting in the negative z-direction ( g= − zg e ) we need a tall domain to properly capture the wake 

behind the cylinder. The hollow cylinder is released fully submerged in still liquid oriented with an angle 

that deviates 0.5° from fully vertically and with zero velocity; we do this to mimic the angle uncertainty 

at release in the experiment. The initial slight inclination angle means that – if the cylinder rotates – it will 

do so around the y-axis so that the domain size in y-direction can be made relatively small which is 

helpful for limiting computational time. In our previous work on solid cylinders [17] we have shown that 

the release angle has only limited effect on the settling process of the cylinder. 

5 Results 

5.1 The flipping process 

In Figure 1 we show impressions of the way the settling process of the cylinders has been visualized, and 

subsequently analyzed. Time equal zero corresponds to the moment the cylinder was released with 

vertical orientation. Over time the cylinder rotates to – eventually – achieve a horizontal orientation. At 

the relatively low Archimedes number ( 4.95Ar = ) in Figure 1 the horizontal orientation is reached 

monotonically, i.e. the cylinder does not wobble. The camera frames have been analyzed such as to 

determine the vertical (z) of the end points of the cylinder. The vertical distance between the end points 

z∆ , along with the length of the cylinder l  allow for determination of the angle θ  between the cylinder 

and the horizontal plane: arcsin( / )z lθ = ∆ . A time series of θ  is shown in Figure 1b. 
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Figure 1. (a) Sample camera frames of a settling experiment recorded at 100 Fps for a / 0.85i od d =  and

/ 5.00ol d =  hollow cylinder falling through a glycerol-water mixture ( 4.95Ar = ). (b) Time series of the 

angle θ  of the hollow cylinder with the horizontal plane. 

 

At higher Archimedes numbers the flipping-to-horizontal is much faster when measured in dimensionless 

time ( 2/ ot dν ) and ceases to be monotonic. In Figure 2 we have the same hollow cylinder as used in 

Figure 1 but now it is falling through less viscous liquids (m2 and m9 – see Table S1 of the Supporting 

Information) and thus at higher Ar . When reaching 0θ =  for the first time the cylinder now continues its 

rotation and enters a wobbling state. The duration of this state (as measured as the number of wobble 

periods) and the amplitude of wobbling both increase with increasing Archimedes number (compare the 

left and the right part of Figure 2). 
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Figure 2. Impressions of the flipping process and the way it depends on Ar . Image frames and 

corresponding θ  time series. (a) and (c) have 434Ar = ; (b) and (d) 17455Ar = . The cylinder is the same 

(with / 5.00ol d =  and / 0.85i od d = ), the difference in Ar  is due to different viscosities. 

 

In Figure 3 the flipping process is compared between cylinders falling though liquid mixture m1 with the 

cylinders having identical length l  and identical outer diameter od  but different inner diameter id . 

Clearly the effect of an increasing id  results in a slowing of the flipping process, not only in 

dimensionless time 2/ ot dν  but also in real time given that od  and ν  are the same for all cases shown in 

Figure 3. Given our Archimedes number definition of 2 2 2( 1)( ) /o i oAr d d d gγ ν= − −  an increase in id  

means a decrease in Ar . Therefore, what we observe in Figure 3 can be interpreted as an increase in 

flipping time with a decrease in Archimedes number which fits with the trend observed in our previous 

study on solid cylinders [17]. 
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Figure 3. Time series of the angle θ  of the cylinder with the horizontal plane for various /i od d  at

/ 5.00ol d = . The variation of the Archimedes number is due to the variation of /i od d . 

 

Figure 4 and 5 show the vertical-to-horizontal flipping process as represented by the simulations, 

including checks on sensitivity to numerical parameters. Figure 4 is a qualitative impression where we not 

only show the cylinder, but also the flow field that is generated by the cylinder falling through the liquid. 

The cylinder creates a very long wake behind it which is the reason we need a tall simulation domain. 

Figure 4a looks at the cylinder from above. One sees that the liquid inside the cylinder has a speed 

comparable with the speed at the outer diameter of the cylinder, i.e. the liquid inside the cylinder largely 

moves with the cylinder. Below we will look at the flow through the cylinder during its sedimentation in 

more detail. Figure 4c is an illustration of the periodic boundary conditions, in this case in the x-direction; 

looking up from the cylinder, the wake here crosses the left boundary of the flow domain ( 0x = ) to 

continue at the right side 12.5 ox d= . At the moment shown in Figure 4d the cylinder has completed the 

flipping process. 
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Figure 5 shows time series of the orientation angle θ  and /z oRe u d ν=  (the Reynolds number based on 

the instantaneous vertical velocity of the center of mass of the cylinder) derived from the simulations. The 

left panels show the effect of the spatial resolution of the simulation on the behavior of the cylinder. A 

simulation for which od  spans 16 lattice spacings ∆  is compared with one with 12od = ∆ . Only minor 

differences are observed so that we conclude that a resolution of 12od = ∆  is reasonable. In the middle 

two panels we compare a hollow cylinder and a solid cylinder with the same / ol d  and the same Ar . This 

result supports our definition of Ar , given that the two cylinders behave comparably in terms of the time 

scales of flipping and associated Reynolds number. It means that the behavior of a hollow cylinder is 

similar to that of a solid cylinder having the same Ar  and / ol d . The right panels of Figure 5 deal with 

the effect of the / ol d  aspect ratio. It demonstrates that – also for hollow cylinders – the dynamics of 

flipping is faster for shorter cylinders, whereas the eventual settling Reynolds number is more or less 

independent of / ol d . The latter is because both drag and net gravity are approximately linear functions of 

l . 
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Figure 4. Impressions of a simulation at 2057Ar =  with / 9.34ol d =  and / 0.625i od d = . (a) Overall 

view of simulation domain at moment 2/ 0.59ot dν = ; (b) detailed view at the same moment; (c) and (d) 

detailed views at 2/ 1.18ot dν =  and 2.36 respectively. In the color scale 2( 1) /o ou gdγ ν= − . 

 

Figure 5. Simulated time series of Re  (top) and θ  (bottom). Left: comparison between two spatial 

resolutions ( 16od = ∆  and 12od = ∆ ) at Ar  and aspect ratios/ ol d  and /i od d  as indicated. Middle: 

comparison between a hollow (/ 0.5i od d = ) cylinder and a massive (/ 0i od d = ) cylinder at the same Ar  

and / ol d . Right: effect of / ol d  (9.34 versus 7.0) at the indicated conditions. 

 

The simulations allow for a detailed analysis of the flow phenomena associated with the cylinder moving 

through liquid. Given that hollow particles are used in practical applications for enhancement of transfer 

processes it is worthwhile to monitor the flow rate inside a hollow cylinder. For this we have determined 

the average axial velocity u  of the liquid relative to the cylinder. A sample result of how u  is 

correlated with the flipping process is shown in Figure 6. Orientation and speed of the cylinder determine 

the strength of the flow through the cylinder. Upon vertical release the through-flow rapidly increases. 

After reaching a maximum value of / 2.8iu d ν ≈  the through-flow gets weaker as a result of the 
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combined effect of rotation of the cylinder and slowing down of the cylinder. Given that Figure 6 deals 

with a wobbling cylinder we observe flow reversal inside the cylinder, i.e. u  changes sign, 

approximately at the same moment when the cylinder becomes horizontal for the first time (at 

2/ 1.2ot dν = ). We also would like to note that the Reynolds number associated with the through-flow is 

one to two orders of magnitude smaller than the Reynolds number associated with the settling process. 
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Figure 6. Top: time series of the average velocity u  (made dimensionless by / idν ) of the flow through 

the settling cylinder. The two lower panels show how this through-flow correlates with Re  and θ  

respectively. 2057Ar = , / 9.34ol d =  and / 0.625i od d = . 

 

 

5.2 Dependencies on the Archimedes number 

In this section on the effect of the Archimedes number on the settling behavior of hollow cylinders, the 

latter is characterized by two metrics: (1) the dimensionless time 2/ ot dν  for the cylinder to complete a 90

° rotation; (2) the Reynolds number at that moment. Results for 2/ ot dν  are in Figure 7. The four panels 

we show there are for different / ol d  aspect ratios as indicated in the figure. The overall trend is clear: the 

cylinder flips faster with increasing Ar . For 10Ar > , the slope in the panels of Figure 7 is approximately

0.6−  so that – given the double-logarithmic scales – 2 0.6/ ot d Arν −∝ . Data points that have different 

/i od d  are on the same trend line. This then means that with our definition of the Archimedes number as 

2 2 2( 1)( ) /o i oAr d d d gγ ν= − −  we are able to capture the flipping behavior for hollow and solid cylinders 

alike, i.e. our Archimedes number definition encompasses the effect /i od d  has. If we write the trend 

lines as 2 0.6/ ot d Arν χ −∝  the pre-factor χ  depends on / ol d . Fitting the experimental data points for 

10Ar >  gives values of χ  of 44, 57, 100 and 132 for / ol d  2.50, 5.00, 7.50 and 10.0 respectively. This 

shows, as expected, an increased flipping time for longer cylinders. 

Figure 7 also shows simulation data (only for/ 7.5ol d ≈  and 10). For 100Ar > 	simulation results and 

experiments agree well. For smaller Ar , the flipping time is overestimated by the simulations. This might 

be due to the limits we have to put – for computational reasons – on the simulation domain size. These 

limits are mostly felt for low Ar  as then the presence of the cylinder is felt over a larger volume of fluid 

surrounding the cylinder. 
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Figure 7. Dimensionless time to reaching a horizontal orientation for the first time ( 2/ ot dν ) versus Ar  

for four different / ol d  ratios (2.50, 5.00, 7.50 and 10.0 in panels (a) to (d) respectively). Variations of the 

Archimedes number are due to variations in viscosity as well as in /i od d . 

 

Figure 8 shows the Reynolds number based on the vertical velocity of the center of mass of the cylinder 

the moment it becomes horizontal for the first time. The data are organized in the same way as in Figure 

7; four panels with each panel having a different / ol d . As in Figure 7, the experimental data points in 

Figure 8 for different values of /i od d  fall approximately on the same trend line, again supporting our Ar  

definition. It also is observed that the Reynolds numbers are hardly sensitive to / ol d . This we understand 

given that for a horizontal cylinder the drag force on a cylinder to a good approximation is proportional to 

its length. With net gravity also proportional to length this leads to a settling speed not (strongly) 
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dependent on the cylinder’s length. The simulation results in terms of Reynolds number are in good 

agreement with experimental data.    

 

Figure 8. Reynolds number at the moment of reaching a horizontal orientation for the first time versus 

Ar  for four different / ol d  ratios (2.50, 5.00, 7.50 and 10.0 in panels (a) to (d) respectively). Variations 

of the Archimedes number are due to variations in viscosity as well as in /i od d . 

 

6 Conclusion 

This paper reports on settling of hollow cylinders in a Newtonian liquid. The emphasis of the work is on 

quantitative visualization experiments; the work is supported by particle-resolved numerical simulations. 

A central hypothesis of the paper is that it is feasible to correlate the behavior of solid and hollow 

cylinders with a single Ar , the expression of which incorporates the outer diameter and inner diameter 

(zero for solid cylinders). The metrics used for characterizing the sedimentation process are the time it 



 17

takes for a vertically released cylinder to reach a horizontal orientation for the first time, and the Reynolds 

number at that moment. The proposed expression for the Archimedes number reads 

2 2 2( 1)( ) /o i oAr d d d gγ ν= − − ; it has been argued that Archimedes number is proportional to the Reynolds 

number based on the settling speed of a horizontal cylinder. 

The experimental data show that the Reynolds number at the moment the cylinder becomes horizontal for 

the first time is indeed to a good approximation uniquely dependent on Ar , i.e. it hardly depends on the 

length over diameter aspect ratio / ol d  or on the diameter ratio /i od d . The dimensionless time to 

horizontal orientation 2/ ot dν  depends on Ar  and / ol d , hardly on /i od d . 

The numerical simulations as described in this paper serve a few purposes. In the first place they provide 

more detail of the flow in the wake of the settling cylinder. In the second place they allow for more 

rigorous tests of the above-mentioned hypothesis by comparing results for cylinders with different /i od d  

having exactly the same Ar  and / ol d . Settling of those cylinders closely match. In the third place and 

given that the simulations fully represent the cylinder geometry, the simulations allow for assessing the 

flow through the hollow cylinder during sedimentation. It is observed that the Reynolds number of the 

through flow is one to two orders of magnitude smaller than that of the external flow. Computational 

limitations mean that we cannot simulate the entire experimental flow domain. In comparing 

experimental and simulation results, domain size effects particularly show for the smaller Ar  values 

where the simulations tend to overestimate the dimensionless time for rotation to horizontal.    
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Symbols used 

Greek letters 

γ  [–] Solid over liquid density ratio 

∆  [–] Lattice spacing 

t∆  [s] Time step 

z∆  [m] Vertical distance between the end points 

δ  [mm] Pixel square size 

sδ  [m] Vertical distance traveled by the cylinder’s centre of mass 

tδ  [s] Time required to shift by the cylinder’s centre of mass 

θ  [–] Angle between cylinder and the horizontal plane 

µ  [mPa·s] Dynamic viscosity 

ν  [m2/s] Kinematic viscosity 

σ  [–] Standard deviation 

ρ  [g/cm3] Density 

χ  [–] Pre-factor 

Roman letters 

d  [mm] Diameter 

f  [s-1] Frame rate  

g  [m/s2] Gravitational acceleration  

l  [mm] Length  

nx ny nz⋅ ⋅  [mm] Default domain size in the three Cartesian coordinate directions  

t  [s] Time 

u  [m/s] Velocity  

u  [m/s] Average axial velocity in the cylinder 



 19

U  [m/s] 

Absolute value of the vertical velocity of the of the cylinder at that moment it gets horizontal  

Sub- and Superscripts 

h  [–] Horizontal 

i  [–] Inner 

l  [–] Liquid 

m  [–] Dimensionless 

o  [–] Outer 

s  [–] Solid 

z  [–] Vertical 

Abbreviations 

Ar  [–] Archimedes number 

IB [–] Immersed boundary 

LB [–] Lattice-Boltzmann 

PRS’s [–] Particle-resolved simulations 

Re  [–] 

Reynolds number when the cylinder reaches a horizontal orientation for the first time 
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Table and Figure captions 

Table S1. Density and viscosity at 25 1±  � for the various liquid mixtures used in the experiments 

Mixture 

id 

Density 

sρ  

Standard 

deviation

( )lσ ρ  

Dynamic 

viscosity 

µ  

Standard 

deviation 

( )σ µ  

Kinematic 

viscosity 

ν  

 (g/cm3) (g/cm3) (mPa·s) (mPa·s) (10-6 m2/s) 

m1 1.238 0.0094 191 8.0 154.3 

m2 1.234 0.0158 178 6.8 144.2 

m3 1.230 0.0266 160 5.2 130.3 

m4 1.211 0.0133 99 2.3 81.8 

m5 1.204 0.0083 80 1.5 66.4 

m6 1.192 0.0887 64 0.83 53.7 

m7 1.142 0.1223 16 0.28 14.4 

m8 1.103 0.0403 6.4 0.025 5.8 

m9 1.051 0.0541 2.5 0.013 2.4 

 

 

Figure 1. (a) Sample camera frames of a settling experiment recorded at 100 Fps for a / 0.85i od d =  and

/ 5.00ol d =  hollow cylinder falling through a glycerol-water mixture ( 4.95Ar = ). (b) Time series of the 

angle θ  of the hollow cylinder with the horizontal plane. 

 

Figure 2. Impressions of the flipping process and the way it depends on Ar . Image frames and 

corresponding θ  time series. (a) and (c) have 434Ar = ; (b) and (d) 17455Ar = . The cylinder is the same 

(with / 5.00ol d =  and / 0.85i od d = ), the difference in Ar  is due to different viscosities. 

 

Figure 3. Time series of the angle θ  of the cylinder with the horizontal plane for various /i od d  at

/ 5.00ol d = . The variation of the Archimedes number is due to the variation of /i od d . 
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Figure 4. Impressions of a simulation at 2057Ar =  with / 9.34ol d =  and / 0.625i od d = . (a) Overall 

view of simulation domain at moment 2/ 0.59ot dν = ; (b) detailed view at the same moment; (c) and (d) 

detailed views at 2/ 1.18ot dν =  and 2.36 respectively. In the color scale 2( 1) /o ou gdγ ν= − . 

 

Figure 5. Simulated time series of Re  (top) and θ  (bottom). Left: comparison between two spatial 

resolutions ( 16od = ∆  and 12od = ∆ ) at Ar  and aspect ratios/ ol d  and /i od d  as indicated. Middle: 

comparison between a hollow (/ 0.5i od d = ) cylinder and a massive (/ 0i od d = ) cylinder at the same Ar  

and / ol d . Right: effect of / ol d  (9.34 versus 7.0) at the indicated conditions. 

 

Figure 6. Top: time series of the average velocity u  (made dimensionless by / idν ) of the flow through 

the settling cylinder. The two lower panels show how this through-flow correlates with Re  and θ  

respectively. 2057Ar = , / 9.34ol d =  and / 0.625i od d = . 

 

Figure 7. Dimensionless time to reaching a horizontal orientation for the first time ( 2/ ot dν ) versus Ar  

for four different / ol d  ratios (2.50, 5.00, 7.50 and 10.0 in panels (a) to (d) respectively). Variations of the 

Archimedes number are due to variations in viscosity as well as in /i od d . 

 

Figure 8. Reynolds number at the moment of reaching a horizontal orientation for the first time versus 

Ar  for four different / ol d  ratios (2.50, 5.00, 7.50 and 10.0 in panels (a) to (d) respectively). Variations 

of the Archimedes number are due to variations in viscosity as well as in /i od d . 
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Highlights 

� Quantitative visualization experiment of the settlement of a single hollow cylinder. 

� The flipping process under different Archimedes numbers is studied. 

� The effect of aspect ratio and Archimedes numbers on the dimensionless time and the Reynolds 

number are studied. 

� Numerical simulation was used to verify the experimental data. 

 

 


