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1.  INTRODUCTION 

Degradation and overexploitation of the ocean 
over the past several decades have caused a major 
de  cline in marine biodiversity (Jackson 2008, 
Butchart et al. 2010, Duarte et al. 2020). This includes 
the depletion of numerous fisheries around the world 
(Fernandes & Cook 2013, Vasilakopoulos et al. 2014, 
Warren & Steenbergen 2021), and the capacity of fish 
stocks to recover remains very uncertain (Worm et al. 
2009, Memarzadeh et al. 2019, Britten et al. 2021). 

Reef fish assemblages across both tropical and tem-
perate latitudes are subjected to intense fishing pres-
sure due to increasing demand from a growing 
human population (Cramer & Kittinger 2021), rapid 
urban development in coastal areas that has polluted 
and homogenised reef ecosystems (Gibson et al. 
2007, Sandin et al. 2008), and the multifaceted effects 
of climate change (Hoey et al. 2016, Holland et al. 
2020, Worm & Lotze 2021). The recovery of reef fish 
assemblages hinges on effective conservation and 
management strategies (McClanahan et al. 2011, 
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MacNeil et al. 2015). In turn, these strategies are 
informed and supported by accurate quantification of 
metrics of reef fish richness, including abundance, 
biomass, and species diversity, achieved using effec-
tive and efficient survey methods. 

Reef fish sampling methods can be broadly charac-
terised as extractive or non-extractive. Extractive 
methods, such as netting (e.g. Hickford & Schiel 2008, 
Lin et al. 2022) and use of ichthyocides (Ackerman & 
Bellwood 2002, Bellwood et al. 2006), are used for di-
rectly estimating fish size and species diversity, but 
result in the stress or mortality of sampled fishes. Non-
extractive methods, including optical and acoustic 
techniques, are valuable for enumerating fishes 
whilst minimising impact on the target assemblage. 
Optical survey methods, including human-conducted 
underwater visual censuses (UVCs) and high-defini-
tion (HD) cameras, describe fish assemblages through 
visual detection. Optics are often considered the best 
means of directly observing fish behaviour, distribu-
tion, and community structure (Stoner et al. 2008, 
Dunlop et al. 2015), and are widely used in fish sur-
veys as a result (Bicknell et al. 2016). However, optics 
are entirely dependent on light and, in order to be 
used at night or in deep water, need the addition of ar-
tificial light that can induce variable attraction and 
avoidance behaviours in fishes (Fitzpatrick et al. 2013, 
McIntyre et al. 2015). Optics are largely inhibited in 
highly turbid habitats, such as estuaries. 

Acoustic methods use sound to detect aquatic life. 
Active acoustics propagate sound waves across the 
water column (a process termed ensonification) and 
detect the echoes that are produced when the sound 
waves intercept a physical target. Properties of these 

echoes can then be quantified and displayed. Criti-
cally, acoustics function independently of light, so 
can be applied in turbid habitats (Frias-Torres & Luo 
2009, Jůza et al. 2013, Egg et al. 2017, Griffin et al. 
2020, Artero et al. 2021; Fig. 1), at night (Able et al. 
2013, Vieh man & Zydlewski 2015, Egg et al. 2017, 
Cotter & Polagye 2020a), and in deep water (Rose et 
al. 2005, Giorli & Au 2017, Giorli et al. 2018), often 
providing greater spatial coverage than optics in 
these circumstances. 

However, acoustics are not without limitations. The 
range resolution (hereafter simply termed ‘resolution’) 
of acoustics is markedly lower than that of optics. 
Consequently, characteristics of fishes that can be vi-
sually detected, most notably colour and pattern, can-
not be detected by acoustics. The simultaneous col-
lection of alternative evidence, often using optical 
survey methods (e.g. Holmes et al. 2006, Maxwell & 
Gove 2007, Faulkner & Maxwell 2020), that provides 
information on taxonomic composition is essential to 
determine the species diversity of the ensonified fish 
assemblage (a process sometimes referred to as 
‘ground truthing’; McClatchie et al. 2000). 

The resolution of acoustic devices can be aug-
mented by increasing the frequency of the propagated 
sound waves. Imaging sonar (IS), alternatively termed 
‘acoustic cameras’, propagates sound in an array of 
multiple simultaneous beams between 0.7 and 3 MHz. 
In common with other multibeam sonars, IS uses 
beamforming to process echoes in multiple adjacent, 
simultaneously transmitted, narrow beams. These 
sonars can distinguish multiple echoes from various 
parts of large targets relative to the beam width. 
However, the higher frequency of IS affords resolution 
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Fig. 1. Simultaneous frames captured by (a) a Blueprint Subsea Oculus Imaging Sonar (IS) operating at 1.2 MHz and (b) a high-
definition optical camera around an artificial reef (a reefed oil and gas platform jacket) in the western Gulf of Thailand. The 
high turbidity in the region prevents fishes from being observed on the camera, yet the IS display reveals the true presence of 
fishes, which appear as white dashes set against a black backdrop of empty water. The structure of the artificial reef is clearly 
visible on the IS display, starting at approximately 8 m range. The first 2 m of the IS display contains significant amounts of 
‘speckle noise’, in this case caused by the echoes produced by suspended sediment or organic matter in the water column
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sufficient to produce camera image-like quality of in-
dividual fishes. This differs from the potential target 
detection of wider, single-beam echosounders which, 
in the case of split-beam, can ascertain the location of 
a target within the wider beam, but do not provide 
this location as a standard output on an echogram, 
only its range (see Simmonds & MacLennan 2005 for 
information on split-beam echosounders). Higher-
frequency ISs work equally well in freshwater and 
saltwater because there is a negligible difference in 
sound absorption beyond 1 MHz (Moursund et al. 
2003). Furthermore, the high resolution and high 
frame rate of IS permit real-time target visualisation 
(Moursund et al. 2003). Lower-frequency acoustics 
are favoured for surveying pelagic fish assemblages 
due to the higher spatial coverage afforded, ensonify-
ing vast expanses of featureless water (Simmonds & 
MacLennan 2005, Irigoien et al. 2014). However, 
coastal waters are often more shallow and structurally 
complex, necessitating higher-frequency-higher-
resolution devices that can more effectively discrimi-
nate between fishes, benthic biota, and physical habi-
tat, albeit in much smaller sampling volumes. 

ISs are efficient, versatile, and portable acoustic in-
struments that have been used to survey fish assem-
blages in various habitats. Following the introduction 
of the dual-frequency identification sonar (DIDSON) 
in the early 21st century (Belcher et al. 2001), later suc-
ceeded by the adaptive resolution imaging sonar 
(ARIS) series, several IS models have been developed, 
encompassing a range of frequencies and specifica-
tions (Table 1). However, the capacity of IS to de scribe 
and quantify reef fishes remains unresolved. Although 
tropical shallow-water reefs are typically charac-
terised by clear water that permits the use of optical 
methods for fish surveys (e.g. UVCs, Samoilys & Car-
los 2000), instances of high turbidity exist. For exam-
ple, reefs adjacent to high riverine outflow (e.g. in the 
northern Gulf of Mexico) are often challenging to sur-
vey using optics due to poor visibility (Fig. 1). More-
over, the waters of many subtropical and temperate 
reefs often have reduced visibility due to greater 
quantities of suspended organic matter, algal blooms, 
and high densities of plankton (Lønborg et al. 2021). 
Therefore, visibility for optical surveys of fishes is 
generally lower on temperate reefs than on tropical 
reefs (Fabricius & De’ath 2000, Unsworth et al. 2014). 
Regardless of latitude, the absence of natural light at 
night means optical instruments require artificial 
lighting for surveying fishes during nocturnal periods, 
which may affect fish behaviour and subsequently 
bias estimations of density and species richness (Har-
vey et al. 2012, Fitzpatrick et al. 2013). 

IS has predominantly been used to monitor fishes in 
freshwater or brackish habitats, and applications of IS 
to study marine fish assemblages are relatively 
scarce. Reef fish assemblages comprise a substantial 
proportion of fish abundance and diversity across the 
oceans. Coral reefs are estimated to support more 
than 25% of all fish species, despite covering less than 
0.1% of the ocean floor (Fisher et al. 2015, Hoegh-
Guldberg et al. 2017). Reef fish communities are also 
of substantial socio-economic significance, affording 
food to hundreds of millions of people and generating 
substantial tourism revenue (Munday et al. 2008). 
These factors motivate the dedicated quantification 
and monitoring of reef fishes, particularly given the 
uncertain future of reef ecosystems. In this review, the 
potential of IS for reef fish surveillance is explored, 
analysing previous studies of fishes across a range of 
habitats to determine how effectively 3 fish metrics 
can be quantified: (1) fish abundance, (2) species rich-
ness, and (3) fish size. These metrics are key for the 
accurate quantification of reef fish populations for the 
purpose of stock and habitat management, as outlined 
in a short background that precedes each subsection. 
This review also assesses how effectively IS can oper-
ate in habitats of high structural complexity, a requi-
site for any method of surveying reef fishes. Finally, 
the limitations of IS that can impact its use for reef fish 
surveys are also described. 

2.  QUANTIFYING FISH ABUNDANCE 

2.1.  Background 

The abundance of different reef fish taxa and func-
tional groups can reflect ecosystem health and the 
viability of fish populations for human exploitation. 
Both relative and absolute estimates of abundance 
are combined with species-specific measures of fish 
size to generate community-level estimates of bio-
mass, a fundamental metric used in reef fish stock 
assessments (Nash et al. 2016). However, estimating 
abundance can prove problematic, particularly using 
visual methods, due to instances of multi-counting 
(Brehmer et al. 2006) and challenges in discriminat-
ing cryptic fishes from the background substrate 
(Willis 2001, Pelletier et al. 2011, Holmes et al. 2013). 

2.2.  IS application 

Fish abundance is the most basic metric that can be 
quantified using IS. Comparisons of IS abundance 
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estimates with those from alternative methods (e.g. 
optic studies) are essential to determine the accuracy 
and precision of IS in quantifying reef fish popula-
tions. The distance gradings on many IS displays 
(Fig. 1), which enable calculations of sampling vol-
ume, can facilitate calculations of density. However, 
many studies have incorrectly assumed rudimentary 
beam shapes, most commonly rectangular-based 
pyramids (Shahrestani et al. 2017, Lankowicz et al. 
2020), such that resulting density estimates are erro-
neous due to inaccurate calculations of sampling vol-
ume. IS beams are instead conical, defined by verti-
cal and horizontal apertures of known size at the 
apex, with a curved base (Sibley et al. 2023). 

Numerous studies have reported correlations be-
tween abundances quantified by IS and estimates 
from alternative methods, including mark−recapture 
sampling (Pipal et al. 2012), extractive methods 
(Rakowitz et al. 2012, Faulkner & Maxwell 2020, Ker-
schbaumer et al. 2020, Smith et al. 2021, Gutiérrez-
Estrada et al. 2022), visual counting (Holmes et al. 
2006, Maxwell & Gove 2007, Faulkner & Maxwell 
2020), and lower-frequency acoustics (Maxwell & 
Gove 2007). Silver-phase European eels Anguilla an-
guilla have been a focal species for abundance quan-
tification with IS to inform migratory patterns and 
management techniques, with several studies report-
ing correlations between IS abundance estimates and 
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Manufacturer   Series        Model                Frequency   Beamwidth   Number  Horizontal   Resolution    Max.        Cost  
                                                                           (MHz)         (H° × V°)           of           field of          (mm)         range   category 
                                                                                                                     beams       view (°)                              (m) 
 
Sound               DIDSON    SV 300 m                 1.1             0.4 × 14           48               29                 NS             30         Out of  
 Metrics                                                               1.8             0.3 × 14           96               29                 NS             NS         prod. 

                                            Diver Held 100 m    1.1             0.4 × 14           96               28                 NS             35         Out of 
                                                                              1.8             0.3 × 14           96               28                 NS             15          prod. 

                          ARIS          Voyager 3000          1.8             0.3 × 15      64 or 128         30               3−19            15            *** 
                                                                               3               0.2 × 15      64 or 128         30               3−19             5 

                                            Defender 3000         1.8             0.3 × 15          128              30               3−19            15            *** 
                                                                               3               0.2 × 15          128              30               3−19             5 

                                            Defender 1800         1.1             0.5 × 14           96               28               3−23            35            *** 
                                                                              1.8             0.3 × 14           96               28               3−23            15 

                                            Explorer 3000          1.8             0.3 × 15      64 or 128         30               3−19            15            *** 
                                                                               3               0.2 × 15      64 or 128         30               3−19             5 

                                            Explorer 1800          1.1             0.5 × 14       48 or 96          28               3−23            35            *** 
                                                                              1.8             0.3 × 14       48 or 96          28               3−23            15 

                                            Explorer 1200          0.7             0.8 × 14           48               28               3−29            80            *** 
                                                                              1.2             0.6 × 14           48               28               3−29            35 
 
Tritech              Gemini      1200ik                     0.72              1 × 20            512             120                 4              120           ** 
                                                                              1.2             0.6 × 12         1024            120                2.4              50 

                                            Micron                    0.72           2.34 × 20         128              90                  8               50             * 
 
Teledyne          Blueview   M900-2250               0.9               1 × 12            768             130                13             100           ** 
 Marine                                                               2.25              1 × 20            256              45                  6               10 
 
Kongsberg        Flexview                                     0.7               1 × 30            NS             140                10              70            ** 
                                                                             0.95            0.8 × 27           NS             140                10              70 
                                                                              1.2            0.65 × 21          NS              75                 10              70 
                                                                              1.4            0.55 × 18          NS              45                 10              70 
 
Blueprint          Oculus       M750d                     0.75              1 × 20            512             130                 4              120            * 
 Subsea                                                                1.2             0.6 × 20          512             130                2.5              40 

                                            M1200d                    1.2             0.6 × 20          512             130                2.5              40             * 
                                                                              2.1             0.4 × 12          512              60                 2.5              10 

                                            M3000d                    1.2             0.6 × 20          512             130                2.5              30             * 
                                                                               3               0.4 × 20          512              40                  2                5

Table 1. Examples of imaging sonar (IS) models used to survey fish assemblages, spanning the typical range of specifications  
of ISs. H (V): horizontal (vertical) beam angle; NS: not specified. For cost, ***US $50−80k, **$25−50k, *<$25k
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both historic and contemporaneous catch data (Bilotta 
et al. 2011, Lenihan et al. 2019). The efficiency of IS in 
quantifying fish abundance (even accounting for data 
postprocessing) has been reported to be higher than 
several extractive techniques that have been histori-
cally favoured for abundance estimation (Mora et al. 
2015, Kerschbaumer et al. 2020, Artero et al. 2021, 
Staines et al. 2022). IS abundance estimates have 
been shown to correlate with alternative methods of 
various size selectivity, from minnow traps (Smith et 
al. 2021) to targeted fishing of large demersal species 
(Artero et al. 2021), indicating that IS abundance esti-
mates are applicable across a range of fish sizes. 

Nevertheless, some studies have reported discrep-
ancies between IS abundance estimates and alterna-
tive methods. Several reports of higher IS abundance 
estimates compared to assorted alternative methods 
include: higher detection rates of potadromous fishes 
than an HD camera, relative to stow-netting abun-
dance estimates, in a shallow river (Egg et al. 2018); 
densities from a deep-sea scattering layer (400−800 m 
deep), thought to be squid, that were several orders of 
magnitude higher than previous trawling estimates 
(Giorli et al. 2018); higher detection rates of Chinese 
sturgeon Acipenser sinensis in their deep riverine 
spawning ground than a long-range echosounder 
(Chang et al. 2017); IS abundance estimates of juve-
nile salmonids twice those of snorkelling UVCs along 
a constructed seawall (Accola et al. 2022); and fish 
densities recorded by ISs operating at 4 different fre-
quencies to be on average 3 times greater than those 
quantified using a simultaneous HD camera at artifi-
cial reefs off Western Australia (Sibley et al. 2023). 
Abundance estimates were also demonstrated to 
have greater accuracy and precision than mark−re-
capture estimates of salmonids in Holmes et al. (2006). 

Conversely, some studies have reported higher 
abundance estimates from alternative methods when 
compared to IS. Hayes et al. (2015) compared counts of 
brown trout Salmo trutta from a raft-mounted IS with 
visual estimates from drift diving UVCs. IS estimates 
were markedly lower (only ~22% of dive estimates) 
and less precise. IS surveys were also estimated to be 
34% more costly in terms of effort than the UVCs, 
though this is likely balanced by fewer health and 
safety concerns. Mora et al. (2015) reported higher 
abundance estimates of green sturgeon Acipenser 
medirostris using mark−recapture compared to IS es-
timates, although the latter were markedly less vari-
able. Regarding extractive techniques, Smith et al. 
(2021) reported higher fyke net abundance estimates 
than IS across assorted shoreline habitats. All 3 studies 
used a DIDSON operating at either 1.1 or 1.8 MHz. 

The differences in abundance estimates between IS 
and alternative methods can be attributed to several 
factors. Foremost, sampling volume has been identi-
fied as a highly influential variable. Holmes et al. 
(2006) compared IS (DIDSON, 1.8 MHz) counts of 
sockeye salmon Oncorhynchus nerka with human 
counts over different sampling volumes in a shallow 
river. When salmon were forced through an enumera-
tion fence, generating high fish density, there was 
strong agreement in the estimates from both methods. 
However, when sampling volume was unconstrained, 
differences arose; the study identified the angle at 
which the IS was deployed to underpin differences 
between the 2 methods. Specifically, orientating the 
IS towards the riverbed meant IS estimates were 
greater than visual counts. This was because fishes 
near the riverbed could be ensonified that were other-
wise obscured from visual detection from the surface 
due to water turbulence and sun glare. Orientating 
the IS at higher angles generated markedly lower IS 
estimates compared to visual counts, suggesting that 
visual enumeration outperforms IS in open water. 
Precision of IS estimates was markedly higher at 
greater fish densities, indicating that IS should be em-
ployed for quantifying abundance when the number 
of fishes per unit volume is high. In Maxwell & Gove 
(2007), IS accurately counted fishes even at passage 
rates of up to 6000 fish h−1, whereas lower-resolution 
acoustic instruments struggled. In contrast to Holmes 
et al. (2006), Faulkner & Maxwell (2020) reported that 
error in IS counts relative to human and gill-net counts 
occurred at high fish density. Overestimation of fishes 
by IS was caused by multipathing, where echoes re-
flect off the surface or seabed prior to intercepting the 
transducer. This can cause targets to appear seg-
mented, as can geometric scattering, whereby IS 
beams scatter irregularly from body parts of variable 
density, such as bones, muscle tissue, and swimblad-
ders (Foote 1980, Sibley et al. 2023). Nevertheless, in-
stances of multipathing and geometric scattering can 
be identified using continuous footage to discern the 
true appearance of affected targets (Fig. 2). For fishes 
that form dense aggregations, the limited resolution of 
IS relative to optics means that discrimination of these 
individuals has proved very challenging, such that 
categorical estimates are used as opposed to discrete 
counting (Becker et al. 2013). Alternatively, provided 
that individual fishes can be distinguished from one 
another, IS can detect fishes that are camouflaged 
against the background habitat structure where opti-
cal instruments fail to do so (Sibley et al. 2023). 

A major factor causing challenges to IS abundance 
estimates is multipassing, which occurs when the 
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same individual exits and re-enters the field of view 
(FOV) of the IS and is counted multiple times. The 
limited resolution of IS makes it harder to track these 
individuals, whereas optical characteristics may help 
to distinguish recurring individuals in video footage. 
Multipassing can generate overestimations of fish 
abundance and is particularly apparent for fishes 
that mill in the FOV (Magowan et al. 2012, Grote et 
al. 2014, Petreman et al. 2014, Viehman & Zydlewski 
2015, Eggleston et al. 2020), and taxa that are highly 
mobile and transient (e.g. reef sharks, McCauley et 
al. 2016). The risk of multipassing was considered by 
Wei et al. (2022) to be why most fish abundance esti-
mation work using IS has focused on migrating fishes 
that are only moving in one direction, thus negating 
the impact of multipassing. More knowledge of 
 species-specific milling tendencies would be valu-
able for mitigating potential overestimations (Wei et 
al. 2022). Lenihan et al. (2019) recommend that IS 
abundance estimates be compared against estimates 
from alternative methods prior to each survey; to mit-
igate double counting caused by multipassing, rela-
tive abundance was calculated as the maximum 

number of individuals present in the FOV at the same 
time. In contrast, underestimation by IS can occur if 
fishes are demersal and sedentary, as it is harder to 
discriminate them from the underlying substrate 
without conspicuous movements (Frias-Torres & Luo 
2009, Artero et al. 2021). Critically, multipassing can 
also be an issue for optical surveys. Implementation 
of conservative abundance estimates, such as MaxN 
(the maximum number of an individual species ob -
served in any one frame of the video; Ellis & DeMar-
tini 1995, Willis et al. 2000), can mitigate overcount-
ing from multipassing by providing a conservative 
estimate of abundance. However, these estimates are 
often non-linear to true abundance (Schobernd et al. 
2014), especially over smaller sampling volumes 
(Campbell et al. 2015), and are limited for counting 
individuals in large aggregations (Munnelly et al. 
2019). Instead, they may provide estimates of relative 
abundance in these circumstances. 

Variable abundance estimations are not solely 
attributable to characteristics of the target fish com-
munity. Bathymetry has been demonstrated to influ-
ence the precision of IS abundance estimates (rela-
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Fig. 2. Consecutive still frames from a Blueprint Subsea Oculus Imaging Sonar (IS) operating at 3 MHz at an artificial reef, the 
north Rottnest fish tower, off the coast of Perth, Western Australia. (a) The 2 targets circled in red appear as 2 distinct fishes of 
similar size to the other objects in the frame. However, in (b), these 2 objects appear as 1 fish, circled in green. This is attributa-
ble to either multipathing, whereby echoes from fishes reverberate off dense physical structures (e.g. the seabed or background 
reef habitat) before reaching the transducer, or geometric scattering, whereby IS beams scatter differently upon encountering 
body parts of varying density (e.g. muscle tissue, bones, swimbladders). Adjacent frames or continuous sequences of footage 
are needed to identify instances of geometric scattering and multipathing that can otherwise result in overestimation of fish 
abundance. The soft benthic growth (likely members of the subclass Octocorallia) on the upper crossbeams of the fish  

tower can also be visualised at this frequency
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tive to visual counts), with the greatest IS precision 
achieved in deeper and more homogeneous chan-
nels of water (Holmes et al. 2006, Hayes et al. 2015). 
Limitations associated with the alternative methods 
used to estimate abundance must also be considered. 
For example, Smith et al. (2021) conjectured visual 
gear avoidance to underpin lower diurnal abundance 
estimates from netting techniques compared to IS. 
For non-invasive methods, behavioural responses of 
fishes to the platforms upon which instruments are 
mounted have also been widely reported. For exam-
ple, the presence of both SCUBA divers (Lindfield et 
al. 2014, Reynolds et al. 2018) and remotely operated 
vehicles (Stoner et al. 2008, Ryer et al. 2009, Laidig et 
al. 2013) can elicit both attraction and avoidance in 
many fish taxa, resulting in over- and underestima-
tions of abundance, respectively (Wetz et al. 2020). 

3.  QUANTIFYING SPECIES RICHNESS 

3.1.  Background 

Reef fish communities are incredibly diverse, rep-
resenting some of the most speciose assemblages on 
the planet (Fisher et al. 2015, Hoegh-Guldberg et al. 
2017). Accurate and consistent species identification 
underpins quantification of ecosystem function and 
stability, allowing for changes to reef ecosystems to 
be monitored at relevant taxonomic scales. Identifi-
cation is particularly critical for calculations of bio-
mass by informing the correct selection of taxon-
specific length−weight relationships. Overall, under-
standing reef fish composition helps ascribe the 
value of reef fishes to humans, be that through recre-
ational or commercial activities (Mazzoldi et al. 2019, 
Tribot et al. 2019). 

3.2.  IS application 

Species identification is the principal limitation of 
acoustics. Any taxonomic inferences to be made from 
acoustic data require expert understanding of the 
behaviour, ecology, and morphology of the target 
fish assemblage (Brehmer et al. 2006, Parsons et al. 
2014, Schmidt et al. 2018). However, this becomes 
increasingly difficult with more diverse and complex 
assemblages such as reef fishes. Alternative evi-
dence in IS studies of fish assemblages to infer spe-
cies composition has been collected using various 
methods, including extractive techniques such as 
gillnetting (Patrick et al. 2014, Hughes & Hightower 

2015, Lin et al. 2016, van Hal et al. 2017), seine net-
ting (Becker et al. 2011b, Rieucau et al. 2015), elec-
trofishing (Hughes & Hightower 2015, Ogburn et al. 
2017, Henderson et al. 2023), trawling (Rakowitz et 
al. 2012), optics (e.g. human observations at the sur-
face: Schmidt et al. 2018, Lankowicz et al. 2020; cam-
eras: Cotter & Polagye 2020b; Fig. 3), and telemetry 
(Mora et al. 2018). Alternative evidence can be col-
lected alongside IS data to provide simultaneous 
information on species composition, or collected 
independently, sometimes several weeks, months, or 
years before deployment of the IS (Becker et al. 2013, 
Grote et al. 2014, Lankowicz et al. 2020). Long-term 
monitoring programmes that encompass several dif-
ferent survey techniques have also provided alterna-
tive evidence in IS fish studies (Becker et al. 2011b). 

Alternative evidence provides the basis for taxo-
nomic interpretation of IS data that can drastically im -
prove our insight into the surveyed fish community. 
For example, the assemblages observed by Becker et 
al. (2011a) were dominated by small schooling fishes. 
A fortnight of seine netting prior to the study, along-
side the findings of a 15 yr long monitoring pro-
gramme of the regional fish population, evidenced 
these highly abundant fishes to comprise only 2 spe-
cies, a clupeid and an atherinid. In Capoccioni et al. 
(2019), alternative evidence from catch data indicated 
that large schools in a lagoon were typically mono-
specific, consistent with prior knowledge of species-
specific distributions in the study region. Average fish 
size was also greater in larger schools; alternative evi-
dence combined with IS can provide morphological 
and behavioural insight at a high taxonomic level. 
Species-specific length distributions acquired from 
previous surveys have been used to identify IS fishes 
(Becker & Suthers 2014, Grote et al. 2014, Lankowicz 
et al. 2020), enabled by the length measurement func-
tions available on most IS post-processing software. In 
lieu of direct species identification, fishes detected us-
ing IS may alternatively be aggregated into size-
based classes, defined by the known fish community 
composition of the region from alternative evidence 
(Becker et al. 2013). However, application of methods 
for gathering alternative evidence is contingent on 
the limitations of those methods. For example, Mago -
wan et al. (2012) detected fish movement with IS to be 
greatest at night, though failed to provide species in-
ference using an optical system due to the absence of 
light. Where light is not entirely absent, or can be ap-
propriately supplemented, alternative optical methods 
may still function to provide taxonomic inference by 
identifying fishes that swim at very close ranges (see 
Bolser et al. 2020). 
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Numerous studies have developed classification 
protocols based on traits detectable using IS alone. 
The success of species identification using IS particu-
larly depends on marked morphological variation be-
tween the ensonified species (the likelihood of which 
is reduced if species richness is high, such as on coral 
reefs; Grote et al. 2014, Jones et al. 2021, Accola et al. 
2022). Larger, more distinct species are easier to iden-
tify. Jones et al. (2021) used an ARIS Explorer 3000 (3 
MHz) to distinguish finfish and elasmobranch species 
based on morphological and behavioural traits. Elas-
mobranchs were characterised by distinct fin shapes 
(especially the caudal fin), body shapes, and loco -
motion (see www.soundmetrics.com/Image-Gallery/
Fisheries/Habitat-Observations/Nurse-Shark-capt-
ured-during-Aquarius-expedition as an example). By 
con trast, fin shape alone was not generally re liable 
for finfish identification. For finfishes in particular, 
family-level identification was deemed more appro-
priate when inter-specific differences were not obvi-
ous, with swimming motion proving especially chal-
lenging to distinguish between finfish species due to 
overlap in tail beat frequency and general locomotion. 
Application of concurrent video provided alternative 
evidence to classify individual finfish species. Like-
wise, a known species composition proved necessary 
in Becker et al. (2017) and Shahrestani et al. (2017) to 
con firm IS species identification based on discrete 
morphological and behavioural features. Able et al. 

(2014) utilised various netting techniques to supple-
ment the multivariate analysis of various fish traits ob-
servable on IS (including size, schooling tendency, 
and zonation) by verifying the presence of certain fish 
species. The study identified 15 discrete fish species, 
yet multivariate discrimination of each species was 
undermined by high overlap in the quantified traits.  

Several traits have been consistently used to make 
taxonomic inferences on fishes detected by IS, in -
cluding body size and shape (Rose et al. 2005, Becker 
et al. 2011b, Grabowski et al. 2012, Magowan et al. 
2012, Parsons et al. 2014, Boulêtreau et al. 2018, 
Artero et al. 2021), and discrete morphological fea-
tures, without the need for alternative evidence. 
Examples of morphological features include the use 
of head shape and dorsal fin to discriminate Euro-
pean catfish Silurus glanis from Atlantic salmon 
Salmo salar in Boulêtreau et al. (2018), the distinctive 
head and fusiform body to discriminate invasive sil-
ver carp Hypophthalmichthys molitrix from native 
species in Ridgway et al. (2023), and the large head 
and rounded pectoral fins of goliath grouper Epine -
phelus itajara that discriminate it from other demer-
sal fish species in Frias-Torres & Luo (2009). Locomo-
tion has also been used as a distinguishing trait (Rose 
et al. 2005, Becker et al. 2011b, 2017, Parsons et al. 
2014, 2017, Zhang et al. 2014, Artero et al. 2021), and 
is particularly useful for the identification of eels 
(Mueller et al. 2008, Doeh ring et al. 2011) and lam-
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Fig. 3. (a) Still frame from a Blueprint Subsea Oculus Imaging Sonar (IS) operating at 0.75 MHz at the north Rottnest fish tower. 
The corresponding measurement tool in the Oculus Viewpoint software (www.blueprintsubsea.com/oculus/support) enables 
the sizing of objects on the IS display. (b) Simultaneous high-definition video footage reveals this target to be a greater amber-
jack Seriola dumerili. Note that the bend in the caudal fin in the IS display prevents the full linear measurement of the fish to 
be taken. Note the strong interference in the IS frame starting at approximately 2 m, caused by the simultaneous interception 
of the dense physical structure of the fish tower by adjacent beams in the IS beam array, resulting in noise in those adjacent 
beams at range (known as ‘side-lobe interference’ or ‘crosstalk’). This can obscure targets near the structure, and altogether  

prevents detection of fishes occupying the interstitial spaces of the tower
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preys (Keefer et al. 2017) due to their characteristic 
sinusoidal swimming motion and anguilliform shape. 
Furthermore, the refined characterisation of tail beat 
patterns in large salmo nids as revealed by Mueller et 
al. (2010), in di ca tive of size, shape and swimming 
motion, led the authors to suggest that IS could prove 
valuable in future bioenergetic studies. This is fur-
ther reinforced by Lenihan et al. (2019), who re -
corded eel swim speeds using IS that strongly agreed 
with previous dedicated bioenergetic studies. 

A novel approach to IS species identification was 
proposed by Langkau et al. (2012) based on the 
acoustic shadows cast by ensonified fish targets. 
Acoustic shadows are generated because targets 
both absorb and reflect most of the propagated 
sound, such that non-ensonified regions behind the 
objects are formed that show the outlines of the en-
sonified objects. The study created templates of 4 
freshwater species and described the shadows cast 
by each template when ensonified with a DIDSON 
(1.8 MHz) to distinguish between each species. Suc-
cess was contingent on size, with templates <20 cm 
identified less successfully, as the defining traits of 
these templates were relatively small. Body compact-
ness was particularly important; templates of taxa 
with more protruding features (e.g. cyprinids) formed 
more distinguishable shadows than templates of 
more compact taxa (e.g. salmonids). The study then 
classified the shadows of live fishes, achieving an 
83.9% success rate. However, fishes only cast shad-
ows in certain circumstances, depending on the posi-
tion of the fish in the beam array, the tilt angle of the 
IS, and bottom topography. Reduced classification 
success for densely aggregating fishes was reported 
due to overlapping shadows. Success was also lower 
at greater ranges, likely due to de creased resolution 
(see also Parsons et al. 2014). Shadows also proved 
important in distinguishing goliath grouper from 
other large demersal fishes by Artero et al. (2021), 
particularly the morphologically similar cubera snap-
per Lutjanus cyanopterus. 

Species identification of fishes by IS may be limited 
by specifications of ISs themselves. The lower resolu-
tion of IS compared to optics means that morphologi-
cal and behavioural traits of smaller fishes are often 
less conspicuous (Artero et al. 2021). Cotter & Pola -
gye (2020b) demonstrated that enhancing the resolu-
tion of IS by increasing frequency can improve clas-
sification success, especially for smaller targets. IS 
operating at lower frequencies can still make taxo-
nomic inferences. Using a Tritech Gemini at 0.72 
MHz, Parsons et al. (2017) managed to detect distinct 
swimming patterns even for targets <40 cm, as well 

as describe the high morphological diversity of the 
ensonified assemblage. Classification was contin-
gent on target orientation. Targets at lower incident 
angles relative to the IS reflected a greater propor-
tion of the propagated sound, hence more of the tar-
get was observable on the IS display. As expanded 
on by Wei et al. (2022), conspecifics may appear very 
different on IS displays if they are ensonified at con-
trasting incident angles. Differences in the density of 
distinguishing morphological features that cannot be 
accounted for by IS are likewise vital for species dis-
crimination (Parsons et al. 2017). Peripheral yet dis-
tinctive features, such as fins, are generally less 
dense than the homogeneous torso of the fish, so 
generate less backscatter and are therefore less con-
spicuous (Hwang et al. 2017, Wei et al. 2022). 

So far, the characterisation of fishes for taxonomic 
identification has nearly exclusively involved manual 
processing and appraisal of IS footage. However, 
deep-learning (a division of machine learning) has 
been proposed as an automated alternative that miti-
gates the challenges of distinguishing, processing, 
and extracting morphological or behavioural features 
manually and consistently (summarised by Wei et al. 
2022). Deep-learning uses fish-like targets that are 
manually labelled as distinct from other objects and 
background noise, then inputs them into a neural net-
work for classification. Application of deep-learning 
is in the early stages of development (Zang et al. 
2021), with classifying species of similar morphology 
necessitating a high level of a priori training (Kandi-
malla et al. 2022). Nevertheless, deep-learning holds 
potential for discriminating morphologically unique 
species and fishes from non-biological objects (Wei et 
al. 2022), and has already proved successful for classi-
fying multi-species assemblages (Kandi malla et al. 
2022). Analogously, automated approaches for quan-
tifying fishes using optical instruments are progress-
ing rapidly, accurately counting, measuring, and 
identifying fishes to streamline the post-processing of 
optical data (Shortis et al. 2016, Connolly et al. 2021, 
Li et al. 2021). 

4.  QUANTIFYING FISH SIZES 

4.1.  Background 

The diversity of reef fishes is reflected by the range 
of sizes on display; reef fishes can vary markedly in 
size at both inter- and intraspecific levels (Froese & 
Pauly 2023). Accurate size measurements are a pre-
requisite of biomass calculations. Abundance at 
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length (and, by inference, age) can also be critical for 
fish stock assessments and to monitor the impacts of 
fishing on particular taxa and functional groups (Gra-
ham et al. 2005, Shin et al. 2005, Wilson et al. 2010). 

4.2.  IS application 

The size of IS targets can be quantified using the 
measurement tools available in most post-processing 
software (Fig. 3), and the resolution afforded by IS is 
generally adequate for size measurements (most 
commonly the total length of the target) to be taken 
directly from the footage (Martignac et al. 2015). Tar-
gets as small as 1−2 cm have been measured with IS 
(Kimball et al. 2010, Dunn et al. 2023), as have tar-
gets several metres in length (Giorli et al. 2018). 
Notably, Egg et al. (2018) demonstrated the mini-
mum size threshold (specifically, the threshold be -
neath which fishes of a given size become underesti-
mated) detectable using an ARIS Explorer 3000 (3 
MHz) to be 10 cm, smaller than the threshold of an 
HD optical camera (15 cm) used in the same study. 
Analogously, UVCs commonly impose a minimum 
size threshold when surveying fishes that is com-
mensurate with their detectability at range. Small 
fishes (typically <5 cm) can often only be detected, 
counted, and identified in the immediate FOV, un -
like larger fishes that are quantifiable at greater 
ranges (Prato et al. 2017). 

As explored in Section 3, size quantification and 
categorisation can support inferences on species com-
position, as well as ontogeny and ecological group-
ings. For example, Becker et al. (2013) aggregated 
fishes into size categories based on IS measurements. 
Fishes >50 cm were labelled as large piscivores that 
were predating shoaling planktivores <10 cm. Simi-
larly, Becker et al. (2011a) observed larger fishes 
>50 cm occupying the mouth of an estuary, where 
fishes <10 cm (annotated as ‘baitfish’ by Becker & 
Suthers 2014) were most abundant. Likewise, the bi-
modality of target sizes in Giorli & Au (2017), either 
side of a 50 cm threshold, was interpreted to signify 
larger predatory squid and smaller prey nekton, rein-
forced by the abundance of >50 cm targets being cor-
related with a high abundance of targets <50 cm. 

Reef fish assemblages are typically dominated by 
relatively small species, and reef fishes are often allo-
cated to very fine size groups in UVCs (e.g. Di Franco 
et al. 2009, Pinheiro et al. 2016). Relatively small 
errors in length estimates can scale up to marked 
inaccuracies in biomass calculations (St. John et al. 
1990, Harvey et al. 2002), so apportioning fishes into 

refined size groups is important when using a cate-
gorical approach to assess fish size. However, the 
lower resolution of IS relative to optical instruments 
means the fish size groups implemented in some IS 
surveys are often coarser than in optical surveys. 
Nevertheless, key size-based inferences on the 
ensonified fish assemblage can still be made. In Able 
et al. (2013), benthopelagic fishes were partitioned 
into small (<25 cm) and large (>25 cm) categories 
that were further refined by schooling tendency and 
aggregation size. Division of fishes into small and 
large categories by the same threshold in Grothues 
et al. (2016) was considered to represent functional 
differences related to length distribution, commensu-
rate with the known species composition of the study 
site. Viehman & Zydlewski (2015) made ontogenetic 
inferences from IS data on a temperate pelagic fish 
assemblage by considering fishes <10 cm (at the 
smallest end of the size spectrum of ensonified tar-
gets) to be juveniles. Size-based ontogenetic infer-
ences were also made for rainbow trout Oncorhyn-
chus mykiss by Schmidt et al. (2018). Such inferences 
are facilitated by comparison of IS size estimates with 
known length-at-age data (Crossman et al. 2011) or 
growth models. Alternatively, Becker et al. (2016) 
detected no marked variation in the size of fish mov-
ing between habitats, in turn suggesting that all 
fishes were from the same cohort. 

The accuracy of IS size measurements has been ex -
tensively quantified through comparison with other 
fish sizing methods. For example, Cook et al. (2019) 
implemented a 3-pronged approach to assessing the 
accuracy and precision of measurements using an 
ARIS 3000 (model unspecified) of smaller fishes 
(10−40 cm): (1) tank-based comparisons be tween the 
IS (3 MHz) and stereo-camera on 2 focal species and 
artificial targets; (2) measurements of 4 fish species at 
3 MHz with different swimming modes; and (3) com-
parison of IS (1.8 MHz) and direct measurements of 
fishes caught in bait traps in field settings. The 3 tri-
als revealed that IS measurements were of lower 
accuracy and precision than stereo-cameras but 
were generally comparable with direct measure-
ments of trapped fishes. Overall, IS measurement 
error for 10−40 cm fishes ranged from 1 to 10%. This 
error is markedly smaller than the error recorded for 
larger fishes. Gutiérrez-Estrada et al. (2022) reported 
a ~19% error in IS measurements (Garmin Panoptix 
LiveScope, 1.1 MHz) for large (~45 cm) gilt-head 
seabream Sparus aurata, and Zhang et al. (2014) 
quantified mean length estimates of Chinese stur-
geon using an IS (DIDSON 300 LR, 1.2 MHz) to be 
35.6% shorter than manual estimates. Compara-
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tively, for optical instruments, Harvey et al. (2002) 
reported a mean error of <1 cm for SCUBA diver esti-
mates of fish size, relative to stereo-video length esti-
mates, for fishes ranging from 18 to 59 cm. The accu-
racy of stereo-video length estimates was then 
investigated relative to direct measurements for 
southern bluefin tuna Thunnus maccoyii ranging 
from 83 to 141 cm by Harvey et al. (2003), calculating 
a mean error of 0.17 cm. 

As with comparison of IS abundance estimates, 
Cook et al. (2019) exemplified the use of alternative 
methods to gather independent size estimates (see 
also Frias-Torres & Luo 2009, Crossman et al. 2011, 
Lin et al. 2016, Kerschbaumer et al. 2020, Artero et al. 
2021, Bennett et al. 2021, Staines et al. 2022). IS size 
estimates have been validated by ensonifying fishes 
of known length (Burwen et al. 2010, Bilotta et al. 
2011, Hightower et al. 2013, Tušer et al. 2014, 
Lagarde et al. 2020), most commonly captive fishes in 
aquaculture (Zhang et al. 2014) and aquaria (Daroux 
et al. 2019). Such studies have identified multiple 
factors that impact the accuracy and precision of IS 
size estimates (Table 2). 

Despite the diversity of factors that undermine IS 
size estimates, the effects of some are less impactful 
than others. For example, although the range of the 
target from the IS influences size estimate accuracy, 
this seems to only occur at ranges greater than at 
least 10−20 m. Using a DIDSON at 1.8 MHz, Daroux 
et al. (2019) reported accurate estimates out to 10 m 
for silver carp ranging from 51 to 67 cm in length. 
Helminen et al. (2020) demonstrated no effect of 
range on length estimate accuracy of Atlantic sal -
mon, ranging from 49 to 99 cm, out to 29 m range 
when using an ARIS Explorer 1800 at 1.1 MHz. How-
ever, the effect of range may be more relevant for 
smaller fishes. Giorli et al. (2018) reported that 
 targets <4 cm long were hard to detect (let alone 
measure) at ranges beyond 5 m with a DIDSON at 
1.8 MHz. This further demonstrates that, as with 
visual surveys, the maximum range at which a target 
is still detectable using IS is contingent on target size 
(Doehring et al. 2011). 

A recurring theme across studies investigating IS 
measurement error is that the sizes of smaller fishes 
are generally overestimated, and larger fishes are 
generally underestimated (e.g. Hightower et al. 2013, 
Cook et al. 2019, Daroux et al. 2019, Helminen et al. 
2020). However, the threshold of measurement error 
between small and large fishes is variable. For exam-
ple, Cook et al. (2019) found overestimation to occur 
at lengths <40 cm, in contrast to Daroux et al. (2019), 
who reported overestimation below a 57 cm threshold. 

However, this dichotomy is not ubiquitous. Lagarde et 
al. (2020) demonstrated fish on either side of a 45 cm 
threshold to be underestimated. A factor in addition to 
those in Table 2 that could drive the underestimation 
of size is the compression of the IS display from 3 (x, y, 
and z) to 2 dimensions (x and z; Price et al. 2013, Mar-
tignac et al. 2015), whereby predominantly y-dimen-
sional features that elongate total body size (e.g. hete-
rocercal caudal fins, Hightower et al. 2013) may not 
be ensonified completely. Dorsal and ventral surfaces 
are typically less reflective than pectoral surfaces for 
perpendicularly oriented targets, so measurements of 
object width are broadly less reliable than measure-
ments of object length (Parsons et al. 2017). As de-
scribed by Martignac et al. (2015, p. 496):  

… uncertainties as a function of fish length can be ex -
plained by differences in receiver sensitivity between 
acoustic beams. Sub-beams far from the central axis are 
less sensitive than those close to it. Consequently, the 
length of large fish with part of their bodies outside the 
central axis will be underestimated. 

Despite the extensive reporting of erroneous lS 
size estimates, several studies have found consis-
tency between IS lengths and lengths quantified by 
alternative methods (Frias-Torres & Luo 2009, Bur-
wen et al. 2010, Bilotta et al. 2011, Crossman et al. 
2011, Kerschbaumer et al. 2020, Zhang et al. 2020, 
Bennett et al. 2021). Length estimates using a DID-
SON 300 LR (0.7 MHz) were demonstrated by Lin et 
al. (2016) to be more accurate (relative to manual 
measurements) than estimates from a split-beam 
echosounder, which were highly affected by the 
choice of target strength−length equation (see also 
Martignac et al. 2015). Improvements in the accuracy 
of echosounder in situ target strengths using IS have 
been made that improve biomass estimates (Hwang 
et al. 2017). Ultimately, accurate reporting of size 
estimates quantified by IS necessitates error func-
tions pertaining to the influential factors listed in 
Table 2 (Tušer et al. 2014). Such are the variable 
impacts on IS size estimates that Daroux et al. (2019) 
recommended taking the mean estimate from 3 to 5 
measurements per target as a method to reduce the 
error that can arise from individual measurements. 
The need for such time-consuming replication would 
be assuaged by a standardised calibration process for 
IS target detection and size estimation, but this is cur-
rently absent (Martignac et al. 2015). Alternatively, 
implementing size classes in lieu of more erroneous 
continuous estimates would substantially reduce va -
riation. The error in Atlantic salmon length estimates 
reported by Helminen et al. (2020), up to 22.8 cm, 
prompted the allocation of targets to binary size cat-
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Table 2. Causes of error in imaging sonar (IS) fish measurements, identified from studies that quantified IS measurement error  
by providing alternative evidence of fish size (e.g. using fishes of known length or calibrated optic instruments)

Factor 
 

Source of measure -
ment error

Description 
 

References 
 

Locomotion Swimming style Different swimming styles influence the ensonified 
area of a target (e.g. sinusoidal swimming produces 
a smaller reflective cross section than more planar 
swimming styles); certain swimming styles are 
specific to certain taxa (e.g. sharks).

Burwen et al. (2010), 
Hightower et al. (2013), 
Zhang et al. (2014),  
Keefer et al. (2017),  
Egg et al. (2018),

Swimming speed Swim speed limits the time in which a target can be 
ensonified; movement of the fish in the time needed to 
generate the IS image could cause overestimation of size.

Cook et al. (2019)

Swimming  
behaviour

Fishes that mill in the IS field of view are ensonified for 
longer than unidirectionally moving fishes, hence are 
likely measured with greater accuracy.

Orientation Target incident  
angle

Target angle relative to the IS beam array influences  
the ensonified area (e.g. lower reflective cross section 
at higher tilt angles).

Tušer et al. (2014),  
Egg et al. (2018),  
Cook et al. (2019)

Target distance Resolution decreases with increasing distance from  
the IS, and sound wave absorption increases at farther 
ranges. Both factors reduce the degree of ensonification  
of targets at range and thus reduce the intensity of 
backscatter.

Tušer et al. (2014),  
Giorli et al. (2018),  
Cook et al. (2019)

Position in beam  
array

Targets at the edge of a beam array are only partially 
ensonified compared to targets in the centre of a beam 
array; thus, the total length of peripheral targets is not 
measured.

Tušer et al. (2014),  
Egg et al. (2018)

Inter- and 
intraspecific 
differences in

Length Larger fishes have a greater reflective cross section 
relative to the resolution of the IS, increasing  
measurement accuracy.

Burwen et al. (2010), 
Hightower et al. (2013), 
Cook et al. (2019),

morphology Body shape Fusiform fishes have greater reflective cross sections  
than anguilliform fishes of equivalent size.

Daroux et al. (2019), 
Helminen et al. (2020),

Focal body parts Fish body parts vary in density (e.g. fins are less dense 
than the torso, thus are weaker reflectors of sound and 
more likely to be obscured by background noise that 
impacts size measurement). If fork length is used over  
total length, tail morphology can impact length estimates.

Lagarde et al. (2020)

Girth Target girth (typically highest around the torso of the 
fish) can shadow the rest of the body.

Tušer et al. (2014)

IS speci -
fications

Beam width For some IS models (e.g. DIDSON), the width of each 
beam that contains an echo is included in size calcula-
tions, even if the beam does not fully encompass all of 
the target (i.e. irrespective of the proportion of the 
beam width occupied by the target).

Hightower et al. (2013)

Frequency Lower frequencies afford greater range but decreased 
resolution, causing less accurate size estimates due to 
greater beam dispersion and reduced definition of  
targets.

No demonstrable 
studies, but discussed by  
Martignac et al. (2015) 
and Wei et al. (2022)

Data 
 processing

Manual size  
estimates

Measurement accuracy and precision for manual esti-
mates are contingent on the observer, based on experi-
ence and the incidence of human error.

Daroux et al. (2019), 
Helminen et al. (2020)

Automated size 
estimates

Semi- or fully automated estimates depend on accurate 
discrimination of targets (e.g. being able to detect 
extremes, distinguish fishes from non-fish targets).

Helminen et al. (2020)
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egories on either side of 63 cm. Subsequent alloca-
tion of fishes to each size category achieved up to an 
83% success rate. Regardless, IS fish sizes, even if 
not consistent with true sizes, are still useful as rela-
tive (albeit not absolute) measures (Artero et al. 
2021) and permit comparisons of size distributions 
across various ecosystems to inform inter-habitat dif-
ferences in fish assemblages (Olson et al. 2023). 

5.  OPERATING EFFECTIVELY IN 
STRUCTURALLY COMPLEX HABITATS 

5.1.  Background 

The abundance and richness of reef fish communi-
ties are underpinned by the provision of structurally 
complex habitat generated by the underlying sub-
strate and associated benthic growth, providing vital 
resources including refuge and aggregation markers 
(DeMartini & Anderson 2007, Graham & Nash 2013). 
However, structural complexity can inhibit many sur-
vey techniques. Extractive methods like trawling and 
other netting techniques risk gear entanglement, 
prompting the use of destructive techniques like the 
use of ichthyocides, or non-invasive approaches such 
as eDNA sampling (e.g. West et al. 2020, Mathon et 
al. 2022). Moreover, the FOV of visual techniques is 
constrained by structural complexity, potentially ob-
scuring reef-attached fishes from detection and mak-
ing sampled volumes difficult to estimate. 

5.2.  IS application 

IS has proved particularly popular for detecting fish 
assemblages associated with structurally complex ar-
tificial habitats that cannot be effectively surveyed 
with alternative methods like low-frequency echo-
sounding (Moursund et al. 2003) and netting tech-
niques (Able et al. 2013, Schmidt et al. 2018, Lenihan 
et al. 2019, Braga et al. 2022). Fish−habitat associa-
tions quantified with IS benefit from being able to re-
solve and focus on discrete structural features in the 
FOV (Viehman & Zydlewski 2015). Fishes around nu-
merous artificial habitats of varying complexity have 
been surveyed using IS, including piers (Able et al. 
2013, Grothues et al. 2016, Shahrestani et al. 2017); 
sea walls (Accola et al. 2022); wind turbine monopiles 
(van Hal et al. 2017); hydroelectric turbines (Viehman 
& Zydlewski 2015, Piper et al. 2018, Staines et al. 
2022); levees (Eggleston et al. 2020); dams (Moursund 
et al. 2003, Grote et al. 2014, Braga et al. 2022); and 

dedicated artificial reefs, including reefed oil and gas 
platforms (Fig. 1), fish towers (Sibley et al. 2023; 
Figs. 2 & 3), and shipwrecks (Plumlee et al. 2020). IS 
has also been applied in natural habitats where alter-
native methods are not viable. Shallow water, such as 
the creeks surveyed by Lankowicz et al. (2020) and 
the intertidal salt marsh pool of Rieucau et al. (2015), 
are inaccessible to seines and trawls, as are narrow 
bodies of water like the tidal channels surveyed by 
Cotter & Polagye (2020a,b). 

Fishes associated with complex natural habitats 
have also been quantified using IS. Grabowski et al. 
(2012) deployed IS in habitats of varying complexity, 
from high-relief boulder and lava fields to low-relief 
sandy seabed. Artero et al. (2021) and Frias-Torres & 
Luo (2009) used IS to survey fishes at a rocky tropical 
reef and mangrove forest, respectively, both of which 
are structurally complex and challenging to survey. 
Dunn et al. (2023) used IS to estimate diversity asso-
ciated with fringing oyster reefs, de tecting a size-
 diverse community that showed minimal temporal 
variation in abundance. However, the complexity of 
the oyster reefs was considered to mask vulnerable 
site-attached fishes from detection, such that the 
smallest taxa were likely underestimated. Olson et 
al. (2023) de ployed an IS to quantify fish size spectra 
in assorted nearshore habitats of varying structural 
complexity, including seagrass beds, coral reefs, and 
mangroves, evidencing differences across habitats 
that reflect variation in structural complexity. Again, 
however, fishes hiding within the physical habitat 
structure could not be detected, likely resulting in 
the underrepresentation of smaller, more vulnerable 
species. 

In some instances, the architecture of natural habi -
tats has been defined using IS, a practice that could 
enhance our understanding of reef fish−habitat asso-
ciations by more effectively quantifying reef structural 
complexity. Griffin et al. (2020) used 2 ARIS Explorers 
(1800 and 3000), both at 1.8 MHz, to characterise the 
heterogeneity and extent of biogenic reefs formed by 
tube-dwelling polychaetes (Sabellaria). The authors 
were able to resolve the structure of individual 
colonies, including quantification and categorisation 
of Sabellaria coverage, patchiness, and vertical relief. 
Estimates of vertical re lief were consistent with optic 
and side scan sonar. However, the IS struggled to dis-
criminate low-relief colonies from the seabed, princi-
pally because these colonies did not generate the dis-
tinct acoustic shadows characteristic of taller colonies. 
In contrast, fine-scale heterogeneity was ensonified 
on a gravel riverbed by Maxwell & Gove (2007), in 
parallel to the discrimination of Chinook salmon 
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Onco rhynchus tshawytscha redds by Tiffan et al. 
(2004) that were characterised by conspicuous 
acoustic shadows. Likewise, the pockhole-like nests 
of Antarctic icefish Neopagetopsis ionah were visu-
alised by Purser et al. (2022), with IS contributing to 
the discovery and  mapping of a vast breeding colony. 
At larger scales, IS was even considered by Maxwell 
& Smith (2007) to be comparable to traditional meth-
ods of bathymetric profiling, particularly in distin-
guishing offshore slope gradients. The resolution of IS 
is even sufficient to depict soft benthic growth includ-
ing soft corals of the order Alcyona cea (Figs. 2 & 3). 

6.  LIMITATIONS OF IS 

IS has unquestionably provided vast insight into the 
abundance, richness, and size of fish communities 
across as sorted marine and freshwater habitats that 
are often difficult to sample with alternative methods. 
However, several limitations of IS have been reported 
across multiple studies. Further investigation and, 
where possible, remediation of these limitations will 
be essential to optimise IS for fish surveys across a 
range of habitats, including reefs. 

6.1.  Resolution 

Overarchingly, acoustics cannot de -
tect different colours and patterns — a 
characteristic benefit of optics. Identi-
fying discrete species and individuals 
that may vary in visual traits is there-
fore very challenging; despite at tempts 
to make taxonomic inferences from IS 
data alone as described in Section 3, 
species identification using IS has 
proven unsuccessful in many cases 
(e.g. Becker et al. 2013, O’Connell et al. 
2014, Egg et al. 2018). Instead, the 
 detection and distinction of other fine-
scale details, particularly morphologi-
cal features, are contingent on resolu-
tion, in turn a function of frequency. 
However, morphometrics are not al-
ways quantified successfully. Van Hal 
et al. (2017) reported the length and 
shape of fishes to be less detailed than 
anticipated when using a DIDSON (1.1 
MHz), resulting in a failure to identify 
the species present when comparing 
with alternative evidence. Likewise, 

Hwang et al. (2017) experienced challenges in detect-
ing the extremes of fishes at the frequencies used (1.1 
and 1.8 MHz; DIDSON), resulting in underestimations 
of total length. IS resolution has also proven limiting 
in distinguishing fishes in dense schools (Able et al. 
2013; Fig. 4), not least given the masking of individu-
als by the shadows cast by other fishes (Magowan et 
al. 2012) and is particularly apparent for fishes smaller 
than 10 cm (Becker et al. 2011b). Ensonified fishes in 
dense schools therefore may not be countable (Braga 
et al. 2022) or measurable (Becker et al. 2016). Ulti-
mately, the highest possible resolution is desirable in 
such circumstances. However, acoustic pulses attenu-
ate faster at higher frequencies, hence range is in-
versely proportional to frequency. Decreasing resolu-
tion with range means targets at greater distances 
from the IS are less accurately resolved (Able et al. 
2013), which can particularly impact size estimates 
(Viehman & Zyd lew ski 2015, Staines et al. 2022). 
Nonetheless, as  discussed in Section 4, this is typically 
not an issue at short to intermediate ranges and can 
be further  mitigated by developing ISs with narrower 
and more numerous beams that are propagated at 
higher  frequencies. 
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Fig. 4. Still frame from a Blueprint Subsea Oculus Imaging Sonar (IS) operat-
ing at 1.2 MHz at Hin Bai, a pinnacle coral reef in the western Gulf of Thai-
land. The resolution of the IS was sufficiently high to detect sea whips (order 
Alcyonacea), a type of soft coral protruding from the hard substrate of the reef. 
Two fish schools of low and high density were also captured, demonstrating 
the potential of IS to profile fish schooling dynamics. However, the resolution 
of the IS was not sufficient to discriminate individuals in the dense school
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6.2.  Noise 

IS is also subjected to numerous sources of noise. 
Ensonification of background structures such as the 
seabed or benthic growth can mask echoes from both 
small (Dunn et al. 2023) and large (Parsons et al. 
2014) fishes located between the structure and the IS 
(Rose et al. 2005, Magowan et al. 2012, Viehman & 
Zydlew ski 2015, van Hal et al. 2017, Braga et al. 
2022), examples of which are illustrated by Sibley et 
al. (2023). Entrained air in turbulent water can also 
re flect sound (Grote et al. 2014, Viehman & Zydlew -
ski 2015, Cotter & Polagye 2020a,b). Entrained air 
echoes are particularly difficult to distinguish from 
small fish echoes (Holmes et al. 2006, Handegard & 
Williams 2008). Echoes from other non-fish objects, 
including debris, non-fish biota, and suspended or -
ga nic matter (Holmes et al. 2006, van Hal et al. 2017, 
Staines et al. 2022), are also produced, reducing the 
signal-to-noise ratio (Maxwell & Gove 2007) and 
sometimes interfering with one another to produce 
‘speckle noises’ that often appear similar to compara-
bly sized fishes (Cho & Yu 2015, Staines et al. 2022, 
Wei et al. 2022; Fig. 1). Discriminating be tween 
fishes and speckle noises can prove particularly diffi-
cult if the fishes are not displaying active behaviour 
(Staines et al. 2022). When IS is deployed high in the 
water column, interference from the surface of the 
water may also conceal fish detections (Gutiérrez-
Estrada et al. 2022, Staines et al. 2022). Side-lobe 
interference (also known as ‘crosstalk’) can impede 
fish detection and occurs when adjacent beams in 
the sonar array encounter the same dense object, 
generating noise in those adjacent beams at variable 
range (Cotter & Polagye 2020b, Sibley et al. 2023; 
Fig. 3). Fishes that are orientated perpendicular to 
the beam array at sufficiently close ranges may be 
de tected in the centre of some beams and the side 
lobes of others (Hightower et al. 2013). Ultimately, 
most sources of noise generate echoes of lower inten-
sity than fishes themselves. Therefore, implementing 
a conservative echo intensity threshold, as often 
practiced in lower-frequency echosounding (Korne -
lius  sen et al. 2008), may eliminate erroneous detec-
tions and interferences. 

6.3.  Display 

IS is limited in the way echoes are displayed. IS 
compresses acoustic signals from detection in 3 di -
men sions to presentation in 2 dimensions, such that 
fishes in the same vertical plane cannot be distin-

guished from one another (Martignac et al. 2015, Egg 
et al. 2018). In instances of high fish density, this can 
cause underestimation of abundance and details of 
behaviours (e.g. predation) to be lost (Rakowitz et al. 
2012, Price et al. 2013). One solution practiced by 
Holmes et al. (2006) is to rotate the sonar to provide 
information on vertical distributions having ensoni-
fied fishes in the horizontal dimension. 3-D modell -
ing and reconstruction from 2-D IS imagery is also 
possible (Castellani et al. 2005, Jing et al. 2018), and 
the potential of true 3-D acoustic cameras continues 
to be explored (Lagudi et al. 2016). 

6.4.  Data processing 

Ultimately, long-term deployments of IS generate 
vast amounts of data (Capoccioni et al. 2019, Cook et 
al. 2019). Processing IS data can be manually per-
formed or semi- or fully-automated. Manual process-
ing can take a long time (Schmidt et al. 2018, Wei et 
al. 2022), and vast datasets are typically analysed by 
multiple observers. However, inter-observer biases 
can arise, particularly based on differing interpre -
tations of echoes as either fishes or non-fish objects 
(Keefer et al. 2017, Jones et al. 2021) and of different 
sources of noise (Petreman et al. 2014). Moreover, 
manual counting can be erroneous when fish density 
is high (Martignac et al. 2015) or fishes are milling 
in the FOV (Petreman et al. 2014) or multipassing 
(Breh mer et al. 2006). Differences in repeat counts 
can even arise within individual observers (Mago -
wan et al. 2012). 

Automated processing of IS data is increasingly 
used to improve the efficacy of analysing large data -
sets whilst reducing human error (Eggleston et al. 
2020, Connolly et al. 2022, Wei et al. 2022). Automa-
tion incorporates refined and customisable fish de -
tection, quantification, classification, measurement, 
and tracking algorithms (Mueller et al. 2008, Han et 
al. 2009, Hightower et al. 2013, Rieucau et al. 2015, 
Both mann et al. 2016, Cotter & Polagye 2020a,b, 
Eggles ton et al. 2020, Pratt et al. 2021, Feng et al. 
2023, Fernandez Garcia et al. 2023, Le Quinio et al. 
2023) that are essential for inferences of taxonomic 
richness and assessments of abundance, size, and 
be  haviour (Kang 2011). Foremost, automated pro-
cessing necessitates enhancing the images by sub-
tracting background noise (Han et al. 2009, Viehman 
& Zydlewski 2015, Capoccioni et al. 2019, Eggleston 
et al. 2020, Helminen & Linnansaari 2021). This is 
typically achieved by excluding echoes attributable 
to non-target sources through comparison with refer-
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ence images that contain no background noise, and 
then excluding echoes below a pre-determined in -
tensity threshold (Staines et al. 2022, Wei et al. 2022). 
However, automatic partitioning of fish echoes from 
background noise and non-fish objects is not always 
successful (Cotter & Polagye 2020a). Different taxa 
may not be discriminated (Magowan et al. 2012), and 
multipassing fishes may not be tracked successfully, 
leading to autocorrelation in automated fish counts 
(Shahrestani et al. 2017). Moreover, most automated 
algorithms for IS data post-processing were devel-
oped for optic images, and algorithms tailored specif-
ically to high-frequency acoustic data remain in the 
early stages of development (Wei et al. 2022). Also, 
automated processing can be highly costly given the 
necessary computer quality, prohibiting its wide-
spread and routine use (Bilotta et al. 2011, Lenihan et 
al. 2019, Helminen & Linnansaari 2021). 

Automated techniques have shown broad consis-
tency with manual processing for the identification, 
quantification, tracking, and measurement of fishes 
(Boswell et al. 2008, Han et al. 2009, Eggleston et al. 
2020, Helminen & Linnansaari 2021, Zang et al. 2021, 
Feng et al. 2023, Shen et al. 2023), though stark in -
congruity has also been reported (Handegard & 
Williams 2008, Mueller et al. 2008, Magowan et al. 
2012, Helminen et al. 2020, Helminen & Linnansaari 
2021, Le Quinio et al. 2023), particularly due to back-
ground noise influences (Helminen & Linnansaari 
2021, Shen et al. 2023) and fragmentation of targets 
with sinusoidal swimming patterns (Le Quinio et al. 
2023). Nonetheless, there are examples of full auto -
mation (e.g. Mueller et al. 2008), which has been re -
ported to perform best for smaller, less dense targets 
that are similar in size and shape (Handegard & 
Williams 2008), although recent studies have pro-
posed automated approaches that have achieved 
higher detection rates for larger targets than for 
smaller targets (Fernandez Garcia et al. 2023, Le 
Quinio et al. 2023, Shen et al. 2023). As introduced in 
Section 2, deep-learning algorithms hold promise for 
accurate automated quantification of fish abundance 
and diversity and are continuously improving (Tar-
ling et al. 2022). Notably, Connolly et al. (2022) de -
mon strated that the success of deep-learning for 
abundance quantification can be increased when in -
corporating target shadows in detection algorithms, 
as opposed to solely relying on targets themselves. 
However, automated shadow detection is limited in 
instances of high fish density (e.g. milling fishes) 
where shadows may be obscured by other targets. 
Deep-learning success is underpinned by the correct 
labelling of data upon which the network is trained, 

such that human error is still possible in automated 
processing (Kandimalla et al. 2022). 

6.5.  Range effects 

Analogous to the contingency of optical FOV on 
light, the FOV of IS is dependent on the frequency 
used. At the highest frequencies around 3 MHz, IS 
range rarely exceeds 5 m, with narrower vertical and 
horizontal angles of ensonification than lower fre-
quencies. A limited FOV has posed several chal-
lenges in IS fish surveys, including difficulty tracking 
individuals (Mueller et al. 2010, Viehman & Zydlew -
ski 2015) and detecting behaviours (e.g. habitat asso-
ciations) that occur at ranges exceeding IS range 
(Viehman & Zydlewski 2015). Additionally, the FOV 
of IS is also constrained at very short ranges. Here, 
the IS beam array is still forming, hence objects in the 
immediate vicinity of the sonar are not fully ensoni-
fied (Han & Uye 2009). This ‘near-field zone’ typi-
cally extends to a metre (Shahrestani et al. 2017); 
given that the FOV is already constrained at short 
ranges due to the tapered shape of the beam array, 
fishes (especially large fishes, Grote et al. 2014) at 
close ranges often go undetected (Mueller et al. 
2006). To some extent, this can be mediated by de -
ploying the IS on a mobile platform (Wei et al. 2022), 
like an ROV, to ensonify greater volumes of water, 
increasing the coverage of habitats and associated 
fish populations (Plumlee et al. 2020). 

7.  CONCLUSION 

IS has already been demonstrated as a valuable 
tool for the description and quantification of fish as -
semblages in aquatic habitats, most notably in cir-
cumstances where alternative methods such as opti-
cal instruments are inadequate. Overall, this review 
has found that the effectiveness of ISs in profiling fish 
abundance, species richness, and size, as well as 
their ability to operate in structurally complex habi-
tats, render them viable tools for surveying reef fish 
assemblages, both in conjunction with alternative 
methods (e.g. optical instruments) and independ-
ently. Nevertheless, like all survey techniques, IS 
quantifies these metrics with varying degrees of 
error, often a product of the specifications of the ISs, 
the applications for which they are used, and the cir-
cumstances in which they are deployed. The contin-
ued description and attempted mediation of several 
notable limitations, including various sources of 
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noise and data-processing issues, will further en -
hance the potential of IS in reef fish monitoring. 

This review advises future studies to compare IS 
estimates of abundance, species richness, and size 
using alternative methods where possible, particu-
larly to further understand the causes of erroneous IS 
measurements. When alternative methods cannot be 
used, abundance and richness estimates from IS 
must instead be considered as relative. Moreover, 
the development of a standardised calibration proto-
col founded on numerical estimates of error from the 
various causes of inaccurate IS size measurements is 
critical, not least to inform reef fish biomass estima-
tions for fisheries stock assessments. Supplementing 
assessments of abundance, species richness, and size 
with examinations of fish behaviour using IS, partic-
ularly in structurally complex habitats where other 
methods are constrained, will shed further light on 
fish assemblage dynamics such as predator−prey 
interactions (Becker et al. 2011a, Price et al. 2013, 
Rieucau et al. 2016), movements within and between 
habitats (e.g. McCauley et al. 2014, Capoccioni et al. 
2019), reproductive strategies (Tiffan & Rondorf 
2005, Crossman et al. 2011, Grabowski et al. 2012, 
Lang kau et al. 2016, Chang et al. 2017), and school-
ing behaviours (e.g. Handegard et al. 2012, Viehman 
& Zydlewski 2015). Combined application of IS and 
optics is also desirable, especially given the potential 
of each system to mitigate the biases of the other 
(Accola et al. 2022), and the detail afforded when 
combining simultaneous IS and optical data (see Ter-
ayama et al. 2019). 

Improving our capacity to detect reef fish assem-
blages is critical, especially to monitor the impacts of 
anthropogenic change on valuable taxa and commu-
nities. Non-invasive methods that pose minimal im -
pacts on the target fish assemblages are particularly 
desirable. Importantly, IS continues to detect taxa 
that are challenging to monitor with traditional sam-
pling methods (Lankowicz et al. 2020, Jones et al. 
2021). The non-intrusiveness and versatility of ISs 
have motivated their increased use to survey fishes 
in protected habitats (Griffin et al. 2020, Bennett et 
al. 2021) and poorly studied biomes (e.g. the deep 
sea, Giorli & Au 2017, Giorli et al. 2018). Use of IS to 
characterise the structural complexity of habitats 
(e.g. Griffin et al. 2020) has markedly improved our 
knowledge of these systems, providing a fundamen-
tal basis for long-term conservation efforts. IS con -
tinues to generate important information on the 
effectiveness of species and habitat management 
stra  tegies (Kimball et al. 2010, Egg et al. 2017, Accola 
et al. 2022) that ultimately informs whether conser-

vation targets are being met (Holmes et al. 2005, 
Bilotta et al. 2011, Rand & Fukushima 2014, Ogburn 
et al. 2017, Mora et al. 2018, Griffin et al. 2020). This 
review underlines that IS can contribute to the defi-
nition of conservation measures through the surveil-
lance and analysis of reef fish assemblages. 
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