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INTRODUCTION 
 

In Saccharomyces cerevisiae, two forms of ageing are 

modelled, including the replicative lifespan (RLS), 

which measures the maximum number of mitotic 

divisions a cell can undergo before senescence, and the 

chronological lifespan (CLS), which determines the 

period of time post-mitotic cells retain the ability to exit 

from quiescence [1, 2]. Apart from cytosine methylation 

which is absent in S. cerevisiae [3], other forms of 
chromatin remodelling have been found to regulate RLS 

in yeast [reviewed in 4, 5]. In contrast, epigenetic 

mechanisms linked to CLS regulation are poorly 

characterised, although some epigenetic regulatory 

enzymes associated with RLS also influence CLS. In 

this aspect, the removal of H3K36 demethylase Rph1 

not only extends RLS [6], but also promotes CLS via a 

mitochondrion-to-nucleus signalling affecting gene 

repression at the subtelomeric regions [7]. Moreover, 

the evolutionarily conserved SAGA (Spt-Ada-Gcn5 

acetyltransferase) complex has been associated with 

both CLS and RLS. The structural integrity of SAGA is 

required for both CLS and RLS extension, whereas the 

acetyltransferase activity encoded by GCN5 only 

influences CLS but not RLS [8]. Intriguingly, GCN5 

has been shown to be essential for the retention of 
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activation of Cat8-/Adr1-dependent regulon also promotes the pyruvate dehydrogenase (PDH) bypass, leading 
to acetyl-CoA synthesis, global and targeted H3K9 acetylation. Global H3K9 acetylation levels mediated by Gcn5 
and Hda1 during the transition into stationary phase are positively correlated with senescent cell populations 
accumulated in the aged cell cultures. These data suggest that Gcn5 lies in the centre of a feed-forward loop 
between histone acetylation and starvation-induced gene expression, enabling stress resistance and 
homeostasis but also promoting chronological ageing concomitantly. 
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circular DNA within mother cells, causing the 

accumulation of nuclear pore complexes and 

disorganization of the nuclei of replicative ageing cells 

[9]. However, a number of studies have reported that 

deletion of GCN5 compromises RLS extension 

mediated via the retrograde response [10, 11] or due to 

loss of deubiquitinase activity in SAGA [12]. More 

recently, Huang et al. [13] have revealed that inhibiting 

the histone acetyltransferase activity of Gcn5 or 

reducing GCN5 expression by half in the heterozygous 

mutants significantly extends RLS. These studies 

suggest that Gcn5 may play contradictory roles in RLS 

extension. Similarly, removal of Gcn5 reduces CLS in 

synthetic medium but enhances CLS under winemaking 

conditions [14]. Thus, it remains unclear how 

Gcn5/SAGA regulate lifespan through its roles in 

histone acetylation and transcription regulation.  

 

During the transition from fermentative growth 

(glucose-replete) to stationary phase (glucose-starved), 

yeast cells switch to respiratory growth on non-

fermentable carbon sources, such as ethanol and 

glycerol, and acquire a set of characteristics typical of 

stationary-phase cells, including enhanced resistance to 

a variety of environmental stressors, the accumulation 

of storage carbohydrates (glycogen and trehalose), 

thickening of the cell wall and ultimately, the ability to 

maintain long-term survival [15–17]. We and others 

have previously reported that CLS extension in yeast is 

dependent on metabolic reprogramming to accumulate 

storage carbohydrates, especially trehalose, and the 

activation of the stress response program mediated in 

part by the stress response factors Msn2/Msn4 

(Msn2/4) and the post-diauxic shift factor Gis1 [2, 18]. 

Metabolic reprogramming to store carbohydrates and 

the activation of the stress response program are 

coordinated by a number of signalling pathways. These 

include the Greatwall kinase Rim15 and the DYRK 

kinase Yak1 that are negatively regulated by the 

nutrient-sensitive TOR and PKA pathways [19, 20], the 

cell wall integrity pathway, the energy-sensing SNF1 

complex and the Gsk-3 homologue Mck1 [21, 22]. To 

find the epigenetic factors that are involved in the 

metabolic reprogramming and/or the stress response 

program, we screened all the mutants of HAT (histone 

acetyltransferase) and HDAC (histone deacetylase) in 

the deletion library. As a result, we revealed that GCN5, 

functioning in the HAT module of the SAGA/SLIK 

complex, is epistatic to HDA1, encoding the catalytic 

subunit of the HDA1 complex to activate starvation-

induced gene expression, respiratory cell growth,  

redox homeostasis and the accumulation of storage 

carbohydrates during the transition into stationary 
phase. Intriguingly, the gcn5Δ mutants lost their 

clonogenic potential early in the stationary phase but 

displayed a longer maximum lifespan than their WT 

counterparts, indicating the contradictory roles of Gcn5 

in CLS regulation. Subsequent analyses of the trans-

criptome, metabolome and ChIP assays suggest that the 

readouts of the Gcn5-mediated histone acetylation not 

only promote the accumulation of pro-longevity 

characteristics and CLS extension, but also activate the 

PDH bypass, acetyl-CoA synthesis, and global histone 

acetylation, the latter of which is negatively associated 

with clonogenic survival among the aged cells. These 

findings revealed the multiple facets of histone 

acetylation in starvation-induced gene expression and 

their contrasting roles in CLS regulation, providing 

novel insights into the ageing mechanisms in non-

dividing cells.  

 

RESULTS 
 

Gcn5 and Hda1 play opposing roles in starvation-

induced HSP expression 

 

To find the epigenetic factors that are involved in 

starvation-induced stress response, we screened all the 

viable HDAC and HAT mutants from the BY4741 

deletion library, using the heat shock protein (HSP) 

reporters, pHSP26-HSP26-RFP/VFP (a member of 

small HSP) and pSSA3-RFP/VFP (a member of the 

HSP70 family) [21]. Among the HDAC mutants, only 

the hda1Δ, hda2Δ and hda3Δ deletants displayed 

enhanced expression of both reporters (Supplementary 

Figure 1A, 1B), indicating that the HDA1 HDAC 

complex negatively influences the starvation-induced 

HSP expression. The HDA1 complex consists of the 

catalytic Hda1 homodimer, which interacts with the 

Hda2-Hda3 heterodimer to form an active tetramer to 

deacetylate histones H2B, H3 and H4. Disruption of any 

of the three subunits has been shown to similarly 

abolish the catalytic activity of the HDA1 complex both 

in vitro and in vivo [23]. Hence, we only include the 

hda1Δ mutant for further investigation. Among the 

HAT mutants, removal of GCN5, encoding the catalytic 

subunit of the SAGA/ADA/SLIK complexes, led to 

significantly reduced levels of both reporters 

(Supplementary Figure 1C, 1D). Intending to ensure the 

same genetic background, the gcn5Δ and hda1Δ 

deletion mutants were regenerated from BY4742 cells. 

As shown in Figure 1A, 1B, starvation-induced HSP 

expression was dramatically reduced in the gcn5Δ 

mutants and significantly enhanced in the hda1Δ cells. 

Further removal of HDA1 has no impact on the levels of 

either reporter observed in the gcn5Δ mutants (Figure 

1A, 1B), suggesting an epistatic relationship between 

them. Moreover, in comparison to pHSP26-VFP, 

starvation-induced pSSA3-VFP is expressed to a 

relatively higher level in WT or hda1∆ cells and is more 

severely reduced in the gcn5∆ or gcn5∆hda1∆ mutants 

(note the different scales in Y axis of Figure 1A, 1B), 
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suggesting that the acetylation status has a more 

significant influence on the expression of SSA3 than that 

of HSP26. The gcn5Δ mutants were previously shown 

to have respiratory growth defects [24]. The moderate 

fermentative or more severe respiratory growth defects 

exhibited by the gcn5Δ cells were not rescued by HDA1 

removal (Figure 1C). These data imply that the roles of 

the HDA1 complex in the regulation of starvation-

induced gene expression are dependent on Gcn5.  

 

Gcn5 functions in the HAT module of SAGA to 

promote HSP expression and respiratory growth 

 

Gcn5 only acetylates nucleosomal histones efficiently 

when functioning within multi-subunit complexes. To 

find which complex (Supplementary Figure 2A) is 

responsible for the stress response and/or respiratory 

growth, we next screened all the viable mutants of the 

three complexes in the BY4742 library. Deletion of 

any of the HAT module subunits (GCN5, ADA2, 

NGG1, and SGF29) led to dramatic reduction of 

pSSA3-VFP (Figure 2A) and pHSP26-VFP (Figure 

2B, except for ngg1Δ) and severe respiratory growth 

defects (Figure 2C), supporting that the integrity of the 

HAT module is essential to the activation of stress 

response and respiratory growth. However, removal of 

the ADA-specific subunits resulted in moderately 

reduced pSSA3-VFP expression only in ahc2Δ 

(Supplementary Figure 2B) but little impact on 

pHSP26-VFP expression (Supplementary Figure 2C) 

or respiratory growth (Supplementary Figure 2D). 

These data suggest that the ADA complex may  

play only a minor role in starvation-induced gene 

expression. In contrast, deletion of the SAGA-specific 

subunit SPT7 significantly reduced the expression 

levels of both reporters (Figure 2A, 2B) and 

respiratory growth on either glycerol or ethanol 

(Figure 2C), similar to those observed for gcn5Δ. 

Moreover, removal of SAGA/SLIK-specific SPT3 or 

the SAGA-specific SPT8 significantly enhanced the 

expression levels of the two reporters (Figure 2A, 2B), 

consistent with their roles in preventing SAGA from 

interaction with the transcriptional machinery [25, 26]. 

The SLIK complex contains a unique subunit Rtg2 

[27] and a truncated version of the Spt7 modified by 

the proteinase Pep4 [28]. Removal of SLIK-specific 

 

 
 

Figure 1. Gcn5 exhibits an epistatic relationship with Hda1 in starvation-induced HSP expression and cell growth. (A, B) 
Starvation-induced expression levels of pHSP26-VFP (A) and pSSA3-VFP (B); (C) Relative growth rates. YPD (2% glucose) and YPGE (3% glycerol 
and 1% ethanol). The levels of the HSP reporters in WT cells at exponential phase (5.5h) were set to 1. The significance of differences was 
revealed by two-factor ANOVA analysis for HSP reporters across all the timepoints (A, B) or by student’s t-test for growth rates (C). ***: p < 
0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05. Error bars represent standard deviation calculated from biological triplicates.  
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RTG2 or PEP4 resulted in significant reduction of 

both reporters (Figure 2A, 2B). However, unlike 

gcn5Δ mutants, rtg2Δ and pep4Δ mutants displayed 
no observable respiratory growth defects (Figure 2C). 

Put together, these data suggest that Gcn5 is likely to 

function within the HAT module of the SAGA/SLIK 

complex to regulate the Msn2/4- and Gis1-mediated 

stress response. Meanwhile, Gcn5 may function in the 

HAT module of SAGA to promote respiratory growth.  

 

Within the HAT module of SAGA/SLIK complexes, 

Gcn5 acts as the catalytic subunit. Ada2 functions to 

promote the HAT activity of Gcn5, while Ngg1 plays a 

role in expanding the range of lysine residues that 

undergo acetylation to allow robust nucleosomal histone 

acetylation [29]. Deletion of NGG1 led to similarly 

reduced pSSA3-VFP as observed in the gcn5∆ mutants 

(Figure 2A) but had no impact on the expression of 

pHSP26-VFP (Figure 2B), suggesting that nucleosomal 

histone acetylation is necessary for the expression of 

SSA3 and may not be required for HSP26 induction. 

Furthermore, Ada2 is essential for the proper binding of 

Gcn5-containing complexes to histone H3 N-terminal 

tail [30]. The exact roles of Sgf29 remained unclear, 

although preliminary data indicated that Sgf29 can 

recognise and bind to H3K4me3, hence recruiting 

Gcn5-containing complexes to the N-terminus of 

histone H3 to stimulate histone acetylation [29]. 

Therefore, while deletion of GCN5 and NGG1 abolishes 

and significantly impairs the HAT activity respectively, 

loss of either ADA2 or SGF29 may completely prevent 

the binding of Gcn5-containing complexes to the N-

terminus of histone H3. The more severely reduced 

expression of both reporters observed in ada2Δ and 

sgf29Δ (Figure 2A, 2B) cells may suggest that the 

SAGA/SLIK complex (even without the HAT activity) 

is necessary for optimal gene expression upon glucose 

starvation. 

 

Gcn5 displays contradictory roles in the regulation 

of CLS  

 

Next, we investigated the roles of Gcn5 in 

chronological lifespan extension by measuring the 

ability of stationary-phase cells to exit quiescence 

(colony-forming units, CFU). Simultaneously, cell 

 

 
 

Figure 2. Gcn5 functions within the HAT module of the SAGA/SLIK complex to promote starvation-induced gene expression 
and respiratory growth. (A, B) Relative expression levels of pSSA3-VFP (A) and pHSP26-VFP (B) in mutants of the SAGA/SLIK complexes;  

(C) Spotting assays of cell growth on YPD (2% glucose), YPG (3% glycerol) and YPE (1% Ethanol) media. HAT, histone acetyltransferase module; 
DUB, deubiquitinase module; Core, Core module; SLIK, SAGA-like complex. Expression levels of the two reporters in WT cells at 5.5h post-
inoculation was set to 1. Error bars represent standard deviation calculated from biological triplicates. The significance of difference between 
WT and mutants across all time points was revealed by two-factor ANOVA analysis. ***: p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and 
n.s.: p> 0.05. 
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viability was measured by nuclear DNA staining using 

Sytox Green [21] in cells that have lost their 

membrane integrity [31]. Comparing CFU with cell 

viability indicates the relative levels of viable cells 

capable of quiescence exit, or oppositely, the levels of 

cellular senescence. Compared to WT, the gcn5Δ 

mutants lost their colony-forming ability much faster 

in the early- to mid-stationary phase (≤24 days, Figure 

3A). However, such CFU loss in gcn5Δ mutants was 

constant and more slowly than that seen in WT cells 

towards the late stationary phase (≥30days, Figure 3A) 

when the latter started to lose their CFU rapidly. In 

contrast, the gcn5Δ mutants had similar cell viability 

(>85%) as WT cells during the early- to mid-stationary 

phase (≤24 days, Figure 3B) and lost their viability 

faster than WT cells thereafter (≥30 days, Figure 3B). 

However, the absolute difference of cell viability 

between WT cells and the gcn5Δ mutants is within 

10% until the end of the observational period (note 

that the lower limit on the Y axis is 60% in Figure 3B). 

Relative CFU to cell viability for the gcn5Δ mutants 

was reduced from 100% to ~70% in the first 24 days 

and at a similar rate from ~70% to ~50% between 24 

and 48 days (Figure 3C). In contrast, relative CFU 

potential for WT cells was decreased from 100% to 

nearly 0 during the latter period (Figure 3C). These 

data indicate that Gcn5 plays contradictory roles in the 

regulation of CFU potential of the stationary phase 

cells. Removal of GCN5 results in early but slower 

rate of chronological ageing, thus a longer maximum 

lifespan than that of WT cells.  

 

Compared to WT cells, the hda1Δ mutants did not 

display an improved ability to form colonies (Figure 

3A), as opposed to that demonstrated by Yu et al. [32]. 

One possibility to account for the differences could be 

the dramatically different CFU of WT cells used in the 

two studies. Relative CFU of the WT cells in our study 

continued to increase until day 9 and did not decrease 

below 100% until day 21 (Figure 3A), whereas the 

relative CFU of WT cells in the study by Yu et al. did 

not increase during early stationary phase and started to 

decrease after day 10. Thus, the likely CFU 

improvement as a result of Hda1 removal [32] may not 

be revealed in our study. Nevertheless, Hda1 removal 

did lead to increased cell viability across the entire 

 

 
 

Figure 3. Gcn5 displays contradictory roles in the regulation of chronological lifespan. (A) Relative CFU; (B) Cell viability;  
(C) Normalised CFU to cell viability. Two-factor ANOVA analysis was conducted to reveal the significance of differences across the indicated 
timepoints. ***: p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05. 
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stationary phase tested (Figure 3B). Normalising CFU to 

cell viability indicated that Hda1 removal resulted in 

reduced ability of viable cells to exit quiescence towards 

the late-stationary phase (≥30 days, Figure 3C), indicating 

enhanced senescent cell population in the aged cultures. 

Further removal of HDA1 did not significantly influence 

the clonogenic survival (Figure 3A), cell viability (Figure 

3B) or the CFU/viability ratio (Figure 3C) of the gcn5Δ 

mutants, further suggesting the epistatic relationship 

between GCN5 and HDA1 in CLS regulation. 

 

Gcn5 transcriptionally promotes metabolic 

reprogramming and inhibits ribosome biogenesis 

upon glucose starvation 

 

Intending to find how Gcn5 may regulate CLS extension 

contradictorily, we first conducted RNA-seq analyses of 

the transcriptome isolated from exponentially-growing 

(EXP, glucose-replete) and early post-diauxic shift 

(PDS, glucose-depleted) cells. Differential expression 

(DE) analysis identified 594 genes whose transcription is 

significantly regulated (>2-fold) in glucose-depleted 

gcn5Δ cells. Surprisingly, ~42% of these DE genes were 

upregulated and the rest downregulated in PDS gcn5Δ 
cells (Figure 4A), suggesting that Gcn5 is implicated in 

transcription activation (clusters 1, 2, 3, 4 and 5, Figure 

4A and Supplementary Table 1) as well as 

transcriptional repression (clusters 6 and 7, Figure 4A 

and Supplementary Table 1). Apart from cluster 1, the 

hda1Δ mutants displayed similar gene expression 

patterns as WT cells in all other clusters and the 

expression of these DE genes were similarly regulated in 

the gcn5Δ and gcn5Δhda1Δ mutants (Figure 4A), 

supporting that the roles of HDA1 in glucose starvation-

induced gene expression are largely dependent on 

GCN5.  

 

Enriched GO terms, motifs in the promoter regions 

[33] and potential transcription factors (TFs) 

regulating their expression [34] were identified for 

each gene cluster (Figure 4A). GO analysis indicated 

that ~50% and ~40% of the 201 genes in cluster 6 

were involved in cytoplasmic translation and 

ribosome biogenesis (RiBi) respectively (Figure 4A), 

indicating that GCN5 is necessary for global 

repression of translation in response to glucose 

depletion. Promoter analysis revealed that the most 

significantly overrepresented motif is the consensus 

sequence targeted by Rap1, the transcription factor 

required for expression of ribosomal protein genes 

(RPGs) and RiBi genes [35]. Maximal expression of 

RPGs also requires RPG-specific transcription 

activators Fhl1 and Ifh1, the latter of which has been 

shown to be rapidly released from target promoters 

under the stress conditions or TORC1 inhibition to 

downregulate RPG expression [35]. In this regard, 

Gcn5-mediated acetylation of Ifh1 negatively 

modulates the transcriptional activity of Ifh1 [36, 37].

 

 
 

Figure 4. Gcn5 transcriptionally promotes starvation-induced stress response and respiratory metabolisms. (A) Hierarchical 

clustering of differentially expressed genes regulated by GCN5 at PDS phase (n=594, net log2 Fold change >= 1). (B) A pie chart showing the 
overlap genes between Cat8-/Adr1-targets and those dependent on Gcn5 in cluster 4. (C) Relative Fbp1-GFP levels in cells grown to glucose 
starvation; The significance of differences was revealed by two-factor ANOVA analysis for Fbp1-GFP reporters across all the timepoints. ***: 
p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05. Error bars represent standard deviation calculated from biological triplicates.  
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Thus, removal of Gcn5 would lead to insufficient 

inhibition of Ifh1 and hence moderate expression of 

RPG and RiBi genes in glucose-depleted cells (cluster 

6). Furthermore, a number of genes implicated in the 

glycolysis pathway, including HXT2, HXT3, HXK2, 

PFK27, TDH2, GPM1, ENO2 and CDC19, were also 

found in cluster 6. Intriguingly, the transcription of 

these glycolytic genes also requires Rap1 [38, 39]. 

These data suggest that Gcn5 may target transcription 

factors directly to repress Rap1-mediated gene 

expression in response to glucose depletion.  
 

Similar bioinformatic analyses indicated that Gcn5 

promotes starvation-induced stress response and 

carboxylic acid metabolic process (clusters 3 and 4 in 

Figure 4A). Among the top 20 genes of cluster 3 (Table 

1), many encode chaperones or hydrophilins (GRE1, 

HSP32, HSP33, SIP18, SNO4 and SPG1) that are 

necessary for survival under stress conditions and a few 

are implicated in peroxisomal and mitochondrial 

metabolisms (CYB2, POX1, FOX2 and SHH4). We and 

others have previously demonstrated that starvation- or 

rapamycin treatment-induced expression of heat shock 

proteins and hydrophilins, such as GRE1 and those 

reporter genes (SSA3 and HSP26) used to identify 

GCN5 and HDA1 in Figure 1 were mediated by the 

stress response transcription factors Msn2/4 and the 

post-diauxic shift factor Gis1 [40–45]. Indeed, 

consensus sequences targeted by Msn2/4 and Gis1 were 

significantly enriched in the promoter regions of cluster 

3 genes (Figure 4A), supporting that Gcn5 is necessary 

to activate starvation-induced stress response mediated 

by both Msn2/4 and Gis1. Similarly, motifs targeted by 

the carbon source-responsive (CSRE) transcription 

factors Adr1 and Cat8 were overrepresented in the 

promoter sequences of cluster 4 genes (Figure 4A). 

Among the group of 53 genes that were activated by 

Cat8 and/or Adr1 [46], 16 were found in cluster 4 

(Figure 4B), including those involved in gluco-

neogenesis (FBP1 and PCK1) and acetyl-CoA synthesis 

(ACS1). Cluster 4 genes also include those implicated in 

the TCA cycle (ACO1, IDP1, KGD1, LSC2, FUM1), 

the PDH bypass (ADH2, ALD6 and ACS1) 

(Supplementary Figure 3) and in oxidative phosphory-

lation (Supplementary Figure 4).  

 

To further confirm that Gcn5 is involved in Cat8/Adr1-

dependent gene expression, Fbp1-GFP fusion protein 

under the control of the endogenous FBP1 promoter 

was expressed in WT and mutant cells grown to glucose 

starvation. As demonstrated previously [46], 

derepression of Fbp1-GFP in response to glucose 

depletion was dependent on CAT8 (comparing 24h/48h 
to 6h, Figure 4C). Compared to WT cells, the induced 

levels of Fbp1-GFP were slightly higher in the hda1Δ 

mutants but nearly abolished in the gcn5Δ single or 

gcn5Δhda1Δ double mutants (Figure 4D), confirming 

that Gcn5 is essential to the activation of Cat8/Adr1-

dependent gene expression in response to glucose 

starvation, whereas Hda1 has only a marginal impact. 

Transcription activation of Cat8-dependent genes is 

mediated by the energy-sensing Snf1 complex in 

glucose-depleted cells [47, 48]. Furthermore, H3 

phosphorylation by Snf1 has been shown to precede 

SAGA recruitment and chromatin remodelling to 

activate Cat8- and Adr1-dependent transcription [49–

51]. Put together, these and our data suggest that in 

response to glucose depletion, Gcn5 may function to 

repress the expression of the translational machinery 

and as the catalytic subunit of the SAGA/SLIK 

complexes, to remodel chromatin to activate a number 

of regulons: the stress response program mediated by 

Msn2/4 and Gis1, and the respiratory metabolisms 

promoted by the Snf1 complex and its downstream 

activators Cat8 and Adr1.  

 

Gcn5 enables redox homeostasis and stress 

resistance to promote CLS extension 

 

Next, we assayed the phenotypes of the gcn5Δ mutants 

which may be associated with CLS extension. Early-

stationary phase gcn5Δ cells displayed severe defects in 

resisting exogenous oxidative stress (Figure 5A), 

corresponding to their significantly increased 

intracellular ROS levels (Figure 5B). In comparison, 

ROS accumulation was insignificantly reduced in the 

hda1Δ mutant (Figure 5B). Further removal of HDA1 

did not influence the levels of intracellular ROS (Figure 

5B) or the defects to resist oxidative stress in gcn5Δ 

cells (Figure 5A). In agreement with enhanced 

intracellular ROS accumulation, the transcript levels of 

mitochondrial superoxide dismutase SOD2 and catalase 

CTA1 were significantly impaired in starved cells 

bearing gcn5Δ (Supplementary Figure 5), suggesting 

that the anti-oxidant defence system is impaired in the 

gcn5Δ mutants. Similarly, early-stationary phase gcn5Δ 
and gcn5Δhda1Δ mutants display minor defects in heat 

resistance (Figure 5A) and marginally reduced trehalose 

and glycogen accumulation (Figure 5C). These data 

suggest that Gcn5 is necessary to promote CLS 

extension through its roles in the expression of 

molecular chaperones (Figure 1 and Table 1), the anti-

oxidant defence system and optimal accumulation of 

trehalose to maintain redox homeostasis and resistance 

to stress conditions. 

 

Gcn5 is required for acetyl-CoA synthesis and 

histone acetylation on target gene promoters  

 
To confirm that Gcn5/SAGA may be recruited to 

regulate respiratory metabolisms, we next interrogated 

the levels of histone acetylation at the target gene 
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Table 1. Top 20 Gcn5-regulated genes in cluster 3 of Figure 4A. 

Gene name Description 

CYB2 Cytochrome b2 

GRE1 Hydrophilin  

SNO4 Chaperone and cysteine protease 

DPC7 Unknown function 

ATG39 Autophagy receptor  

HSP32 Chaperone and cysteine protease 

SPG1 Required for high temperature survival during stationary phase 

SIP18 Phospholipid-binding hydrophilin 

PAU22 Unknown function 

YLR157W-D Unknown function 

SHC1 Chitin synthase III activator 

YLR161W Unknown function 

PAU11 Unknown function 

YGL260W Unknown function 

PAI3 Pep4p inhibitor 

POX1 Fatty-acyl coenzyme A oxidase 

FOX2 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase 

SHH4 Putative alternate subunit of succinate dehydrogenase  

SPS100 Protein required for spore wall maturation 

HSP33 Chaperone and cysteine protease 

 

 
 

Figure 5. Gcn5 is necessary for redox homeostasis and stress resistance. (A) Oxidative and heat shock stress resistance displayed by 

early-stationary phase cells, (B) Mean ROS levels and (C) Trehalose and Glycogen accumulated in early-stationary phase cells. Error bar 
represents standard deviation calculated from biological triplicates. The significance of difference between WT and mutants was calculated 
by student’s t-test. ***: p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05. 
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promoters through chromatin immunoprecipitation 

(ChIP) analysis. Histone H3 lysine 9 (H3K9) is a 

well-known target of Gcn5 within the SAGA complex 

[52, 53]. Overall H3K9ac levels were decreased by 

two-fold in WT cells transitioned from glucose-

replete (EXP) to glucose-depleted conditions (PDS, 

Figure 6A). In comparison, H3K9ac levels between 

the two conditions remained similar at the promoter 

regions of FBP1 (Figure 6B) and ACS1 (Figure 6C), 

or significantly increased at the PCK1 promoter 

(Figure 6D) in PDS cells. Strikingly, H3K9ac levels at 

any of the promoter regions were significantly 

reduced in the gcn5Δ deletants at the glucose-replete 

condition and more severely decreased upon glucose 

depletion (Figure 6B–6D). Recently, Gcn5/SAGA was 

shown to interact with Cat8 and Adr1 transcription 

factors to activate gluconeogenic and fat metabolism 

genes in cells subject to acute glucose starvation [54]. 

Our data suggest that Gcn5/SAGA is not only 

necessary for the basal levels of genome-wide H3K9 

acetylation but also recruited to maintain or to 

enhance H3K9ac levels at the target genes in response 

to glucose depletion and when cells were grown on 

non-fermentable carbon sources. Furthermore, in 

contrast to fat metabolisms activated under acute 

glucose withdrawal [54], the PDH bypass pathway 

may be important for the provision of Acetyl-CoA in 

cells transitioned from fermentative growth to 

stationary phase (see next paragraph). 

We next assessed the metabolome extracted from 

glucose-depleted cells using LC-MS/MS. In comparison 

to WT, the levels of the TCA cycle intermediates apart 

from aconitate and oxaloacetic acid (OAA) were not 

significantly changed (Figure 6E), suggesting that the 

flux through the TCA cycle was largely maintained 

despite transcription downregulation of most of the TCA 

cycle genes (Supplementary Figure 3). The significant 

increase of OAA (Figure 6E) and the corresponding 

decrease of phosphoenolpyruvate (PEP), glucose-6P and 

glucose-1P together, and UDPG (Figure 6F) support that 

Gcn5 is necessary for the activation of gluconeogenesis 

(Figure 4 and Supplementary Figure 3). Furthermore, the 

levels of acetyl-CoA were severely reduced in the gcn5Δ 

mutants depleted for glucose (Figure 6F), in agreement 

with transcription downregulation of the cytosolic PDH 

bypass leading to acetyl-CoA synthesis (Supplementary 

Figure 3). These findings lend further support to the 

conclusion from the transcriptome analysis that Gcn5 is 

required for the Cat8-/Adr1-dependnet gluconeogenesis 

and PDH bypass pathways to enable metabolic 

reprogramming in response to glucose starvation. ACS1 
encodes the aerobic isoform of acetyl-CoA synthase 

necessary to maintain nucleo-cytosolic acetyl-CoA levels 

and respiratory growth [55, 56]. These and our data also 

imply that Gcn5 may lie at the centre of a feed-forward 

loop to promote acetyl-CoA synthesis, histone acety-

lation, the stress response program and respiratory 

metabolisms.  

 

 
 

Figure 6. Gcn5 is necessary for UDPG and Acetyl-CoA synthesis and H3K9 acetylation in glucose-depleted cells. (A) Global H3K9 

acetylation levels in WT and gcn5Δ cells; (B–D) H3K9 acetylation levels in promoters of FBP1 (B), ACS1 (C) and PCK1 (D). (E, F) Relative levels 
of the TCA cycle metabolites (E) and Acetyl-CoA, UDPG, G1P and G6P together, and PEP (F) measured using LC-MS/MS. Student’s t-test was 
performed to reveal the differences between WT and gcn5Δ mutants or between EXP and PDS phases. ***: p < 0.001, **: 0.001<p< 0.01, *: 
0.01<p< 0.05 and n.s.: p> 0.05. Error bars represent standard deviation calculated from biological triplicates. Abbreviation: EXP: exponential 
phase, PDS: early post-diauxic shift phase; OAA: oxaloacetate; UDPG: UDP-Glucose; G1P: Glucose-1-phosphate; G6P: Glucose-6-phosphate; 
PEP: Phosphoenolpyruvate.  
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Global H3K9 acetylation mediated by Gcn5 and 

Hda1 is correlated with chronological senescence 

 

To determine the connection between Gcn5-mediated 

histone acetylation and its negative roles in CLS 

regulation (Figure 3A), we next assessed the global 

H3K9ac and H3K14ac levels in cells transitioned into the 

stationary phase. The levels of H3K9ac, which were 

previously shown to decrease by ~50% in WT cells in 

response to glucose depletion (Figure 5A), were further 

but more modestly reduced during the transition into the 

early-stationary phase (Figure 7A, 7B). Compared to WT 

cells, GCN5 deletion led to ~2-fold decrease of H3K9ac 

in glucose-replete (EXP) condition, ~3.5-fold reduction 

upon glucose depletion (PDS) and remarkably, ~14-fold 

decline during the transition into stationary phase (Figure 

7A, 7B). These data further support that Gcn5 plays a 

feed-forward role in promoting acetyl-CoA synthesis and 

hence H3K9 acetylation. Previously, the HDA1 complex 

was reported to deacetylate K9, K14, K18, K23, and K27 

on histone H3 that are acetylated by Gcn5 [57]. Indeed, 

global H3K9ac levels were increased in the hda1Δ 
mutant cells by ~40% in the glucose-replete (EXP) 

conditions and more drastically by ~100% upon glucose 

depletion (PDS) and during the transition into stationary 

phase (Figure 7A, 7B). HDA1 removal from the gcn5Δ 

mutants, however, only marginally enhanced the levels of 

H3K9ac at the glucose-replete conditions and had no 

impact on H3K9ac levels in glucose-depleted gcn5Δ 

mutants (Figure 7A, 7B). In contrast to H3K9ac, 

H3K14ac levels were modestly reduced in the gcn5Δ or 

gcn5Δhda1Δ mutants, and not significantly enhanced in 

the hda1Δ cells across the three growth phases (Figure 

7C). These data support that the HDA1 complex 

regulates H3K9 acetylation in a manner dependent on 

Gcn5.  

 

Global H3K9ac levels in transition-phase cells were 

found to inversely correlate with the percentage of 

viable cells capable of quiescence exit at the late-

stationary phase (Figure 7D) when the majority of the 

ageing cells remained viable (Figure 3B), suggesting 

 

 
 

Figure 7. H3K9 acetylation levels mediated by Gcn5 and Hda1 are correlated with senescent populations accumulated in the 
ageing cell cultures. (A) Global H3K9ac and H3K14ac levels in WT and mutant cells; (B, C) Quantification of H3K9ac (B) and H3K14ac (C);  
(D) Correlation between H3K9ac levels with CFU/viability ratios. Two-factor ANOVA was performed to reveal the differences between WT 
and the mutants across different growth phases. ***: p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05. Error bars represent 
standard deviation calculated from biological triplicates. Abbreviation: EXP: exponential phase (6h), PDS: early post-diauxic shift phase (14h) 
and the transition phase (24h).  
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that decreased H3K9 acetylation in gcn5Δ may prevent 

chronologically ageing cells from entering into 

senescence, thus retaining their CFU ability (Figure 

3C). Conversely, Hda1 removal led to enhanced 

acetylation, accompanied by a significant decrease of 

clonogenic survival among the viable populations 

towards the late-stationary phase (Figures 3C, 7D). Put 

together, these data suggest that the readouts of Gcn5-

mediated histone acetylation (stress resistance and 

redox homeostasis) and histone acetylation status itself 

have opposing roles in CLS regulation. These two 

characteristics together ultimately determine the 

dynamics of lifespan in non-dividing cells of yeast 

(Figure 3A).  

 

DISCUSSION 
 

Ageing is inevitable but also malleable. The 

antagonistic pleiotropy theory of ageing [58, 59], posits 

that the process of ageing is predominantly determined 

by the action of wild-type genes that favour growth and 

development in early life. Recently, epigenetic 

alterations, which are set in motion during development 

or in response to cellular damage, have been proposed 

as the major diver of ageing [60–62]. Here, we report 

that Gcn5 in SAGA/SLIK has such antagonistic 

pleiotropic effects on chronological ageing in yeast 

(Figure 8). On the one hand, Gcn5 is not only necessary 

for the basal levels of H3K9 acetylation and 

fermentative growth but also essential to maintaining 

and/or elevating H3K9ac levels at the target genes in 

glucose-depleted cells (Figure 6) or in cells under acute 

glucose withdrawal [54], activating the stress response 

program and metabolic reprogramming (Figure 4), 

cellular stress resistance and redox homeostasis (Figure 

5) and as a result, CLS extension of early-/mid-

stationary phase cells (Figure 3). On the other, Gcn5-  

 

 
 

Figure 8. The working model demonstrating the 
contradictory roles of Gcn5 in CLS regulation. AcCoA: 

acetyl-CoA. UDPG: UDP-glucose ? and ?? denote respectively the 
anti-ageing and pro-ageing hallmarks to be determined. Arrow: 
activation; bar: inhibition. 

mediated metabolic reprogramming also includes the 

PDH bypass (Figure 4), leading to acetyl-CoA synthesis 

(Figure 6F) and global histone acetylation status which 

is positively correlated with senescence entry (Figure 

7). These data suggest that there are two counteracting 

factors regulating senescence entry/CFU potential: the 

capability of stress resistance and the acetylation states 

of the chromatin (Figure 8). Trehalose and glycogen 

acquired during the transition to stationary phase are 

mobilised to support the anti-oxidant defence system 

and quiescence exit [63–65]. Similarly, the molecular 

chaperones expressed during the transition phases have 

limited half-lives. Thus, the sharp reduction of CFU 

potential observed in WT cell cultures after day 24 

suggests that WT cells may have gradually exhausted 

their stress resistance capability before late-stationary 

phase (Figure 3A, 3C) yet retaining their acetylation 

status, prompting rapid entry into the senescent state 

thereafter. Such hypothesis needs to be experimentally 

confirmed but is supported by the observation that the 

hda1Δ mutants (similar stress resistance capability but 

higher acetylation levels than WT cells, Figures 5, 7) 

had similar CFU potential in the first 24 days but lost 

their CFU potential more quickly than WT cells (Figure 

3A, 3C). The gcn5Δ or gcn5Δhda1Δ mutants (with 

compromised stress resistance but lower acetylation 

levels, Figures 5, 7) lost their CFU potential early but at 

a much slower rate than the late-stationary phase WT or 

hda1Δ cells (Figure 3A, 3C).  

 

Gcn5-mediated anti-ageing characteristics include the 

expression of molecular chaperones and hydrophillins 

(Table 1 and Figure 1), the activation of anti-oxidant 

defence system and redox homeostasis, and to a lesser 

extent, the accumulation of trehalose (Figure 5), the 

latter of which has been shown to be positively 

correlated with proteostasis and/or CLS extension in 

previous studies [2, 21, 63, 66, 67]. Molecular 

chaperones, mostly represented by HSPs that mediate 

heat shock response (HSR), are able to recognize and 

disperse stress-triggered biomolecular condensates 

directly and efficiently in yeast [68, 69]. The 

expression of HSPs and coordination of HSR are 

required for lifespan extension in C. elegans in 

response to reduced insulin/IGF-1-like signalling or 

dietary restriction [70–72]. Thus, the readouts of Gcn5-

mediated acetylation may function to maintain cellular 

proteostasis to enable lifespan extension of stationary 

phase cells (Figures 3A, 8). 

 

Emerging evidence has suggested epigenetic regulation, 

including histone modifications, acts as a driving force 

of cellular senescence [73–75]. How histone acetylation 
might promote senescence entry of chronologically 

ageing cells (Figure 8), however, is currently unknown. 

Histone acetylation facilitates open chromatin and 
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active gene transcription [76, 77]. Histone H3K9 

acetylation is characteristic of a more relaxed chromatin 

state [78]. Conversely, hypoacetylated H3K9, H3K14 

and H4K16 are associated with silenced chromatin, 

recombination suppression, and a delay in entry into 

replicative senescence [79]. Inhibiting histone 

acetyltransferase activity of Gcn5 extends RLS in both 

yeast and human cell lines in a manner dependent on 

reduced H3K9 and H3K18 acetylation [13]. These data 

suggest that hypoacetylation in the gcn5Δ mutants may 

delay senescence entry through transcription silencing 

and hence enhanced genomic stability. Furthermore, 

spermidine treatment that inhibits HAT activities leads 

to H3 hypoacetylation, autophagy induction and CLS 

extension [80]. Depleting acetyl-CoA levels by 

knocking down the growth-essential acetyl-CoA 

synthetase ACS2 compromises H3 acetylation at K9, 

K14 and K18, leading to increased autophagy and CLS 

extension in yeast [81]. Thus, hypoacetylation in the 

gcn5Δ mutants may act to extend CLS by enhancing 

autophagy, counteracting the proteostasis defects due to 

loss of redox homeostasis and compromised stress 

resistance (Figures 1, 5), and therefore a slower rate of 

CLS decline (Figure 3A). Future work is necessary to 

address the mechanisms underlying CLS extension in 

hypoacetylated cells. Nevertheless, a recent report has 

revealed that in Caenorhabditis elegans, mitochondrial 

stress-induced longevity is mediated through nuclear 

accumulation of NuRD histone deacetylase and 

chromatin remodelling in response to reduced acetyl-

CoA levels [82], indicating that reducing acetyl-CoA 

synthesis and histone acetylation also retards 

organismal ageing. Given that mammalian Gcn5 is 

essential for developmental processes [83, 84], 

modulating Gcn5 acetyltransferase activity and/or 

histone H3K9ac levels could be an effective means to 

delay senescence entry and to improve lifespan at a later 

stage in life. Interestingly, Gcn5 has also been shown to 

be overexpressed in numerous types of cancer cells 

(colon cancer, Burkitt lymphoma, and lung cancer), in 

which it functions as a transcription co-activator of the 

MYC oncogene to promote cell growth [85]. Thus, 

inhibiting the Gcn5/SAGA activity may also be a 

potential therapeutic strategy to combat cancer. 

 

MATERIALS AND METHODS 
 

Strains and plasmids 

 

Strains carrying single-gene deletions were obtained 

directly from the BY4741/BY4742 mutant libraries 

(Open Biosystems). Strains carrying deletions of GCN5 

and/or HDA1 were regenerated by PCR-mediated gene 

replacement using drug resistant markers. Fluorescent 

reporter plasmids, pHSP26-HSP26-RFP/VFP and 

pSSA3-RFP/VFP, were constructed previously [21]. 

The FBP1-GFP expression plasmid was constructed by 

cloning FBP1-GFP coding sequences between the FBP1 

promoter and the ADH1 terminator in pRS425.  

 

Fluorescent reporter assays 

 

Cells bearing reporter constructs were grown in 

appropriate synthetic dropout medium overnight, 

followed by inoculation into 5ml fresh dropout medium 

(0.6% glucose) in 50ml falcon tubes to achieve a starting 

OD600nm of 0.2. At 6-, 12-, 24-, and 48-hour post-

inoculation, around 1x10^7 cells were harvested by 

centrifugation and resuspended in 1ml of 1x PBS (pH7.4) 

for fluorescence quantification using BD LSR-

FortessaTM (BD Biosciences, USA) or Attune Nxt 

(Thermo Fisher Scientific, USA) instruments. RFP was 

measured using a 561nm excitation laser and a 610/20nm 

(BD LSRFortessaTM) or 620/15nm (Attune Nxt) 

emission filter. VFP was measured using a 488nm 

excitation laser and a 530/30nm emission filter. The mean 

fluorescence level was calculated from readings of at least 

10,000 cells using the FlowJo software (version 10.2). 

 

Determination of storage carbohydrates, ROS and 

stress resistance 

 

Intracellular trehalose and glycogen, ROS levels and 

spotting assays to measure stress resistance displayed 

by the early-stationary phase cells (72 hours incubation 

in YPD medium) were determined as described 

previously [21]. Cell growth was measured either by the 

above described spotting assay on YPD (2% glucose) or 

YPGE (3% glycerol and 1% ethanol) or using a plate 

reader (BMG Labtech, USA).  

 

Chronological lifespan assays 

 

CLS was determined by clonogenicity to access the 

ability of stationary phase cells to exit from quiescence to 

form colonies (colony forming units, CFU), and by cell 

viability to measure the population of cells remaining 

alive in the stationary phase cultures. Yeast cells were 

inoculated in YPD medium and incubated for 3 days to 

early-stationary phase (CLS day 0). Clonogenicity was 

measured at day 0 and thereafter every 3 or 6 days. The 

number of CFU was scored by spreading cells onto YPD 

plates in triplicates after serial dilutions (1:20, 1:50, and 

1:100). Relative CFU was calculated by normalising the 

mean CFU to that at day 0. Cell viability was determined 

by flow cytometry analysis of SYTOX Green-stained 

cells, as described previously [21].  

 

Protein isolation and Western blotting 

 

Cells grown to exponential (6h), early post-diauxic shift 

(14h) and during the transition to stationary phase (24h) 
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in YPD medium were harvested by centrifugation, 

washed once with ice-cold lysis buffer (20mM HEPES, 

pH 7.5, 300mM NaCl, 10% (v/v) glycerol), snap-frozen 

with liquid nitrogen and stored at -80° C until cell lysis. 

Cells were lysed in lysis buffer containing 1x 

cOmplete™ proteinase inhibitor cocktail (Roche, 

Switzerland) by beads beating with acid-washed glass 

beads (425~600µm, Sigma-Aldrich, USA) using a 

FastPrep-24™ 5G instrument (MB Biochemical). 

Following 10 minutes of centrifugation at 4° C to 

remove pellet, total protein concentration was measured 

with Pierce™ BCA Protein Assay Kit (Thermo Fisher 

Scientific) and diluted to a concentration of 2mg/ml 

with lysis buffer. Proteins were denatured by incubating 

at 95° C for 10 minutes with 2x Laemmli buffer, and 

20μg was applied to a 15% Tris-glycine gel for 

separation. The transfer process was performed using 

the Trans-Blot Turbo transfer system (Bio-Rad 

Laboratories USA) with a 0.2µm PVDF transfer pack 

(Bio-Rad Laboratories). Membranes were incubated 

with 6% (w/v) BSA in TBST solution (0.1% Tween 20) 

for 2 hours at room temperature, followed by primary 

antibody incubation overnight at 4° C and subsequent 

secondary antibody incubation for 1 hour at room 

temperature. The membrane was scanned using an 

Odyssey® CLx imaging system (Li-COR, USA) and 

densitometry analysis of protein bands was performed 

using the Image Studio software (Version 5.2.5, Li-

COR). Primary antibodies used were Anti-H3K9ac 

(1:5,000, 07-352, Upstate®), Anti-H3K14ac (1:5,000, 

07-353, Upstate®) and Anti-H3 (1:5,000, ab1791, 

Abcam). Secondary antibodies used were IRDye® 

680RD Goat anti-Rabbit IgG Secondary Antibody 

(1:20,000, 925-68071, Li-COR). 

 

Chromatin immunoprecipitation (ChIP) 

 

Cells grown to exponential and early post-diauxic shift 

phases in YPD medium were crosslinked with 1% 

formaldehyde at 30° C for 20 minutes. Crosslinking 

reaction was stopped by adding 2.5M glycine to a final 

concentration of 125mM and incubated for 5 minutes. 

Cells were harvested by centrifugation and washed once 

with FA lysis buffer (50mM HEPES-KOH, pH 7.5, 

150Mm NaCl, 1mM EDTA, pH 7.6, 1% (v/v) Triton X-

100, 0.1% (w/v) sodium deoxycholate and 0.1% (w/v) 

SDS), snap-frozen and stored at -80° C. Cell lysis was 

performed in cold FA lysis buffer containing 

cOmplete™ proteinase inhibitor cocktail (Roche) by 

beads beating with acid-washed glass beads 

(425~600µm, Sigma-Aldrich) using a FastPrep-24™ 

5G instrument (MB Biochemical). Chromatin was 

sheared by sonication on a Bioruptor Plus (Diagnode) at 
the high power setting for 24 cycles (30sec ON/OFF). 

After centrifugation for 10 minutes at 10,000x g, 4° C, 

supernatants were transferred to fresh tubes. A similar 

amount of chromatin equivalent to 150µg of total 

protein was used for immunoprecipitation (IP) with 3µg 

of anti-H3K9ac (07-352, Upstate®) or anti-H3 (ab1791, 

Abcam) overnight at 4° C on a rotation wheel. 40ul of 

pre-equilibrated Protein A/G Sepharose® (ab193262, 

Abcam) beads were added to each IP sample and 

incubated for 5 hours at 4° C. Subsequently, beads were 

washed thrice with FA lysis buffer, twice with wash 

buffer 1 (FA lysis buffer containing 0.5M NaCl), and 

twice with wash buffer 2 (10mM Tris-HCl, pH 8.0, 

0.25M LiCl, 1mM EDTA, 0.5% (v/v) NP-40, 0.5% 

(w/v) sodium deoxycholate), then eluted overnight at 

65° C with 130µl of 1% SDS-TE buffer (100mM Tris-

HCl, pH 8.0, 10mM EDTA, 1% (v/v) SDS) with 5μg/ml 

RNase A (Roche). Simultaneously, 30µl of 1% SDS-TE 

buffer with 5μg/ml RNase A (Roche) was added to the 

input sample and incubated overnight at 65° C. IP and 

input samples were treated with 100μg of proteinase K 

(Roche) for 1 hour at 55° C, then purified with the 

QIAquick PCR purification kit (Qiagen). Purified 

DNAs were used as template to quantify the targets 

bound by anti-H3K9ac or anti-H3 using the QuantiFast 

SYBR® Green PCR Kit (Qiagen) on Rotor-Gene 6000 

(Corbett Research, UK). ChIP signals were normalised to 

input to generate percent input for subsequent analysis.  

 

RNA-seq analysis 

 

Total RNA was isolated from exponentially growing and 

early post-diauxic phase cells using a RNeasy Mini kit 

(Qiagen). PolyA-enriched RNA samples were sequenced 

on Illumina Hiseq platform by Novogen UK limited. The 

raw transcriptome data are available at Biostudies 

(https://www.ebi.ac.uk/biostudies/arrayexpress) under the 

accession number: E-MTAB-11046. After quality check 

with FastQC (version 0.11.5), RNAseq data were 

mapped to the S. cerevisiae reference genome R64-1-1 

using HISAT2 (version 2.1.0) [86]. Quality of reads 

alignment was further checked with Picard Tools 

(version 1.96) and MultiQC (version 1.8), followed by 

quantification of reads overlapping coding genes by the 

featureCounts programme [87]. DESeq2 (version 1.24.0) 

analyses [88] were performed within R (version 3.6.1), 

comparing the changes in gene expression. Hierarchical 

clustering was performed using the ComplexHeatmap 

package (version 2.4.2) [89]. Visualisation of expression 

of genes within a KEGG pathway was generated by the 

Pathview package (version 1.28.0) [90].  

 

Metabolites extraction and targeted metabolite 

analysis (LC-MS/MS) 

 

Intracellular metabolites were extracted following a 
protocol adapted from previous publications [91, 92]. 

Cells were grown in YPD medium (2% glucose) until 

early-post diauxic shift phase. A culture containing cells 

https://www.ebi.ac.uk/biostudies/arrayexpress
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equivalent to 3 units of OD600nm was aliquoted and 

injected into a 15ml tube containing 5 volumes of pure 

methanol precooled to -40° C (final methanol 

concentration of 83%) for quenching, followed by 

centrifugation to pellet cells. At the same time, a 

replicate cell sample was harvested for protein 

quantification. A 60 µL of an internal standard mix at 

10 μM (AMP 13C10, 15N5; ATP 13C10, 15N5; Glutamate 

U13C, U15N; Leucine-d10, Phenylalanine-d5, Proline 

U13C, U15N; and Valine-d8), was added to cell pellets, 

followed by resuspension in 2ml of -20° C extraction 

buffer (methanol:acetonitrile:water, 40:40:20). 

Metabolites were extracted from cells via sonication in 

a 4° C water bath for 30 minutes and four freeze-thaw 

cycles between -20° C and -80° C. The mixture was 

transferred into a new 2ml screw-cap tube for 

centrifugation at 16,100x g for 15 minutes at 4° C to 

pellet the cells. The supernatant was aliquoted into a 

fresh 2ml screw-cap tube to dry under a flow of 

nitrogen and stored at -80° C until analysis.  

 

The dried metabolites were reconstituted in 100μL of 10 

mM ammonium carbonate in acetonitrile:water mix (7:3). 

Samples were injected onto a UHPLC+ series coupled to 

a TSQ Quantiva mass spectrometer (Thermo Fisher 

Scientific, USA) using a heated ESI source. The 

electrospray voltage was set to 3.5 kV and 2.5 kV for 

positive and negative ionisation modes, respectively. 

Sheath gas was set at 52 (arbitrary units), auxiliary gas at 

16, sweep gas at 2, and ion transfer tube at 356° C. 

Samples were analysed using two different chromato-

graphic methods, normal phase, and reverse-phase 

analysis. For normal phase analysis, the samples were 

analysed with a BEH-amide HILIC (150 x 2.1 mm 1.7 

μm) column at 30° C. The mobile phase consisted of: (A) 

0.1% of ammonium carbonate and (B) acetonitrile and 

was pumped at a flow rate of 0.6 mL/min. The gradient 

was programmed as follows: 80 % of B for 1.50 min 

followed by a linear decrease from 80 % to 40 % of B for 

3.5 min and finally returned to initial conditions. For 

reverse phase analysis: Samples were dried and 

reconstituted in 10 mM ammonium acetate solution and 

analysed with an ACE C18 PFP (150 x 2.1 mm 5 μm) 

column at 30° C. The mobile phase consisted of (A) 0.1 

% formic acid in water and (B) 0.1 % formic acid in 

acetonitrile, pumped at 0.5 mL/min. The gradient was 

programmed as follows: 0 % of B for 1.60 min followed 

by a linear increase from 0 % to 30 % of B for 4 min and 

90 % by 4.5 min, held for 1 min and then returned to 

initial conditions. 

 

Calculated masses and mass fragments of the calculated 

compounds are reported in Supplementary Table 2. 

Data were processed using Xcalibur software (Thermo 

Fisher Scientific), and peak intensities of target 

metabolites were normalised to an appropriate internal 

standard and then to protein content, which was 

quantified following the same protocol as described for 

western blotting.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Relative pSSA3-RFP and pHSP26-HSP26-RFP levels in HDAC (A, B) and HAT (C, D) mutants. The mean RFP 
fluorescence from 20,000 cells was normalised to that of the pTDH3-VFP at each time point to correct for cell growth differences. 

 

 
 

Supplementary Figure 2. (A) Schematic illustration of the SAGA/SLIK/ADA complexes; (B, C) Relative levels of pSSA3-VFP (B) and pHSP26-
VFP (C) in the ADA-specific mutants; (D) Spotting assays of cell growth on YPD (2% glucose), YPG (3% glycerol) and YPE (1% Ethanol). Error 
bars represent standard deviation calculated from biological triplicates. HAT, histone acetyltransferase module; DUB, deubiquitinase module; 
Core, Core module; SLIK, SAGA-like complex. The significance of difference between WT and mutants over all time points was revealed by 
two-factor ANOVA analysis (***: p < 0.001, **: 0.001<p< 0.01, *: 0.01<p< 0.05 and n.s.: p> 0.05). 
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Supplementary Figure 3. KEGG pathway analysis of the differentially expressed genes implicated in central carbon 
metabolism. Abbreviation: EXP: exponential phase, PDS: early post-diauxic shift phase; G6P: Glucose-6-phosphate, F6P: Fructose-6-
phosphate, F-1,6-BP: Fructose-1,6-bisphosphate, F-2,6-BP: Fructose-2,6-bisphosphate, DHAP: Dihydroxy-acetone phosphate, GAP: 
Glyceraldehyde-3-phosphate, 1,3-BPG: 1,3-bisphosphoglycerate; 3-PG: 3-phosphoglycerate; 2-PG: 2-phosphoglycerate, PEP: 
Phosphoenolpyruvate, OAA: oxaloacetate. Figure was generated using the BioRender App.  

 

 
 

Supplementary Figure 4. Gcn5 promotes the transcription of genes involved in the oxidative phosphorylation in glucose-
depleted cells. The oxidative phosphorylation pathway was retrieved from the KEGG website using the pathview package (version 1.28.0) in 

R. The budding yeast lacks the NADH dehydrogenase complex (complex I) and hence was removed from the image. Instead, budding yeast 
contains several NADH dehydrogenases, of which the expression of NDE2 was significantly downregulated in glucose-depleted gcn5Δ mutant 
cells. A colour scale based on log2 fold change indicates changes in the expression levels of other genes. 
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Supplementary Figure 5. Relative levels of SOD2 and CTA1 transcripts. The raw read counts of either gene were normalised to that 
of ACT1 in the corresponding samples, followed by normalisation to the expression level in WT at EXP to calculate relative fold change for 
comparison among different strains. Error bars represent standard deviation calculated from biological triplicates. Student’s t-test was 
performed to reveal the significance of differences (***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, and n.s.: p-value > 0.05). 
Abbreviation: EXP, exponential phase; PDS, post-diauxic shift phase. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The list of GCN5-regulated genes in the seven clusters in Figure 4A. 

 

Supplementary Table 2. LC-MS QqQ selected metabolites from the MS/MS analysis. 

Metabolite Column RT (min) Mode Precursor m/z Product m/z 

Citrate C18PFP 1.32 negative 191.0 111.0 

Fumarate C18PFP 1.65 negative 115.0 71.2 

Isocitrate C18PFP 1.25 negative 191.0 111.0 

Malate C18PFP 1.08 negative 133.0 115.1 

Succinate C18PFP 1.82 negative 117.0 73.0 

Acetyl-CoA HILIC 3.65 negative 810.0 303.1 

Aconitate HILIC 3.47 negative 173.0 85.1 

UDP-Glucose HILIC 3.88 negative 565.0 323 

Glucose-6-phosphate HILIC 3.66 negative 259.0 97.1 

Phosphoenolpyruvate HILIC 3.55 negative 167.0 79.1 

Oxaloacetate HILIC 3.34 negative 131.0 87.1 

 


