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Abstract
Agent-based modeling is increasingly being used in computational epidemiology to characterize important behavioral
dimensions, such as the heterogeneity of the individual responses to interventions, when studying the spread of a dis-
ease. Existing agent-based simulation frameworks and platforms currently fall in one of two categories: those that can
simulate millions of individuals with simple behaviors (e.g., based on simple state machines), and those that consider
more complex and social behaviors (e.g., agents that act according to their own agenda and preferences, and deliberate
about norm compliance) but, due to the computational complexity of reasoning involved, have limited scalability. In this
paper, we present a novel framework that enables large-scale distributed epidemic simulations with complex behaving
social agents whose decisions are based on a variety of concepts and internal attitudes such as sense, knowledge, prefer-
ences, norms, and plans. The proposed framework supports simulations with millions of such agents that can individually
deliberate about their own knowledge, goals, and preferences, and can adapt their behavior based on other agents’ beha-
viors and on their attitude toward complying with norms. We showcase the applicability and scalability of the proposed
framework by developing a model of the spread of COVID-19 in the US state of Virginia. Results illustrate that the
framework can be effectively employed to simulate disease spreading with millions of complex behaving agents and inves-
tigate behavioral interventions over a period of time of months.
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1. Introduction

Computational epidemiology is a multidisciplinary field

that investigates issues related to epidemiology, such as

the spread of diseases and the potential effectiveness of

public health interventions, by using computational tools

such as computer-based simulations. In computational epi-

demiology, simulations traditionally rely on mathematical

compartmental models (e.g., the susceptible–exposed–

infectious–recovered—SEIR—model) that characterize

the disease being studied (e.g., its infectivity and transmis-

sibility) and where the (relative) sizes of the compartments

change through differential equations. While these models

have become quite sophisticated over the years and

advanced techniques have been applied to optimize the

SEIR parameters (e.g., via swarm optimization1), they

mostly rely on assumptions such as homogeneity of the

individuals in a population and the distinction of agents

solely based on their disease state, that limit the accuracy

of the predictions that can be made.2–5 In the real world,

however, the spread of a disease is not only affected by

the properties of the virus itself, but also by socio-

psychological behavioral dynamics that heavily rely on

aspects that are heterogeneous across individuals (includ-

ing spatial and demographic heterogeneity6). Squazzoni

et al.7 point out that, given the significant adverse effects

that behavioral interventions can have on individuals,

decisions ‘‘cannot be solely based on epidemiological

knowledge, because the efficacy of implementation
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depends on people’s reactions, pre-existing social norms,

and structural societal constraints.’’

To overcome this limitation and introduce complexity

and heterogeneity in the models of individuals, agent-

based modeling and simulation (ABMS) has been pro-

posed as a key approach for more realistic computational

epidemiology.8 ABMS allows to simulate actions, deci-

sions, and social interactions of individual agents, provid-

ing a powerful tool for studying and explaining complex

social phenomena related to the spread of diseases.9–11

The importance of ABMS for studying the impact of beha-

vioral health interventions has become particularly evident

during the recent COVID-19 pandemic. As a consequence,

in the last few years a large number of agent-based simula-

tions (see Tables 1 and 2 for an overview) have been used

to predict and study the effect of interventions on disease

spread by taking into account aspects such as age, profiles

of people and households, interaction patterns along with

their evolution in time and space, and individual attitudes.

Despite the recent proliferation of epidemic agent-based

models, however, the modeled dynamics of individual

decision-making are still limited.12–14 Compliance of indi-

viduals with behavioral interventions is typically modeled

via stochastic processes that uniformly apply a certain

level of compliance across the population.15 In reality,

compliance can be highly nonuniform as it is the result of

complex sociological dynamics and of individual decision-

making that depend on a number of factors, including

demographics, peer influence, political orientation, risk

assessments, and beliefs about the efficacy of the beha-

vior.16,17 To build realistic simulations that can accurately

anticipate the acceptance or rejection—and thus the

effectiveness—of behavioral interventions, agents in epi-

demic simulations should be capable of autonomous deci-

sion-making. This requires more complex and detailed

models of agents, that, for the purpose of this work, we

will call deliberative agents to distinguish them from those

other more simplified models of agents.

Deliberative agents should be capable of deliberation

that realistically characterizes the decision-making of

humans. Depending on the research question at hand, this

could include the capability to take into account the effects

of such concepts as habits, fatigue, and political prefer-

ences. Moreover, they should be norm-aware, i.e., expli-

citly capable of taking into account existing norms such as

behavioral interventions or laws when deciding their

actions. They should further be socially aware, i.e., take

into account the behavior and mentalities of other agents,

in their decisions whether to comply with behavioral inter-

ventions.18,19 Finally, to ensure accurate reflection of real-

world decision-making, the design of deliberative agents

should be backed by theory and grounded in data.

Table 1. An overview of agent-based epidemic and other social simulations. Epid. denotes an epidemic simulation other than
COVID—indicates ‘‘not stated’’ or ‘‘not applicable.’’

Year Sim. Scalability Type of
compliance

Deliberative

Nr. agents Temporal resolution Time period

Ferguson et al.41 2006 Epid. 300M 6 h 6 months Stochastic No
Barrett et al.42 2008 100M Event-based 4 months Trigger-based
Bisset et al.43 2009 16M Event-based 6 months Stochastic
Bhatele et al.44 2017 280M Event-based 6 months Trigger-based
Macal et al.45 2018 3M 1 h 10 years —
Bissett et al.46 2021 300M Event-based 6 months Trigger-based

Ferguson et al.47 2020 COVID 300M 6 h 8 months Stochastic No
Gaudou et al.8 2020 10–20K 1 h 7 months Stochastic
Müller et al.48 2020 3M < 1 h 3 months Stochastic
Churches and Jorm49 2020 100–300K 1 day 6 months Stochastic
Ozik et al.50 2021 2.7M 1 h 12 months Full
Dignum51 2021 1K 6 h 12 months Agent decision
Koehler et al.52 2021 10K 12 h 8 months Full
Abadeer et al.53 2023 30K Event-based 30 days Stochastic

Sierhuis et al.54 2007 Other — — — — Yes
Sakellariou et al.55 2008 — — — — BDI
Bordini and Hübner56 2009 JVM threads — — — BDI
Zhang and Nuttall57 2011 25K 1 month 24 months Full TPB
Caballero et al.58 2011 JVM threads — — — BDI
Barrett et al.59 2013 700K 30 min 2 days Agent decision No
Bulumulla et al.60 2022 35K 1 min 120 min Agent decision BDI

ours 2023 COVID 8M Event-based 4 months Agent decision Yes

BDI: belief–desire–intention; TPB: theory of planned behavior.
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Various theories of deliberative decision-making have

been proposed over the years, from rational decision the-

ories20 to psychologically based approaches such as the the-

ory of planned behavior (TPB)21 and the self-determination

theory.22,23 These theories conceptualize decision-making

behavior in terms of motivational, informational, and deon-

tic attitudes, together with decision rules for the agents to

select actions.24–26 Based on these theories, various agent

decision-making models have been proposed. The belief–

desire–intention (BDI) model,27 for example, attributes to

agents’ mental states such as beliefs, desires, and intentions,

and characterizes the agents’ deliberation and reasoning in

terms of these mentalistic notions.28,29 Other examples

include cognitive models such as Adaptive Control of

Thought – Rational (ACT-R)30 and SOAR.31

Various surveys on the use of decision-making agents in

social simulations identify scalability as a key issue that lim-

its their applicability.18,32–35 The difficulty lies in scaling

these individual models to the population sizes required for

meaningful studies due to their computational complexity.

Indeed, the vast majority of solutions for epidemic agent-

based simulation in the literature falls in one of two cate-

gories: frameworks or platforms that can simulate millions

of individuals with simple behaviors (e.g., based on simple

state machines ‘‘triggers’’-based behavior), and frameworks

or platforms that consider more complex behaviors and

social dynamics (e.g., agents that act according to their own

agenda and preferences, in a social context, and deliberate

about norm compliance) but have limited scalability. As a

result, the current literature lacks a unified solution for epi-

demic simulations that can both scale and support delibera-

tive agents that can model realistic human behavior, for

example their deliberate response to interventions.

In this paper, we address this issue by introducing a

novel framework that enables large-scale distributed epi-

demic simulations with deliberative agents. The proposed

framework supports simulations with millions of agents

that can individually deliberate about their own knowl-

edge, goals, and preferences, and can adapt their behavior

during the simulation based on observations of other

agents’ behaviors and on their (possibly evolving) atti-

tudes and intentions to comply with norms. To implement

deliberative agents, we propose a novel adaptation of A

Practical Agent Programming Language (2APL)36—a

well-known Java-based programming language that is

designed to support the implementation of autonomous

agents—which we call Sim-2APL. In addition, we propose

PanSim, a novel epidemic simulation platform that allows

the execution of large-scale agent-based epidemic simula-

tions. This platform distributes the execution of individual

deliberative agents over multiple computing resources in a

synchronized manner, and efficiently and distributedly cal-

culates the disease transmission. The source code for

PanSim is available at https://github.com/parantapa/T
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ü
lle
r
et

al
.4
8

M
A
T
Si
m

M
ic
ro
si
m
.

1
:4

St
o
ch
as
ti
c

St
at
ic

M
o
ve
m
en
t

d
es
ti
n
at
io
n

7
5
0
K

N
o
t
re
p
o
rt
ed

N
o

A
SS
O
C
C
5
1

N
et
Lo

go
A
O
P

w
D
is
tr
ib
u
ti
o
n

A
g
e
n
t
c
h
o
ic
e

E
m
er
ge
n
t

D
is
tr
ib
u
ti
o
n

1
0
0
0

6
h

N
o

K
o
eh
le
r
et

al
.5
2

N
et
Lo

go
N
et
w
o
rk

n
o
d
e

D
is
tr
ib
u
ti
o
n

1
0
0
%

N
et
w
o
rk
-d
eg
re
e

D
is
tr
ib
u
ti
o
n

1
0
K

1
2
h

N
o

Fe
rg
u
so
n
et

al
.4
1
,4
7

C
u
st
o
m

+
O
p
en
M
P

M
ic
ro
si
m
.

D
is
tr
ib
u
ti
o
n

St
o
ch
as
ti
c

E
m
er
ge
n
t

D
is
tr
ib
u
ti
o
n

U
S/
G
B
Po

p.

(3
0
0
M
)

6
h

N
o

A
b
ad
ee
r
et

al
.5
3

V
ad
er
e

Lo
co
m
o
ti
o
n
m
o
d
el

N
/a

St
o
ch
as
ti
c

E
m
er
ge
n
t

R
e
a
l

3
0
K

E
v
e
n
t-
b
a
se
d

N
o

P
an
Si
m

+
Si
m
-2
A
P
L

C
u
st
o
m

+
2
A
P
L
+
M
P
I

D
e
li
b
e
ra
ti
v
e

S
y
n
th
.
P
o
p
.

A
g
e
n
t
c
h
o
ic
e

C
o
-e
v
o
lv
in
g

R
e
a
l

V
ir
gi
n
ia
Po

p.
(8
M
)

E
v
e
n
t-
b
a
se
d

D
is
e
a
se

a
n
d

b
e
h
a
v
io
r
m
o
d
e
ls

B
E
N
:
b
eh
av
io
r
w
it
h
em

o
ti
o
n
s
an
d
n
o
rm

s;
M
P
I:
m
es
sa
ge

p
as
si
ng

in
te
rf
ac
e.

w
G
A
M
A
su
p
p
o
rt
s
B
D
I
ag
en
ts
th
ro
u
gh

th
e
B
E
N

ar
ch
it
ec
tu
re
.
H
o
w
ev
er
,
to

th
e
b
es
t
o
f
o
u
r
kn
o
w
le
d
ge
,
th
is
h
as

n
o
t
b
ee
n
u
se
d
fo
r
ep
id
em

ic
si
m
u
la
ti
o
n
s.

De Mooij et al. 1185



pansim and that for Sim-2APL at https://github.com/A-

Practical-Agent-Programming-Language/Sim-2APL37.

We demonstrate the applicability and scalability of the

framework by modeling the spread of COVID-19 in the

US state of Virginia with ~8 million deliberative agents.

Our simulation takes a synthetic population with realistic

demographics, weekly activity schedules, and activity

locations drawn from real location data as its inputs. Each

individual in the synthetic population is modeled as a soft-

ware agent, which decides its intentions regarding compli-

ance with nonpharmaceutical interventions (NPIs) such as

mask wearing and physical and social distancing that were

introduced in Virginia in the period March through June

2020. In building and evaluating such a simulation, we

report for the first time experiments about the spread of

COVID-19 resulting from an agent-based simulation that

involves individual deliberative agents at this scale.

This paper significantly extends and integrates our pre-

vious work,38,39 where we presented a preliminary version

of the framework and a COVID-19 simulation experiment,

respectively. In this paper, we describe an improved ver-

sion of the framework that does not suffer from communi-

cation overhead issues highlighted in our preliminary

experiments,38 and supports simulations with ~8 million

agents. Moreover, we extend the simulation experiment39

in two ways: (a) we provide a formal characterization of

how normative reasoning takes place in the deliberation

cycle of the Sim-2APL agents; (b) we refine and recali-

brate the model of norm-reasoning agents, and present

more realistic results quantifying the effects of normative

interventions in the state of Virginia.

The rest of the paper is organized as follows. We start

with a discussion of the state of the art, followed by a pre-

sentation of the simulation platform PanSim and the agent

programming language Sim-2APL, respectively. Note that

our platform is distinct from a similarly named platform

that has recently been published.40 Since our platform was

presented earlier,38,39 we have not changed the name in

this paper. We then explain how the proposed simulation

framework is used to design, develop, and calibrate a simu-

lation experiment for COVID-19 regulations, and report on

the strong and weak scalability of our proposed framework

as well as the results of the conducted simulation experi-

ments. Finally, we conclude the paper with a discussion of

some remaining issues and pointing out directions for

future research.

2. State of the art

The past 20 years have seen the development of a number

of agent-based (often referred to as individual-based) epi-

demic and social simulations. Table 1 gives an overview

of some of the most influential work based on the three

aspects that are the most relevant to this paper: (a) the scal-

ability of the approach; (b) the type of mechanism used to

determine compliance with behavioral interventions; and

(c) whether the simulation involves deliberative agents.

In the great majority of the epidemic simulations that

we analyzed, the disease progression is modeled via

S(E)I(A)R-like models at the level of individual agents.

Each agent is characterized by its disease state (which

determines the so-called compartment to which the agent

belongs). An agent’s disease state changes over time

according to the disease progression model, based on co-

location that determines the probability of being exposed

to a virus carried by an infectious agent in the same loca-

tion. The representation of the population varies from one

simulation to another (see Table 2). In some works, the

characteristics of individual agents are generated ad hoc,

e.g., by fitting agent demographics to distributions that

represent statistical data about the area of interest.8,47,51,52

In other works, a synthetic population of agents is used so

that every agent characterizes a particular individual in the

real population.43,44

Several works have focused on the scalability of the

simulation by utilizing a relatively simple model of the

agents. For example, Ferguson et al.47 adapted an earlier

simulation platform created in the context of Influenza41

to study COVID-19. By leveraging OpenMP,61 an applica-

tion programming interface that provides support for mul-

tiplatform shared-memory multiprocessing programming,

the authors were able to simulate approximately 300 mil-

lion agents representing the entire US population over a

period of 6 months. To achieve scalability, the agents were

modeled as relatively simple entities, and the contact net-

work (i.e., the network that determines or describes which

agents come in contact with each other) was based on

locations visited per 6-h time slot. Compliance of agents

with the implemented interventions was determined based

on a set of probabilities. Bhatele et al.44 have also demon-

strated epidemic simulation scaling up to the size of the

US population using EpiSimdemics.42,46 The simulator

was heavily optimized for the particular application and

architecture, which allowed it to compute each simulated

day in 57.8 ms on 655,360 cores of the Blue Waters super-

computer. The effect of NPIs was studied using a trigger-

based approach, i.e., executing a predetermined function

when certain conditions of a trigger were satisfied, e.g., to

change the disease state or disease mitigation behavior of

an agent. Similarly, EpiFast43 is an epidemic simulator that

leverages a realistic synthetic population of agents. To

support the execution of large numbers of runs and provide

statistically sound estimates about stochastic evolution of

epidemics, changes in the contact network due to NPIs are

computed in advance, based on a predefined and uniformly

applied degree of compliance.
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In the context of COVID, the CityCOVID simulator50

was built on ChiSIM,45 a general-purpose community

model for use in studying various forms of social

dynamics in Chicago, including the spread of infectious

diseases. The model leverages the Repast ABM frame-

work62 to create a distributed memory simulation executa-

ble on high performance computing (HPC) systems. Each

simulated hour, agents select one activity to perform at

some location from a set of options derived from their

assigned activity schedules. Agents can further choose to

modify their behavior by wearing a mask or practice phys-

ical distancing, or can stay home instead of selecting an

activity as a proxy for quarantining. The stay-home activi-

ties of the agents and the parameters of the disease model

were calibrated against hospital bed occupation and

COVID-19-attributed death data. Churches and Jorm49

have developed COVOID, an open source generic

individual-agent-based simulation for COVID-19 that can

be easily adapted to different settings (e.g., countries or

locations). In their model, on each day, the contacts

between agents are randomly determined based on

compartment-dependent parameters for the act rate: a

parameter specifying, per day and per agent in the com-

partment, the number of social contacts with potential for

infection. In their work, they have been able to simulate 1

million agents in just 3 h on a single compute core,

achieving near-linear scaling by running multiple simula-

tions in parallel.

Abadeer et al.53 have developed a flexible tool that

simulates the physics of disease transmission—based on

factors such as speech volume, ventilation, agent move-

ment, and proximity—in which users can change simula-

tion parameters at run time. However, their agent models

are pedestrian locomotion models, extended with SEIR

states, and agent decision-making is limited to collision

avoidance.

Another strand of work has considered more complex

models of agents with the intent to characterize additional

information, such as age, economic characteristics, social

relationships, personal attitudes, and political preferences

that can influence the behavior of individuals, their poten-

tial response to interventions, and, therefore, the spread of

a disease.

Koehler et al.52 developed a COVID model in NetLogo

and simulated specific counties in the United States. In

their model, agents visit a number of locations given by a

precalculated contact network degree, alternating one loca-

tion for 12 h with staying at home for the other 12 h of

the day. The network degree was calculated from a contact

network derived from data provided by the American

Community Survey (ACS) 2020,63 following the approach

of Meyers et al.64 The proximity of agents is based on

agents co-locating at a 0:13 0:1km2 ‘‘patch’’ in the

NetLogo environment. To address the complexity of the

simulation, the authors propose a strategy where the

population of a county is scaled down to 10,000 agents,

and the size of the environment is changed to reflect popu-

lation density.

COMOKIT8 is a COVID-19 disease simulation system

based on the GAMA65 multi-agent simulation environment

which uses a synthetic population of agents (which can be

generated from statistical data or created using gen*). The
activity performed by an agent at each hour in the day is

determined either by being enrolled in an activity by other

agents, or by selecting the activity corresponding to the

current day and time. Compliance with NPIs (i.e., norms)

is determined by a central authority that the agents query

to determine whether they can perform an activity or not.

Normative reasoning is, therefore, delegated to the central

authority, and individual agents comply with the received

directives.

In the work summarized above, agents’ decisions about

their daily activities are affected by a number of largely

external factors (e.g., NPI telling agents to exhibit behavior

like mask wearing and physical distancing, closure of pub-

lic locations, and the health status of the agent causing

them to quarantine). These approaches do not consider

agents that explicitly and individually reason about com-

pliance with norms during the simulation. To the best of

our knowledge, the only framework to explicitly consider

what motivates individuals to comply with an intervention

is Agent-based Social Simulation of the Coronavirus Crisis

(ASSOCC).51 In the ASSOCC framework, the reasoning

of the agents is grounded in behavioral theories from psy-

chology and sociology, and agents make their decisions

based on their needs, such as belonging, compliance, finan-

cial stability, health, and leisure. These needs are imple-

mented in a so-called water tank model,66 in which the

satisfaction of needs slowly decays. Agents try to keep the

water tanks for their needs filled, but the importance of the

various needs differs from agent to agent, based on societal

and individual-level values.67,68 However, in their work,

only 1000 agents could be simulated.

Employing deliberative agents allows for more realistic

modeling of human decision-making. Increased detail and

heterogeneity in agent characteristics improve the quality

of prediction and forecasting of those models. Even more

so, frameworks that can explicitly model individual agent

decisions allow for explanation:9–11,69 if such a model is

able to reproduce observations, its implementation is a

plausible explanation of events. This could help relevant

parties to not just respond to an ongoing situation, but learn

from previous situations and increase preparedness for

future events. Despite these advantages, from Table 1 and

the discussion above, it can be seen that none of the studied

agent-based epidemic simulations makes use of such delib-

erative agents.

As has been widely observed,18,32–34 the absence of

deliberative agents is largely due to the difficulty of scal-

ing multi-agent simulations involving deliberative agents.
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Further support for this observation can be found by

considering the scale of nonepidemiological (social)

simulations that do make use of various types of delibera-

tive agents.

For example, both Bordini and Hübner56 and Caballero

et al.58 developed social simulations with BDI agents pro-

grammed in Jason, a platform that supports the distributed

execution of a multi-agent system. The performance of

distributed Jason applications has been studied by Pérez-

Carro et al.70 and Fernández et al.71 However, Pérez-Carro

et al. distributed just 256 agents over a network, testing

the effect on communication speed of interagent messages,

and Fernández et al.71 found that, even when interagent

messaging speed was acceptable, the communication with

the environment quickly forms a bottleneck, regardless of

the execution mode. Sierhuis et al.54 developed Brahms, a

agent-based simulation platform based on activity theory

for the detailed simulation of organizational processes.

They do not explicitly discuss scalability; however, the

example described in their paper has a small number of

agents. Sakellariou et al.55 proposed a simplified BDI rea-

soning library for the simulation platform NetLogo. The

example described in their work has only 20 agents, and

the scalability of their approach is limited by that of

NetLogo. While Railsback et al.72 have shown how

NetLogo code can be optimized, the scale and complexity

that can be achieved still fall short of the scalable simula-

tions discussed previously. Moreover, while the literature

contains work on using NetLogo on HPC, much of this is

aimed at using large numbers of computers to run multiple

models in parallel73–76 rather than distributing a single

simulation. Bulumulla et al.60 developed a multi-level

framework integrating the BDI programming language

Jack with simulation components representing physical

and social layers to study evacuation scenarios. In their

simulations, however, only 35,000 agents were considered.

Singh et al.77 have proposed an approach for integrating

BDI agents with simulation, using a master–slave architec-

ture, in which the environment acts as the master, and con-

trol over compute resources alternates between the master

environment and the BDI agent models. However, their

approach does not provide support for canceling or abort-

ing planned activities, which is an important aspect when

studying behavior change due to behavioral interventions.

Zhang and Nuttall57 developed an agent-based model

based on the TPB, which is grounded in psychological the-

ory. Their model aimed at predicting the effectiveness of

British government policies on promoting smart meters in

an energy grid. Their model considered only a single agent

behavior and involved only 25,000 agents.

From the brief review of the state of the art presented

above, we observe that: (a) the literature on agent-based

epidemic simulations is split between models that consider

only individuals with simple behaviors (e.g., based on

simple finite state machines or drawn from distribution)

but scale to hundreds of millions of individuals, and mod-

els that consider more complex behaviors (e.g., consider-

ing age matrices, social differences, and individual

choices) but have limited scalability; (b) there is currently

no framework for large-scale distributed epidemic simula-

tion with deliberative agents, and one of the reasons is the

difficulty of scaling such models to sizes that are adequate

for providing meaningful answers in an epidemiological

context; and (c) in the existing literature on agent-based

epidemic simulations, models that scale lack mechanisms

for explicit and adaptive normative reasoning in the

decision-making of agents.

In this work, we address the above observations. In our

framework, the epidemic simulation platform PanSim cal-

culates the physical disease progression, and the Java-

based agent programming language Sim-2APL deals with

the individual deliberation of agents. Our framework can

distribute epidemic simulations on HPC systems, and

employ a realistic synthetic population and a contact net-

work to characterize the population of agents. Moreover,

Sim-2APL is designed to impose few restrictions on the

simulation author, allowing the use of different constructs

to model more complex types of decision-making not

natively present in the core library. For example, we will

show how Sim-2APL can be used to introduce explicit

normative reasoning directly in the individual agents’

decision-making regarding compliance with behavioral

interventions, without requiring changes to the core

library. Indeed, the experiments reported in this paper are

the first large-scale simulations of COVID with delibera-

tive norm-aware agents with adaptive behavior. Moreover,

our experiments demonstrate that simulations with mil-

lions of deliberative agents are feasible, with a degree of

scalability comparable to other approaches in the literature

that consider much more simplified models of agents.

3. PanSim: a framework for large-scale
distributed epidemic simulation

In this section, we introduce PanSim, a distributed agent-

based epidemic simulator with support for complex agent

behavior models. PanSim simulations leverage extensive

existing work on developing realistic synthetic populations

of US states.78 In these synthetic populations, each agent

is assigned demographic variables, such as age, sex, race,

household income, and political orientation. The baseline

behavior of these agents is characterized by weekly activ-

ity schedules. Activities in the agent activity schedules

comprise of them visiting specific locations during specific

times of the week. Section 5 describes the particular syn-

thetic population used for our COVID-19 case study in

more detail. In a PanSim simulation, the transmission of

the disease happens probabilistically when two agents are
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visiting the same location at the same time. In addition,

agents are able to observe visible behaviors of other agents

(such as coughing, mask wearing, and social distancing)

who are at the same location as them at the same time.

PanSim allows custom behavior models to be incorporated

in the simulation that can modify an agent’s baseline activ-

ity schedule based on the decision-making logic.

3.1. Design objectives

PanSim has been built to satisfy the following design

objectives:

� Ability to incorporate complex agent behavior mod-

els: As we have shown, while in recent years many

papers have been published describing agent-based

epidemic models, few have incorporated realistic

human behavior models, which are critical for cap-

turing the complex social dynamics of individual

decision-making. Thus, the primary objective of

PanSim’s design is to allow its users to incorporate

realistic human-like behavior models that govern

agent activity.
� Ability to incorporate existing behavior modeling

frameworks: While it is definitely possible to

rewrite the complex behavior models, from scratch,

in fast low-level languages such as C or C++, it is

expensive and error-prone to do so. Therefore, the

second objective of PanSim’s design is to allow its

users to leverage existing libraries written in high-

level languages, such as Python and Java, for writ-

ing the behavior models.
� Fast implementation of the disease model and epi-

demic simulation: While complex behavior models

need the flexibility of high-level languages,

Susceptible - Infected - Recovered (SIR)-like dis-

ease models and epidemic simulations involve

much simpler logic but represent a significant frac-

tion of the compute time in epidemic simulations.

Thus, it is important to ensure that the epidemic

simulation component of the framework (disease

transmission and progression) is written in a fast

low-level language. Therefore, the third design

objective of PanSim is to seamlessly combine fast

epidemic simulation code written in a low-level

language (like C or C++) together with complex

behavior models written in high-level languages.
� Ability to exploit distributed memory HPC systems:

Large-scale simulations are compute and memory

intensive. To run significant number of these large-

scale simulations in reasonable time periods, it is,

therefore, necessary to be able to exploit large dis-

tributed memory HPC clusters for their execution.

Thus, the fourth design objective of PanSim is to

ensure that PanSim is easy to run on these HPC

clusters.

3.2. Conceptual model

PanSim is a distributed discrete-time agent-based simula-

tion framework. A simulation in PanSim progresses

sequentially in discrete time steps, and within a given time

step, the simulation progresses in multiple sequential

phases. However, within any given phase, computations

corresponding to different agents progress concurrently

and in parallel. Thus, PanSim’s design can be described as

bulk synchronous parallel design.79

PanSim simulations use realistic synthetic populations

of US states78 for agent data and baseline agent mobility

information. In these synthetic populations, agents visit

different locations at specified times. These visits can be

modeled as a temporal bipartite agent–location graph

G = fV ,Eg. Here, the vertex set V =Va [ Vl can be parti-

tioned into two disjoint sets Va and Vl representing the

agents and the locations, respectively. An edge in this

bipartite agent–location graph e= fva, vl, (ts, te)g 2 E is

directed from a vertex representing an agent va 2 Va to a

vertex representing a location vl 2 Vl that the agent visits.

In addition, each edge is also annotated with the start time

ts and end time te of the visit. In PanSim, agents interact

with each other only at the locations they visit. Agents that

are at the same location at the same time come into contact

with each other. In this way, even though the simulation

globally progresses in discrete time steps, agent interaction

is in fact discrete event based. In PanSim, locations visited

by a given agent can change from one time step to the next,

depending on the baseline activity model of the synthetic

population and the logic of the behavior model. The epi-

demic simulation in PanSim progresses over the dynamic

agent–agent contact network which is the unipartite projec-

tion on the agent set Va of the temporal bipartite agent–

location graph G.

To facilitate distributed computation at the beginning

of every PanSim simulation, the agent–location bipartite

graph G is partitioned into roughly equal-sized compo-

nents. These components are distributed across compute

nodes. The exact partitioning algorithm used is described

in more detail later in this section.

In a PanSim simulation, an agent’s state is comprised

of two parts, its disease state (corresponding to the disease

model) and its behavioral state (corresponding to the beha-

vior model). The agent behavior model is responsible for

deciding the activities that an agent undertakes—which

locations the agent visits and when—and how the agent

behaves during those visits. Outward behavior exhibited

by the agents during the location visits is categorized into
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two classes: (a) disease modifier behaviors and (b) visible

attribute behaviors. Disease modifier behaviors—such as

wearing masks and social distancing—modify disease

transmission properties, while visible attribute beha-

viors—such as displaying religious or political affiliations

or symptoms of the disease—are used to indicate the

agent’s stance and influence other agents.

In a PanSim simulation, during a given simulation time

step, the following steps are executed. First, every agent in

the system decides which locations to visit, and at what

times, as well as how to ‘‘behave’’ during each of those

visits. These behaviors include disease modifier behaviors

and visible attribute behaviors. Second, when visiting a

location, the agents come into contact with each other.

During this step, disease transmission takes place probabil-

istically from infectious to susceptible agents. Also, while

the agents interact, they observe each other’s visible attri-

butes. Finally, for every agent, their disease state pro-

gresses and they update their behavioral state based on

their current disease state as well as their observations of

other encountered agents’ visible attributes.

3.3. Structure of a PanSim simulation

A PanSim simulation consists of four major modules: the

behavior module, the social interaction module, the disease

transmission module, and disease progression module.

Figure 1 shows the overall organizations of the modules

and their communication patterns.

The behavioral module and the social interaction mod-

ule together represent the behavior model component of a

PanSim simulation, while the disease transmission and

progression modules together represent the disease model/

epidemic component of the simulation. Another way of

organizing the modules is to think of them from the per-

spective of the dynamic agent–location bipartite graph G

that serves as the network on which both the epidemic pro-

gresses and on which information about social norms are

exchanged. In this view, the behavioral and disease

progression models encapsulate the computation that hap-

pens on behalf of every agent/individual in the simulation,

while the social interaction and disease transmission mod-

ules encapsulate the computation that happens on behalf of

every location in the system.

To write a custom PanSim simulation, the simulation

authors only need to provide the code for the behavior

module. The rest of modules are provided by PanSim

itself. PanSim provides a generic language-agnostic inter-

face, written using Apache Arrow (https://arrow.apa

che.org/), that can be used to write the behavioral module

in many high-level popular programming languages,

including Java, Python, and R. The rest of the modules are

implemented in PanSim itself in fast low-level languages.

A formal description of PanSim is provided in Appendix

A (Online Supplemental Material).

3.4. Disease model implementation

PanSim implements compartmental disease models,80 also

known as SIR-like disease models, for epidemic simula-

tions. In these models, each agent can be in one of a finite

set of disease states. The model also specifies the probabil-

ities of transition between states—disease progression. In

addition, when a ‘‘susceptible’’ agent comes in contact

with an ‘‘infectious’’ agent, there is finite probability that

the susceptible agent contracts the disease and moves to

one of the ‘‘infected’’ states—disease transmission. The

particular disease model used in the current work is a

SEIAR model with five disease states: susceptible,

exposed, infected symptomatic, infected asymptomatic,

and recovered. In Section 5, we will show the specific

parameters of the COVID-19 disease model. We refer

readers to Brauer80 for a more thorough discussion of

compartmental models.

Since disease progression is time-dependent, we, in

addition, annotate each state transition in the disease model

with dwell time distributions. For each state transition, the

disease model author also provides a distribution of transi-

tion times for the current state to the next state. During the

disease progression step, once the specific next disease

state has been selected, the transition time distribution is

used to sample the duration after which the transition will

occur. This addition makes the compartmental disease

models used in PanSim a special case of Probabilistic

Time Automata models.81

PanSim provides a custom domain-specific language to

specify the disease model that it automatically parses and

implements using a fast implementation written in a low-

level language.

3.5. Distributed software implementation

PanSim is a distributed memory HPC application. For

implementing PanSim we chose message passing interface

Figure 1. Structure of a PanSim simulation.
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or MPI (https://www.mpi-forum.org/) as the distributed

memory HPC messaging framework. PanSim makes

heavy use of the nonblocking MPI communication primi-

tives to overlap computation and communication phases.

While many other distributed memory HPC messaging

frameworks have been developed over the years (such as

Charm++,82 UPC++,83 and Legion and Regent84), MPI

remains the most widely supported HPC framework on

HPC platforms.

PanSim is implemented in a mix of Python and C++. In

PanSim, a C++process (MPI rank) runs on each CPU core

of each available compute node. The behavioral module,

written in an arbitrary language, is run as a separate process

and shares the CPU cores with the PanSim processes.

To ensure that the behavioral module processes and

PanSim processes don’t compete for CPU resources, we

use MPI implementation-specific configuration to make

PanSim processes sleep during the execution of the beha-

vioral module. The PanSim and behavioral module pro-

cesses on the same compute node communicate with each

other using Apache Arrow tables using the Unix

Interprocess Communication (IPC) mechanism.

To be able to utilize distributed computing hardware,

the vertices in the agent–location bipartite graph G are stati-

cally partitioned across the MPI ranks at the beginning of

the simulation. Figure 2 shows the overall partitioning strat-

egy. To partition the graph evenly across the MPI ranks

while keeping the cross-rank edges at a minimum, we use a

two-step greedy process. In the first stage, the locations in

the bipartite graph are sorted based on their maximum inde-

gree. Next, the locations are assigned to the MPI ranks in a

round-robin manner. Finally, the agents are assigned to the

rank of the location that they are likely to visit the most fre-

quently, which in most cases is their home location.

We have experimented with using Metis and ParMetis85

for this partitioning. However, we found that our simple

approach was much faster and produced adequately good

partitions. Note that the partitioning method leverages the

fact that agents in the simulation are modeled after real

people, who only frequently visit a small number of places.

This partitioning, however, would significantly increase

the overall runtime of the simulations if used in a scenario

where each agent could visit any location uniformly at

random.

PanSim uses a bulk synchronous parallel design.79 A

PanSim simulation progresses in discrete time steps.

Within a time step, the execution progresses in five dis-

tinct phases, as described formally in Appendix A. The

exploitation of parallel hardware in PanSim comes during

each phase, during which computation related to all agents

and locations can proceed in parallel.

Figure 3 shows the different phases of computation of

a PanSim simulation for a single time step. First, in the

behavioral decision phase, every agent decides the loca-

tions to visit, and how to behave during those visits.

This is followed by data exchange among MPI ranks to

transfer information to the rank corresponding to the

location of the visits. Second, in the social interaction

phase, the interactions of the individuals at every loca-

tion are computed. Third, in the disease transmission

phase, the probability of susceptible agents getting

infected from visits is computed. After the third phase,

data are again exchanged among the MPI ranks to send

the social interaction and transmission updates back to

the agents they correspond to. Fourth, in the disease

transmission phase, the disease state of the agent is

updated based on the transmission and progression mod-

els. Finally, in the behavioral belief update phase, the

behavioral agent state is updated based on the social

interaction and the updated disease state of the agent.

As shown in Figure 3, the first, fourth, and fifth phases

of the simulation are collectively referred to as the individ-

ual phases. The computation of these phases can progress

concurrently for every agent. Similarly, the second and

third phases are location-specific and can be executed con-

currently for every location.

Figure 2. Partitioning of agents/individuals and locations for
distributed processing on PanSim.

Figure 3. Different phases of computation in a single time step
of a PanSim simulation.
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3.6. Discussion

For the design of PanSim, we chose a discrete time archi-

tecture as opposed to the discrete-event architecture due to

the relative simplicity of implementing efficient parallel

discrete time models as opposed to parallel discrete-event

models, which require additional event conflict detection

and rollback logic (in case of an optimistic parallel

discrete-event design) or event conflict avoidance/preven-

tion logic (in case of a pessimistic parallel discrete-event

design). In addition, due to the multilanguage nature of

PanSim’s design, a discrete-event design would incur high

cost of going back and forth between the behavior model

(implemented using an arbitrary language) and the disease

and mobility model (implemented in C++).

PanSim uses static partitioning of the agent–location

graph as opposed to dynamic partitioning.86 While

dynamic partitioning can potentially provide better load

balancing, this comes at a cost of programming complex-

ity as well as expensive migration and tracking costs.

Migrating agents to different compute nodes involves seri-

alization/deserialization of agent state data, destruction of

agent objects on the source compute node, and reconstruc-

tion of the agent object at the destination compute node.

Further additional dynamic tracking and routing mechan-

isms must be maintained to track the location of agents on

compute nodes. In addition, since agent state in PanSim

consists of two parts: disease model state (maintained by

PanSim) and behavioral state (maintained by user code

written by the simulation authors in higher level lan-

guages), this task is cumbersome. Thus, we trade off the

potential benefits of dynamic load balancing for signifi-

cant simplicity in implementation and ease of use for

simulation authors.

4. Sim-2APL

We now discuss the behavior model of our framework, in

which the individual software agents decide their visits

based on their disease and behavior states. The agents

implement the Behavioral Module in Figure 1. They per-

form the Behavior Decision Phase at the start of a PanSim

simulation step and the Behavioral Belief Update Phase at

the end of a PanSim time step (see Figure 3).

We introduce a novel agent programming language that

we call Sim-2APL. Sim-2APL is an adaptation of 2APL,36

a Java library for the implementation of autonomous soft-

ware agents, i.e., software agents that sense their environ-

ment, decide their plans of actions, and execute those plans.

We first provide some necessary background on 2APL

and discuss its limitations for simulation. Then, we present

the key changes that make Sim-2APL. Finally, we illus-

trate how we model normative reasoning in the decision-

making of Sim-2APL agents to support reasoning about

compliance with NPIs during epidemic simulations.

4.1. Background: 2APL

2APL is a Java library for implementing autonomous soft-

ware agents using object-oriented design patterns (see

Dastani and Testerink36 and Dastani87 for technical

details). A 2APL agent is programmed through four major

components. First, the belief base is a set of data classes

called contexts, whose fields’ values store the agent-

specific data or contextual information that the agent

needs to determine its plan of action. Second, the triggers/

goal base stores the objectives that an agent pursues or

any triggers or events that the agent has to react to. Third,

the set of plan schemes store conditional plans. An agent’s

plan has a goal/trigger condition and a belief condition

such that the plan can be selected by the agent whenever

its goal/trigger condition is satisfied by the agent’s goal

base (i.e., the goal/trigger is in the goal base) and its belief

condition is satisfied by the agent’s belief base. Finally,

the plan base stores the plans that have been selected by

the agent. These plans, which specify the behaviors of the

agent, are Java programs that may change the state of the

agent’s environment, update the agent’s belief and goal

bases, or manage the communication with other agents.

The execution of a 2APL agent occurs through a cyclic

process, called the deliberation cycle, which is shown in

Figure 4. Each iteration of the deliberation cycle of a

2APL agent consists of two major steps: plan selection,

where relevant plans are selected and inserted in the plan

base, and plan execution, where all plans in the plan base

are executed.

During the plan selection step of the agent’s delibera-

tion cycle, active goals/triggers (including received mes-

sages) are applied to the plan schemes for which the belief

condition is satisfied by the belief base. Successful applica-

tion of a goal/trigger to a plan scheme generates an instan-

tiated plan that is subsequently added to the agent’s plan

base. Except for goals, each successfully applied trigger is

immediately removed from the trigger base. Goals are only

removed when achieved, i.e., when the isAchieved
method, implemented by the programmer to test the

agent’s belief base, returns true. During the plan execu-

tion step, all plans from the agent’s plan base are executed

in order. If the plan is marked as finished at the end of its

execution, it is removed from the plan base. Otherwise, it

remains there to be executed again in the next iteration of

the deliberation cycle. If a plan is instantiated through the

successful application of a goal-type trigger, no new plans

are instantiated for that trigger in subsequent deliberation

cycles, unless that plan has been marked finished and

removed from the agent’s plan base.

In 2APL, the execution of agents and delivery of mes-

sages is handled by a so-called Platform that maintains

a pool of threads on which the agent’s deliberation cycles

are scheduled for execution. By registering an agent with

the platform, its deliberation cycle is automatically
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scheduled. As soon as an agent’s deliberation cycle

finishes, it is rescheduled automatically so its next cycle

can be executed as soon as the thread pool queue has

drained. One exception to rescheduling is when, after an

iteration of the agent’s deliberation cycle, its plan base

and all its trigger bases are empty. In this case, the agent

has no proactive behavior to pursue, and their deliberation

cycle is not rescheduled to save CPU resources until a

new external trigger or message is received.

4.1.1. Limitations of 2APL for simulation. As the agents can

dynamically update their belief, goal, and plan bases,

2APL allows the implementation of many forms of com-

plex proactive and reactive behavior.36 However, 2APL has

two main limitations that make it unsuitable for simulation.

4.1.1.1. Limitation 1 (scalability). 2APL is no exception

to other agent programming languages with respective to

limited scalability (as discussed in Section 2). More spe-

cifically, in 2APL, the amount of CPU resources that can

efficiently be used in parallel is severely limited by the

tight integration of agent execution and the execution of

actions in the environment. This approach essentially

makes 2APL a discrete-event-based system, where the

events are any action performed by any agent in the envi-

ronment. Because of the reasons outlined in the previous

section, this poses an issue for efficiency if considered in a

(distributed) simulation context.

4.1.1.2. Limitation 2 (lack of time-step synchronization). As

discussed above, 2APL allows agents to directly change

the environment by their plan execution. As a conse-

quence, the agents are executed asynchronously both from

each other and from the environment, and 2APL does not

contain an explicit notion of time. This means that agents

may have different—possibly inconsistent—information

about the environment’s current state. Furthermore,

because compute time of agents can differ due to the sche-

duling of the Java Virtual Machine (JVM), in a simulation

context, some agents may be able to perform more delib-

eration cycles than others in the same (simulated) time,

posing difficulties for the repeatability of a simulation.

4.2. Sim-2APL

Sim-2APL addresses the two limitations of 2APL outlined in

the previous section. First, Sim-2APL separates the agent

deliberation from the execution of actions by deferring the

execution of actions until after the deliberation of all agents

has completed. As a consequence, the behavior model imple-

mented in Sim-2APL and the dynamics of the environment

implemented in PanSim execute alternately. Second, an

explicit notion of time steps is introduced to allow agents to

execute exactly one deliberation cycle per time step. During

its deliberation cycle, a Sim-2APL agent produces its actions,

and these actions will be executed in the environment only at

the end of the step. Specifically, each Sim-2APL time step

consists of three consecutive stages: Preparation—in which

belief update events from changes in the environment are sent

to the agents, Deliberation—in which agents deliberate on

the actions they will undertake in the current time step, and

Processing—in which all agent actions are collected and pro-

cessed in the environment (PanSim). We discuss these stages

in detail in Appendix B (Online Supplemental Material).

Together, action deferral and synchronized execution of

agents provide support for both scalability (Limitation 1 of

2APL) and time-step synchronization (Limitation 2). For

users interested in code examples, or in creating new

Figure 4. The 2APL deliberation cycle.
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simulations with Sim-2APL, a minimal demonstration

simulation—without the interface with PanSim—is avail-

able at https://github.com/A-Practical-Agent-Programming-

Language/Sim-2APL-tutorial-and-demonstration.

4.3. Normative reasoning in Sim-2APL

We now present the normative reasoning process (i.e., rea-

soning about norms) of (Sim-)2APL agents (while we dis-

cuss the normative reasoning here for ease of presentation,

the process as described can also be used in non-simulation

2APL applications). A norm, in our framework, represents

a behavioral intervention that is issued by a central author-

ity (e.g., to wear mask or to close schools). We assume,

therefore, that agents do not need to identify norms dyna-

mically during the simulation (e.g., via imitation or learn-

ing88). Instead, during the simulation, agents are notified

about the enforcement of a new norm, by means of a norm

event sent by the authority (in Sim-2APL’s Preparation

stage). When a norm event is received by an agent for a

particular norm n, the agent instantiates an internal repre-

sentation of that particular norm, and decides whether to

obey or violate the norm (via normative reasoning as

described below) in the subsequent deliberation cycles.

Therefore, Sim-2APL agents adapt their behavior to norms

that are introduced dynamically during the course of a

simulation.

We define a norm n instantiated by an agent as a tuple

hcondition, target, effecti. The condition of n determines

the context to which n applies, i.e., a set of beliefs of the

agent. The target of n is the goal(s) of the agent to which

the norm applies. The effect of n determines how that goal

should change when the condition applies (i.e., the obliga-

tions, permissions, or prohibitions specified by the norm).

More specifically, the effect of a norm characterizes a

transformation of the goals of the agent. Such transforma-

tion makes a goal norm-aligned. For example, a behavioral

intervention to close primary schools may be represented

by the norm hprimary-school-kid, go-to- school, canceli,
which specifies that if the agent believes it is of type pri-

mary-school-kid; the target goal go-to-school is canceled.

The normative reasoning process is implemented in the

agents’ plan schemes, and its integration in the agent delib-

eration cycle is shown in Figure 5. During deliberation,

before selecting a plan for some goal, the agent first finds

all norms that apply, i.e., all norms for which the condition

holds. For all the norms that apply, the agent determines

its attitude, a, toward complying with the norm, i.e., a

value in the range ½0, 1� representing the agent’s intention

to comply with the norm. We interpret the attitude as the

probability p(a) that the agent complies with the norm

(e.g., if a= 0:75, then there is 75% chance that the agent

complies with the norm), but other evaluation strategies

for the attitude (e.g., comparing against a threshold value)

can be applied without changing the process outlined here.

If the agent complies with a norm, it temporarily changes

that goal for the current deliberation cycle to be norm-

aligned (e.g., to cancel the activity in the case of school

closure, or change the goal to include the wearing of a

facial mask).

The agents’ attitudes are determined by particular

beliefs they hold regarding their capabilities, the risks, and

(observations of) the behavior of other agents. We call

these beliefs factors. Each factor is a belief associated with

a real value in the range ½0, 1� representing the evidence

provided by the factor in support of compliance with a

particular norm. Specifically, an agent’s attitude toward

complying with a norm n is computed using equation (1):

Figure 5. The normative deliberation cycle of a Sim-2APL agent starts with instantiating a plan for each trigger (transformed by the
normative reasoning in the ‘‘Normative Reasoning’’ box) through the plan application rules in the plan schemes (‘‘Plan Selection’’)
after which the instantiated plans are executed (‘‘Plan Execution’’) resulting in a ordered list of external actions.
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a(n)=
1

1 + e �k � �f (n) � tð Þð Þ ð1Þ

where t is the prior probability that the agent complies

with the norm, �f (n) is the average of the agent’s values for
the factors ff1, . . . , fmg relevant for norm n, and k is a

parameter representing the degree to which the agent is

influenced by the factors (in this work we use k = 10).

We interpret the prior, t, as the trust the agent has toward

the institution enforcing norms. This design decision was

influenced by previous work linking norm compliance

with trust.89 The higher the prior t, the more likely the

agent is to comply with a norm, even if other factors (e.g.,

the observed compliance of other agents) provide low sup-

port for compliance. The general shape of this function for

prior values t 2 f0, 0:5, 1g is shown in Appendix C

(Online Supplemental Material). Since the value of the

prior t and of the factors is different for different agents,

some agents will be more influenced by their prior opi-

nions, while others will be more influenced by the factors.

If an agent has a very low or very high trust value (i.e., t is

close to 0 or 1), the decision to comply (resp. not to com-

ply) becomes more ‘‘resistant’’ to evidence supporting

norm compliance (resp. noncompliance). We note that our

approach to norm compliance is more flexible than many

of the approaches to deliberating over norms in the litera-

ture. For example, a norm-aware variant of 2APL is pre-

sented in Alechina et al.,90 in which agents can decide

whether to comply with a conditional norm.91 However, in

that work, compliance is determined by the relative utility of

the target goal and the sanction the agent receives if the

norm is violated. The agent’s attitude toward the institution

enforcing the norm is not considered, nor is the agent’s deci-

sion to comply affected by other factors, e.g., the compli-

ance of other agents. Moreover, the approach in Alechina

et al.90 assumes that violations can be reliably detected, and

the institution is able to effectively sanction violating agents;

neither of these assumptions holds in our setting.

In the next section, we describe the norms and factors

used in our epidemic simulation case study based on the

NPIs implemented in Virginia, USA, against the spread of

COVID-19, and how trust is computed.

5. A simulation of compliance with
COVID-19 regulations

To illustrate and evaluate our framework, we describe the

development and calibration of a simulation of behavioral

responses to interventions during a pandemic in the context

of COVID-19 (the full simulation model is available at https://

github.com/A-Practical-Agent-Programming-Language/

Normative-COVID-19-Simulation92). The key compo-

nents of this simulation are illustrated in Figure 6.

We start with a synthetic population of the US state of

Virginia, where individuals are assigned realistic demo-

graphics, weekly activity schedules, and activity locations

drawn from surveyed behavior and real location data. In

our simulation, each individual in the synthetic population

is represented by a Sim-2APL agent that reasons about

whether to comply with the various NPIs that were imple-

mented in the state of Virginia and that we model as

norms. Sim-2APL agents interact through co-location

resulting from their activity choices. Co-location is

Figure 6. COVID-19 simulation setting.
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calculated by and used for disease progression in PanSim

as per Section 3.

In the following, we provide details about the data used

to develop the simulation, and about the implementation of

the agents and disease models.

5.1. Data sets used in the simulation

To model the agents and to calibrate and evaluate the

simulation, we make use of the five data sets described

below.

5.1.1. Synthetic population of Virginia, USA. Agents in our

simulation are drawn from a synthetic population of the

state of Virginia, USA. This synthetic population has been

constructed from multiple data sources including the ACS,

the National Household Travel Survey (NHTS), and vari-

ous location and building data sets, as described in Adiga

et al.78 This gives us a very detailed representation of the

region we are studying (multiple counties within Virginia).

Agents are assigned demographic variables drawn from

the ACS, such as age, sex, race, household income, or,

optionally, a designation as an essential worker, e.g., medi-

cal or retail. The behavior of agents is characterized by

weekly activity schedules, a set of typical daily activities

the agents perform over the course of 1 week obtained by

integrating data from the NHTS. The activity schedule

defines the location, start time, and duration of the agent’s

activities as one of seven distinct high-level activity types:

HOME, stay at or work from home; WORK, go to work or

take a work-related trip; SHOP, buy goods (e.g., groceries,

clothes, and appliances); SCHOOL, attend school as a stu-

dent; COLLEGE, attend college as a student; RELIGIOUS,
religious or other community activities; and OTHER, any
other class of activities, including recreational activities,

exercise, and dining at a restaurant. For example, one

activity in an agent’s schedule could state ‘‘SHOP at loca-

tion l between 7 p.m. and 8 p.m.’’ Appropriate locations

are assigned to different activities using data from multiple

sources, including HERE, the Microsoft Building

Database, and the National Center for Education Statistics

(for school locations).

5.1.2. Mobility data. To model the changes in agents’ mobi-

lity due to various executive orders (EOs) implemented

between March and July 2020, we use cellphone-based

mobility data provided by Cuebiq. This data set contains

location pings generated from the cellphones of a large

number of anonymous and opted-in users throughout the

United States. Cuebiq collected data with informed con-

sent, anonymized all records, and further enhanced privacy

by replacing pings corresponding to home and work loca-

tions with the centroids of the corresponding Census

blockgroups. We aggregate the data to the county level as

follows. First, we calculate the average radius of gyration

for cellphone users in the county. This is a metric that has

extensively been used as a measure of changes in mobility

and compliance with social distancing interventions during

COVID-19.93–95 The radius of gyration is given by

r =
P

l d(l, lc)=k, where l is the location (latitude and

longitude) of the user, lc is the centroid of all the locations

visited by the user on that day, k is the number of locations

visited by the user on that day, and d is the Haversine dis-

tance. We then calculate a mobility index as the percentage

change in the average radius of gyration r over all users in

a given region on a given day compared with the average

for the same day of the week in the same region during

January and February of 2020, i.e., before any EOs were

issued. For example, the mobility index for a specific

Monday in May 2020 is the percentage change in the aver-

age r on that day compared with the average over all

Mondays in January and February 2020.

5.1.3. COVID-19 case data. We use county-level COVID-

19 case data from US facts to calibrate the disease model

in our simulation. A caveat is that the number of confirmed

cases likely under-counted the number of actual cases sub-

stantially, especially early in the epidemic, due to limited

testing. To account for this, in Section 5 we determine, via

calibration of the simulation, a scale factor which we use

to multiply the number of reported cases.

5.1.4. Disease model parameters. Table 3 shows the para-

meters with which we instantiate the disease model forma-

lized in Section 3. The infectivity of symptomatically and

asymptomatically infected agents (isymp and iasymp resp)

determine the probability of an infected agent infecting a

susceptible agent if they spent one unit time (300 s here)

in the same location, and are obtained through calibration,

which is further explained in Section 5. After being

exposed, the agent automatically transition to the next

state after a dwell time—drawn from a distribution—has

passed. The state they transition to is specified by the pro-

gression probability. For example, an exposed agent will

move to the symptomatically infected state with probabil-

ity p= 0:6 after a number of days drawn from dist1,

which for the current work is simply fixed to an incubation

time of 6 days. The behavior modifiers determine how the

infectivity probabilities (per unit time) are altered by beha-

vior changes of the infected or susceptible individuals.

5.1.5. EOs in Virginia. We use a data set of EOs that were

implemented in each state in the United States,96 collected

from the Johns Hopkins Coronavirus Resource Center.97

From this, we extract the EOs that were implemented in

Virginia in the period between 1 March and 30 June 2020.

In our simulation, EOs are represented by one or more
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norms that agents may obey or violate. We consider 11

norms representing a (simplified version of the) subset of

EOs implemented in Virginia. In our simulation, the time

when the norms are enforced corresponds to the time when

the corresponding EO was effectively put in place, as illu-

strated in Figure 7.

Table 4 provides the semantics of these norms. The

parameters that are associated with the norms in the norm

specify the applicability of a particular instance of the

norm to particular types of activities or agents. For exam-

ple, the type parameter of the BusinessClosed norm speci-

fies the type of business to which the norm instance

applies (e.g., an instance may specify that only nonessen-

tial business (NEB) should close). The size and type para-

meters of the SmallGroups norm specify the maximum

size of groups permitted in a context of a particular type

(e.g., no more than 10 people are allowed in a public

space). Another example is the type parameter of

SchoolsClosed, which specifies the grade levels that are

closed: K-12 specifies all K-12 level schools are closed,

which means the norm applies only to activities of type

SCHOOL when the agent performing the SCHOOL activity

is attending K-12 level education.

5.2. Instantiating the behavior model

We instantiate the model such that each agent in the simu-

lation represents one individual in the simulated counties of

Virginia. These agents draw their demographic characteris-

tics from the synthetic population and adopt (to-do) goals

to perform activities from representative weekly activity

schedules. The simulation progresses in discrete time steps

that each represent 1 day. During the deliberation for a time

step t, the agent selects a plan for each goal that represents

an activity scheduled for the day of the week the active

time step t corresponds to and then applying the normative

reasoning process from Section 4. The instantiated plans

selected by the agent can then produce an activity in the

form of a visit, containing the visited location, the start

time and duration of the visit, and the behaviors that the

agent wishes to exhibit during that visit.

Figure 7. Timeline of the nine major EOs implemented in Virginia, USA, between March and June 2020. The column on the left
indicates the norms belonging to the nine EOs. For each norm in an EO (e.g., n1 in EO1), a black line indicates the period during
which the norm was enforced (e.g., the first two black lines indicate that both n1 and n4 from EO1 were enforced from 12 March to
1 July).

Table 3. Simple contagion model (COVID-19 disease model).

Category Parameter Value

unit_time 300.0
states [succ, expo, isymp,

iasymp, recov]
behaviors [base, mask, sdist,

mask_sdist]
exposed_state expo

susceptibility succ 1
infectivity isympw 4.81e-05

iasympw 2.40e-05
progression expo {isymp = 0.6,

iasymp = 0.4}
isymp {recov = 1.0}
iasymp {recov = 1.0}

dwell time expo {isymp = dist1,
iasymp = dist1}

isymp {recov = dist2}
iasymp {recov = dist2}

distribution dist1 {dist = fixed, value = 6}
dist2 {dist = fixed value = 14}

Behavior modifier base {base = 1.0, mask = 0.5,
sdist = 0.5,
mask_sdist = 0.25}

mask {base = 0.5, mask = 0.25,
sdist = 0.25,
mask_sdist = 0.15625}

sdist {base = 0.5, mask = 0.25,
sdist = 0.25,
mask_sdist = 0.15625}

mask_sdist {base = 0.25,
mask = 0.15625,
sdist = 0.15625,
mask_sdist = 3.906e-3}

wObtained through calibration.
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In the following subsections, we describe the norms and

the factors that we implemented in our COVID-19 simulation.

5.2.1. Norms and normative reasoning. We distinguish two

types of norms:91 regimented norms (R)—which cannot

be violated by the agents—and nonregimented (NR)—

which the agents can autonomously decide whether to

comply with or not. In the case of R norms, the agents are

regimented to always exhibit an attitude of 1. Note that

regimentation in this context means the agents do not have

choice. Some normative reasoning approaches apply sanc-

tions98 as a mechanism to enforce norms as an alternative

to regimentation, meaning that, for example, business

owners could choose to ignore the norm n2 (business

Table 4. A brief explanation of the norms enforced in our simulation and of their parameters.

Id Interpretation Parameters

n1 Mask wearing is allowed and encouraged —
n2 Businesses of type type are closed type∈ fNEBg: the type of business, NEB= nonessential business
n3 Employees working in retail must

wear a mask during work activities
—

n4 Telework is encouraged —
n5 Physical distance of 1.5 m should be maintained —
n6 Capacity of business should be reduced to perc perc: percentage of business capacity
n7 Schools of type type are closed type∈ fK12, HE, K12 or HEg: the type of school, K12= primary

and secondary education
HE= Higher Education

n8 The maximum allowed size of groups of type type is size type∈ fpublic, private, allg: the target settings, either public,
private, or both (all); size∈N: maximum size of groups

n9 Stay at home if belong to category appl appl ∈ fsick or age ø 65,allg: the group of agents to which the
norm applies, either people sick or older than 65
(sick or age ø 65), or everyone (all)

n10 Only take away allowed for restaurants —
n11 A mask must be worn in public indoor settings —

HE: higher education.

Table 5. Which activities are affected by regimented (R) and nonregimented (NR) norms, and the factors influencing the decision to
comply with each norm.

Id Norm Activity type applicability (�) Agent beliefs factors Transformation

WORK SHOP SCHOOL COLLEGE RELIGIOUS OTHER mask distance symptomatic group teleworking

f1 f2 f3 f4 f5 T

Nonregimented n1 MasksAllowed �w � � � � � � T1

n4 Telework �y � � T3

n5 Distance � � � � � � � T1

n8 SmallGroups # �y � • � • • � � T3

n9 StayHome �y � � � � � T3

n11 MandatoryMask � � � � T1

Regimented n2 BusinessClosed �z �z T3

n3 EmployeesMask �§ T1

n6 BusinessCapacity # �z �z T3

n7 SchoolsClosed � T3

n10 TakeawayOnly �“ T2,T3

•Applies only if the parameter type includes private.
wIf the agent has the essential designation medical, then always a= 1.
yUnless the agent as any essential designation.
zUnless the activity location is marked essential or residential.
§If agent has the essential designation retail.
#As a proxy for agents communicating or being refused at the door, we stochastically apply this norm to the percentage of agents that results, on

average, on the maximum allowed still continuing with the activity.
“This norm is applied only to visits with a duration of at least 20 min. Of those, we arbitrarily apply to only 10% because we have no data on what

actual visits are restaurant visits. The transformation that is applied is t2 with p= 0:5 and t3 otherwise, as a proxy for some people canceling their

plans of eating out, and others switching to takeaway.
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closed) if they are willing to risk a fine. In our simulation,

instead, we apply n2 only to customers and clients of these

businesses, and assume all businesses to which the norm

applies (Table 5) are indeed closed. This means that, in

our simulation, agents do not have choice regarding the

norm n2, and we thus describe it as regimented.

We have identified which of the activity types each

norm that we simulate applies to. These activity types are

shown in Table 5 (activities of type HOME are always

exempt from any norm, and thus not included in the table).

These activity types determine the target of the norms

instantiated by the agents. For example, the norm

Telework(n4) is only applicable to activities of type

WORK. Furthermore, to determine the condition of applic-

ability of the norms, we have also mapped each norm to

belief conditions that every agent can assess individually.

For example, the norm StayHome(n9) is instantiated in

EO4 with parameter sick or age ø 65. We have modeled

sick (as a consequence of the agent’s disease state) and

age as two distinct beliefs (the former Boolean and the lat-

ter numerical) that every agent has (and may update over

the course of the simulation), so that the Java expression

sick||ageø 65 can be evaluated by the agent to

assess whether the condition of the norm holds for them

personally once the norm is enforced. For norm

EmloyeesMask(n3), we introduced a Boolean belief

works-in-retail that indicates whether the agent works in

retail.

As a special case, we mark the primary work location

of each agent that is designated as an essential worker

(i.e., with a belief indicating so), with the same designa-

tion. We also mark all locations that are used for the activ-

ity HOME as ‘‘residential.’’ The essential designations of

agents or locations can form exceptions to the applicability

of a norm. These exceptions are also indicated in Table 5.

For each norm that is not regimented and that applies to a

goal of the agent, the agent calculates its attitude a based on

their beliefs to decide whether they will comply as per equa-

tion (1). Norms can change the agents’ default activities

(goals) through one of the following three transformations:

T1. The intention of a disease-modifying behavior

(either wearing a mask or practicing physical distan-

cing) is added to the goal.

T2. The duration of the visit encoded by the goal is

shortened.

T3. The goal is replaced with a goal to stay home.

In the case of Transformation T3, the agent randomly deci-

des to either change the visits’ location of the affected goal

to their home location or to not produce any visit at all

(meaning it will drop the activity) with equal probability.

The agent shifts all subsequent activities to start earlier so

that there are no gaps in the schedule. The one exception

here is if the next activity is of type WORK, which is

assumed not to be temporally flexible. In that case, the

agent extends the duration of the activity right before the

work activity to last until work starts. If the last activity in

the schedule is of type HOME, the agent extends the dura-

tion so that it lasts until the end of the time step t. This

ensures that, even when an increasing number of activities

are canceled due to active NPIs, there continues to be

some mixing in the population, despite the activities

scheduled by default repeating weekly.

5.2.2. Trust. We assign each agent a value of prior trust t

in the institution sampled from a beta distribution whose

parameters are obtained through calibration of our model.

We assign each household either conservative with a

probability equal to the fraction of Republican votes in the

2016 presidential elections in their county, and liberal oth-

erwise. For each group, we create one beta distribution.

For each agent, we sample their initial trust value at the

start of the simulation from the beta distribution associated

with the group of the household they belong to. The beta

distributions are characterized by Betav(av,bv) (with

v=C for conservative and v= L for liberal), where

av =mv � k, bv=(1� mv) � k. The values of the means mC

and mL are obtained through calibration (see Section 5);

k=av +bv = 100 characterizes the spread of the distri-

bution, and, for simplicity, is fixed for both distributions.99

The Cuebiq mobility data show an increase in mobility

after the initial reduction in the first few weeks when the

first set of measures was instigated, without relaxations to

these measures being applied. This suggests decreased

compliance with norms over time. While the cause of this

increase in mobility is speculation, we chose to model it

as a form of norm fatigue. This norm fatigue is achieved

by decreasing the prior trust attitudes of the agents with a

constant f starting at tf simulation steps (days) after the

start of the simulation. Both f and tf are subject to calibra-

tion but no distinction between voting preference is made

for these two parameters.

5.2.3. Factors. We use five factors representing the beliefs

that agents use as the evidence supporting norm compli-

ance. All factors are real values in the range ½0, 1�, with a

higher value meaning the agent is more likely to comply.

f1 mask. If an agent observes more contacts wearing

a facial mask, they are more likely to wear a mask

themselves.

f1 = �ml
Dd , where �ml

Dd is the average fraction of

contacts at location l in the past d days who were

wearing a facial mask.

f2 distance. If an agent observes more contacts fol-

lowing physical distancing guidelines, they are

more likely to practice physical distancing them-

selves.
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f2 = �pl
Dd , where �pl

Dd is the average fraction of con-

tacts at location l in the past d days who were prac-

ticing physical distancing.

f3 symptomatic. If an agent observes more contacts

showing symptoms, they are more likely to comply

with a norm as risk mitigation.

f3 =�sl
Dd , where �sl

Dd is the average fraction of con-

tacts at location l in the past d days who were

symptomatic.

f4 groups. If an agent observes more contacts (�nl
Dd)

than are allowed by the maximum group size (m),
their trust decreases, but they are more likely to

comply with maximum group size interventions

themselves. The effect increases exponentially the

larger the observed difference (�nl
Dd � m)).

f4 = 1� 1
C�(�nl

Dd
�m)+ 1

where C is a constant indicat-

ing how quickly a larger-than-allowed number of

contacts increases the agent’s attitude toward com-

pliance (in our model, C = 0:4). The shape of this

function is shown in Appendix C (Online

Supplemental Material).

f5 teleworking. f5 = 0:45 indicating the probability

an arbitrary agent can work from home.

In our model, d = 14 days for all factors. For each visit,

an agent makes to a location l, PanSim reports nl, ml, pt,

and sl, i.e., the total number of agents, and the number of

agents wearing a facial mask, practicing physical distan-

cing, or showing symptoms, respectively. The average val-

ues over the past d = 14 days are calculated by the agents

when they determine their attitude toward a norm.

In the current work, the value for f5 is static and the

same for all agents. This value has been taken from litera-

ture.100 A more dynamic approach where different agents

have their own probabilities to be accommodated to work

from home based on their job and socio-economic status is

left for future work.

5.3. Calibration

We now describe the calibration of the two components—

the behavior model (as described in this section) and the

disease model (Section 3)—of the simulation we have pre-

sented. We calibrate the key parameters of both models

separately. The disease model is calibrated against the

cumulative confirmed number of cases in Virginia to esti-

mate the infectivity of symptomatically and asymptomati-

cally infected agents. The behavior model is calibrated

against the mobility index, i.e., the percentage change in

radius of gyration in each county.

Although both behavior and disease components are

enabled in every simulation run that we perform for

calibration, we calibrate them independently in two sepa-

rate processes, by fixing the component that is not the tar-

get of calibration for that process. The dynamics of one

component affect the other, because agents base their deci-

sions on observations of the behavior of other agents and

in response to the disease progression, which in turn also

depends on the behavior of agents. For this reason, we per-

form two rounds of calibration, where the first round

serves to find initial estimates for both components, and

the second round serves to obtain the final parameters.

Both calibration processes are performed by means of

Nelder–Mead (NM) minimization.101 NM iteratively

refines an initial configuration of parameters until it finds

a local optimum that minimizes a given objective function,

in this case the root mean square error (RMSE) between

observations of each day in the simulated period in the real

world and in the simulation initiated with the tested para-

meter configuration. The calibration simulations were per-

formed using data from the counties of Charlottesville

(41, 119 unique agents in the synthetic population,

83:25% of which voted liberal, 16:75% conservative),

Goochland (20, 922 unique agents, 37:55% liberal,

62:45% conservative), Fluvanna (24, 109 unique agents,

45:35% liberal, 54:65% conservative), and Louisa

(32, 937 unique agents, 37:60% liberal, 62:4% conserva-

tive). All in all, this means the calibration simulations

were performed using a total of 119, 087 agents, 54:92%
liberal, 45:08% conservative. These counties have been

selected for their proximity, number of agents, and varia-

tion in voting preference. For each set of parameters

selected by NM, we run five different simulations to

account for stochastic variation.

5.3.1. Agent parameters. We calibrate the four parameters

of the agent model introduced in Section 10.2.2, i.e., the

means mL and mC of the two beta distributions from which

we sample the trust attitudes of liberal and conservative

agents, respectively, the fatigue factor f , and the time step

tf in the simulation at which the fatigue becomes active.

We calculate the RMSE between the mobility index in our

simulation and in the real-world Cuebiq data (calculated

as per Section 5). We apply a rolling average of 7 days to

the mobility index before calculating the RMSE to nor-

malize the intrinsic differences between the weekly repeat-

ing mobility trends between the synthetic population and

the Cuebiq data.

We perform the first round of behavior calibration

simulations with the parameters of the disease model fixed

to hinfs = 4:5 � 10�4; infa = 3:375 � 10�4i. These para-

meters were chosen for being low enough to prevent the

entire population to be infected too quickly, but high

enough to sustain the disease progression in initial test
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runs. In the second round of calibration, the parameters

are fixed to those obtained from the first round of disease

model calibration.

5.3.2. Disease model parameters. We calibrate two para-

meters of the disease model, the base level infectivity of

symptomatic (infs) and asymptomatic (infa) agents, and a

value s that we call the scale factor. We calculate the

RMSE by comparing the cumulative number of actually

recorded infections in the four simulated counties with the

total number of recovered agents in our simulation at each

time step. To account for the uncertainty in testing in early

2020, we multiply the cumulative case count with the con-

stant s before calculating the RMSE. In previous work,39

we arbitrarily picked s= 30, while for this work, s is itself

part of the calibration process. We performed the simula-

tions for the first round of calibration with the parameters

of the behavior model fixed to hmL = 0:5,mC = 0:5,
f = 0:0125, fs = 60i. In the second round of calibration,

the parameters are fixed to those obtained from the first

round of behavior model calibration.

5.3.3. Calibration results. Both models were calibrated until

the objective function did not improve for 20 iterations.

The final parameters obtained from the first two rounds of

calibration are shown in Table 6. The last row (labeled

‘‘combined’’) shows the average RMSE obtained for both

components more than five simulations where both com-

ponents were fixed to the parameters obtained from round

2. Figure 8 plots the mobility in each of the four simulated

(a) (b)

(c) (d)

(e)

Figure 8. The mobility index observed in the simulation (solid lines) plotted against that recorded by Cuebiq (dashed lines) in each
of the simulated counties of Charlottesville (a), Fluvanna (b), Goochland (c), and Louisa (d), and the cumulative percentage of the
infected simulated population plotted against the number confirmed cases (× 6) (e).

Table 6. Calibration results.

Round 1 Round 2 Combined

Behavior RMSE 15:74 15:73 15:77
μL 4:72 · 10�3 4:27 · 10�4 4:27 · 10�4
μC 0:712 0:662 0:662
f 0:079 0:0342 0:0342
tf 111 110 110

Disease RMSE 1150 1237 1405
infs 1:48 · 10�5 1:46 · 10�5 1:46 · 10�5
infa 7:39 · 10�6 7:34 · 10�7 7:34 · 10�7
s 6 6 6

RMSE: root mean square error.
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counties separately, and the number of recovered agents

(8e) in all of the four counties combined resulting from

these parameters against the real data.

Table 6 shows that the best parameters for the disease

model were obtained in the first round, and that the perfor-

mance of both the behavior model and disease model was

worse in the simulation where the final calibrated models

were combined than what was obtained with the last cali-

bration round. We believe this is due to minor changes in

the starting configuration having a big impact on the final

outcomes, so the calibration results in a precarious opti-

mum that depends on the values with which the fixed

component was instantiated. In the combined round, the

fixed model had slightly different parameters than were

used to obtain the calibrated values, but no further calibra-

tion took place, so a small negative impact on the results

is to be expected. From the results shown in Table 6, it

further appears the behavioral model is not very sensitive

to the configuration of the disease model, with all para-

meters and the RMSE being very similar after both cali-

bration rounds (although very different from the starting

configuration). This also seems a valid conclusion from

the small standard deviation (which is plotted, but hardly

shows up in Figure 8) between the five simulations. The

outcome of the disease model calibration does differ more

starkly between simulation rounds, which we believe indi-

cates a higher sensitivity to both the behavioral model and

to the random perturbations resulting from the very low

probabilities it concerns. In fact, looking only at the iso-

lated RMSE of the disease component, the best fit appears

to be obtained with the uncalibrated behavior model, and

the worst fit with the behavior model fixed to the para-

meters obtained from the second round of calibration.

However, both models improved on previous work, where

the best RMSE obtained were 17:66 and 2052 for the

behavior and disease models, respectively.39

Comparing Figure 8(a)–(d), it can be seen that the

recorded mobility changes varied widely from county to

county. Despite our simulation using the same parameters

for each county, it was still able to reproduce some of this

variation, albeit less strongly than was recorded. The

simulation was able to approximate the changes in mobi-

lity best in the county of Louisa (8d), closely followed by

Goochland (8c). The observed mobility change in

Charlottesville seems to be an outlier compared with the

other simulated counties, with mobility increasing beyond

the baseline in June. This increase is something that our

simulation intrinsically cannot reproduce, as agents cannot

choose to pick up activities not already in their activity

schedules (on which the baseline is calculated). This is

shown by a stronger simulated decrease in mobility than

what was actually recorded, but this decrease is still less

than for the other three counties.

From Figure 8(e), it can be seen that initially the out-

break in our simulation grows slower than what was

recorded, but that the simulated number of recovered

agents overtakes the (scaled) number of recorded cases

after about two-thirds of the simulation. The disease pro-

gression in the simulation is clearly exponential, while the

recorded progression appears to be more linear (or even

logarithmic). Whether this is (a) the result of under-testing

in that period of time, (b) the result of randomness caused

by the small numbers reported, (c) only showing the very

start of a curve that is in actual fact exponential, or (d) an

accurate reflection of the actual disease progression is

unclear, but since the disease progression is exponential

by necessity in our model, we do not expect we can obtain

a much better fit with the current data.

5.4. Discussion

We have attempted to minimize the number of free para-

meters from which the model can be instantiated, to

reduce the chance of over-fitting during calibration, but

intercounty variations in mobility patterns suggested that

mechanisms for decision-making should not be uniformly

applied to all agents in the population. The heterogeneity

of demographics that is spatially realistically assigned to

agents should be able to account for some of this variation.

However, on top of that, we looked for a mechanism spe-

cifically aimed at trust—which underlies all agents’

attitudes—that we could use to distinguish different coun-

ties. Early in the pandemic, the topic of mask wearing has

been considered highly polarizing in the United States.

Although the media acknowledged many factors to be at

play, partisanship was cited as highly influential in the

context of mask wearing102,103 and social distancing,104,105

and correlations between the type of news consumption

and inclination to wear masks have also been reported106

(although it should also be noted that media polls suggest

the effect of partisanship is grossly mis-estimated by

opposing sides of the spectrum107). We have not been able

to find detailed statistics about types of news consumed in

each county, so instead generalize to political voting data,

which is available on a county-by-county level. However,

the values for the means mL and mC of the beta distribu-

tions from which the agent’s trust are sampled that were

obtained through calibration (Table 6) do not reflect the

correlations identified in the mentioned sources, suggest-

ing the importance of partisanship has been overestimated,

or at least is not significant in the simulation model we

have proposed in this work.

To the best of our knowledge, our calibration approach

is the first in the context of computational epidemiology

that explicitly takes mobility data into account to calibrate

the behavior of agents. Contrary to other data-driven mod-

els at scale, human decision-making is a key component

of this model, and the parameters of that behavior should

be grounded in data through calibration. Direct data on

human decision-making in the context of NPIs are not
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available at the scale required for calibration, but changes

in mobility provide a suitable proxy,93–95 because a large

number of the NPIs under consideration were aimed at

reducing mobility.

6. Experiments

We now present two experiments to evaluate our frame-

work, for which we use the calibrated simulation model

presented in Section 5. First, we demonstrate the strong

and weak scaling capabilities of our framework to show

that it indeed supports the scaling up of epidemiological

simulations that use realistic human-like models of delib-

erative agents. Next, we report on an experiment using a

number of counterfactual simulations of the calibrated

model to estimate the relative effectiveness of each of the

nine EOs that were implemented in Virginia between

March and June in 2020 to illustrate how such a model

can be employed.

6.1. Scalability

For the purposes of the scaling experiments, we selected

synthetic populations of eight counties in the state of

Virginia, USA, with varying sizes, as well as the whole

state of Virginia. Table 7 shows the number of persons,

households, and their weekly activity schedule (location

visits) in the synthetic populations of the selected counties,

and of the entire synthetic population of Virginia. To

understand the scalability of PanSim + Sim-2APL, we

ran individual simulations for each of the eight counties,

with each simulation simulating 1 week, representing the

week starting from 2 March 2020, at which time the most

interventions were active. For the eight counties, simula-

tions were run with 40, 80, 160, and 320 CPU cores, and

for the whole state of Virginia, the simulations were run

on 320 and 640 CPU cores. All simulations were run on

compute nodes that each have two Intel Xeon Gold 6148

CPUs with 20 CPU cores each. The compute nodes used

to run the experiments also had 384 GB of DDR4 RAM

Memory and were connected to each other with Mellanox

ConnectX-5 network adaptors. Each simulation was run

10 times, and the running times were noted.

We study scaling in two ways. First, we study strong

scaling by keeping the problem size fixed and increasing

the number of CPU cores. This is done by running the

simulation for each county with the four sets of core

counts listed above, and for the whole state of VA with

the two sets of core counts. The expectation is that the run-

ning time should decrease smoothly as the computational

resources increase.

Second, to study weak scaling, we keep the computa-

tional resources fixed and increase the problem size. This

is done by comparing the running times for simulations of

increasingly larger counties, while keeping the number of

CPU cores fixed. We carried out this experiment for all

four sets of CPU core counts as well. The expectation is

that the running time should not increase too sharply as

the problem size increases.

In both cases, the resulting performance curves should

ideally be linear. However, communication overheads can

make the curves nonlinear. There is also inherent nonli-

nearity in the structure of the problem, as the disease

spread computation is quadratic in the number of agents

simultaneously present at a location. It is also expected that

at some point, the overhead of communication between

distributed parts of the simulation becomes higher than the

efficiency gained by distributing the computation across

multiple cores. For smaller problem sizes (i.e., smaller

counties), this should become apparent with fewer cores.

6.1.1. Strong and weak scaling results. Figure 9 shows the

variance in the runtime of the simulations when run with

different numbers of CPU cores. We can see in Figure

9(a) that when the same simulation is run with increasing

numbers of CPU cores (strong scaling), all eight counties

show an almost linear decrease in run time up to 160 CPU

cores on a log–log scale. In the case of the four smaller

counties (the four lowest curves), increasing the number

of CPU cores to 320 actually increases the runtime due the

communication overhead becoming apparent, as discussed

above. However, for a larger county like Henrico, the

strong scaling results hold even with 320 CPU cores. For

the simulation of the whole state of Virginia, increasing

the number of CPU cores from 320 to 640 provides a

speedup in runtime of 1.963.

A similar story can be seen for the weak scaling results

shown in Figure 9(b), which shows the runtime of simula-

tions with increasing compute load (number of individuals

in the county simulated). We can see that for counties with

more than 100K individuals, increasing the number of

CPU cores to 320 shows definite benefits. However, for

the rest of the counties simulated, the benefits of increas-

ing CPU cores are observed only up to 160 CPU cores as

Table 7. The counties of the state of Virginia and the whole
state used for the experiments, along with the number of
persons, households, and weekly location visits in the synthetic
population.

County Persons Households Visits

Goochland 20,923 8240 680,571
Fluvanna 24,110 9776 779,337
Louisa 32,938 13,398 1,066,179
Charlottesville 41,120 18,377 1,335,596
Albemarle 93,570 39,920 3,047,807
Hanover 98,435 38,149 3,204,317
Henrico 298,354 125,782 9,700,944
Richmond 181,975 89,146 5,920,569
VA State 7,688,059 3,094,493 248,954,394
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there the compute load is insufficient for the benefits of

distributing it to offset the additional overhead of MPI

communication.

These results demonstrate that PanSim + Sim-2APL

simulations integrate well, and can be used to simulate

large populations by distributing the computational load.

The PanSim platform has been designed to efficiently

scale complex multicontagion simulations. It assumes that

the socio-psychological models that are being simulated

using it are computationally heavy. In particular, for the

current implementation the compute times—per agent, per

time step—needs to be in the order of 1 ms for good scal-

ing. The deliberation cycles of agents in Sim-2APL took in

our experiments on average 500 ms. Our scaling studies

have shown that our agent models were computationally

too ‘‘light’’ to fully achieve the benefits of distributing the

simulation, and the communication overhead dominated

execution time. In our experiments we also tested with

simpler and computationally faster models that took

approximately 1 ms on average per deliberation cycle. In

that case, overhead of the PanSim system started to domi-

nate the runtime of the simulations for the smaller six of

the eight counties tested with 160 CPU cores. Traditionally

the community appears to exhibit some restraint in using

individual agent-based models as opposed to stochastic

models due to their computational demand. Our results,

however, suggest that individual agent models are not only

feasible, but that more computationally demanding agent

models (i.e., many and complex reasoning behavior) pro-

vide more favorable conditions for scaling than more sim-

ple (individual agent) models.

6.2. Counterfactual simulations

In this subsection, we report experiments aimed at illus-

trating how the proposed framework can be applied for

policy study. In particular, we conduct a demonstrative

policy study in which we quantify the efficacy of the vari-

ous EOs in Virginia, taking into account the behavioral

response of its residents to interventions, through counter-

factual runs with our calibrated model described in the pre-

vious section. For this experiment, we employ the same

119, 087 agents as were used for the calibration processes

reported in Section 5.

Given the list of n= 9 EOs that were issued in Virginia

as per Figure 7, we run 10 different experiments: in experi-

ment Ei, for 04 i4 n, we enact only the first i EOs. For

example, in experiment E0, no norm is enforced, i.e., we

simulate a scenario where no behavioral intervention takes

place; in experiment E1, we enact only the first EO, i.e.,

norms fn1, n4g starting from 12 March; in experiment E2

we enact the first two EOs, i.e., fn1, n4g starting from 12

March and also fnt(K12)g starting from 13 March, etc.

In each experiment, we compute the total number of

agents that have been infected at the end of the simulation.

We run each experiment 5 times to account for stochastic

variation in the simulation.

Figure 10 shows the number of recovered agents at each

time step in the simulations (SIR plots available in the

code repository92), with the standard deviation of the five

runs shown as the confidence interval. E0 shows that if no

measures had been taken, the spread of COVID-19 would

have been several times more rapid, with nearly 50% of

the population infected within the first 4 months. The

higher curves, associated with E0 and E1, show the pro-

gression of the disease slowing down and nearly stopping

near the simulation end. We believe this is caused by the

simulation containing only 119, 087 agents. After a suffi-

ciently large portion of the population has been infected,

already recovered agents form a buffer against the spread

of the disease, as they cannot contract the virus again. This

makes it relatively less likely for an infected agent to

(a) (b)

Figure 9. The variance in mean run time of PanSim + Sim-2APL simulations with respect to (a) the number of CPU cores used and
(b) the number of simulated individuals, for eight counties in the state of Virginia and the whole state of Virginia.
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encounter a susceptible agent. We expect this effect to be

increasingly unlikely with larger population sizes, which

would demonstrate the utility of larger-scale simulations.

Table 8 shows the total number of infected or recovered

agents over the course of the simulation. The experiment

E9 corresponds to the scenario where all behavioral inter-

ventions were enforced the same way they have been in

Virginia. Because the corresponding EO only contained

relaxations of previous measures (n7: Higher Education

reopens, and n8: maximum group size increased from 10

to 50 in all settings), the size of the outbreak is marginally

larger than in E8, but the total number of agents that con-

tracted the disease over the course of the simulation is

almost 90% lower than if no behavioral interventions were

put in place, showing the measures as a whole have been

largely effective.

From the results, the single most effective EO appears

to be the second (E2) in which all K-12 level schools were

closed. This EO resulted in a reduction of 61:69% in

agents contracting the disease over the course of the

simulation compared with the previous intervention, and a

reduction of 72:63% compared with no interventions at

all. Interestingly, the first intervention which only provided

suggestions rather than hard restrictions (work from home,

n4, and the ban on face covering masks was lifted, n1)

already correlates with a significant decrease of 28:56% in

infected agents compared with no interventions; the third

most effective EO of all nine EOs.

The second most influential single EO appears to be the

fifth, which extended the order to stay home when possible

(n9) to all groups, the closure of all NEBs (n2) and closing

restaurants except for takeaway (n10).
Both EOs announcing relaxations of behavior interven-

tions resulted in a slight increase in the number of infec-

tions. For the last EO, this increase was a difference of

28:16% compared with the previous EO, while these

relaxations only came a single week after the previous

restrictions, accounting for a very small difference in time

between E8 and E9. This may suggest the timing of this

relaxation was ill-advised.

Figure 10. Cumulative cases in our simulation (solid line, with standard deviation plotted as confidence interval) and in the real-
world (× 6, dashed line) in each experiment E0 � 9.

Table 8. The number of cumulative cases in each experiment.

Ei Cumulative cases Pct of pop. Diff. w.r.t. Ei�1 Diff. w.r.t. E0

0 57462:8± 1569:042 48:25± 1:32% 0:0%
1 41053:0± 2794:062 34:47± 2:35% �28:56% �28:56%
2 15725:5± 2703:217 13:21± 2:27% �61:69% �72:63%
3 14830:4± 4998:956 12:45± 4:20% �5:69% �74:19%
4 10809:4± 3226:403 9:08± 2:71% �27:11% �81:19%
5 6781:2± 3670:897 5:69± 3:08% �37:27% �88:2%
6 5666:0± 1887:58 4:76± 1:59% �16:45% �90:14%
7 5900:6± 1310:623 4:95± 1:10% + 4:14% �89:73%
8 4793:5± 3193:588 4:03± 2:68% �18:76% �91:66%
9 6143:4± 991:514 5:16± 0:83% + 28:16% �89:31%
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The simulations presented in this work have served as a

proof of concept to demonstrate the applicability of the

proposed framework. It should be noted that various sim-

plifications have been applied to the motivations of the

agents and to the actual norms enforced. Moreover, while

we use an experiment where we study the effectiveness of

the various EOs to demonstrate how our framework can

be applied, in our simulation the time when the various

EOs were issued (including relaxations) were fixed to the

dates they were implemented in Virginia, while in reality

they have been issued in response to the actual spread of

COVID-19 at that time. Nevertheless, the results reported

above show that behavioral responses of individual agents

to normative interventions, and not just the effect of an a

priori uniform assumption on the level of compliance, can

be studied through our proposed simulation framework.

7. Conclusions

In this paper, we have introduced a novel epidemic simu-

lation framework that allows for large-scale distributed

simulations with deliberative norm-aware agents. First, in

Section 3, we have introduced PanSim, a novel epidemic

simulation platform that can (a) integrate realistic behavior

models that can capture the complex social dynamics of

individual decision-making, (b) incorporate existing agent

behavior modeling frameworks written in high-level lan-

guages such as Python or Java, (c) seamlessly combine

fast epidemic simulation code—written in a low-level lan-

guage but easily specified in a simple declarative

language—with these behavior models, and (d) exploit

distributed memory HPC systems. Second, in Section 4,

we have presented Sim-2APL, an agent programming lan-

guage, based on 2APL, that supports the flexible imple-

mentation and execution of deliberative agents in discrete

time distributed simulations executed with PanSim to

implement a realistic human-like behavior model of

agents’ reasoning about compliance with nonpharmaceuti-

cal intervention norms. To demonstrate our framework

combining PanSim + Sim-2APL, in Section 5, we have

proposed a COVID-19 simulation with a population of

agents instantiated from a representative synthetic popula-

tion that explicitly models the normative reasoning of indi-

viduals about the NPIs issued in the state of Virginia in

the United States in the period of March to June 2020. In

contrast to similar simulations that uniformly apply com-

pliance across the population, the agents in this work

autonomously determine their attitude toward compliance

with the NPIs based on a number of factors, most of which

are dynamic and heterogeneous across the population.

This attitude determines what locations agents visit which

directly drives the disease progression. In this way, the

(changing) behaviors of the population directly influence

the progression of the studied disease. We have further

shown that a data-intensive calibration process is feasible

with the proposed framework and model. In Section 6, we

have (a) demonstrated both the strong and weak scalability

of this framework through simulations with a population of

8 million individuals from the state of Virginia, as well as

through several smaller simulations with population size

ranging from 20,000 to 180,000 agents, and (b) shown how

such a simulation can be used to study the efficacy of inter-

ventions under varying and heterogeneous compliance.

PanSim has been designed with the intention that the

behavior module can be instantiated by arbitrary high-level

behavior modeling frameworks written in, e.g., Python or

Java. This allows simulation authors to use other, perhaps

existing, models to take the place of Sim-2APL in this

paper, or even use precomputed activities as its input.

Moreover, many social phenomena can be modeled as

contagion processes similar to the spread of disease, such

as the spread of information108 and misinformation,109 the

spread of technologies,110,111 fashions,112 changes in lan-

guage113,114 and more.115–118 PanSim allows, in its simple

declarative language, the specification of ‘‘behaviors’’ that

can also be used to represent, e.g., outwardly communi-

cated ideas, information, and use of technologies.

Moreover, the semantics of what we have called ‘‘loca-

tions’’ in this paper are given by the agents and in PanSim

are just nodes in a graph. These locations might equally

well be substituted for, e.g., newspapers or web pages

(where ‘‘visits’’ become ‘‘reads’’). All this allows PanSim

to be used as a more generic environment and distribution

platform than for just computational epidemiology. Sim-

2APL supports similar generality. It can be easily con-

nected to other existing simulation environments and plat-

forms (that may or may not already contain complex

environmental dynamics) different from PanSim.

In future work, we intend to synchronize the message

passing between 2APL agents. In addition, we intend to

make both our approach for normative reasoning and our

proof-of-concept COVID-19 simulation more realistic,

leveraging additional theories from the field of ABMS,

psychology, and sociology. For example, while the effect

of trust on compliance with NPIs is supported by the liter-

ature, the trends on mobility in Virginia show that trust is

not static. In this work, we have taken fatigue as a proxy

for decreasing trust, but have not considered the dynamics

behind that fatigue. Moreover, the effect of political orien-

tation reported in the media was not corroborated by our

simulation. In future work, we intend to explore alterna-

tive mechanisms to political orientation for explaining the

dynamics of trust evolution. In addition, other factors such

as a fear factor, the influence of news or social media,

(changes in) habits and routine, could be added to the

decision mechanisms of the agents. With these additions,

we hope to be able to provide more realistic epidemic

simulations, which can help to identify important lessons

from the COVID-19 pandemic and help policy makers
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better understand the behavioral dynamics that affect the

efficacy of NPIs. Finally, we are investigating methodol-

ogy where our simulation framework can assist policy

makers in determining which policies are most effective

in bringing about an intended change in situations where

the public’s response to interventions is uncertain, rather

than simply evaluating policies that have already been

implemented.
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