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A B S T R A C T   

Microbial functional diversity in litter and soil has been hypothesized to affect the rate of decomposition of 
organic matter and other soil ecosystem functions. However, there are no clear theoretical expectations on how 
these effects might change with substrate availability, heterogeneity in the substrate chemistry, and different 
aspects of functional diversity itself (number of microbial groups vs. distribution of functional traits). To explore 
how these factors shape the decomposition-diversity relation, we carry out numerical experiments using a 
flexible reaction network comprising microbial processes and interactions with bioavailable carbon (extracellular 
degradation, uptake, respiration, growth, and mortality), and ecological processes (competition among the 
different groups). We also considered diverse carbon substrates, in terms of varying nominal oxidation state of 
carbon (NOSC). The reaction network was used to test the effects of (i) number of microbial groups, (ii) number 
of carbon pools, (iii) microbial functional diversity, and (iv) amount of bioavailable carbon. We found that the 
decomposition rate constant increases with increasing substrate concentration and heterogeneity, as well as with 
increasing microbial functional diversity or variance of microbial traits, albeit these biological factors are less 
important. The multivariate dependence of the decomposition rate constant (and other decomposition and mi
crobial growth metrics) on substrate and microbial factors can be described using power laws with exponents 
lower than one, indicating that diversity effects on decomposition and microbial growth are reduced at high 
substrate concentration and heterogeneity, or at high microbial diversity.   

1. Introduction 

Microbial diversity refers to the range of microbial organisms in a 
system and is typically measured in terms of taxonomic units or func
tional groups (Scow et al., 2001). Microbial diversity has been linked to 
soil organic carbon decomposition and microbial respiration (Setälä and 
McLean, 2004; Bell et al., 2005; Nielsen et al., 2011; Valentin et al., 
2014) and may be one of the determinants for the resilience of soil 
ecosystems to change in environmental conditions (Snajdr et al., 2010; 
Valentin et al., 2014; Waring and Hawkes, 2018; Osburn et al., 2021). 
Zhou et al. (2012) showed that microbial diversity is a key predictor for 
soil organic carbon respiration using statistical approaches; thus, 

diversity can have quantitatively important effects. These links between 
diversity and respiration are due to both the intrinsic decomposition 
capacity of microbial communities, and the feedbacks between diversity 
and organic matter stability. In fact, the characteristics of soil organic 
matter (not only its decomposability) depend on the composition of the 
microbial community that mediates its formation (Domeignoz-Horta 
et al., 2021; Sokol et al., 2022). Yet, specific mechanisms to explain 
these effects are not well understood. Moreover, the structure and 
composition of microbial communities change in time and space (Loh
mann et al., 2020), which adds further complexity to diversity-driven 
patterns. 

To explore the relationship of the microbial diversity and organic 
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matter decomposition (and other soil functions), several manipulation 
studies were carried out at the field and lab scale (Nielsen et al., 2011; 
Valentin et al., 2014; Vicena et al., 2022). While there is no clear answer 
on the nature of the diversity-function relations yet, the majority of the 
studies revealed a positive relationship (e.g., Setälä and McLean 2004; 
Bell et al. 2005). Consistent with this empirical evidence, theoretical 
models predict that decomposer diversity should promote decomposi
tion and nutrient recycling (Loreau, 2001). However, how to incorpo
rate microbial diversity metrics in process-based soil carbon models 
remains an open question. 

It is particularly challenging to represent the microbial diversity ef
fect on decomposition because microbially explicit models represent the 
microbial populations with several, often poorly constrained parameters 
(Marschmann et al., 2019). Microbial explicit numerical models have 
been useful to study reactive systems mediated by bacteria, saprotrophic 
fungi and mycorrhizal fungi, feeding on residues (possibly of different 
quality) or carbon supplied by plants. Most of these models focused on 
the interactions of one or few carbon compounds with microbial biomass 
as a whole (Schimel and Weintraub, 2003; Manzoni and Porporato, 
2009; Wieder et al., 2015). A few models break down the microbial 
community into functional groups at a rather coarse taxonomic or 
functional level (Li et al., 1992; Grant et al., 1993; Kersebaum and 
Richter, 1994; Maggi et al., 2008; Kaiser et al., 2014; Baskaran et al., 
2017), but the structure of these models does not allow manipulating 
diversity per se. 

Lastly, the above mentioned models were mostly developed for 
predictive purposes, or for exploration of food web dynamics, and they 
did not consider microbial (functional) diversity per se and its role in 
carbon cycling. There are some exceptions, in which functional diversity 
is manipulated in silico to gain theoretical insights on organic matter 
dynamics in either a generic ecosystem (Loreau, 2001) or marine sys
tems (Zakem et al., 2021). Studying diversity effects requires modelling 
a number of microbial groups interacting with a diverse set of carbon 
compounds and is complicated by the nearly total lack of information on 
the kinetics regulating decomposition potential, assimilation, growth, 
and mortality of the individual microbial groups. Not only the mathe
matical form of the kinetics, but also the parameter values for the ki
netics laws are uncertain. Developing a simple approach to represent the 
effect of microbial diversity on decomposition is therefore needed to 
help large scale process based model to better represent microbial 
community composition effects on decomposition and other microbial 
functions. 

To overcome the intrinsic limitation of parametrization, generic 
parameterizations can be developed based on more or less strict ‘rules’ 
linking the parameter values in the prescribed kinetic laws mediating 
each microbial-substrate interaction. For example, random kinetic 
parameter values can be prescribed to account for the stochastic nature 
of microbial communities (Zakem et al., 2021). This allows identifying 
the intrinsic effects of food web structure (number and diversity of 
functional groups; how necromass is recycled) on the overall decom
position process and organic carbon accumulation. In addition, physi
ological trade-offs and coordination between pairs of physiological 
processes can be accounted for by imposing some degree of correlation 
(negative for trade-offs, positive for coordinated processes) among the 
parameter values in the microbial kinetics (Allison, 2012). Competition 
and facilitation mechanisms also play a role within decomposer com
munities (Allison, 2005; Kaiser et al., 2014). Accounting for parameter 
variability and co-variation, and for the basic mechanisms of interaction 
among functional groups, ensures incorporation of some of the processes 
responsible for biodiversity effects (Pilowsky et al., 2022). 

In this contribution, using a flexible decomposition model including 
multiple substrates and microbial functional groups, we link ecosystem 
functions associated with organic matter decomposition to microbial 
diversity. Specifically, we ask: how do initial microbial community 
characteristics (in terms of size and functional diversity) affect 
ecosystem functions such as decomposition rates or microbial growth 

and functional diversity during decomposition? With our model, we 
traced the consumption of organic carbon in diverse microbial func
tional groups whose decomposition capacity and metabolism are 
controlled by randomly varying and partly co-varying parameters. With 
this information, we quantify the above-mentioned ecosystem functions 
and propose a rate modifier to capture the effects of substrate and mi
crobial diversity on decomposition rates. 

2. Materials and methods 

2.1. Reaction network 

The reaction network comprises a number Nc of carbon compounds 
(denoted by i in Fig. 1, with 3 ≤ Nc ≤ 18) that together form the 
bioavailable substrate carbon pool (C), and a number of microbial 
functional groups Nb (denoted by j in Fig. 1 with 4 ≤ Nb ≤ 32) that 
together form the microbial biomass pool (B). The minimum Nc and Nb 
are set to avoid having a network driven by one or two compartments 
characterized by extreme parameter values (parameter values are 
randomly sampled, see Section 2.2). The substrate carbon compounds 
are differentiated based on the nominal oxidation state of the carbon 
atoms (NOSC). The reaction network describes the interactions between 
pairs i, j of carbon substrates and microbial groups including the depo
lymerization of carbon compounds (Di,j), the uptake of these compounds 
(Ui,j) by microbes for growth and assimilation into biomass (Gi,j), 
respiration (Ri,j), and finally necromass (CB) formation (at a rate Mj) and 
recycling of necromass into the substrate compartments. The reaction 
network is illustrated in Fig. 1A; symbols are listed and explained in 
Table 1. 

We tuned the model to describe condition in the top soil, where total 
carbon concentrations range between 0.2 and 20 mol C kg− 1 (Xu et al., 
2013), corresponding approximately to 0.2 and 20 mol C L− 1 with a bulk 
density of 1 kg L− 1 (equivalent to 1 g cm− 3). All carbon compound and 
microbial group variables are expressed as moles of carbon per liter of 
soil (mol C L− 1) and all fluxes as moles of carbon per liter of soil per day 
(mol C L− 1 d− 1). For convenience, the numerical values in some of the 
figures are expressed in m mol units. 

The reaction network is constructed in accordance with previous 
works exploring the role of microbial biomass in organic matter 
decomposition from conceptual (Schimel and Schaeffer, 2012; Kästner 
et al., 2021) and modelling perspectives (Schimel and Weintraub, 2003; 
Manzoni and Porporato, 2009; Wieder et al., 2015). The microbial 
groups produce exoenzymes as a linear function of their biomass 
(Schimel and Weintraub, 2003), 

Ej = venz,j × Bj, (1)  

where Ej is the concentration of exoenzyme produced, Bj is the biomass 
concentration of the jth microbial group, and venz,j is a proportionality 
constant. Eq. (1) is interpreted as the steady state solution for enzyme 
concentration when enzyme production rate scales linearly with mi
crobial biomass and enzymes are deactivated following first order ki
netics. Under these assumptions, production (~B) and deactivation (~E) 
are equal, resulting in the proportionality between the enzyme and 
biomass concentrations (E~B) captured by Eq. (1). Given the small mass 
and the uncertainty in the fate of decayed enzymes, we assume for 
simplicity that deactivated enzymes are lost from the system. The exo- 
enzyme Ej then depolymerizes the carbon compounds following 
Michaelis Menten kinetics, 

Di,j =
vmaxi,j × Ci × Ej

Ki,j + Ci
, (2)  

where, Di,j is the depolymerization rate of the ith carbon compound by 
the jth microbial group, Ci is concentration of the ith carbon compound, 
Ki,j is the half saturation constant, and vmax,i,j is the maximum velocity 
constant. 
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The depolymerization chain of organic carbon is governed by the 
nominal oxidation state of the carbon atom (NOSC). The cascade of 
decomposition of carbon compounds is described in terms of flow of 
energy (using NOSC as a proxy indicator) following thermodynamic 
principles (LaRowe and Van Cappellen, 2011; Gunina and Kuzyakov, 
2022). Organic matter undergoes change in NOSC as it progresses 
through decomposition, initially undergoing oxidation and then shifting 
towards slightly reduced NOSC due to microbial necromass that enters 
the substrate compartments at an intermediate NOSC level of -0.2 
(Kästner et al., 2021; Gunina and Kuzyakov, 2022). Thus, during 
decomposition, carbon flows to microbial biomass and in part to carbon 
compounds where carbon has a higher oxidation state. The fraction of 
carbon compounds that is taken up by microbial biomass is governed by 
the carbon uptake efficiency of each microbial group, 

Ui,j = zi,j × Di,j, (3)  

where, zi,j is the uptake efficiency of each microbial species for each 
carbon compound. A fraction yi of the carbon compound taken up is 
assimilated into the microbial biomass (Gi,j) and the rest is mineralized 
into carbon dioxide (Ri,j). The higher the oxidation state, the lower yi, 

Gi,j = yi × Ui,j × freg,j, (4)  

Ri,j = Ui,j − Gi,j, (5)  

where freg,j is a rate modifier regulating microbial growth due to 
competition. Based on the previous equations, the growth rate is pro
portional to the product vprod,i,j of several parameters, Gi,j ∼ vprod,i,j =

zi,j × vmaxi,j × venz,j; this property will be used in Section 2.4 to define 
microbial functional diversity. Competition due to the presence of other 
microbial groups followed the Lotka-Volterra model (Vandermeer and 
Goldberg, 2013; Fujikawa et al., 2014), 

freg,j = 1 −

∑
j

(
B − Bj

)

Bmax
, (6) 

Fig. 1. Schematic representation of the model setup: (A) reaction network and (B) model parameterization, including decomposition, growth, and mortality kinetics 
and the distributions of their parameters. Microbial necromass is treated as a substrate compartment with NOSC=-0.2 (indicated here by CB). 

Table 1 
Symbol definitions and units.  

Symbol Name Units 

Indices and subscripts 
0 Initial conditions (time=0) - 
i Carbon compound index - 
j Microbial group index - 
max At peak biomass or maximum - 
Nc Number of carbon compounds - 
Nb Number of microbial groups - 
Nm Number of carbon compounds that have NOSC=-0.2 - 
tot Total (including substrates and microbial groups) - 
State variables 
Bj Biomass concentration mol C L− 1 

B Total biomass concentration mol C L− 1 

Ci Substrate organic carbon concentration mol C L− 1 

C Total substrate organic carbon concentration mol C L− 1 

Ctot Total organic carbon (= C+B) mol C L− 1 

Ej Exo-enzyme concentration mol C L− 1 

Rates 
Di,j Depolymerization mol C L− 1 d− 1 

Ui,j Uptake mol C L− 1 d− 1 

Gi,j Growth mol C L− 1 d− 1 

Mj Mortality mol C L− 1 d− 1 

Ri,j Respiration mol C L− 1 d− 1 

Parameters 
freg,j Regulation due to competition - 
venz,j Proportionality constant - 
vmax,i,j Maximum rate of carbon depolymerization d− 1 

vprod,i,j Parameter group (= zi,j × vmaxi,j × venz,j) d− 1 

Ki,j Half saturation constant mol C L− 1 

zi,j Uptake efficiency - 
yi Growth yield coefficient - 
mj Mortality constant L mol C− 1 d− 1  
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where the carrying capacity of the system (Bmax) was set to 15 % of 
initial carbon available for microbial growth. Finally, each microbial 
group decays due to density-dependent mortality (Georgiou et al., 
2017), 

Mj = mjB2
j , (7)  

where, mj is the mortality constant of the jth microbial group. The 
necromass is recycled into the carbon compounds with NOSC=-0.2 
(Dick, 2014; Gunina and Kuzyakov, 2022). 

Thus, the change in concentration of the ith carbon compound and 
jth microbial group is given by the coupled mass balances, 

dCi

dt
= Ii −

∑

j
Di,j +

∑

j

(
1 − zi− 1,j

)
Di− 1,j +

⎧
⎪⎨

⎪⎩

∑
Mj

Nm
, NOSCi = − 0.2

0, NOSCi <> − 0.2
, (8)  

dBj

dt
= Gj − Mj, (9)  

where Ii is externally sourced input in the ith carbon compound (in this 
study, Ii = 0) and Nm is the number of carbon compounds that have 
NOSC =-0.2. 

2.2. Parameterization 

The parameterization describing the reactions and the state of the 
carbon compounds was randomized but constrained. The initial oxida
tion state of the carbon compounds varied between -0.5 and +0.5 (see 
Fig. 1). We used a slightly higher range of oxidation state of carbon 
compounds in soil than previously reported (varying between -0.45 and 
+0.3) (Kleber, 2010) to explore scenarios potentially including aquatic 
systems. 

We randomly sampled the parameters describing microbial-carbon 
interactions (venz,j, zi,j, vmax,i,j and Ki,j) from log normal distributions 
(Fig. 1, Table 2). The mean values of vmax,i,j corresponded with the time 
scale of decomposition processes, while variation in zi,j represented the 
capacity of different microbial groups to take up different carbon com
pounds. The mean of Ki,j was chosen to be in the same order of magni
tude of bioavailable soil organic carbon concentrations. The variance of 
these distributions (Vb) changed according to microbial community type 
(Section 2.3). 

The microbial community was also assumed to adapt to available 
carbon compounds; i.e., vmax,i,j is scaled with respect to the initial con
centration of the carbon compounds, Ci,0/C0 (where Ci,0 is the initial 
concentration of the ith carbon compound and C0 is the mean initial 
concentration of organic carbon across all substrate compartments). 

Carbon compounds with high (positive) NOSC (referred to as 
oxidized carbon hereon) are easily taken up by microbes for respiration 
and for complete mineralization, despite their lower energy yield 
(Gunina and Kuzyakov, 2022). Therefore, we ranked the randomly 
sampled values of zi,j, vmax,i,j and Ki,j for the various carbon compounds 
according to the NOSC of each compound. So higher values of zi,j and 
vmax,i,j were associated with higher NOSC while lower values of Ki,j were 

associated with higher NOSC. Finally, yi for each carbon compound 
depended on the oxidation state of that compound (NOSCi) (Manzoni 
et al., 2012b), 

yi =

⎧
⎨

⎩

0.6, NOSCi ≤ 0

0.6 −
NOSCi

3
, NOSCi > 0

. (10) 

Lastly, the mortality constant of each microbial group (mj) was scaled 
with the median value of vmax,i,j associated with that microbial group 
and the total initial biomass in the system, 

mj =
median

i
vmax,i,j

5
∑

jBj,0
, (11)  

where the factor five in the denominator ensured that microbial groups 
were stable and were able to grow even in carbon poor conditions. 

2.3. Scenarios 

2.3.1. Variation in initial substrate carbon (C0) 
To reflect large variations in the available organic carbon concen

tration (e.g., across land uses, land covers, soil types), we considered 
scenarios with a range of initial available organic carbon (C0) from 1 to 
15 mol C L− 1 (Fig. 2B). 

2.3.2. Carbon compounds and microbial groups 
Organic matter in natural systems is composed of a spectrum of 

carbon compounds and their diversity depends on the stage of decom
position and the ecosystem being modeled. We considered diversity in 
terms of number of compounds making up organic carbon in the system. 
The number of carbon compounds varied from 3 to 18 (Nc = 3, 6, 12, 
18). Thus, for each value of initial organic carbon concentration, the 
percentage of contribution of each carbon compound varied according 
to the total number of carbon compounds in the system. 

Overall, the initial biomass in all the scenarios was maintained at 10 
% of the initial concentration of organic matter. The number of micro
bial groups also varied (Nb = 4, 8, 12, 16, 20, 24, 28, 32) in each scenario 
considered for the varying number of carbon compounds. 

Combining different numbers of carbon compounds and microbial 
groups already resulted in a wide variety of initial Shannon diversity 
indices (H) for each simulation, 

H = −
∑

j

(
pj logpj

)
, (12)  

where, pj =
Bj∑

j
Bj

, and Bj is the biomass of the jth microbial functional 

group. The resulting Shannon diversity varied from less than 1 to greater 
than 3. 

As mentioned in Section 2.2, we also varied the variance (Vb) in the 
parameter space governing microbial-carbon interactions. We consid
ered five levels of Vb: 1, 10, 50, 100 and 150 % of the mean of the 
parameter of concern (Table 2). In doing so, we accounted for homo
geneous and generalist communities (with low Vb) as well as heteroge
neous and specialist communities (with high Vb). Thus, to assess 
microbial diversity, we explored the utility of both taxonomic diversity 
(in terms of H, see above) as well as functional diversity (in terms of Vb 
or f, see below). To have a representative ensemble of simulations in the 
randomized scenarios, we used nine different seeds to initialize the 
scenarios. This procedure provided nine replicate simulations for each 
combination of C0, Nc, Nb, and Vb. 

We simulated all the above-described scenarios for a period of 10 
years, using the reaction network set up in Python (van Rossum and 
Drake, 2006) with the SciPy 1.0 package (Virtanen et al., 2020) as the 
numerical solver. In total, we ran 800 simulations exploring the rate of 
carbon consumption in systems with varying total available carbon, 
number of carbon compounds, number of microbial groups and varying 

Table 2 
Mean values of the log-normal distributions from which decomposition pa
rameters are sampled. The variances of the distributions is assumed proportional 
to the mean values through a coefficient Vb.  

Parameter Mean Units 

zi,j 0.2 - 
vmax,i,j 0.004 d− 1 

Ki,j 0.6 mol C L− 1 

venz,j 0.4 -  
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microbial community characteristics, and finally randomized seeds. 
These scenarios are summarized in Fig. 2B. 

2.4. Indices characterizing ecosystem functions 

To distinguish the microbial communities between ‘homogeneous’ 
and ‘heterogeneous’, we differentiated between communities not only 
by their size or taxonomic diveristy (Nb or H), but also by their func
tional diversity (f). We estimated functional diversity using biomass 
weighted variance and the product (vprod,i,j) of venz,j, zi,j, and vmax,i,j (see 
Section 2.1): 

f =
∑

i,j

Bj
∑

jBj
×
(
vprod,i,j − vprod

)2
, (13)  

where Bj is the biomass associated with a particular microbial functional 
group. Communities with f<1.E-5 d− 2 were described as homogeneous 
communities, while communities with f>1.E-5 d− 2 were described as 
heterogeneous communities. 

To evaluate the performance of these model microbial systems, we 
considered four ecosystem functions (generically denoted by Y and 
summarized in Fig. 2A) focusing on the ability of a microbial system to 
decompose organic carbon and to grow:  

1 Organic carbon decomposition kinetics: we calculated the time scale 
(τ, d) associated with the first 10 % loss of total organic carbon; i.e., 
the sum of substrate carbon and biomass concentration (Ctot). The 
decay constant (k10, d− 1) associated with corresponding first order 
kinetics was the reciprocal of τ. We also traced how the decompo
sition kinetics evolved as the microbial community consumed carbon 
for respiration and growth.  

2 Persistent carbon: Ctot stored in the system at the end of the 10 year 
simulations as a percentage of initial carbon (Ctot,T/Ctot, 0). 

3 Normalized microbial biomass gain: The ratio of peak biomass dur
ing the simulation period and initial biomass (Bmax /B0). A value of 1 
indicates that the microbial community did not gain any biomass.  

4 Microbial biomass growth rate: The gain in biomass over 30 days 
during the initial decomposition stage, i.e., when carbon loss was 
close to 10 % of Ctot (ΔBk10 , mol C L− 1 d− 1). Different from Bmax /B0, 
ΔBk10 represents an actual rate of growth at a specific stage of 
decomposition and regardless of when the peak biomass is attained.  

5 Gain in functional diversity: The ratio of functional diversity at peak 
biomass and initial function diversity (fBmax/f0). A value of 1 indicates 
that the microbial community did not gain in either diversity or 
biomass (see above). 

2.5. Data analysis 

We assessed the predictability of the five ecosystem functions (Y) 
using two different combinations of predictors as follows:  

– Model I: Predictors were initial microbial functional diversity (f0) 
and initial available carbon (C0) and β0, βf and βC were the associated 
parameters of this model, 

Y = β0f βf
0 CβC

0 . (14)   

– Model II: Predictors were number of carbon compounds (Nc), num
ber of microbial groups (Nb), variance in the parameter distribution 
of the microbial groups (Vb) and initial available carbon (C0) and β0, 
βNc

, βNb
, βV and βC were associated parameters of this model, 

Y = β0NβNc
c N

βNb
b VβV

b CβC
0 . (15)   

After log-(base 10) transformation, the above models can be written 
as linear functions of the independent variables, 

log(Y) = log(β0) + βf log(f0) + βClog(C0) + ϵ, (16)  

log(Y) = log(β0) + βNc
log(Nc) + βNb

log(Nb) + βV log(Vb) + βClog(C0) + ϵ.
(17)  

where є is the residual error. Therefore, the β coefficients (except for β0) 
can be equivalently interpreted as linear coefficients of the linear 
regression models in Eqs. (16) and (17), or exponents of the power law 
relations in Eqs. (14) and (15). We obtained the model parameters by 
linear least square fitting of the decomposition indices using the scipy 
package (Virtanen et al., 2020). We used R2 as a measure of ecosystem 
function predictability. 

Fig. 2. (A) Summary of ecosystem functions associated with carbon decomposition in the modelled microbial system. (B) Summary of the scenarios for the modelling 
experiments. (C) Summary of statistical models fitted to ecosystem functions based on the numerical experiments. 
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3. Results 

3.1. Initial microbial diversity 

We start by analyzing the functional diversity of the initialized mi
crobial communities. Our definition of microbial community based on 
the number of microbial groups (Nb) and the variance imposed in the 
parameter space (Vb) led to initialized communities that varied in 
Shannon diversity (H) as well as in functional diversity (f) (Fig. S1). By 
construction, f increased with Vb and Nb, but also with increasing Nc, 
because more substrates imply a larger number of randomly extracted 
parameters (one set for each substrate-microbial group link, see Fig. 1). 
This result supports our assumption that f could summarize the com
bined effects of substrate and microbial diversity, as described by Model 
I (see Sections 3.3–3.6). 

3.2. Decomposition trajectories 

In all the scenarios, microbes consumed substrate carbon for growth 
and respiration, resulting in a monotonic increase for the percentage of 

carbon consumed, and in most cases a peaked trajectory for the total 
microbial biomass (select examples in Fig. 3). The gain in microbial 
biomass, carbon consumed, and the rate of carbon consumption varied 
across our scenarios (Fig. 3). The largest variation in biomass growth 
was controlled by the initial carbon concentration, followed by the 
number of microbial groups and by microbial diversity in terms of 
parameter variance (Fig. 3A). In carbon-rich systems, biomass growth 
showed a distinct peak (Fig. 3A) linked to rapid consumption of avail
able carbon (Fig. 3B), while in carbon-poor systems, biomass growth 
was minimal and decomposition was relatively slow. Relative to the 
initial carbon concentration, larger microbial diversity implied faster 
decomposition and faster microbial growth. The number of microbial 
groups was crucial for sustaining the biomass over time in carbon-poor 
systems (e.g., net biomass losses were larger at low Nb, see Fig. 3B). In 
the following sections, we present in more detail how the five ecosystem 
functions vary across the different scenarios. 

3.3. Decay constant for total organic carbon 

Values of k10 for Ctot varied from 3.2E-4 to 2.0E-1 d− 1 with a mean of 
2.0E-2 d− 1, and coefficient of variation ranging from ~20 % (in carbon 
poor systems with homogeneous communities) to ~50 % (in carbon rich 
systems). The k10 increased significantly with C0 (Kruskal – Walis test, p 
< 0.05) and with initial microbial diversity f0 (and H0, Fig. S2), but the 
effect of increasing diversity decreased at high diversity levels, as indi
cated by a coefficient for f0 lower than one (R2=0.75 for model I, 
Fig. 4A). Model II, using the individual predictors of k10, had comparable 
predictive power as model I (R2=0.75). All coefficients of both models 
were positive, indicating that all the considered factors promoted 
decomposition—especially noteworthy is the positive (priming) effect of 
initial carbon concentration on decomposition (Fig. 5A, B). Despite 
reasonable good performance, model I clearly underestimated the 
sensitivity of k10 to changes in f0 at high carbon availability. Adding an 
interaction term between f0 and C0 in model I did not improve the fitting 
(results not shown), indicating that model I is structurally inadequate to 
capture all aspects of diversity effects. 

To qualitatively test model results in terms of estimated effects of 
microbial diversity on decomposition, we compared the coefficients 
associated with microbial community characteristics in both the models 
(i.e., βf , βVb

, and βNb
) to coefficients calculated by fitting power law 

relations between measured respiration or mass loss and (taxonomic) 
diversity from published studies (see detailed in Table S1). Model- 
estimated coefficients lay in the range found from experimental 
studies, with βNb 

at the lower end of the range (Fig. 6). 

3.4. Temporal evolution of the decay constant and persistent carbon 

The initial carbon concentration affected the decay constant calcu
lated at subsequent steps of 10 % carbon loss. In most scenarios, the 
decay constant increased (peaking between 80 % and 30 % of C0 
remaining in the system) before decreasing to zero, when decomposition 
effectively ceased, leaving some persistent, undecomposed carbon in the 
system (Fig. S3). This unimodal pattern corresponds to a sigmoidal 
shape in the trajectory of cumulative carbon loss (in the examples in 
Fig. 3 the initial lagged response of carbon loss is too short to be visible). 
Both C0 and the microbial community characteristics (in particular Vb), 
influenced significantly the temporal evolution of the decay constant 
(Kruskal Wallis test, p < 0.05), with the decay constant increasing more 
through time with increasing carbon availability and higher diversity in 
the microbial community. 

In carbon poor conditions, decomposition was slow and did not 
change systematically with subsequent carbon decomposition stages 
(Fig. S3). The carbon remaining in the system at the end of the simu
lation period (CT/C0 in Fig. 4B) in these conditions was typically 20 % of 
the initial carbon or higher. Higher initial carbon concentrations and 

Fig. 3. Temporal trajectories over 10 years of (A) biomass concentration and 
(B) carbon decomposed (in % with respect to initial available carbon) in 
selected scenarios. The marker style varies with number of biomass groups: dots 
for low Nb (4) and cross for high Nb (20). The linestyle varies with microbial 
community type: solid line for homogeneous communities with low Vb (0.01) 
and dotted line for heterogeneous communities with high Vb (1.0). The color 
intensifies with increasing initial carbon concentration from carbon-poor (2 mol 
C L− 1, orange) to carbon rich (10 mol C L− 1, brown). The results displayed are 
for the same randomised scenario, i.e., the seed is the same. 
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higher number of carbon compounds facilitated the decomposition of 
carbon compounds that would otherwise remain undecomposed 
(Figs. S4 and S5). 

Microbial community characteristics also influenced the persistence 
of carbon but to a lower extent than initial carbon concentration. Ho
mogeneous communities caused carbon in some compartment to remain 
undecomposed at the end of the simulation period, while heterogeneous 
communities contained microbial groups that could decompose other
wise slow-decomposing carbon compounds (e.g., in Fig. S6 microbial 
necromass carbon cannot be decomposed by a homogeneous commu
nity). As a result, the coefficient βV for CT/C0 was negative (Fig. 5B). 
However, despite the overall positive effect of f0 on decomposition, in a 

few systems with highly functionally diverse microbial communities and 
low initial carbon concentration, CT/C0 was as high as 0.6, indicating a 
disfunctional system (some of the downward triangle orange points in 
Fig. 4B). 

Lastly, a microbial community composed of more functional groups 
resulted in decomposition of compounds that a community composed of 
few functional groups could not decompose, but only in systems with 
low substrate diversity (as in the example in Fig. S7). In general
—surprisingly—this was not the case, as shown in the regression anal
ysis, where the coefficient βNb 

for CT/C0 was relatively large and 
positive, indicating that communities with more functional groups—all 
else being equal—were less able to complete the decomposition process 

Fig. 4. Ecosystem functions (defined in Fig. 2) in relation to initial functional diversity of microbial communities (f0, in d− 2) and initial carbon concentration (C0, 
color coded). To prevent crowding, only selected examples are presented : C0 = 2 mol C L− 1 (carbon poor) and C0 = 10 mol C L− 1 (carbon rich); Vb=0.01 (ho
mogeneous community) and Vb=1.0 (heterogeneous community): A) initial decay constant (k10) in log scale; B) residual carbon at the end of the simulations (CT/C0); 
C) normalized microbial biomass gain as ratio of maximum biomass and initial biomass (Bmax/B0); D) microbial biomass growth rate as gain in biomass over a month 
at τ10 (ΔBk10 ) in log scale; E) gain in functional diversity (fBmax/f0). Regression metrics presented in the panels refer to model I (Eq. (14)) applied to the full dataset, not 
only the shown data. 
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than communities with fewer groups (Fig. 5B). 
To summarise, the predictability of persistent carbon was moderate 

(R2 = 0.57). All coefficients for model I were negative, indicating that 
initial carbon concentration and functional diversity promoted decom
position (mirroring their positive effect on k10) while decreasing the 
fraction of remaining carbon at the end of the simulations (Fig. 5). In 
model II, the coefficients of all but one predictor were negative, indi
cating as in model I that higher initial carbon concentration, number of 
carbon compounds, and microbial functional diversity (but not the 
number of microbial groups per se) promoted decomposition (Fig. 5B). 

3.5. Microbial biomass gain 

Carbon poor systems (C0 < 5 mol C L− 1) did not allow for a microbial 
biomass gain higher than 50 % of initial biomass in most microbial 
communities. In carbon rich systems, the gain in biomass depended on 
the nature of the microbial community. Functionally homogeneous 

communities (low f0) displayed a lower gain in biomass at its peak (gain 
of up to 50 % of the initial biomass) compared to heterogeneous com
munities (peak biomass could be double or more of initial biomass; Fig 
4C). Similarly, the microbial biomass growth rate of functionally ho
mogeneous communities was lower than that of heterogeneous com
munities (Fig. 4D). Extremely heterogeneous communities (functional 
diversity > 1E-3 d− 2) were able to leverage even limited carbon avail
ability to support biomass gains. 

The normalized biomass gain could be predicted as a function of f0 
and C0 (model I) with R2 = 0.60, and the biomass growth rate with R2 =

0.89. The coefficients of this function (i.e., βf and βC) were both positive, 
indicating that both functional diversity and carbon availability pro
moted biomass growth regarless of how growth is defined (Fig. 5A). 
Using model II (predictors: Nc, Nb, Vb, and C0), the normalized biomass 
gain could be predicted with a comparable R2 = 0.61. The coefficients of 
this function (i.e., βNc

, βNb
, βV and βC) were also positive (but small in 

magnitude), indicating that number of carbon compounds, microbial 
diversity (both functional traits and number of groups), as well as initial 
carbon concentration, promoted biomass growth (Fig. 5B). Similar re
sults were obtained when predicting microbial biomass growth rate, 
although with stronger effects of all predictors. Moreover, coefficients 
describing microbial diversity effects on microbial growth were 
consistent with empirical estimates (Fig. 6). 

The initial carbon concentration had a much stronger effect on mi
crobial growth rate compared to the normalized microbial biomass gain 
(Fig. 5). This difference arised because growth rates were not normal
ized with respect to the initial states or carbon availability. However, 
even normalizing growth rates by C0, coefficients would be slightly 
lower than one, indicating nearly linear scaling with C0. 

3.6. Microbial community functional diversity 

Initially homogeneous communities did not change in functional 
diversity, while heterogeneous communities became more diverse 
(Fig. 4E). The transition between these two behaviors occurs at a clear 

Fig. 5. Coefficients of statistical models predicting ecosystem functions (from 
top to bottom in each panel: decay constant, persistent carbon, normalized 
microbial biomass gain, microbial biomass growth rate, change in functional 
diversity). (A) Model I (Eq. (14)): Coefficients describing the effects of initial 
functional diversity (f0) of the community and carbon availability (C0) on 
ecosystem functions (coefficients were all different from zero, p < 0.001). (B) 
Model II (Eq. (15)): Coefficients describing the effects of system properties on 
ecosystem functions: number of carbon compounds (Nc), number of microbial 
groups (Nb), scaled parameter variance (Vb) and initial carbon concentration 
(C0) (coefficients were all different from zero, p < 0.001). 

Fig. 6. Comparison of coefficients describing the effect of microbial community 
characteristics on organic carbon decomposition and biomass growth in our 
study (i.e., diamond shape for βf , star shape for βVb

, and square shape for βNb
) 

with those derived from regression of empirical data, shown as boxplots (me
dian shown in orange and quartiles), with small circles indicating outliers (data 
from Setälä and McLean 2004; Bell et al. 2005; Tiunov and Scheu 2005; Tol
jander et al. 2006; Costantini and Rossi 2010; Wilkinson et al. 2012; Valentin 
et al. 2014; Domeignoz-Horta 2020) (see details in Table S1 for organic carbon 
decomposition data and in Table S2 for microbial growth data). 
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threshold of f0 ≈ 10− 6 d− 2. The change in functional diversity (fBmax /f0) 
as a function of f0 and C0 had R2 = 0.50, while including individual 
predictors in model II improved the predictability slightly, to R2 = 0.53. 
All coefficients in both models were positive, except the coefficient for 
Nc, indicating that a high number of carbon compounds decreased the 
change of f at peak biomass (Fig. 5B). 

4. Discussion 

4.1. Model framework rationale and applicability 

We set up a reaction network to study how functionally diverse mi
crobial communities degrade organic matter. In this model, functional 
diversity is driven by the number of microbial groups, number of carbon 
compounds and the parameter values chosen to represent their decom
position kinetics and metabolism. Communities with higher variance 
imposed in the parameter distributions can be regarded as composed by 
diverse microbial functional groups, while communities with low 
imposed variance are composed by functionally homogeneous and 
generalist microbial groups. The initial NOSC of the carbon compounds 
varied between -0.5 and +0.5 but averaged at approximately zero, 
consistent with bulk soil organic matter in shallow soil, bacterial nec
romass, litter and some fractions of root exudates (Gunina and Kuzya
kov, 2022). With these chemical characteristics and by focusing on only 
bioavailable chemical compounds, we restrict the interpretation of our 
results to decomposition of litter or particulate organic carbon, where 
microbial processes dominate over physical ones (organic 
matter-mineral interactions are not considered). These systems share 
similar interactions between microbial decomposers and their sub
strates. However, the model is not designed to capture the effects of 
environmental conditions (e.g., soil moisture, temperature, oxygen) on 
these interactions and these environmental effects can be added for 
applications to specific systems. Therefore, comparisons of the results in 
this study can be made with lab scale batch studies where artificial 
consortia were constructed under prescribed environmental conditions, 
or natural systems with varying degree of microbial functional diversity 
due to imposed experimental treatments or natural disturbances, but 
comparable environmental conditions. 

Overall, we observed that the decay constant in all the scenarios 
varied—mostly decreased—over a multi-year time scale, which was 
consistent with previous evidence of slowing down of both litter 
(Manzoni et al., 2012a) and soil organic matter decomposition (Barre 
et al., 2010). Due to this slowing down, residual organic matter may 
remain undecomposed or be consumed at negligible rate at the end of 
our simulation period, similar to observed ‘limit values’ (Berg et al., 
2010). Also the simulated increase in total biomass during decomposi
tion, with subsequent decrease as substrate are depleted, is consistent 
with observations (van Meeteren et al., 2008) and previous modeling 
studies (Allison, 2012). Moreover, the model predicts increasing func
tional diversity as decomposition progresses, which has been observed 
in e.g., decomposing wood (Valentin et al., 2014). Therefore, at least 
qualitatively, our reaction network produces dynamics that resemble 
decomposition in natural systems. A formal calibration is beyond the 
scope of this work, as we aim to assess the relative differences in 
ecosystem functions across simulated scenarios, to be compared with 
studies with manipulated artificial consortia or diversity. However, 
comparison with previous studies, particularly dilution experiments 
(Griffiths et al., 2000; Valentin et al., 2014), must also be considered 
with care as dilution or manipulation may result in some selection bias 
(Krause et al., 2014). 

4.2. Microbial diversity effects: empirical evidence and diversity metrics 

Numerous lab and field scale studies have explored the impact on 
ecosystem functions of microbial diversity expressed as number of spe
cies or taxonomic units (Nielsen et al., 2011). Some of these studies 

showed a positive relationship between microbial diversity and 
ecosystem functions and others negative (Nielsen et al., 2011; Krause 
et al., 2014). For example, Liebich et al. (2007) showed using artificial 
consortia that organic matter mineralization rate was higher in the most 
diverse community, but the extent of this effect depended on the species 
present in the consortia and thus their decomposition capacity. The role 
of functional diversity was particularly important in low microbial di
versity consortia, where select combinations of microbial species 
continued to mineralize at rates comparable to reference complex 
communities, while other combinations displayed lower mineralization 
rates, as also observed elsewhere (Setälä and McLean, 2004; Bell et al., 
2005; Costantini and Rossi, 2010; Wilkinson et al., 2012; Valentin et al., 
2014; Domeignoz-Horta et al., 2020). In another study, diversity 
increased the organic matter turnover rate (respiration per unit soil 
carbon), but not the respiration rate per se (Vicena et al., 2022). 

In studies where positive correlations between diversity and organic 
matter loss or respiration were found, also microbial growth increased 
with diversity (Setälä and McLean, 2004; Costantini and Rossi, 2010; 
Wilkinson et al., 2012; Domeignoz-Horta et al., 2020) (Tables S1 and 
S2). In general, facilitation is expected to increase microbial growth and 
carbon-use efficiency, while competition lowers growth performance 
(Iven et al., 2023). For example, Toljander et al. (2006) observed that 
wood decomposition and microbial carbon-use efficiency decreased 
with increasing number of fungal species (limited to less than 20). This 
hints at competitive effects among the fungal species in the system, such 
that some species combinations resulted in slower decomposition. Other 
experiments showed instead that communities exhibited higher respi
ration rates, but competition resulted in lower microbial carbon-use 
efficiency (Maynard et al., 2017)—a process we capture through Eq. 
(6). Despite the occurrence of negative interactions, our results support 
the idea that diversity overall promotes microbial growth. 

The contrasting diversity effects found in previous studies might in 
part be caused by the use of taxonomic diversity indices, which is 
motivating a shift towards functional diversity metrics to understand 
ecosystem processes (Allison, 2012; Krause et al., 2014). In fact, in these 
experiments, taxonomic diversity might correlate with functional di
versity to a different degree depending on the study, as the selected 
microbial isolates are not only taxonomically distinct, but also differ in 
their decomposition capacity. Here, we used biomass weighted variance 
in functional parameters to characterize microbial communities as ho
mogeneous or heterogeneous (Schleuter et al., 2010). While this metric 
has been used in plant ecology using measureable functional traits, 
emerging molecular techniques for microbial activity characterization 
might provide insights on functional diversity without measuring indi
vidual traits in isolates (Cebron et al., 2011; Romillac and Santorufo, 
2021). 

4.3. Microbial diversity effects: model results 

We proceed to discuss the relationships emerging from our model 
simulations between microbial diversity indicators and ecosystem 
functions, with a focus on carbon decomposition kinetics. Microbial 
diversity was positively related with all ecosystem functions except 
carbon storage (i.e., residual carbon). However, the coefficients of the 
diversity terms in our regressions were lower than one. These co
efficients correspond to exponents of power laws relating functions to 
diversity, and small exponents imply that the effect of diversity de
creases as diversity increases, but without reaching a true saturation 
level. In other words, in systems with a small microbial community or 
with low diversity, even a small increase in diversity caused a relatively 
large change in decomposition capacity, also previously noted experi
mentally (Setälä and McLean, 2004; Bell et al., 2005; Costantini and 
Rossi, 2010; Wilkinson et al., 2012; Domeignoz-Horta et al., 2020) and 
predicted theoretically by Loreau (2001) for generalist communities. In 
the model by Loreau (2001), the positive effect of species number on 
ecosystem functions saturates in the communities of generalists, 
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whereas ecosystem functions continue to benefit from increasing di
versity in communities of specialists. Our results suggest a sustained 
effect of diversity, but with rapidly decreasing effects, indicating that the 
behavior of our simulated communities is intermediate between 
generalist and specialist. 

The decay constant increased with higher initial carbon concentra
tion, as well as higher substrate and microbial diversity. The increase 
with carbon availability highlights the importance of nonlinear in
teractions between microbes and substrates—higher available carbon 
promotes microbial growth Fig. 4C and D) that in our model feeds-back 
positively on decomposition—i.e., the model predicts a strong priming 
effect (Eqs. (1) and ((2)). Thus, in this reaction network, the emerging 
kinetics are far from linear and predictions from this model differ from 
linear, microbial-implicit models that do not capture priming effects. 
Linear models would instead predict that adding carbon will increase 
the total respiration rate, but will not change the decomposition rate 
constant. It is also possible that in mineral soils or aquatic systems with 
low carbon availability (due to physical protection or dilution) these 
priming effects become less prevalent, lending support for linear 
approximations. 

The coefficients found with our statistical model were comparable to 
those obtained by fitting respiration or mass loss against microbial 
taxonomic diversity from previous experimental studies (Setälä and 
McLean, 2004; Bell et al., 2005; Tiunov and Scheu, 2005; Toljander 
et al., 2006; Costantini and Rossi, 2010; Wilkinson et al., 2012; Valentin 
et al., 2014; Domeignoz-Horta et al., 2020), lending support to the 
overall model setup. Further support—albeit also at a qualitative lev
el—is provided by the comparable values of model-derived and obser
vational coefficients found in microbial growth-diversity relations 
(Fig. 6). 

To apply the derived microbial diversity ecosystem function re
lationships, information on functional diversity or numbers of microbial 
groups and carbon compounds should be available, but that information 
is not readily available—measuring functional diversity is difficult and 
categorizing microbial groups and carbon compounds might prove 
impractical or subjective. Therefore, one could consider using the power 
law model we proposed (in Eqs. (16) and (17)) to describe the relative 
change in diversity effects induced by a change in diversity. Let us 
consider the decay constant as an example, which can be expressed by 
substituting the regression coefficients in Eqs. (16) and (17): 

k10∝f 0.10
0 C0.59

0 ; or (18)  

k10∝N0.46
c N0.02

b V0.18
b C0.59

0 . (19) 

In a real-case scenario, a measured proxy of microbial functional 
diversity could indicate a reduction of diversity by half after a distur
bance. This would translate into a 10 % reduction in the decay constant 
all else being equal (0.50.10~0.9, see Fig. 5A). Such scaling arguments 
could help parameterize diversity effects in soil carbon models (e.g., 
Abramoff et al. 2022) to improve the predictability of microbe mediated 
carbon dynamics in soil. The same approach could be used to re-scale the 
decay constants according to available carbon, as a simple approxima
tion of priming effects. 

We are not aware of previous attempts to use power-law relations 
like Eqs. (18) and (19) to capture the combined microbial and substrate 
effects on decomposition. While the predictive power of model I Eq. 
(18)) is not high, and information on the predictors used in model II 
might not be available, at least some of the scaling arguments proposed 
here could be applicable as first-order approximations. However, we did 
not test how varying the mean values of microbial parameters affects the 
exponents. Thus, to apply these scaling arguments, it would be necessary 
to first calibrate the mean parameter values and determine site-specific 
coefficients for Eqs. (18) and ((19). 

Not only decomposition or respiration rates, but also microbial 
growth is promoted by microbial diversity (Fig. 6). For example, a 

positive effect of taxonomic diversity on growth rates was found by 
Domeignoz-Horta et al. (2020) in moist soil samples (no effect in dry 
soil), which was also reflected in a positive effect on microbial 
carbon-use efficiency. The scaling exponents for the relation between 
growth rate and number of taxonomic units are slightly above one for 
this study (with some variation depending on the incubation tempera
ture), indicating a very strong diversity effect. In contrast, our model 
results suggest exponents ~0.3 for the number of microbial groups and 
the scaled parameter variance, indicating a weaker diversity effect. This 
difference might be explained by the shorter time scale of the study by 
Domeignoz-Horta et al. (2020) (a few months) compared to our 
multi-year simulations. In our simulations, microbial biomass depends 
on the balance of growth and mortality, so the signal of diversity might 
have been smoothed by the long-term growth and decay dynamics in the 
modelled system. However, the growth-diversity exponents in other 
studies were more in line with or even lower than our results (Setälä and 
McLean, 2004; Toljander et al., 2006; Costantini and Rossi, 2010; Wil
kinson et al., 2012). 

4.4. Functional diversity related thresholds for ecosystem function 

We used the biomass weighted variance of the rate constant for 
decomposition to characterize microbial functional diversity (Schleuter 
et al., 2010). We then traced the functional diversity of the microbial 
communities as these communities grew under varying chemical di
versity and carbon availability. We found that communities with low 
functional diversity were likely to die off in carbon poor conditions. This 
could be attributable to competition for the same resources (Loreau, 
2001) because the microbial groups in these communities were similar 
to each other (low diversity). Due to the lack of niche differentiation in 
these communities, they were all collectively unable to decompose some 
carbon compounds, in turn preventing the flow of carbon through the 
reaction network (Section 3.6). This exacerbated the resource limitation 
for the communities with low diversity, resulting in their death and 
incomplete decomposition. In carbon rich conditions, however, this 
resource limitation was avoided and thus, limited gains in biomass were 
possible even for these low diversity communities. 

In contrast to homogeneous communities, extremely diverse com
munities grew in biomass and promoted carbon flow through the reac
tion network even in carbon poor conditions (as also shown by Vicena 
et al. 2022) thanks to niche differentiation (Loreau, 2001). In carbon 
rich conditions, these extremely diverse communities grew up to double 
of their initial biomass. Furthermore, as decomposition progressed, the 
diversity of these communities also increased (as also shown by Valen
tin et al. 2014), indicating that microbial groups identified their niches 
and exploited them ensuring their survival (Allison et al., 2010; Krause 
et al., 2014). This is in contrast with ecological studies that showed that 
higher resource supply decreased plant and/or microbial diversity due 
to enhanced competition (Allison et al., 2010; Krause et al., 2014). 
Therefore, in the proposed model, mutualism (described as “facilitation 
effects” by Krause et al. 2014) seems to have outweighed the effects of 
competition among the microbial groups. In other words, high func
tional diversity enabled the transfer of carbon among the network 
compartments, thereby enabling the coexistence of microbial groups. 
Thus, our results based on a simple model system (for studies including 
multiple trophic levels, see Dobson et al. 2006; Downing et al. 2012) 
support the general idea that ecosystems might exhibit thresholds in 
functional diversity below which they lose functionality. 

Furthermore, we observed that diversity of available substrate car
bon promoted decomposition (model II). Thus, higher chemical di
versity provided microbial groups with more opportunities to occupy 
their niche, grow, proliferate and consume carbon. This confirmed re
sults from Naeem et al. (2000), who observed that chemical and mi
crobial diversity are positively correlated. In contrast, Loreau (2001) 
argued that higher chemical diversity resulted in the same or lower 
recycling efficiency due to inefficiency in resource allocation. Loreau 
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(2001) did not explore scenarios where Nc>Nb, and may have missed 
testing scenarios where chemical diversity indeed promoted carbon 
decomposition kinetics. From a more conceptual point of view, it is 
expected that highly diverse compounds do not promote decomposition 
because it is not advantageous for microbes to synthesize the specific 
enzymes needed for all compounds (Lehmann et al., 2020). However, in 
our model there is no cost in synthesizing enzymes, so that it is not 
surprising that the positive effect of substrate diversity due to niche 
differentiation emerges instead of the negative effect due to inefficient 
carbon economy. 

4.5. Methodological limitations 

We used the nominal oxidation state of the carbon species to place 
the substrates in the reaction network and to characterize their 
decomposability. As a result, NOSC regulates how carbon flows from the 
‘top’ (low NOSC and decomposability) to the ‘bottom’ (high NOSC and 
decomposability) of the cascade (Fig. 1), and the growth yield coeffi
cient for each substrate. Instead of this simple approach, we could 
improve the characterization of the substrates by using Bertz 
complexity, which uses both molecular weight and the overall com
pound structure (Cheng et al., 2022). Another alternative would be to 
assume a continuous change of decomposability, as described by the 
continuum decay theory (Ågren and Bosatta, 1998) and also used in 
previous studies (Manzoni and Porporato, 2009). 

Regarding processes incorporated in the network, we assumed that 
exo-enzyme production is upregulated proportionally to the amount of a 
given carbon species, but we did not penalize microbial groups for costs 
associated to enzyme production. This means that there is no built-in 
mechanism in the model to bound the value of venz,j. Similarly, no 
trade-offs among parameters are considered (except for mortality), so 
that the parameters describing decomposition (zi,j, vmax,i,j, venz,j) are 
treated as independent. This is not necessarily the case, because mi
crobes adopt different strategies involving co-variation of traits to 
optimize carbon decomposition and biomass growth (Malik et al., 
2020). Our reaction network could be parameterized so that microbial 
compartments match known functional groups (e.g., Allison 2012) with 
specific set of traits, but this choice would prevent from studying the 
consequences of varying independently the number of and similarities 
among microbial groups. 

5. Conclusions 

We assessed how ecosystem functions, such as decomposition rates 
and microbial growth, change depending on soil microbial community 
functional properties and diversity, and with varying carbon availabil
ity. To this aim, we formulated a reaction network for microbial pro
cesses mediating organic matter decomposition, which was used for 
theoretical explorations of diversity-function relations. We concluded 
that carbon availability was a major driver with positive effects on all 
the ecosystem functions. Furthermore, functional diversity of microbial 
communities also provided clues as to the overall function of the system. 
Microbial community diversity (in terms of number of microbial groups 
and trait variance) promoted ecosystem functions including carbon 
decomposition and microbial growth, but their effect was reduced at 
high diversity. Lastly, diversity of substrate carbon also promoted car
bon decompositiom as it provided more opportunities for the microbial 
groups to occupy their niche. Using these results, we suggest that a rate 
modifier accounting for microbial community characteristics, chemical 
diversity and carbon availability could be implemented in existing soil 
carbon models to re-scale the decomposition rate constants depending 
on the characteristics of the microbial community at a given site. 
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